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Mechanically steered photon upconversion
and circularly polarized luminescence in
stretchable photonic crystal films

Zhi-Wang Luo1,2,3, Honghan Ji3,4, Xue Jin 3,4, Jun Song 2, Zhen-Qiang Yu 1 ,
Pengfei Duan 3,4 & Tonghan Zhao 5

Photon-upconverted circularly polarized luminescence (UC-CPL) based on
triplet-triplet annihilation (TTA) holds considerable promise for innovative
applications. However, existing strategies encounter difficulties in con-
currently achieving tunable TTA photon upconversion (TTA-UC) performance
and a high luminescence dissymmetry factor (glum) in the solid state. In this
study, we design and fabricate flexible and stable upconverted stretchable
photonic crystal (SPC) films. These films demonstrate dynamically tunable
TTA-UC intensity and UC-CPL in response to mechanical stretching. Notably,
while the TTA-UC intensity initially diminishes upon stretching the upcon-
verted SPC film, it subsequently exhibits significant enhancement when the
photonic bandgap edge aligns with the TTA-UC emission wavelength. Fur-
thermore, stretching the upconverted SPC film can invert the circular polar-
ization direction of the UC-CPL, with the glum value varying from +0.50 to
−0.60. Consequently, these upconverted SPC films, characterized by their
tunable structural color and adjustable UC-CPL, achieve visual flexible
dynamic information display and encryption. This research offers promising
perspectives for the development of advanced chiral UC-CPL materials and
their potential applications in fields such as information encryption and flex-
ible 3D displays.

Triplet-triplet annihilation-based photon upconversion (TTA-UC)
facilitates the transformation of low-energy photons (long-wavelength
light) into high-energy photons (short-wavelength light)1–3. This pro-
cess initiates when a sensitizer absorbs long-wavelength light, transi-
tioning to an excited singlet state, followed by an intersystem crossing
to an excited triplet state. Subsequent triplet-triplet energy transfer
(TTET) from the sensitizer populates the triplet state of an acceptor.
The collision of two triplet acceptors then results in one acceptor
returning to its ground state while the other is promoted to an excited

singlet state via triplet-triplet annihilation. Finally, the excited singlet
acceptor emits short-wavelength light2,4–10. Compared to rare-earth-
doped upconversion materials, TTA-UC offers the advantages of
operating at lower excitation power densities and involving simpler
material preparation7,11,12. These attributes make TTA-UC highly pro-
mising for diverse applications, including optical and biological ima-
ging, photovoltaic devices, anti-counterfeiting technology, and
information encryption13–23. Most TTA-UC research has been con-
ducted in deoxygenated solutions at room temperature, a condition
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that hinders the development of practical TTA-UC devices22,24–26. The
incorporation of solid hosts represents an effective strategy to realize
TTA-UC device fabrication, owing to the encapsulation and processa-
bility benefits27–31. For instance, Islangulov et al. reported green-to-blue
upconverted photoluminescence (UCPL) in a rubbery polymer film
utilizing palladium(II) octaethylporphyrin and 9,10-diphenylan-
thracene as the sensitizer and acceptor, respectively32. To date, various
polymeric host matrices, such as polyurethane, polyethylene glycol,
poly(methyl methacrylate), and cellulose acetate, have been success-
fully employed, advancing the field of solid-state TTA-UC33–36. Never-
theless, material deformation is often unavoidable in practical
applications, and achieving external modulation of upconversion
performance remains a significant challenge.

To investigate the influence of deformation onUCPL properties, a
TTA-UC system comprising platinum(II) tetraphenyltetrabenzo
porphyrin (PtTPBP) as the sensitizer and 9,10-bis(phenylethynyl)
anthracene (BPEA) as the acceptor was incorporated into a stretchable
liquid crystal elastomer (LCE)film. The reason for choosing theUCpair
of BPEA and PtTPBP is that the red-light absorption capacity of PtTPBP
enables UCPL with excitation of lower-energy light, the efficient
emission characteristics of BPEA in the green light region, and the
excellent triplet energy matching between the two37,38. However, a
gradual decrease in TTA-UC intensity was observed during long-
itudinal stretching LCE film. To mitigate this challenge, stretchable
photonic crystal (SPC) films—based on cholesteric liquid crystal

elastomers—are identified as promising host materials. SPC films
represent an emerging class of smart materials that combine the dis-
tinct chiral optical properties of a helical superstructure with the
inherent flexibility and stability of elastomers39–45. Notably, the helical
superstructure generates a photonic bandgap (PBG)46–50, which can
enhance luminescence at the band edge51,52. Concurrently, the
stretchability of these elastomers enables the tuning of the PBG’s band
edge to align with the TTA-UC emission. This alignment is anticipated
to counteract the deformation-induced decrease in emission intensity.
Furthermore, the helically arranged structure of SPCs facilitates the
generation of circularly polarized luminescence (CPL), characterized
by the emission of left-handed and right-handed circularly polarized
light with differing intensities53–60. Leveraging these unique features,
the integration of SPCs as chiral templateswith TTA-UC components is
expected to enable the development of materials exhibiting both
tunable TTA-UC and upconverted CPL (UC-CPL).

In this work, we fabricate the upconverted SPC films exhibiting
mechanically manipulated TTA-UC efficiency and handedness of cir-
cular polarization. As illustrated in Fig. 1a, the TTA-UC pair, BPEA/
PtTPBP, is integrated into SPC film. The elastomers are synthesized
from the liquid crystal diacrylate monomer RM257, the chiral dopant
R-/S-5011, the crosslinker pentaerythritol tetrakis(3-mercaptopropio-
nate) (PETMP), and the chain extender 2,2′-(ethylenedioxy)dietha-
nethiol (EDDET). Owing to the impermeability and inherent helicity of
the SPC matrix, strong UC-CPL is observed under ambient conditions
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Fig. 1 | The composition and basic properties of upconverted stretchable
photonic crystal (SPC) films. a Chemical structures of diacrylate mesogen
(RM257), chiral dopants (R-/S-5011), cross-linker (PETMP), chain extender (EDDET),
and the sensitizer (PtTPBP)/acceptor (BPEA) pair for fabricating upconverted SPC
film. b Schematic diagram of the Triplet-triplet annihilation photon upconversion
(TTA-UC) process including triplet-triplet energy transfer (TTET) from sensitizer to

receptor and triplet-triplet annihilation (TTA) between two triplet acceptors for
upconverted circularly polarized luminescence (UC-CPL) in the helical structure of
the microscopic cross-linked network of upconverted SPC film. (λex = 639nm,
λem = 515 nm) c Schematic illustration of reversable mechanically-steered photonic
band gap (PBG), upconverted photoluminescence (UCPL), and UC-CPL.
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(Fig. 1b). Upon longitudinal stretching, the UCPL intensity initially
decreased before subsequently increasing. More remarkably, the cir-
cularpolarizationdirectionof theUC-CPL inverted from left-handed to
right-handed when the upconverted SPC film deformation reached
30%. Concurrently, the luminescence dissymmetry factor (glum) tran-
sitions from +0.50 to −0.60 (Fig. 1c). These dynamic control cap-
abilities are attributed to the deformation-induced shift of the PBG
position. Furthermore, we demonstrate the potential of these upcon-
verted SPC films for advanced applications in mechanically tunable
displays and multi-level information encryption, leveraging their
modulated reflection colors, UCPL, and UC-CPL. The enhancement
achieved in UCPL under high strain advances the fundamental
understanding of the optical mechanisms of dynamic regulation,
opening promising avenues for developing high-efficiency UCPL
materials. Additionally, this work introduces a strategy for fabricating
advanced chiral materials with UC-CPL properties, providing valuable
insights for potential applications in information encryption and flex-
ible 3D display technologies.

Results
Optimization of upconverted SPC films preparation and UCPL
Weprepared the BPEA/PtTPBP-loaded upconverted SPC films by using
a straightforward anisotropic swelling method combined with a two-
stage thiol-acrylate addition and in-situ photopolymerization. The
preparation process of the film and the appearance of some tested
films are shown in Fig. 2a, b. For instance, LCEs with 0.5wt% BPEA (F0-
2), LCEs with BPEA/PtTPBP (F1-1), LCEs with S-5011 (F2-1), LCEs with
S-5011 and BPEA/PtTPBP (F3-1). The green UCPL of F1-1 and F3-1 films is
observed upon excitation of 639 nm laser in ambient air. While this
wide agreement that oxygen can quench triplet excited state, this

preparation process is conducive to removing oxygen from the film,
such as vacuuming and polymerization. TheMichael addition reaction
andgenerated free radicals can reactwith active oxygen species during
the polymerization process, leading to the formation of inactive per-
oxy radicals. This reaction effectively reduces the concentration of
oxygen within the film, thereby creating an environment favorable for
achieving TTA-UC61–63.

To achieve optimal TTA-UC,wedetermined the ideal concentration
of BPEA and the ratio of BPEA to PtTPBP through photoluminescence
tests. The absorption and fluorescence spectra of BPEA and PtTPBP are
shown in Supplementary Fig. 1. The concentration of the luminescent
molecules plays a significant role in determining both the UCPL effi-
ciency and spectrum in upconverted LCEs. At a low concentration, TTET
from PtTPBP to BPEA is insufficient, while BPEA aggregates at an
excessively high concentration, which paradoxically reduces lumines-
cence efficiency. We prepared a series of achiral LCEs films containing
varyingmass fractions of BPEA at concentrations of 0.1 (F0-1), 0.5 (F0-2),
1.0 (F0-3), and 2.0 (F0-4) wt% and performed a comprehensive analysis
of their optical performance (Supplementary Table 1). The fluorescence
spectra indicate that theF0-1 exhibitsdistinct luminescencepeaks at 488
and 515 nm (Fig. 2c). As the concentration of BPEA increases to 0.5wt%,
the luminescence peak at 488nm weakens, while the peak at 515 nm
increases due to self-absorption. As the concentration increases further
in thefilms F0-3 and F0-4, distinct luminescence peaks appear at 556nm
and 596nm, respectively. We speculate that this is due to the aggrega-
tion of BPEAmolecules. We conducted verification through the color of
the film and the texture under polarizing microscope (POM). The film
turns yellow, and a clear red crystal is observed under POM (Supple-
mentary Fig. 2). These results indicate the formation of aggregated
states. Considering the impact of both luminescence efficiency and
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Fig. 2 | Preparation of thin films and UCPL. a Schematic illustration of fabricating
process for upconverted SPC films via a facile anisotropic deswelling method that
combined two-stage thiol-acrylate Michael addition and photopolymerization
reactions. b The photos of films under natural light, 365 nm UV lamp, and 639nm
laser. c Fluorescence spectra of BPEA at different concentrations in liquid crystal

elastomer (LCE) films. (λex = 400nm) d UCPL spectra of BPEA/PtTPBP (50:1) with
different incident power density of 639nm laser in LCE film; e Double-logarithmic
plots of the UCPL intensity of BPEA/PtTPBP (50:1) as a function of excitation
intensity of the 639 nm laser.
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aggregation in the films, we determined the optimal concentration of
BPEA is 0.5wt%. As for the optimization of the PtTPBP content, we
selected molar ratios of 50:1 (F1-1), 100:1 (F1-2), and 150:1 (F1-3) for the
upconversion pair of BPEA/PtTPBP. The optical path for testing UCPL is
shown in Supplementary Fig. 3, under irradiation with a 639nm laser,
remarkable UCPL signal is observed peaking at 515 nm (Fig. 2d and
Supplementary Fig. 4a, c). The double-logarithmic plots of UCPL inten-
sity as a function of excitation density exhibit the slope of fitted result
transitioning from ~2 to ~1 (Fig. 2e and Supplementary Figs. 4b, d),
confirming the TTAmechanism. In addition, the UCPL lifetime at 515 nm
of F1-1, F1-2, andF1-3 is estimated tobe377, 295, and339μs, respectively,
consistent with the long-lived triplet state annihilation mechanism
(Supplementary Fig. 5). F1-1 shows a threshold excitation intensity of
1254mWcm−2, demonstrating it requires the lowest excitation intensity
to achieve saturated upconversion efficiency among these three sets of
samples. Therefore, we selected a BPEA concentration of 0.5wt% in F1-1
and a molar ratio of BPEA to PtTPBP at 50:1 for the following
investigation.

Dynamic regulation of UCPL in upconverted SPC films
To reveal the mechanical and optical properties of the prepared
elastomer films under stretched operation, stress-strain and
stretching-dependent UCPL tests were performed. We define the
direction of the tensile force along the x-axis, the width of the film
along the y-axis, and the thickness along the z-axis (Supplementary
Fig. 6). The films F1-1, F2-1 and F3-1 exhibit excellent stress-strain
characteristics at room temperature, with an elongation exceeding
100%, laying a foundation for subsequent experiments (Supple-
mentary Fig. 7). Subsequently, the UCPL of the films F1-1 under
mechanical stress was examined (Supplementary Fig. 8). The UCPL
intensity gradually decreases as the tensile strain along the x-axis

increases, which reveals that the tensile deformation of the film is
detrimental to the upconversion performance.

The continuous suppression of UCPL during stretching harms the
practical applications of upconverted LCEs films. We thus introduced
chiral molecule S-5011 into the elastomer to prepare SPC films pos-
sessing helical superstructure, with the aim of enhancing UCPL
through the PBG edge. The edge of the PBG can enhance the coupling
effect and the photonic density of states51,52,64,65. To confirm such a
scenario, the changes in the PBG position of F2-1 were investigated
during stretching. As shown in Fig. 3a, the F2-1 exhibits notable dis-
coloration at different elongation states. The color of the film changed
from red via green to blue with continuousmechanical stretching. The
reason for the blue shift of F2-1 color is that the reduction of the film
thickness along the z-axis leads to a decrease in helical pitch (Sup-
plementary Fig. 9), resulting in the PBG position moving to a short
wavelength. Remarkably, this entire stretch-and-release process is fully
reversible, with no noticeable delay between mechanical relaxation
and color recovery (Supplementary Fig. 10). To further elucidate the
mechanochromicmechanismof the stretched F2-1, qualitative analysis
was conducted using POM and wide-angle X-ray diffraction (WAXD)
measurements. As shown in Supplementary Fig. 11a, in the initial state,
when thefilmF2-1 is rotatedby 45° and90°, there is noobvious change
in the POM texture. When the elongation is 100%, the POM images
show periodic changes from the dark field to the bright field with the
film F2-1 rotates at 45° intervals, indicating that the texture of F2-1 and
the arrangement of liquid crystal units deform along the mechanical
stretching direction. Furthermore, as the F2-1 stretches, the WAXD
patterns change froma ring to a pair of arcs (Fig. 3b). By performing an
azimuthal angle integration of WAXD, no obvious peak is observed in
the initial film, while after stretching, diffraction peaks appeared near
0° (360°) and 180° (Supplementary Fig. 11b). These results indicate
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surement, λex = 639 nm, λem = 515 nm. e Schematic diagram of tensile changes of
thin films with and without PBG.
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that the polydomain structure in the initial F2-1 transitions to a
monodomain structure with the stretched modulation. To gain
insights into the mechanochromic response of F2-1, transmittance
spectra were recorded. The position of the transmittance peak con-
tinuously shifts from610 to 482 nmduring uniaxial stretching (Fig. 3c).
We further incorporated right-handed circularly polarized filter (R-
CPF) and left-handed circularly polarized filter (L-CPF) into the trans-
mittance test for the uniaxial strain experiment (Supplementary
Fig. 12). The initial F2-1 exhibits characteristic transmittance only when
the R-CPF is applied. Interestingly, the film starts reflecting certain
wavelength in the L-CPF channel when stretched uniaxially by more
than 40%. This result indicates that the F2-1 gradually transitions from
a polydomain helical structure to a monodomain stratified structure,
approaching a 1D Bragg reflector state that reflects both left- and right-
handed circularly polarized light. Consequently, the PBG does not
disappear when the elongation is less than 100%, allowing us to fully
utilize the PBG-edge enhancing effect to enhance TTA-based UCPL.

We studied the TTA-UC properties of upconverted SPC film F3-1
during the uniaxial tensile process. The stress-dependent UCPL spec-
tra reveals that the UCPL intensity initially decreases and then increa-
ses during the F3-1 stretching process (Fig. 3d and Supplementary
Fig. 13). The UCPL intensity decreases from the initial value until the
elongation reaches 70%, when it reaches theminimumUCPL intensity.
When the elongation exceeds 70%, the UCPL increases. We found that
at this point of 70% elongation, the position of PBG is near 515 nm
(Supplementary Fig. 14), which corresponds to the emission wave-
length of UCPL. When the elongation exceeds 70%, the PBG shifts
towards a shortwavelength; correspondingly, theUCPLpeak locates at
the edge of the PBG, enabling the enhancement of emission intensity.
Furthermore, we conducted a study on the lifetime and upconversion
efficiency (ΦUC) of F3-1 at different stretching length positions (Sup-
plementary Fig. 15 and Supplementary Table 3). The UCPL lifetime
increases from the initial 189μs to 268μs accompanied by a decrease
inΦUCwhen stretched to 70%, and then drops to 164μs when reaching
the band edge at 100% elongation (while the ΦUC increases). For F1-1
films without PBG, the UCPL lifetime tends to stabilize from the initial
159μs after stretched by 70%, while the ΦUC continues to decrease.
These results clearly indicate that the variation of the photonic density
of states near the PBG improves the UCPL intensity through the
resonance mechanism, providing strong experimental evidence for
the role of the PBG-edge enhancing effect in UCPL51,52,64,65. Regarding
the difference in the variation trend of UCPL between F1-1 and F3-1
during the stretching process, the schematic diagram in Fig. 3e illus-
trates the influence of two elastomers on UCPL. In the F1-1, the UCPL
decreases gradually throughout the stretching process. On the other
hand, when helical superstructure is formed in F3-1, the increase in
UCPL is that the PBG-edge enhancing effect during the stretching
process. These results prove our hypothesis that the band-edge
enhancement effect of upconverted SPC film can mitigate the loss of
UCPL intensity caused by the tensile deformation of the film.

Dynamic regulation of UC-CPL in upconverted SPC films
Encouraging by the excellent regulating properties of the PBG, we
further investigated the UC-CPL performance of the upconverted SPC
film under mechanical force. In chiral liquid crystal-based photonic
crystals, the emission of circularly polarized light possesses distinct
selectivity66,67. For instance, the left-handed photonic crystals film can
reflect left-circularly polarized light while allowing the transmittance
of right-circularly polarized light (Supplementary Fig. 16). We tested
the PBG of the F3-2 film by circular dichroism (CD) spectroscopy
(Fig. 4a). The CD spectra of initial film show a PBG centering at
~545 nm, while it shifts to ~514 nm after stretching. These results sug-
gest that the degree of overlap between the PBG and UCPL peaks of
BPEA can be dynamically adjusted. We established an optical testing
setup by turning the angles between the quarter-wave plate and

polarizer to measure UC-CPL intensity (Supplementary Fig. 17). Using
the formula IUC-CPL = IL − IR, where the IL and IR denote the intensity of
left-handed and right-handed circularly polarized light, respectively,
data presented in Fig. 4b shows that theUC-CPL inverts fromapositive
to a negative signal with the stretching of upconverted SPC film, cor-
responding to a transition from left-handed to right-handed UC-CPL.
Furthermore, by applying the glum calculation formula
glum = 2 × (IL − IR)/(IL + IR), we obtained the spectra of glum versus
wavelength shown in Fig. 4c. The glum corresponding to the emission
peak of initial film is +0.50, while stretching of the film inverts it to
−0.60, confirming that tuning the PBG effectively alters the circular
polarity of the UC-CPL. The glum values of initial and stretched states
remain almost unchanged under 5 times stretching-releasing cycles in
the same test conditions (Fig. 4d), proving good fatigue resistance of
the film. Furthermore, we investigated the structural evolution of
upconverted SPC film during stretching process through POM and
WAXD. When the F3-2 film is stretched to 30% elongation, it exhibits a
change in its structural color upon being rotated to an angle of 45°,
while its brightness remains nearly constant (Fig. 4e). As the film is
rotated further to 90°, its color reverts to that observed at the initial 0°
position. This optical behavior is analogous to that of the unstretched
film, suggesting that the liquid crystal texture is not significantly
altered by the 30% strain. Figure 4f shows a circular ring in the initial
state. After stretching of the film, only slight changes on the orienta-
tion distribution are observed (Supplementary Fig. 18). These experi-
mental results indicate that the structural change of the stretched film
is not significant, thus the influence of the linear polarization effect
during the stretching process on UC-CPL is negligible. Based on these
observations, a mechanism of UC-CPL inversion is depicted in Fig. 4g.
According to the Bragg reflection, the reflected wavelength (λ) can be
calculated by the formula λ = n0*P sin(θ), where P is the pitch of the
helical structure, n0 is the average refractive index of thematerial, and
θ is the angle of the incident light68. Here we define the wavelengths of
PBG in the initial and stretched states as λ1 and λ2, respectively, and the
peak position of UCPL as λem. In the initial state, PBG is far from the
UCPL wavelength (λ1 ≠ λem), thus BPEA/PtTPBP emits left-handed UC-
CPLuponexcitation.On theother hand, after stretching, the PBG shifts
and coincides with the position of the emission wavelength (λ2 ≈ λem).
The system reflects the left-handed light while transmitting the right-
handed light, thus generating the right-handed UC-CPL.

The application of upconverted SPC films in information display
and encryption
We explored the potential applications of upconverted SPC films in
dynamic information encryption and decryption based on their
mechanically tunable color and UC-CPL characteristics. Especially,
inspired by the display and concealment of information manipulated
by the self-regulation mechanism of butterfly wings, a motion that
dynamically conceals (upon folding) and reveals (upon spreading)
their inherent structural coloration (Fig. 5a), we designed a manipul-
able application for displaying and hiding information. Initially, a
butterfly-shaped mold was created using a laser marking device, fol-
lowed by the infusion of the F3-2 formulation and subsequent poly-
merization, resulting in upconverted SPC films with butterfly shape,
which serves as a medium for information encoding (Fig. 5b). At this
point, information changes under static conditions are displayed.
Under natural light, the butterfly-shaped films display a yellow struc-
tural color (I). Upon irradiation with a 639 nm laser, bright green UCPL
(II) is observed, accompanied by distinct bright-dark variations under
theCPFs.Weak luminescence is observed through theR-CPF (III), while
strong luminescence is observed through the L-CPF (IV), confirming
the emission of left-handed UC-CPL. We further manipulated the but-
terflymembrane. The structural color transitions from yellow to green
(I’). When excited by 639 nm light, the UCPL becomes weaker (II’)
compared to state (II). However, the opposite phenomenon is
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observed through CPFs, with strong UC-CPL observed through the
R-CPF (III’) and weak UC-CPL observed through the L-CPF (IV’). This
demonstrates that these films not only enable structural color mod-
ulation through mechanical manipulation but also facilitate the reg-
ulation of UC-CPL, offering alternative insights into the dynamic
applications of smart materials. Furthermore, the application of these
materials in binary-encoded information encryption, utilizing both
structural colors and UCPL, was investigated (Fig. 5c). In this scheme,
the binary digit “0” is represented by the F-R-BPEA (F4-1) film, while “1”
is encoded using the F-S-BPEA/PtTPBP (F3-2) film. These distinct films
were integrated into a matrix to encode the binary message “CPL”.
Under ambient natural light, no discernible difference is apparent
between the encoded regions. Similarly, while fluorescence is obser-
vable under 365 nmUV irradiation, the encrypted information remains
concealed. However, the encoded message “CPL” can be revealed
through specific decryption protocols. The primary decryption
method involves observing changes in the structural color of the chiral
photonic crystal films when viewed through a R-CPF. Under these
conditions, bright areas indicate “1” and dark areas indicate “0”. A

secondary decryption pathway utilizes UCPL. Upon excitation at
639 nm, films containing the BPEA/PtTPBP TTA-UC components emit
distinct UCPL spots, thereby allowing the retrieval of the “CPL” enco-
ded information. This innovative approach leverages the unique
optical characteristics of chiral photonic crystals andUCPL, presenting
an alternative strategy for advanced information encryption.

Discussion
In summary, we fabricate upconverted SPC films that exhibit
mechanically enhanced TTA-UC and tunable UC-CPL. Through
mechanical stretching, the PBG edge of the upconverted SPC films can
be precisely controlled to align with the UCPL wavelength, resulting in
an enhanced UCPL intensity. Significantly, during this PBG shift, the
UC-CPL signal inverts from positive to negative, with the corre-
sponding glum value changing from +0.50 to −0.60. Inspired by bio-
mimetic designs, these upconverted SPC films are successfully applied
to achieve deformation-induced dynamic information display by
modulating both structural color and UC-CPL through mechanical
force. This study demonstrates the mechanical enhancement of TTA-
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Fig. 4 | Dynamic regulation of UC-CPL. a The relationship between PBG and UCPL
wavelengths under stretching of upconverted SPC film F3-2. The position of the
luminescent peak is fixed, and PBG is dynamically adjusted with the stretching
b UC-CPL spectra of initial and stretched film. The initial and stretched intensities
are calculated according to the formula IUC-CPL = IL − IR. c Distribution of lumines-
cence dissymmetry factor (glum) values of initial and stretched film as a function of
wavelength. The glum values are calculated from glum = 2 × (IL − IR)/(IL + IR).

d Reversible changes of glum values (515 nm) against repeated stretching and
releasing cycles of upconverted SPC film F3-2. e POM images of the upconverted
SPC filmF3-2 in transmissionmodeunder crossed polarizers before and after being
stretched (Scale bar = 100μm). f The upconverted SPC film F3-2 corresponding
WAXD in the initial state and stretched state. g Schematic diagram of dynamic
regulation of UC-CPL by upconverted SPC film. The initial state is left-handed UC-
CPL, and the state after stretching is right-handed UC-CPL.
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UC and the achievement of tunable UC-CPL performance in the solid
state. These findings provide potential insights into the development
and application of advanced smart materials, particularly for dynamic
displays and information encryption technologies.

Methods
Materials
The emitter 9,10-bis(phenylethynyl)anthracene (BPEA) was purchased
from Shanghai Aladdin Biochemical Technology Co., LTD. Platinum(II)
tetraphenyltetrabenzopor-phyrin (PtTPBP) (>95%) was purchased
from Frontier Scientific, Inc. Liquid crystal crosslinking body 2-methyl-
1,4-phenylenebis[4-(3-(acryloyloxy)propoxy)benzoate] (RM257) and
photoinitiator 2,2-dimethoxy-2-phenylacetophenone (I-651, 99%) were
purchased from Merck. The chiral dopant S (R) 5011 ( >98%) was pro-
vided by JiangsuHechengDisplay Technology Co., Ltd. Pentaerythritol
tetrakis(3-mercaptopropionate) (PETMP), 2,2′-(Ethylenedioxy)dietha-
nethiol (EDDET), and dipropylamine (DPA) were purchased from
Shanghai Bidd Pharmaceutical Technology Co., LTD. The cleaned slide
slot is 25mm long, 1mm wide, and 0.2mm thick. The conventional
reagents and solvents used were purchased from the public platform
and the National Pharmaceutical Reagent Company and were not
purified and used directly.

Characterizations
UV−Vis spectra were recorded in quartz cuvettes on a U-3900 spectro-
photometer. Upconverted emission decays were recorded on a HORIBA
Scientific Nanolog FL3-iHR320 spectrofluorometer using multichannel
scaling. Fluorescence spectra were obtained using EDINBURGH FS5

Spectrofluorometer. Fluorescence lifetime measurements were recor-
ded on the Edinburg FS5 fluorescence spectrometer using time-
correlated single photon counting (TCSPC). Circular Dichroism (CD)
spectra were recorded in films on a JASCO J-1500 spectrophotometer.
Upconverting and downshifting photoluminescence and CPL measure-
ments were performed on a monochromator equipped with a charge-
coupled device detector (Andor Technology, iVac 316). A 639nm con-
tinuouswave laser was chosen for excitation. The detection of CPL is set
according to the description in Supplementary Fig. 16. Typically, the
emissive light of samples passed through an achromatic broadband
quarter-waveplate, which was used to separate the left (L, having
intensity IL) and right (R, having intensity IR) circularly polarized com-
ponents. The DS-/ UC-CPL signal was calculated as DS-/ UC-CPL = IL− IR.
Polarizing optical microscopy (POM)was recorded on the Olympus X83
using a high-pressure mercury lamp as an excitation source for fluor-
escent images. Python Software Uses Spyder 5.4.3. XRD tests were per-
formed using a Bruker D8 Discover diffractometer. WAXS and SAXS
tests were performed using a Ganesha 300 XL SAXS system (SAXSLAB).
A Shimadzu SES-1000 extensometer was employed to measure the
elastic modulus, the failure strain, as well as the tensile strength of the
networks with a constant extension rate of 1.0mm/s at 25 °C.

Preparation of various films
The preparation method of the said film has similar values, and only
the quality needs to be adjusted according to the Supplementary
Table 1. Take the thin film F3-1 as an example:Weigh 150.00mgRM257,
4.10mg S5011, and place it in a 3ml glass sheet. Add 70 μL of toluene,
dissolve at 80 °C, and make it dissolve completely. Then let it cool at
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Fig. 5 | The applications of upconverted SPC films in dynamic information
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and reveals (I’: upon spreading) their inherent structural coloration. (Photo by the
author). b Bionic patterning of upconverted SPC films inspired by butterflies
(Butterfly wings upon folding correspond to the initial state of the film, and but-
terfly wings upon spreading correspond to the stretch state of the film, by

artificially manipulating the film, different brightness and darkness UCPL can be
exhibited at different circularly polarized filters); And group changes observed
under different conditions. (I, I’ are photos taken in natural light, among them, I is
in the initial state and I’ is in the stretched state; Ⅱ,Ⅲ,Ⅳ, Ⅱ‘,Ⅲ‘,Ⅳ‘ are photos taken
under 639nm excitation and 580 nm short-pass filter, among them, Ⅱ,Ⅲ,Ⅳ are in
the initial state and Ⅱ‘,Ⅲ‘,Ⅳ‘ are in the stretched state). cThe application of binary-
encoded information encryption utilizing structural colors and UCPL.
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room temperature. Add 41.70mg EDDET, 9.60mg PETMP, and
2.00mg I-651 in sequence andmix evenly. Finally, addMichael’s added
catalyst 1.00mg DPA (in 50 μL toluene). The mixture was allowed to
stand for ten minutes to initiate the Michael addition cross-linking
reaction. Subsequently, tetrahydrofuran solution with sensitizer
0.054mgPtTPBP and acceptor 1.02mgBPEAwas added, andpour into
the mold on a heating plate at 80 °C to accelerate the evaporation of
the solvent. The film was degassed under vacuum to promote the
formation of a uniform structure, which is beneficial for the TTA-UC
process. Finally, photopolymerization was performed to establish a
stable cross-linked network structure.

Data availability
All data supporting this study, including detailed methods and
experimental details, photophysical properties studies, are available in
the Manuscript, Supplementary information, and Source Data
file. Source data are provided with this paper.
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