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ARTICLE INFO ABSTRACT
2020 MSC: In the present paper we consider the semiclassical magnetic Schrodinger equation, which de-
37M15

scribes the dynamics of charged particles under the influence of an electro-magnetic field. The

Zi%(;s solution of the time-dependent Schrédinger equation is approximated by a single Gaussian wave
78M30 packet via the time-dependent Dirac-Frenkel variational principle. For the approximation we use
81020 ordinary differential equations of motion for the parameters of the variational solution and ex-

tend the second-order Boris algorithm for classical mechanics to the quantum mechanical case.
Keywords: In addition, we propose a modified version of the classical fourth-order Runge-Kutta method.
Gaussian wave packets Numerical experiments explore parameter convergence and geometric properties. Moreover, we
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benchmark against the analytical solution of the Penning trap.

1. Introduction

In the present paper, we study the numerical time-integration for charged quantum particles that are subjected to external magnetic
and electric fields. The dynamics is governed by the semiclassical magnetic Schrodinger equation

igdw(t)=Hyw(@), w0 =y, teR, (1.1a)

on R¢ with magnetic Hamiltonian
H®) = 3 (=ieV, = AG.9)° + 900, ), (1.1b)

and initial value y, € L*(RY) with semiclassical parameter 0 < £ < 1. Here, A is a divergence-free magnetic vector potential, and ¢
is the electric potential. From a numerical point of view, solving this time-dependent partial differential equation raises three major
problems. First, it is a high-dimensional problem, since the space dimension is typically given by d = 3N, where N is the number of
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\begin {equation}\label {eq:sproblem} \ii \scp \pt \sol (t) = \Ham (t)\sol (t), \quad \sol (0) = \sol _0, \quad t\in \bbR ,\end {equation}


$\bbR ^{d}$


\begin {equation}\label {eq:ham} \Ham (t) = \frac 12 \bigl ( -\ii \scp \nabla _x - \mgPot (t,\cdot ) \bigr )^2 + \mltPot (t,\cdot ),\end {equation}


$\sol _0 \in L^2(\bbR ^{d})$


$0< \scp \ll 1$


$\mgPot $


$\mltPot $


$d = 3N$


$N$


$\bbR ^{d}$


$\scp $


$\sol _0$


$\vsol \approx \sol $


\begin {equation*}\vsol (t,x) = \exp {\Bigl (\frac {\ii }{\scp }\bigl (\frac 12(x-\pos _t)^\top \wm _t (x-\pos _t)+(x-\pos _t)^\top \mom _t +\pha _t\bigr )\Bigr )}.\end {equation*}


$\pos _t,\mom _t$


$\wm _t$


$\pha _t$


$\mgPot = 0$


$L^2$


$\mgField = \curl \mgPot $


$\pha $


$L^2$


$a\colon \bbR ^{d}\to \bbR $


$\nabla ^2 a(x)$


$A\colon \bbR ^{d}\to \bbR ^{d}$


$J_A(x) = (\partial _\ell A_k(x))_{k,\ell =1}^{d}$


$W \colon \bbR ^{d} \to \bbR ^L$


$L\geq 1$


$\obs $


$L^2(\bbR ^d)$


\begin {align*}\langle W\rangle _{\vsol } := \langle \vsol |W\vsol \rangle , \quad \langle \obs \rangle _{\vsol } &:= \bigl \langle \vsol | \obs \vsol \bigr \rangle ,\end {align*}


$v,w\in \bbC ^L$


$v\cdot w := v^\top w = v_1w_1 + \cdots + v_L w_L$


$v^2 := v\cdot v$


$\wm \in \bbC ^{d\times d}$


$\ReC ,\ImC \in \bbR ^{d \times d}$


$x_3$


$x_3$


\begin {align}\label {eq:trap-potentials} \mgPot (x) = \frac {1}{2} \mgFieldStrength \begin {pmatrix} -x_2 \\ x_1 \\ 0 \end {pmatrix} \quad \text {and} \quad \mltPot (x) = \frac { \mltPot _0}{2\ptd ^2} \left ( x_3^2 - \frac {1}{2} \left ( x_1^2 + x_2^2 \right ) \right ),\end {align}


$\mgFieldStrength , \mltPot _0, \ptd $


$m$


$\charge $


$x_3$


$\axialFreq $


$x_1x_2$


$\magnetFreq $


$\corrCycloFreq $


$[0,2\pi ]$


\begin {align*}\magnAndCycloFreq = \frac {1}{2} \left ( \cycloFreq \pm \Omega \right ), \quad \axialFreq = \sqrt {\frac {\vert \charge \vert \mltPot _0}{m\ptd ^2}}, \quad \text {where} \quad \cycloFreq = \frac {\vert \charge \vert \mgFieldStrength }{m}, \quad \Omega = \sqrt {\cycloFreq ^2 - 2 \axialFreq ^2}.\end {align*}


$x_c(t)$


\begin {align}\label {eq:TDSE-EM} \ii \hbar \, \partial _t \sol (t,x) = \Bigl ( \frac {1}{2m} \bigl ( -\ii \hbar \nabla _x - \charge \mgPot (x) \bigr )^2 + \charge \mltPot (x) \Bigr ) \sol (t,x).\end {align}


$\ptd \approx 1$


$\corrCycloFreqPi \approx 76$


$x \to x/\ptd $


$t \to \magnetFreq t$


\begin {align}\label {eq:TDSE-no-units} \ii \scp \partial _{t} \sol (t,x) = \left ( \frac {1}{2} \left ( \ii \scp {\nabla } + \mgPot _m(x) \right )^2 + \sign (\charge ) \frac {\corrCycloFreq }{\magnetFreq } \Bigl ( x_3^2 - \frac {1}{2} \left ( x_1^2 + x_2^2 \right ) \Bigr ) \right ) \sol (t,x).\end {align}


$\effmgFieldStrength = m \magnetFreq / \charge $


\begin {align*}& \scp = \hbar /(\charge \effmgFieldStrength \ptd ^2) \approx 1.19\cdot 10^{-8}, \quad {\corrCycloFreq }/{\magnetFreq } \approx 113.25,\\ & \mgPot _m (x) = \frac {1}{2} \frac {\mgFieldStrength }{\effmgFieldStrength } \begin {pmatrix} - x_2 \\ x_1 \\ 0 \end {pmatrix}, \quad \frac {\mgFieldStrength }{\effmgFieldStrength }\approx 114.25.\end {align*}


$\scp \approx 1.19\cdot 10^{-8}$


$\sol (0,x)$


\begin {equation}\label {eq:penning-IV} \begin {split} {\pos }^0 &= \begin {pmatrix} 0.133 & 0.133 & 0.258 \end {pmatrix}^\top , \quad {\fcQ }^0 = \mathrm {diag}({\pos }^0), \\ {\mom }^0 &= \begin {pmatrix} 0.133 & 7.492 & 3.879 \end {pmatrix}^\top , \quad {\fcP }^0 = \ii \cdot ({\fcQ }^0)^{-1}, \\ {\pha }^0 &= 1.009 - 1.84\cdot 10^{-7}\ii . \end {split}\end {equation}


\begin {align}\Mf = \Bigl \{ &\vsol \in L^2(\bbR ^{d}) \bigm | \vsol (x) = \exp {\Bigl (\frac {\ii }{\scp }\bigl (\frac 12(x-\pos )^\top \wm (x-\pos )+(x-\pos )^\top \mom +\pha \bigr )\Bigr ) } , \nonumber \\ &\pos ,\,\mom \in \bbR ^{d}, \, \wm = \wm ^{\top } \in \bbC ^{d \times d }, \, \im \wm \text { positive definite}, \pha \in \bbC \Bigr \} . \label {eq:gwp}\end {align}


$\vsol (t)\approx \sol (t)$


$\vsol (t)\in \Mf $


$\pt \vsol (t)$


\begin {equation}\label {eq:min} \normLtwo {\ii \scp \pt \vsol (t) - \Ham (t)\vsol (t)} = \min _{\pt \vsol (t)} !\end {equation}


$\sol _0 = \vsol _0\in \Mf $


$\normLtwo {\vsol _0} =1$


\begin {align*}\normLtwo {\vsol (t)} = \normLtwo {\vsol _0},\quad \langle H\rangle _{\vsol (t)} = \langle H\rangle _{\vsol _0}\quad \text {for all}\ t,\end {align*}


$\pos _t$


$\mom _t$


$\wm _t$


$\pha _t$


\begin {equation*}\cham (t,x,\xi ) = \frac 12\left (\xi - \mgPot (t,x)\right )^2 + \mltPot (t,x),\quad (t,x,\xi )\in \bbR \times \bbR ^{d}\times \bbR ^{d}.\end {equation*}


\begin {align}\label {eom:var} \dot \pos &= \langle \partial _\xi \cham \rangle _{\vsol },\quad \dot \mom = -\langle \partial _x \cham \rangle _{\vsol },\quad \dot \wm = -\mathcal B(\wm ),\\ \dot \pha &= -\langle \cham \rangle _{\vsol } + \frac {\scp }{4}\tr \!\left (\mathcal B(\wm )\ImCinv \right ) + p^\top \langle \partial _\xi \cham \rangle _{\vsol },\end {align}


$\mathcal B(\wm )\in \bbC ^{d \times d }$


\begin {equation}\label {eq:BC-def} \mathcal B(\wm ) = \begin {pmatrix}\Id & \wm \end {pmatrix} \langle \nabla ^2 \cham \rangle _{\vsol } \begin {pmatrix}\Id \\ \wm \end {pmatrix} .\end {equation}


$\langle \partial ^\alpha h\rangle _{\vsol } = \langle \op (\partial ^\alpha h)\rangle _{\vsol }$


$\vsol (t)$


$\sol (t)$


$\mgPot (t,\cdot )$


$\mltPot (t,\cdot )$


$\mgPot $


$\mltPot $


\begin {align*}&\partial ^\alpha _{x} \mgPot (t,\cdot ), \quad \partial ^{\beta }_{x} \mltPot (t,\cdot ) \qquad \text {bounded for all}\ |\alpha |\ge 1,\ |\beta |\ge 2,\end {align*}


$[0,T]$


$\obs $


\begin {equation}\label {eq:error_all} \normLtwo {\sol (t)-\vsol (t)} \le c\, t\,\sqrt \scp ,\qquad \left |\langle \obs \rangle _{\sol (t)} - \langle \obs \rangle _{\vsol (t)}\right | \le C\, t\, \scp ^2\end {equation}


$t\in [0,T]$


$c,C>0$


$\scp $


$t$


$\ImC $


$[0,T]$


\begin {equation*}\dot q = \partial _p h,\qquad \dot p = - \partial _q h,\end {equation*}


$\scp $


$\wm $


\begin {equation}\label {eq:Hag_fac} \wm =\ReC + \ii \ImC = \fcP \fcQ ^{-1} \quad \mathrm {and}\quad \ImC = (\fcQ \fcQ ^*)^{-1},\end {equation}


$\ReC ,\ImC $


$\fcQ ,\fcP $


$\fcQ ^\top \fcP - \fcP ^\top \fcQ = 0$


$\fcQ ^*\fcP - \fcP ^*\fcQ = 2\ii \mathrm {Id}$


$\ReC = \frac 12 (\fcP \fcQ ^{-1} + (\fcQ ^*)^{-1} \fcP ^*)$


$\fcQ $


$\fcP $


$\fcQ $


$\fcP $


$\fcQ $


\begin {equation*}\dot \fcQ = \mean {\partial _{pq}h}Q + \mean {\partial _{pp}h}P,\quad \dot \fcP = -\mean {\partial _{qq}h}Q - \mean {\partial _{qp}h}P.\end {equation*}


\begin {align}\dot {\pos } &= \mom - \mean {\mgPot }, \quad \dot {\mom } = \mean {J_{\mgPot }^\top (\xi -\mgPot ) - \nabla \mltPot }, \label {eq:ham-qp} \\ \dot \wm &= -\mean {\partial ^2_{x} \cham } + \mean {\jacobian {\mgPot }^\top }\wm + \wm \mean {\jacobian {\mgPot }} - \wm ^2, \label {eq:eqmo_C-l31}\\ \dot \pha &= -\langle \cham \rangle _{\vsol } + \frac {\scp }{4}\tr (\mathcal B(\wm )\ImCinv ) + \mom ^\top (\mom -\mean {\mgPot }), \label {eq:eqmo-zeta-l31}\end {align}


$\mean {a} = \mean {\op (a)}$


$a:\bbR ^{2d }\to \bbR $


$(x,\xi )\mapsto a(x,\xi )$


\begin {align}\dot \fcQ &= \fcP -\mean {\jacobian {\mgPot }} \fcQ , \label {eq:ham-Q} \\ \dot \fcP &= \mean {\jacobian {\mgPot }^\top }\fcP -\big \langle {\jacobian {\mgPot }^\top \jacobian {\mgPot } - \sum _{k=1}^{d} \nabla ^2 \mgPot _k(\xi _k-\mgPot _k) + \nabla ^2\mltPot }\big \rangle _{u}\fcQ . \label {eq:ham-P}\end {align}


$\cham (x,\xi ) = \frac 12(\xi -\mgPot (x))^2 + \mltPot (x)$


\begin {align*}\partial _\xi \cham (x,\xi ) = \xi -\mgPot (x),\qquad \partial _x \cham (x,\xi ) = -\jacobian {\mgPot }(x)^\top (\xi -\mgPot (x)) + \nabla \mltPot (x),\end {align*}


$\cham $


$\partial _1,\ldots ,\partial _{d}$


\begin {align*}\partial _{x_m} \partial _{x_\ell } \cham &= \sum _{k=1}^{d} \left ( \partial _m \mgPot _k \partial _\ell \mgPot _k - (\xi _k-\mgPot _k)\partial _m\partial _\ell \mgPot _k\right ) + \partial _m\partial _\ell \mltPot ,\\ \partial _{x_m} \partial _{\xi _\ell }\cham &= -\partial _m \mgPot _\ell ,\qquad \partial _{\xi _m} \partial _{x_\ell } \cham = -\partial _\ell \mgPot _m,\end {align*}


\begin {equation*}\nabla ^2 \cham = \begin {pmatrix}\partial _{x}^2 \cham & \partial _{x\xi } \cham \\ \partial _{\xi x}\cham & \partial _{\xi }^2\cham \end {pmatrix} = \begin {pmatrix} \partial _{x}^2\cham & -\jacobian {\mgPot }^\top \\ - \jacobian {\mgPot } & \mathrm {Id}\end {pmatrix}\end {equation*}


$\partial _{x}^2\cham = \jacobian {\mgPot }^\top \jacobian {\mgPot } - \sum _{k=1}^{d} \nabla ^2 \mgPot _k(\xi _k-\mgPot _k) + \nabla ^2\mltPot $


\begin {align*}\mathcal B(\wm ) &= \mean {\partial ^2_{x} \cham } + \mean {\partial _{x\xi }\cham }\wm + \wm \mean {\partial _{\xi x}\cham } + \wm \mean {\partial ^2_\xi \cham }\wm \\ &= \mean {\partial ^2_{x} \cham } - \mean {\jacobian {\mgPot }^\top }\wm - \wm \mean {\jacobian {\mgPot }} + \wm ^2.\end {align*}


\begin {equation}\label {eq:mag-momenta} \vel \da \mom - \mean {\mgPot }, \qquad \fcVel \da \fcP - \mean { \jacobian {\mgPot }}\fcQ .\end {equation}


$\vel (t)\in \bbR ^{d}$


$\fcVel (t)\in \bbC ^{d \times d }$


$\somePots \colon \Rd \to \bbR $


$\vsol = \vsol (t)$


\begin {align*}\frac {d}{dt}\mean {\somePots } &= \mean {\nabla \somePots }^\top \vel + \frac \scp 2\tr \!\left (\mean {\nabla ^2 \somePots } (\fcVel \fcQ ^* - \ii \Id ) \right ),\end {align*}


$\fcVel \fcQ ^* - \ii \Id $


\begin {align*}\pt \abs {\vsol (t, x)}^2 &= \pt \exp \!\left (-\frac 1\scp (x-\pos )^\top \ImC (x-\pos ) - \frac 2\scp \ImPha _{\textup {I}}\right )\\ &= \abs {\vsol (t, x)}^2\bigg ( -\frac 1\scp (x-\pos )^\top \dot \ImC (x-\pos ) +\frac 2\scp (x-\pos )^\top \ImC \dot \pos - \frac 2\scp \dot \ImPha _{\textup {I}}\bigg )\\ &= \abs {\vsol (t, x)}^2\bigg (\frac {2}{\scp }(x-\pos )^\top \big ( \ReC - \mean {\jacobian {\mgPot }^\top } \big )\ImC (x-\pos ) + \frac {2}{\scp }(x-\pos )^\top \ImC \vel - \tr (\ReC )\bigg ),\end {align*}


$\ReC $


$\ImC $


$\tr (\mean {\jacobian {\mgPot }})=0$


$\nabla \cdot A=0$


\begin {equation*}\dot \pos = \vel ,\quad \dot \ImC = \ImC (\mean {\jacobian {\mgPot }}-\ReC ) + (\mean {\jacobian {\mgPot }^\top }-\ReC )\ImC ,\quad \dot \ImPha _{\textup {I}} = \frac \scp 2 \tr (\ReC ).\end {equation*}


\begin {equation}\begin {aligned} \frac {d}{dt}\mean {\somePots } &= \frac {2}{\scp }\Big \langle {\somePots (x-\pos )^\top \big (\ReC - \mean {\jacobian {\mgPot }^\top }\big )\ImC (x-\pos )}\Big \rangle _{u} \\ &\quad + \frac {2}{\scp }\big \langle {\somePots \ImC (x-\pos )}\big \rangle _{u}^\top \vel - \mean {\somePots }\tr (\ReC )\\ &= \mean {\somePots } \tr (\ReC - \mean {\jacobian {\mgPot }^\top }) + \mean {\nabla \somePots }^\top \vel - \mean {\somePots }\tr (\ReC ) \\ &\quad + \frac {\scp }2 \tr (\mean {\nabla ^2 \somePots } \ImCinv (\ReC - \mean {\jacobian {\mgPot }^\top }))\\ &= \mean {\nabla \somePots }^\top \vel + \frac {\scp }2 \tr (\mean {\nabla ^2 \somePots } \ImCinv (\ReC - \mean {\jacobian {\mgPot }^\top })), \end {aligned} \label {Xeqn7-4.13}\end {equation}


$\someMatrix = \big (\ReC - \mean {\jacobian {\mgPot }^\top }\big )\ImC $


$\nabla \cdot \mgPot = 0$


$\fcQ $


$\fcVel $


\begin {align*}\ImCinv \ReC &= \frac 12\fcQ \fcQ ^*(\fcP \fcQ ^{-1}+ (\fcQ ^*)^{-1}{\fcP }^*) \nonumber \\ &=\frac 12 \left ( \fcQ ({\fcP }^*\fcQ + 2\ii \Id )\fcQ ^{-1} + \fcQ {\fcP }^*\right ) \nonumber \\ &=\fcQ ({\fcVel }^* + \fcQ ^*\mean {\jacobian {\mgPot }^\top }) + \ii \Id .\end {align*}


$\ImCinv (\ReC -\mean {\jacobian {\mgPot }^\top }) = \fcQ {\fcVel }^* + \ii \Id $


$\tr (MN) = \tr (MN^*)$


$M=\mean {\nabla ^2\somePots }$


$N = \fcQ {\fcVel }^* + \ii \Id $


$\mgField = \curl \mgPot $


\begin {align}\label {eq:eul-lag-q-v} \dot {\pos } &= \vel , & \dot {\vel } &= \vel \times \mean {\mgField } + \auxPot , \\ \label {eq:eul-lag-Q-Y} \dot \fcQ &= \fcVel , & \dot {\fcVel } &= \fcVel \times \mean {\mgField } + \auxauxPot \fcQ ,\end {align}


\begin {equation*}\fcVel \times \mean {\mgField } \da (\upsilon _1\times \mean {\mgField },\ldots ,\upsilon _d\times \mean {\mgField })\end {equation*}


$\upsilon _1,\ldots ,\upsilon _d$


$\fcVel $


$\mean {\mgField }$


$\auxPot $


\begin {align*}\auxPot &= - \mean {\nabla \mltPot } - \mean {\partial _t\mgPot } + \mean {\jacobian {\mgPot }^\top }\mean {\mgPot } - \mean {\jacobian {\mgPot }^\top \mgPot } \\ &\quad + \frac \scp 2\Bigl ( \tr \!\left ( \mean {\partial _k\jacobian {\mgPot }^\top -\nabla ^2\mgPot _k} (\fcVel \fcQ ^* - \ii \Id ) + \mean {\partial _k\jacobian {\mgPot }^\top } \mean {\jacobian {\mgPot }}\fcQ \fcQ ^*\right ) \Bigr )_{k=1}^{d},\end {align*}


$\auxauxPot $


\begin {align*}&\auxauxPot = - \mean {\nabla ^2\mltPot } - \mean { \jacobian {\partial _t\mgPot }} + \mean {\jacobian {\mgPot }^\top }\mean {\jacobian {\mgPot }} - \mean {\jacobian {\mgPot }^\top \jacobian {\mgPot }} \\ &\quad \ \ + \sum _{m=1}^{d}\Bigl ( \mean {\nabla ^2 \mgPot _m}\mean {\mgPot _m} - \mean {(\nabla ^2 \mgPot _m) \mgPot _m} + \left ( \mean {\partial _k\partial _\ell \mgPot _m-\partial _m\partial _\ell \mgPot _k}\vel _m \right )_{k,\ell =1}^{d} \Bigr ) \\ &\quad \ \ +\frac {\scp }{2} \left ( \tr \left ( \mean {\partial _k\partial _\ell \jacobian {\mgPot }^\top -\nabla ^2\partial _\ell \mgPot _k} (\fcVel \fcQ ^*-\ii \Id ) + \mean {\partial _k\partial _\ell \jacobian {\mgPot }^{\top }} \mean {\jacobian {\mgPot }}\fcQ \fcQ ^* \right ) \right )_{k,\ell =1}^{d}.\end {align*}


\begin {align}\label {eq:dot-vel} \dot \vel &= \dot \mom - \frac {d}{dt} \mean {\mgPot } = \mean {\jacobian {\mgPot }^\top (\xi -\mgPot )-\nabla \mltPot } - \frac {d}{dt} \mean {\mgPot }.\end {align}


$\mean {\jacobian {\mgPot }^\top \xi }$


\begin {align*}\op (\jacobian {\mgPot }^\top \xi ) &= \jacobian {\mgPot }^\top \op (\xi ) + \frac {\ii \scp }{2} \op (\{\jacobian {\mgPot }^\top ,\xi \}) = \jacobian {\mgPot }^\top (-\ii \scp \nabla ),\end {align*}


$\nabla \cdot \mgPot = 0$


$\{\jacobian {\mgPot }^\top ,\xi \} = -\sum _{k=1}^{d} \partial _{x_k}(\jacobian {\mgPot }^\top )\partial _{\xi _k}\xi = -\sum _{k=1}^{d} \partial _{x_k} \nabla \mgPot _k = 0.$


\begin {align*}\mean {\jacobian {\mgPot }^\top \xi } &= \langle \vsol ,\jacobian {\mgPot }^\top (-\ii \scp \nabla )\vsol \rangle = \mean {\jacobian {\mgPot }^\top \wm (x-\pos )} + \mean {\jacobian {\mgPot }^\top }\mom \end {align*}


$-\ii \scp \nabla \vsol (x) = (\wm (x-\pos ) + \mom )\vsol (x)$


$\somePot = \jacobian {\mgPot }^\top \wm $


\begin {align}\mean {\jacobian {\mgPot }^\top \wm (x-\pos )} &= \frac \scp 2 \sum _{\ell =1}^{d} \left ( \left ( \mean {\partial _\ell \jacobian {\mgPot }^\top } \wm \ImCinv \right )_{k\ell } \right )_{k=1}^{d} \nonumber \\ &= \frac \scp 2 \sum _{m,\ell =1}^{d} \left ( \mean { \partial _\ell \partial _k \mgPot _m} \left ( \fcVel \fcQ ^* + \mean {\jacobian {\mgPot }}\fcQ \fcQ ^* - \ii \Id \right )_{m\ell } \right )_{k=1}^{d}\nonumber \\ &= \frac \scp 2 \left ( \tr \!(\mean {\partial _k\jacobian {\mgPot }}^\top ( \fcVel \fcQ ^* -\ii \Id + \mean {\jacobian {\mgPot }}\fcQ \fcQ ^*) \right )_{k=1}^{d},\label {eq:meanC}\end {align}


$\wm \ImCinv = (\fcP \fcQ ^{-1})(\fcQ \fcQ ^*) = (\fcVel + \mean {\jacobian {\mgPot }}\fcQ )\fcQ ^*$


$\Div A = 0$


\begin {align*}\mean {\jacobian {\mgPot }^\top (\xi -\mgPot )} &= \mean {\jacobian {\mgPot }^\top } \vel + \mean {\jacobian {\mgPot }^\top }\mean {\mgPot } - \mean {\jacobian {\mgPot }^\top \mgPot } \\ &\quad + \frac \scp 2 \left ( \tr \!(\mean {\partial _k\jacobian {\mgPot }}^\top (\fcVel \fcQ ^* - \ii \Id + \mean {\jacobian {\mgPot }}\fcQ \fcQ ^*) \right )_{k=1}^{d}.\end {align*}


\begin {equation*}\frac {d}{dt} \mean {\mgPot } = \mean {\partial _t\mgPot } + \mean {\jacobian {\mgPot }}\vel + \frac \scp 2\Bigl ( \tr \!\bigl ( \mean {\nabla ^2 \mgPot _k}(\fcVel \fcQ ^*-\ii \Id ) \bigr ) \Bigr )_{k=1}^{d}.\end {equation*}


$\mean {\jacobian {\mgPot }^\top }\vel $


$-\mean {\jacobian {\mgPot }}\vel $


\begin {equation*}\mean {\left (\jacobian {\mgPot }^\top - \jacobian {\mgPot }\right )}\vel = \vel \times \mean {\mgField }.\end {equation*}


$\fcVel = \fcP - \mean {\jacobian {\mgPot }}\fcQ $


$\partial _x^2\cham = \jacobian {\mgPot }^\top \jacobian {\mgPot } - \sum _{m=1}^{d} \nabla ^2 \mgPot _m(\xi _m-\mgPot _m) + \nabla ^2\mltPot $


\begin {equation*}\dot \fcP = \mean {\jacobian {\mgPot }^\top }\left (\fcVel + \mean {\jacobian {\mgPot }}\fcQ \right ) - \mean {\partial ^2_x\cham }\fcQ .\end {equation*}


$\mean {\partial ^2_x\cham }$


\begin {align*}\sum _{m=1}^{d} \op (\nabla ^2 \mgPot _m\xi _m) &= \sum _{m=1}^{d} \left ( \nabla ^2 \mgPot _m \op (\xi _m) + \frac {\ii \scp }{2} \op \{\nabla ^2\mgPot _m,\xi _m\} \right ) \\ &= \sum _{m=1}^{d} \nabla ^2 \mgPot _m (-\ii \scp \partial _m),\end {align*}


$\sum _{m=1}^{d}\{\nabla ^2\mgPot _m,\xi _m\} = 0$


$\nabla \cdot \mgPot = 0$


\begin {align*}&\sum _{m=1}^{d} \mean {\nabla ^2 \mgPot _m(\xi _m-\mgPot _m)} \\ &= \sum _{m=1}^{d} \left ( \mean {\nabla ^2 \mgPot _m \bigl (\wm (x-\pos )\bigr )_m} - \mean {(\nabla ^2 \mgPot _m) \mgPot _m} + \mean {\nabla ^2 \mgPot _m}\mom _m \right )\\ &= \sum _{m=1}^{d} \left ( \mean {\nabla ^2 \mgPot _m}\left (\vel _m + \mean {\mgPot _m}\right ) - \mean {(\nabla ^2 \mgPot _m) \mgPot _m} \right ) \\ &\quad + \frac {\scp }{2}\sum _{m,n=1}^{d} \mean {\nabla ^2 \partial _n\mgPot _m} \left (\fcVel \fcQ ^* -\ii \Id + \mean {\jacobian {\mgPot }}\fcQ \fcQ ^*) \right )_{mn},\end {align*}


\begin {align}\mean {\partial _x^2\cham } &= \mean {\jacobian {\mgPot }^\top \jacobian {\mgPot }+\nabla ^2\mltPot } - \sum _{m=1}^{d} \left ( \mean {\nabla ^2 \mgPot _m}\left (\vel _m + \mean {\mgPot _m}\right ) - \mean {(\nabla ^2 \mgPot _m) \mgPot _m} \right )\nonumber \\ &\quad - \frac {\scp }{2}\left ( \tr \!\left ( \mean {\partial _k\partial _\ell \jacobian {\mgPot }^\top } \left ( \fcVel \fcQ ^* - \ii \Id + \mean {\jacobian {\mgPot }}\fcQ \fcQ ^* \right ) \right ) \right )_{k,\ell =1}^{d} .\label {eq:2xdiffham}\end {align}


$\jacobian {\mgPot }= (\partial _\ell \mgPot _k)_{k,\ell =1}^{d}$


\begin {align*}&\frac {d}{dt}\mean { \jacobian {\mgPot }} = \mean { \jacobian {\partial _t\mgPot }}\\ &+ \sum _{m=1}^{d} \left ( \mean {\partial _m\partial _\ell \mgPot _k}\vel _m \right )_{k,\ell =1}^{d} + \frac \scp 2\left ( \tr \! \Bigl ( \mean {\nabla ^2 \partial _\ell \mgPot _k}(\fcVel \fcQ ^*-\ii \Id ) \Bigr ) \right )_{k,\ell =1}^{d} .\end {align*}


\begin {align*}\dot \fcVel &= \dot \fcP - \left (\frac {d}{dt}\mean {\jacobian {\mgPot }}\right ) \fcQ - \mean { \jacobian {\mgPot }} \dot \fcQ = \mean {\jacobian {\mgPot }^\top - \jacobian {\mgPot }} \fcVel + \auxauxPot \fcQ \end {align*}


$\auxauxPot $


$\mgPot $


$\mgPot $


$\mean {\mgPot } = \mgPot (\cdot ,\pos )$


\begin {align}\dot {\pos } &= \vel , & \dot {\vel } &= \vel \times \mgField (\pos ) - (\pt \mgPot (\cdot ,\pos ) + \mean {\nabla \mltPot }), \label {eq:simple-qv}\\ \dot {\fcQ } &= \fcVel , & \dot {\fcVel } &= \fcVel \times \mgField (\pos ) - (\pt \jacobian {\mgPot }(\cdot ,\pos ) + \mean {\nabla ^2\mltPot })\fcQ . \label {eq:simple-QY}\end {align}


$\mean {\nabla \mltPot } = \nabla \mltPot (\cdot ,\pos )$


$\mean {\nabla ^2\mltPot } = \nabla ^2\mltPot (\cdot ,\pos )$


$\pha = \RePha _{\textup {R}}+\ii \ImPha _{\textup {I}}$


$\fcQ $


$\ImPha _{\textup {I}}$


$\RePha _{\textup {R}} = \re (\pha )$


\begin {equation}\label {eq:zeta_R} \dot \RePha _{\textup {R}} = \frac 12 {\vel }^2 + \mean {\mgPot }^\top \vel - \mean {\mltPot } + \frac \scp 4 \tr (\mean {\partial _x^2\cham }\fcQ \fcQ ^* - 2(\fcQ \fcQ ^*)^{-1}),\end {equation}


$\mean {\partial ^2_x\cham }$


$(\pos ,\vel ,\fcQ ,\fcVel )$


$\ImPha _{\textup {I}} = \im (\pha )$


\begin {equation}\label {eq:relation_zeta_I} \ImPha _{\textup {I}}(t) = \ImPha _{\textup {I}}(0) + \frac {\scp }{2}\left (\ln \abs {\det Q(t)} - \ln \abs {\det Q(0)}\right ).\end {equation}


$\im \mathcal B(\wm ) = -\mean {\jacobian {\mgPot }^\top }\ImC -\ImC \mean {\jacobian {\mgPot }} + \ReC \ImC + \ImC \ReC $


$\Div \mgPot = 0$


\begin {align*}\im \left (\tr (\mathcal B(\wm )\ImCinv )\right ) &= 2\,\tr (\ReC ) = 2\,\tr (\re (\fcP \fcQ ^{-1})) \\ &= 2\,\tr (\re ((\dot \fcQ +\mean {\jacobian {\mgPot }}\fcQ )\fcQ ^{-1})) \\ &= 2\,\tr (\re (\dot \fcQ \fcQ ^{-1})).\end {align*}


\begin {align}\dot {\ImPha }_{\textup {I}} &= \frac {\scp }{2}\tr (\re (\dot {\fcQ }\fcQ ^{-1})) \nonumber \\ &= \frac {\scp }{4}\frac {1}{\abs {\det \fcQ }^2}\left (2\re \left (\overline {\det \fcQ }\det \fcQ ~\tr \big (\dot {\fcQ }\fcQ ^{-1}\big )\right )\right ) \nonumber \\ &= \frac {\scp }{4}\frac {1}{\abs {\det \fcQ }^2}\left (2\re (\overline {\det \fcQ }~\pt (\det \fcQ ))\right ) \nonumber \\ &= \frac {\scp }{4}\pt \left (\ln \abs {\det \fcQ }^2\right ). \label {eq:eqmo-Imzeta}\end {align}


$t$


$\re \mathcal {B}(\wm ) = \mean {\partial _x^2\cham } - \mean {\jacobian {\mgPot }^\top }\ReC - \ReC \mean {\jacobian {\mgPot }} + \ReC ^2 - \ImC ^2$


\begin {equation*}\tr (\re \mathcal {B}(\wm )\ImCinv ) = \tr \left (\left ( \mean {\partial _x^2\cham } - 2\mean {\jacobian {\mgPot }^\top }\ReC + (\ReC ^2-\ImC ^2) \right )\ImCinv \right ).\end {equation*}


$-\mean {\cham }$


\begin {align*}&-\mean {\cham } + \frac \scp 4 \tr (\re \mathcal {B}(\wm )\ImCinv ) \\ &= -\frac 12\mean {(p-\mgPot )^2} - \mean {\mltPot } + \frac \scp 4 \tr (\mean {\partial _x^2\cham }\ImCinv - 2\ImC ).\end {align*}


\begin {align*}-\frac 12\mean {(p-\mgPot )^2} + \mom ^\top \mean {\mom -\mgPot } &= \frac 12 \mom ^\top \mean {\mom -\mgPot } + \frac 12 \mean {\mgPot }^\top \mean {p-\mgPot } \\ &= \frac 12 {\vel }^2 + \mean {\mgPot }^\top \vel .\end {align*}


$\ImC = (\fcQ \fcQ ^*)^{-1}$


\begin {equation}\label {eq:classical-EM-system} \dot {\pos } = \vel , \qquad \dot {\vel } = \vel \times \mgField + \elField ,\end {equation}


${\tn }^{n}$


$n\ge 0$


$\tau >0$


$\pos ^{n}\approx \pos ({\tn }^{n})$


$\vel ^{n-\frac 12}\approx \vel ({\tn }^{n-\frac 12})$


\begin {align}\vel ^{-} &= \vel ^{n-\frac 12} + \frac {\tau }{2} \elField ^{n}, & \elField ^n &= \elField ({\tn }^{n}, \pos ^{n}),\\ \vel ^{+} -\vel ^{-} &= \frac {\tau }{2} \bigl ( \vel ^{+} +\vel ^{-} \bigr ) \times \mgField ^{n}, & \mgField ^{n} &= \mgField ({\tn }^{n}, \pos ^{n}), \label {eq:boris-impl} \\ \vel ^{n+\frac 12} &= \vel ^{+} + \frac {\tau }{2} \elField ^{n}, &&\\ q^{n+1} &= \pos ^{n} + \tau \vel ^{n+\frac 12}. &&\end {align}


${\tn }^{n}$


\begin {align}\label {eq:average-vel} \vel ^{n} = \frac 12\bigl (\vel ^{n+\frac 12} + \vel ^{n-\frac 12}\bigl ) .\end {align}


\begin {align}\label {eq:boris-explicit} \vel ^{+} = \vel ^{-} + \left (\vel ^{-} + \vel ^{-}\times \frac {\tau }{2}\mgField ^n \right )\times \frac {\tau \mgField ^n}{1+ \abs {\frac {\tau }{2} \mgField ^n}^2},\end {align}


$\mgField $


$\mean {\mgField }$


$\elField $


$\auxauxPot \fcQ $


$\pos $


$\fcQ $


$\vel $


$\fcVel $


$\mean {\mgField }$


$\elField = \elField (t,\pos ,\fcQ ,\fcVel )$


$\auxauxPot = \auxauxPot (t,\pos ,\fcQ ,\vel ,\fcVel )$


$\vel $


$\fcVel $


${\tn }^{n}$


${\tn }^{n\pm \frac 12}$


$\fcVel $


$\auxauxPot \fcQ $


$\fcVel $


$\elField $


$\auxauxPot $


$\fcVel $


$\fcVel ^{n+\frac 12}$


\begin {align}\label {eq:extrap-upsilon} \fcVelExtr ^{n} = \frac 32\fcVel ^{n-\frac 12} - \frac 12\fcVel ^{n-\frac 32},\end {align}


$\auxPot ^{n}$


$\auxauxPot ^{n}$


$\fcVelExtr ^{n}$


$\ImPha _{\textup {I}}({\tn }^{n+1})$


\begin {align}\label {eq:relation_zeta_I_approx} \ImPha _{\textup {I}}^{n+1} = \ImPha _{\textup {I}}^{n} + \frac {\scp }{2}\left (\ln \abs {\det \fcQ ^{n+1}} - \ln \abs {\det \fcQ ^{n}}\right ).\end {align}


$\vsol ^{n}$


$\vsol ^{n+1}$


$(\pos ^{n}, \vel ^{n}, \fcQ ^{n}, \fcVel ^{n}, \pha ^{n})$


$(q^{n+1}, \vel ^{n+1}, \fcQ ^{n+1}, \fcVel ^{n+1}, \pha ^{n+1})$


\begin {equation*}\normLtwo {\vsol ^{n}} = \normLtwo {\vsol ^{n+1}} .\end {equation*}


\begin {align}\label {eq:L2-norm-GWP} \normLtwo {\vsol ^{n}}^2 = \exp \bigl (-\tfrac {2}{\varepsilon }\zeta _I^n\bigr )(\varepsilon \pi )^\frac {d}{2}\abs {\det Q^n},\end {align}


\begin {equation*}\exp \bigl (\tfrac {2}{\varepsilon }(\zeta _I^n-\zeta _I^{n+1})\bigr ) = \frac {\abs {\det \fcQ ^n}}{\abs {\det \fcQ ^{n+1}}} .\end {equation*}


$2\tau $


$\vel ^{n\pm \frac 12}$


$\fcVel ^{n\pm \frac 12}$


${\tn }^{n}$


\begin {align}\label {eq:zeta-R-approx} \RePha _{\textup {R}}^{n+1} &= \RePha _{\textup {R}}^{n-1} + 2\tau \left ( \frac 12 (\vel ^{n})^2 + (\mean {\mgPot }^n)^\top \vel ^{n} -\mean {\mltPot }^n\right )\nonumber \\ &\quad + \frac {\scp \tau }{2}\, \tr \!\left ( \mean {\partial _x^2\cham }^n \fcQ ^{n}(\fcQ ^{n})^* - 2(\fcQ ^{n}\fcQ ^{n}{^*})^{-1} \right )\end {align}


$(\pos ^{n}, \vel ^{n-\frac 12}, \fcQ ^{n}, \fcVel ^{n-\frac 12}, \pha ^{n}, \pha ^{n-1})$


$(q^{n+1}, \vel ^{n+\frac 12}, \fcQ ^{n+1}, \fcVel ^{n+\frac 12}, \pha ^{n+1})$


$q^{n+1}, \vel ^{n+\frac 12}$


$\eqref {eq:Boris-Algo}$


$\fcQ ^{n+1}, \fcVel ^{n+\frac 12}$


$\eqref {eq:Boris-Algo}$


$\ImPha _{\textup {I}}^{n+1}$


$\RePha _{\textup {R}}^{n+1}$


$\ImPha _{\textup {I}}$


$\ImPha _{\textup {I}}(t_{n+1/2})$


$\ImPha _{\textup {I}}(t_{n+1})$


$\Ltwo $


\begin {equation}\label {eq:sublinear-pot-expls} \mgPot (x, t) = \begin {pmatrix} \sin (x_1+x_2 + \alpha t) \\ -\sin (x_1+x_2 + \alpha t) \end {pmatrix}, \qquad \mltPot (x, t) = \sin (x_1+x_2)\end {equation}


$\alpha \in \{0,1\}$


$\mean {\mgPot }, \mean {\mltPot }$


\begin {align*}&\intRd \sin (x_1+x_2 + \alpha t)\abs {\vsol (x)}^2\dx \\ &\qquad = (\pi \scp )^{d/2}\mathrm {det}(L^{-1}) \mathrm {exp}(-\tfrac {2}{\scp }\ImPha _{\textup {I}} - \tfrac {\scp }{4}\mathds {1}^\top \fcQ \fcQ ^*\mathds {1}) \sin (\pos _1+\pos _2 + \alpha t)\end {align*}


$\mathds {1}=(1 \ 1)^\top $


$(\fcQ \fcQ ^*)^{-1} = LL^\top $


$\vsol $


$\mgPot $


$\nabla \times \mgPot = \partial _1\mgPot _2 - \partial _2\mgPot _1$


\begin {equation}\label {eq:sublinear-IV} \pos ^0 = \begin {pmatrix} 0 \\ 0 \end {pmatrix}, \quad \mom ^0 = \begin {pmatrix} 1 \\ 0 \end {pmatrix}, \quad \fcQ ^0 = \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix}, \quad \fcP ^0 = \begin {pmatrix} \mathrm {i} & 0 \\ 0 & \mathrm {i} \end {pmatrix}, \quad \RePha _{\textup {R}}^{0} = 0.\end {equation}


$\ImPha _{\textup {I}}^{0}$


$\vsol ^0$


$\scp $


$\ImPha _{\textup {I}}^{0}$


$\scp $


$T=8$


$\scp = 10^{-3}$


$T=8$


$\alpha = 1, \scp = 10^{-3}$


$\tau = 10^{-4}$


$L^2$


$\tau =10^{-4}$


$\scp $


$T=8$


$L^2$


$\tau = 10^{-4}$


$L^2$


$L^2$


$\scp ^{-1}$


$L^2$


$2$


$L^2$


$T=200$


$\scp =10^{-3}$


$\tau $


$[0, 200]$


$\tau = 10^{-1}$


\begin {align}\mean {H} &= \frac 12\mom ^2 - \mom ^\top \mean {\mgPot } + \frac 12\mean {\mgPot ^2} + \mean {\mltPot } + \frac \scp 4 R_H \label {eq:energy_general}\end {align}


$\alpha = 0$


$T = 200$


$\scp = 10^{-3}$


$\tau $


$\tau $


$\tau $


$\tau =10^{-1}$


$L^2$


$\tau = 10^{-1}$


$L^2$


$L^2$


$\omega _\bot = \Omega /2$


$\Ltwo $


$\Ltwo $


$\vsol ^{n}$


$T=2\pi $


$\Ltwo $


$\abs {\normLtwo {\vsol ^{n}}-\normLtwo {\sol (t^n)}}$


$\Ltwo $


$\normLtwo {\vsol ^{n}-\sol (t^n)}$


$T=2\pi $


$\stepsize $


$\Ltwo $


$\scp ^{-1}\approx 10^8$


$\Ltwo $


$T=2\pi $


$\stepsize \lesssim 10^{-3}$


$\stepsize $


${\corrCycloFreq }/{\magnetFreq } \approx 113.25$


${B}/{B_m} \approx 114.25$


$\ImPha _{\textup {I}}$


$\ImPha _{\textup {I}}$


$\fcQ $


$T=2\pi $


$\tau $


$\tau = 2.5\cdot 10^{-3}$


$\somePot \colon \Rd \to \bbC ^{d \times d }$


$w\colon \Rd \to \bbC $


$\someMatrix \in \bbC ^{d\times d}$


$\vsol \in L^2(\bbR ^{d})$


$\pos $


$\wm = \ReC + \ii \ImC $


\begin {align*}&\mean {\somePot (x-\pos )} = \frac \scp 2\, \sum _{\ell =1}^{d} \left ((\mean {\partial _\ell \somePot } \ImCinv )_{k\ell } \right )_{k=1}^{d},\\ &\mean { (x-\pos )^\top \somePots \someMatrix (x-\pos ) } = \frac \scp 2 \mean {\somePots } \tr (\someMatrix \ImCinv ) + \frac {\scp ^2}4 \tr (\mean {\nabla ^2 \somePots } \ImCinv \someMatrix \ImCinv ).\end {align*}


$\mean {\somePots (x-\pos )} = \frac \scp 2 \ImCinv \mean {\nabla \somePots }$


\begin {equation*}\abs {\vsol (t,x)}^2 = \exp \!\left (-\frac 1\scp (x-\pos )^\top \ImC (x-\pos ) - \frac 2\scp \ImPha _{\textup {I}}\right )\end {equation*}


$\nabla \abs {\vsol (t,x)}^2 = -\frac {2}{\scp }\ImC (x-\pos )\abs {\vsol (t,x)}^2.$


\begin {align*}\mean {\somePot (x-\pos )} &= -\frac \scp 2 \int _{\bbR ^{d}} \somePot (x)\, \ImCinv \nabla \abs {\vsol (t,x)}^2 \dx \\ &= \frac \scp 2 \sum _{\ell =1}^{d} \left ( \mean {\partial _\ell (\somePot \ImCinv )_{k,\ell }} \right )_{k=1}^{d}.\end {align*}


\begin {align*}&\mean {\somePots (x-\pos )^\top \someMatrix (x-\pos )} = \sum _{k,\ell =1}^{d} \Big \langle { \somePots (\ImC (x-\pos ))_k (\ImCinv \someMatrix \ImCinv )_{k\ell } (\ImC (x-\pos ))_\ell }\Big \rangle _{u}\\ &\qquad = \frac \scp 2 \sum _{k,\ell =1}^{d} \left ( \mean {\somePots } (\ImC )_{k\ell } + \big \langle {\partial _\ell \somePots (\ImC (x-\pos ))_k}\big \rangle _{u} \right ) (\ImCinv \someMatrix \ImCinv )_{k\ell }\\ &\qquad = \sum _{k,\ell =1}^{d} \left ( \frac \scp 2 \mean {\somePots } (\ImC )_{k\ell } + \frac {\scp ^2}{4} \big \langle {\partial _k \partial _\ell \somePots }\big \rangle _{u} \right ) (\ImCinv \someMatrix \ImCinv )_{k\ell }\\ &\qquad = \frac \scp 2 \mean {\somePots } \,\tr (\someMatrix \ImCinv ) + \frac {\scp ^2}{4} \tr (\mean {\nabla ^2 \somePots }\ImCinv \someMatrix \ImCinv ) .\end {align*}


$\vsol $


$(\pos ,\mom )$


$\wm = \ReC +\ii \ImC $


\begin {equation*}R_H = \tr \left (\left (\ReC ^2 + \ImC ^2 - 2\mean {\jacobian {\mgPot }^\top } \ReC \right )\ImCinv \right ).\end {equation*}


$\mgPot $


$x$


$\mean {\mgPot } = \mgPot (\pos )$


\begin {align}\mean {\mgPot ^2} &= \mgPot (\pos )^2 + \frac \scp 2\tr \left (\jacobian {\mgPot }(\pos )^\top \jacobian {\mgPot }(\pos )\ImCinv \right ) \label {eq:energy_linear}\end {align}


$t$


$\mean {H} = \mean {h} = \frac 12\mean {(\xi -\mgPot )^2} + \mean {\mltPot }$


$\op ((\xi -\mgPot )^2) = (\op (\xi -\mgPot ))^2$


\begin {align*}&\mean {(\xi -\mgPot )^2} = \langle (\xi -\mgPot )\vsol ,(\xi -\mgPot )\vsol \rangle \\ &= \langle (\wm (x-\pos ) + (\mom -\mgPot ))\vsol , (\wm (x-\pos ) + (\mom -\mgPot ))\vsol \rangle \\ &= \mean {(x-\pos )^\top \wm ^*\wm (x-\pos )} + \mean {(\mom -\mgPot )^\top (\wm + \wm ^*) (x-\pos )} + \mean {(\mom -\mgPot )^2}\\ &= \frac \scp 2 \tr (\wm ^*\wm \ImCinv ) - \frac \scp 2 \tr (\mean {\jacobian {\mgPot }^\top } (\wm +\wm ^*)\ImCinv ) + \mean {(\mom -\mgPot )^2}\end {align*}


\begin {align*}&\tr (\wm ^*\wm \ImCinv ) = \tr ((\ReC -\ii \ImC )(\ReC +\ii \ImC )\ImCinv ) = \tr ((\ReC ^2+\ImC ^2)\ImCinv ) \\ &\tr (\mean {\jacobian {\mgPot }^\top }(\wm +\wm ^*)\ImCinv ) = 2\,\tr (\mean {\jacobian {\mgPot }^\top }\ReC \ImCinv ).\end {align*}


$\mgPot (x) = \mgPot (\pos ) + \jacobian {\mgPot }(\pos )^\top (x-\pos )$
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quantum particles in the system. Further, the computational domain R is naturally unbounded, and thus most numerical methods
require truncation before discretization. For the method of lines (first discretize space, then time), high dimension combined with an
unbounded domain leads to inadequately, if not intractably, large systems that have to be integrated in time. Another challenge is
given by the high oscillations induced by the small semiclassical parameter ¢. For standard time integration schemes, severe step-size
restrictions have to be imposed and leave these methods impracticable.

We consider the case that the initial condition v, is strongly localized and given by a Gaussian wave packet, and investigate the
numerical time-integration of an approximate solution u ~ y, which is a Gaussian wave packet

u(t, x) = exp (é(%(x —g)TCx—g)+(x—q) p + g,)).
The parameters to be computed are the packet’s position and momentum center g¢,, p,, the complex width matrix C, of the envelope,
and the complex phase and weight parameter ¢,. These parameters evolve according to ordinary differential equations, which are
systematically derived by the Dirac-Frenkel time-dependent variational principle. By the approximation ansatz, high oscillations in
time and space are captured and thus eliminated for the numerical time integration. For A = 0 it is well established that variational
Gaussian wave packets offer reasonable mesh-free approximations at low computational cost, see for example [1,2]. More recently,
they have also been proposed for magnetic quantum dynamics [3].

1.1. Contributions of the paper

As our main contribution, we derive two fast algorithms to solve the equations of motion for the parameters of a variational
Gaussian wave packet approximation such that norm and energy conservation of the quantum solution are reflected by excellent
long-time norm and energy accuracy of the time integrator. On a standard laptop with a non-optimized Jupyter Notebook', these
algorithms enable us to compute approximations within minutes. First, we suggest an extension of the Boris algorithm [4,5], which is
a standard integrator for the classical equations of motion for a charged particle system in plasma physics, to the quantum mechanical
setting. We furthermore modify the well-known Runge-Kutta 4 method, such that it conserves the L?>-norm of a Gaussian wave packet
at every time step. Numerical experiments in two and three space dimensions underline the efficiency and expected accuracy of the
proposed algorithms.

1.2. Outline of the paper

The paper is structured as follows. In Section 2, we discuss the quantum dynamics of an electron and a proton in a hyperbolic
Penning trap as a guiding example for a magnetic Schrodinger equation in the semiclassical regime. In Section 3, we compare
variational and traditional Gaussian wave packet approximations and review the known error estimates. In Section 4, we transform
the system of ordinary differential equations that determine the variational parameter evolution in a form that features averaged
magnetic momenta and contains the magnetic vector field B = V X A on the right-hand side. In particular, we derive an equation for
the imaginary part of the phase parameter ¢ guaranteeing the preservation of the L2-norm. In Section 5, we briefly introduce the
Boris algorithm used and derive our two algorithms for solving the parameters ODEs for the approximating Gaussian wave packet.
Finally, in Section 6, we present numerical experiments for a two-dimensional magnetic system with trigonometric potentials and
for the three-dimensional Penning trap. Appendix A gives formulas for the magnetic energy and other averages of Gaussian wave
packets.

1.3. Notation

For a scalar function a : RY — R we denote the Hessian matrix by V2a(x) and for a vector field A : RY - R? we denote the Jacobi
matrix by J,(x) = (9, A, (x)) For a function W : RY - RL, L > 1, and more generally a linear operator A acting on L*(R?) we
define the averages

d
k=1"

Wy, = uWuy, (A), := <u|Au>,

if the inner products exist. We follow the convention that inner products are anti-linear in the first component. We also use the
dot product of vectors v,w € CF as v-w := v'w = v;w, + - + v, w; and the square v”> := v - v. For complex matrices C € C/*? we
denote the component-wise real and imaginary parts by Cg, C; € R??, respectively.

2. Penning trap

To illustrate semiclassical scaling for magnetic quantum dynamics we consider a charged microscopic particle, e.g., an electron
or a proton, in a macroscopic hyperbolic Penning trap. Such a trap consists of an arrangement of magnetic coils and electrodes which

1 Codes available at https://gitlab.kit.edu/malik.scheifinger/magnschroedti.

2


https://gitlab.kit.edu/malik.scheifinger/magnschroedti

M. Scheifinger, K. Busch, M. Hochbruck et al. Journal of Computational Physics 541 (2025) 114349

Table 1
Typical frequencies for the undulatory motion of electrons and protons
in a Penning trap, cf. [6, Tables 1 and 2].

Quantity Electron Proton

& (Trap Size) 0.00335m 0.00112m
B, (Magnetic Field) 5.872T 5.050 T

¢, (Electrode Potential) 10.22V 53.10V

vy = ”2’—; (Corrected Cyclotron Frequency) 164.38 GHz 76.299 MHz
V3 = % (Axial Frequency) 63.698 MHz 10.134 MHz
Vo= ;’—; (Magnetron Frequency) 12.341kHz 672.93kHz
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Fig. 1. Exact trajectory of a proton in a hyperbolic Penning trap with data from Table 1 and initial condition specified in Section 6.2 on the
dimensionless time interval [0, 2x].

feature a static magnetic field along the x;-direction and a quadrupole-like static electric field that is rotationally symmetric around
the x;-axis, see, e.g., [6,7]. The corresponding vector and scalar potentials, respectively, read as

—-x,
1 [ 1
A(x) = EBO )Z)l and ¢(x) = ﬁ (x§ -5 (x% + x%)), 2.1)

see Table 1 for typical trap parameters B, ¢, § for protons and electrons. A classical point particle (mass m, charge g,) moving in such
an electromagnetic field configuration executes an oscillatory motion along the x;-axis (angular frequency ws), while simultaneously
executing an epicyclic motion in the x,x,-plane where the low-frequency magnetron orbit (magnetron frequency «_) is overlaid with
high-frequency cyclotron orbits (angular frequency w,), cf. Fig. 1. In terms of the particle and trap parameters, these frequencies are
given by

1 19l _ 19.1By _ /3 B
wi—z(a)cig), s = e where W= ==, Q=/w? - 203

The associated classical trajectories x.() may be obtained via Newtonian [6] or Hamiltonian [8] approaches.
The quantum dynamics of a trapped particle is governed by the time-dependent Schrodinger equation which, in SI units, reads

in ot %) = (5 (<Y, = 4eAG))’ + 4eb0) (e, ). @2.2)

A first comparison of the macroscopic spatial extent of the trap, described by the trap parameter 6 ~ lmm, with the wavelength of
the trapped quantum particle (e.g., a proton) corresponding to the corrected cyclotron frequency v, ~ 76MHz indicates already that

3
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mesh-based approaches to Eq. (2.2) are rather impracticable. Upon transiting to dimensionless coordinates x — x/é and introducing
the dimensionless time t - w_t, Eq. (2.2) becomes

iedy(t,x) = <% (ieV + Am(x))2 + sign(qe)z))—+ (xi - %(x% + x%) ))y/(t, X). (2.3)

This is of the form Eq. (1.1), since with the effective magnetron magnetic field B,, = mw_/q, we obtain the scaled dimensionless
quantities

£=n/(g,B,0") = 1.19-1078, o, /o_ ~ 113.25,

—X
B 2 B
A, =120 L 20 gra0s.
2B,| B,

Since the semiclassical parameter ¢ ~ 1.19 - 1078 is very small, the dynamics of the wave function are highly oscillatory in space and
time, motivating the Gaussian wave packet ansatz Eq. (3.1) for eliminating high oscillations. In Fig. 1, we illustrate the corresponding
proton dynamics for the typical trap parameters of Table 1. The parameters of the initial Gaussian wave packet (0, x) are specified
in Eq. (6.3). The plot depicts the exact trajectory of the center in blue. One cycle of the cycloidal motion is highlighted in orange and
one of the axial motion in red.

3. Variational approximation

In the semiclassical regime, the solution of the Schrodinger Eq. (1.1a) is highly oscillatory and well localized. We thus seek
approximations within the manifold of complex Gaussian wave packets

i1
M={ue 2@ |uw =exp (- (36— Cx =+ = p+)).
g, peR?, Cc=C" e C™ ImcC positive definite, ¢ € C}. (3.1)
We construct the optimal approximation u(r) ~ y(?), u(t) € M, in the sense that the time-derivative d,u() minimizes the residual,

|[iedu) — H@Ou®)| ;2 = z?}zi(rtl)! (3.2)

We consider initial data with y = uy € M and ||ug||,» = 1, and mention in passing, that the variational approximation Eq. (3.2) is
norm preserving in any case and energy preserving for time-independent Hamiltonians,

el 2 = ||uoll ;2> (H)ugry = (H),, forallt,
see [9, 8II.1.5].

3.1. Variational equations of motion

In earlier work [3], we derived ordinary differential equations for the parameters g,, p,, C,, ¢, of the approximating Gaussian wave
packet, which we reproduce here. We denote the classical Hamiltonian function for charged particles in a magnetic field by

h(t,x,&) = %(g — A + ot x),  (x,&) € RxR! xR,

Then, the residual minimization in Eq. (3.2) implies that
G=(0:h),, p=—(0sh),, C=-B(C), (3.3a)
&=—(h), + itr(B(C)CI_I) +p7(0:h),. (3.3b)

where the complex matrix B(C) € C?*, that depends on a Gaussian average, is given by
5, . (1d
B(C)=(Id C){(V*h), c) (3.30)

The averages (0%h), = (0pwe,1(0*h)), use the standard Weyl quantization of the derivatives of the Hamiltonian function. In Section 4,
we reformulate these averages such that the equations of motion become amenable to a Boris-type time discretization.

3.2. Asymptotic accuracy

The variational Gaussian wave packet u(r) determined by Eq. (3.2) is the exact Schrodinger solution y (¢), if the magnetic potential
A(t,-) is linear and the electric potential ¢(t, -) is quadratic with respect to position. In particular, the dynamics in a Penning trap are
exactly described. More generally, if A and ¢ are sub-linear and sub-quadratic in the following sense,

0°At,)), P¢(r,)  bounded for all |a| > 1, || > 2,
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then the following bounds for the norm and the observable error can be proven, see [3, Theorems 3.8 & 3.10]. Given a finite time
horizon [0, T'], the norm error and the observable error for expectation values with respect to a linear operator A satisfy

(@) = u@®ll 2 < ct /e, ‘(A)W) —(A)| <Cr€ (3.4)

for all ¢ € [0, T'], where the constants ¢, C > 0 are independent from ¢ and ¢, but depend on a lower bound for the eigenvalues of C;
on [0, T']. It is worth pointing out the high observable accuracy.

3.3. Classical versus variational approximation

Traditional Gaussian wave packet approximation evolves the centers according to the purely classical equations of motion
G=0,h,  p=-0,h,

see [10, §4]. If the magnetic and the electric potential are linear respectively quadratic in position (as they are for a Penning trap), then
the classical and the variational approximation coincide and yield the exact quantum solution. For general Hamiltonians, however, the
approximations differ. The variational equations of motion Eq. (3.3) contain averages with respect to the approximating Gaussian wave
packet, which are computationally more costly than the pure point evaluations of the traditional approach. However, a traditional
Gaussian approximation is neither energy preserving nor as accurate as a variational one, since the classical observable error is only
first order in &, while the variational one is second order.

3.4. Hagedorn parametrization

It is convenient to write the complex symmetric width matrix C in Hagedorn’s parametrization as
C=Cr+iC;=PO7" and ¢ =(Q0"7, (3.5)

with two real symmetric matrices Cg,C; and two invertible complex matrices Q, P that satisfy the symplecticity condition QT P —
PTQ =0, Q*P — P*Q = 2ild. Such a decomposition of complex symmetric matrices with positive definite imaginary part is unique
up to unitary factors, see [9, Chapter V]. Unfortunately, we can express Cy = %(PQ*1 + (0"~ P*) only in terms of both Q and P,
which will have implications for the integrators to be developed. The matrices Q and P allow the efficient structure-preserving time-
integration of the width matrix in parallel to the phase space center and give direct control of the wave packet’s norm in terms of the

matrix Q. In particular, the Riccati-type Eq. (3.3a) takes in Hagedorn’s parametrization the form
0 = (0,,1),Q +(0,,h), P, P =—(9,,h),0 — (0,,h),P.

These equations are variational analogues of the linearization of the classical equations of motion around a trajectory.

4. Transformation of equations of motion

We transform the variational equations of motion in such a way that they structurally mimic the classical equations for a charged
particle.

4.1. Averaged magnetic momenta

In a first step, we rewrite the variational equations of motion such that an averaged version of the usual magnetic momenta
becomes visible.

Lemma 4.1. The variational equations of motion Eq. (3.3) for the parameters of a Gaussian wave packet are equivalent to

Gg=p—(A),, p=(IJE—A) -V}, (4.1a)
C = —(2h), + (J1),C + C(J ), — C2, (4.1b)
& =—(h), + itr BOC) +pT(p = (A),), (4.10)

where (a), = (0pwey1(@)), for any smooth a : R* — R, (x,£) ~ a(x, &). In Hagedorn’s parametrization, the matrix evolution Eq. (4.1b)
satisfies

0=P—(J),0. (4.22)
d
P=(I0)P—(J]Ty = Y VEAE — A+ V) 0. (4.2b)
k=1

Proof. Since the partial derivatives of the classical Hamiltonian function A(x, &) = %(5 — A(x))? + ¢(x) satisfy

0ch(x,&) = E = A(x),  0xh(x,8) = =J 4 ()T (E = A(X)) + V()
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we have Eq. (4.1a). We next turn to the second-order derivatives of 4. Denoting the partial derivatives of the magnetic and the electric
potential shortly by 9,, ...,9,, we have

d

0y, 05,1 =D (9, A0, Ay = (& = A0, 0, Ay) + 0,06,
k=1

0, 0;,h=—-0,A;, 00, h=-0,A,
which gives a Hessian matrix
o ) =(% )
éx 3 —JA
with 02h = JTJ, — T4 _| V2 A& — A + V2. By Eq. (3.3¢) we then infer that
B(C) = (02h),, + (9}, C + C{Og, h), + c(agh)uc
= (0gh), = (10 C = CUp), + C2.
Hence, the variational equations of motion Eq. (3.3) are equivalent to Eq. (4.1). O
This formulation of the equations of motion prominently features averaged magnetic momenta
vi=p—(A), Y :=P—(J,),0. (4.3)
We aim at rewriting them in terms of the real vector () € R? and the complex matrix Y(f) € C4*?.

4.2. Equations for the center and the width
Since the averaged magnetic momenta contain averages of the magnetic field and of its Jacobian, we need a compact way of
assessing the time derivative of averages in the spirit of a magnetic Ehrenfest-type theorem.
Proposition 1. For any smooth function w : RY — R, its average with respect to the variational Gaussian wave packet u = u(t) satisfies
%(w)u = (Vi) v+ St (V) (YQ" - ),
where YQO* —ild is a real matrix.

Proof. We differentiate the position density with respect to time,

1 2
0 lutt.x)* = 9, exp( == (x = @) Cx =) — 24
= Jucr x>|2< A gTee -+ 2a-9Tad- 2&)
E & &

= ut, x>|2<§<x ~0T (G- UG-+ 2T Gu - <CR>>,
where we have used that, by Lemma 4.1, the symmetry of Cy and C;, and tr ((J4),) =0 since V- A =0,
G=v, G=GCGUJI), ~CR+I), - R, &= %tr (CR)-
Therefore, we obtain

Lt = 2{wtx = 9" (G- (UGG - )
+ 2wy = g)) 0 = Gwh,tr (C)
= (W) tr (Cg = (I ) + (V) v = (W), tr (C) (4.4)
+ S (V20), G (Cr = (D)
= (Va) v+ St (V)G (Cr = (T ),

where the second equation relies on Lemma A.1 with matrix M = (Cg — (JI)U)CI and the last equation on V - A = 0. It remains to
express the occurring matrices in terms of Q and Y. Using the properties of Hagedorn’s parametrization from Section 3.4 yields

Gl = 3007 (PO +@)'PY)
= %(Q(P*Q +2ild)Q0~" + QP*)

= 0" +0*(J}),) +ild.

Hence we have ;' (Cg — (J),) = QY* +ild, and use the trace identity tr (M N) = tr (M N*) for the real symmetric matrix M = (V>w),
and the real matrix N = QY* +ild. O
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Equipped with an equation for the time evolution of averages, we can determine the variational equations of motion solely in
terms of the averaged magnetic momenta.

Theorem 4.1. We consider the averaged magnetic momenta Eq. (4.3) and denote the magnetic field B = V X A. The variational equations
of motion for the Gaussian wave packet’s center and width, Egs. (4.1a) and (4.2), can be transformed as

g=v, v=uvx(B),+E, (4.52)

o=7, Y =Yx(B),+ S0, (4.5b)
where the matrix

Y % (B), 1= (g X (B}, ... 04 X (B),)
is given by the cross product of the column vectors vy, ...,v, of Y with (B),. The real vector field E satisfies

E= _<V¢>u - <atA>u + <J,I>14<A>u - (J;{A>u

d
£ T 2 * : T *
+5 (tr((&kJA — V2A),(YQ" —i1d) + (3T ] ), (J ), Q0 ))k:.’

and the real matrix potential .S can be written as

S =—(V2¢), - (Jo,adu+ <JI>M<JA>M - (JIJA>u

d
+ z ((VzAm>u<Am>u - <(V2Am)Am>u + ((akafA -9, afAk>u m)kf 1)

m=1

+ 2 (i (040, I] = V20, A0, (YO = i1d) + (0,0, 10U 0),0Q) ) oy

Proof. By Eq. (4.1a), the time derivative of the magnetic momenta satisfies

. d T d

=p— —(A), = —A)-V - —(A),. .

0= p= (A, = (J](E = A) = V), = T (4), (4.6)
Hence, we have to work on (J, T&),- By symbolic Weyl calculus, see for example [10, §2.4], we expand the operator of the product as

OPwey (4 4 &) = J | Oy (&) 4l OPWeyl({JA ED =T (—ieV),
where the last equation uses that V - A = 0 implies that {J],&} = — ZL . axk(J})a§k§ =- ZZ=1 0y, VA = 0. Therefore,

(J18)u = (ud [ (=ieViu) = (J 1 Cx = @)y + (T )b

due to —ieVu(x) = (C(x — q) + p)u(x). Then, we apply Lemma A.1 with W = JXC,

d

(JTCx—q), = % ;1 (@I DCCT) ),
£ d d
=5 Y (90 An) (YO +(J,4),00° —ild), )i _,
mf=1
= E(tr((ﬁkJA)I(YQ* —ild+ (J,),00M)_,. (4.7)

since CC;! = (POQ™')(QQ*) = (Y +(J4),0)Q* and divA = 0. We thus obtain
(J1E= A, = (T D0+ T 1)(A), — (T]A),
+ S ()] (YO —ild +(J,),00)-
Now, we use Proposition 1 for each component of the magnetic potential,

%( Yy = (0,A), + (J )0+ & (tr((V2 (YO ild)))z=1

When collecting all the terms that originated in Eq. (4.6), we observe the occurrence of (J/I)uv and —(J 4),v, which combine according
to

((IF = J4))v = VX (B),.
We thus arrive at the claimed Eq. (4.5a). As for the matrix Y = P — (J,),0, we use the equations of motion Eq. (4.2), which contain
the average of 2h =J 7 J, - ¥4 _ V?4,(&, — A,) + V*¢. We have

= (I, (Y +(J4),0) - (02h),0
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For computing (0%h),, we observe that

d d
2 OpWey](vam‘fm) = Z (V A OpWeyl(ém)"' OPWey]{V Am’ 5,,,})

m=1 m=1

d
= ) V24,(-ied,,),
m=1
where the last equation uses that an=1 {V2A,,.&,) =0due to V- A =0. Arguing as for Eq. (4.7), we obtain

d
2 <V2Am(§m - Am»u

m=1

Il
M=

(VZA,(Cx =), )0 = (VEADA), + (VZA,),D,)

3
I

Il
M=

(<V2Am>u(vm + <Am>u) - <(V2Am)Am>u)

S
[}

d
% Z (V20,A,),(YO" —ild +(J,),00"),

and therefore

d
(02R), = (I T4+ V2), = D (VAN (0, + (An)) = (V2A,)A,),)

m=1
- f(tr(<akaf1;>u(YQ —ild + (J,),00" )))H - (4.8)

We next use Proposition 1 applied to each component of the Jacobian matrix J, = (9, 4;)¢ and obtain

k=1

%("A)u ={Ja A )u

d
+ ”Z:l (<amafAk>uUm):f=l + %(tr((VzafAk>u(YQ* _ iId)))d

k=1
Now we combine and arrive at

¥ =P (0010,)0 = ()0 = (] = L)Y + 50
with the matrix potential .S of the claimed form. O

Remark 1 (Linear potential A). For a linear magnetic potential A, all higher order derivatives vanish and the average (A), = A(-,q)
is a point evaluation. Thus, the equations of motion of Lemma 4.1 simplify to

g=v, v=vXB(q) — 0 AC, @)+ (V),), (4.9a)

0=, Y =Y x Bg) = (9,J4(.) +(V2),)0. (4.9b)
The Penning trap, see Sections 2 and 6.2, with its quadratic electric potential, has even simpler equations of motion, since also the
averages of the electric potential collapse to (V¢), = V¢(-, q) and (V2), = V2¢(-, ).

4.3. Equations for the phase

The imaginary part of the complex parameter { = {y + i{; carries the normalization of the Gaussian wave packet. We derive an
explicit representation, which only depends on the determinant of the complex matrix Q. This representation will support our time
discretization of ¢; in Section 5.2.

Lemma 4.2. For the real part {z = Re ({) we have

tr = %"2 +(A))0 = (@), + U (97h), 00 200", (4.102)

where the average (aﬁh)u is given in Eq. (4.8) with respect to (g, v, O, Y). The imaginary part ¢; = Im ({) satisfies the normalization
formula

a@ =40+ %(ln |det ()| — In |det Q(O))). (4.10b)
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Proof. We start with the normalization formula. Since Im B(C) = —(J/I)uCI — Ci(J )y + CrCr + C1Cg and divA = 0, we have
Im (tr (BO)C;)) = 2tr (Cp) = 2tr (Re (PQ™))
=2tr (Re((Q + (44),2)07")
=2tr (Re(QO™")).
We thus obtain from Eq. (4.1c) with Jacobi’s formula
4= 5tr(Re(00™)

:El |det Q|2 <2Re <@det otr (QQ‘I))>

£ 1
4 |det Q|
= gd,(lnldethz). 4.11)

(2Re @t 0 o,(det 0))

Integrating Eq. (4.11) from 0 to ¢ leads to Eq. (4.10b). For the real part, we have Re B(C) = (92h), — (J]),Cr — Cr(J4), + Cr* — (i
and thus

tr Re BO)CTY) = tr (((2h), — 2(J 1), Cr + (CR2 — D).
Combining this with —(#),, we use Lemma A.2 and obtain

—(hy, + Ztr Re BOC)

1 -

== 5{0 = AP), = (), + Jr (GG =20,

Next, we observe that
1 1 1
-5{- A, +p (p-A), = §pT<p —A), + §<A>I<p - A),
= %02 + (A);r v.

Using that C; = (00*)7!, the real part of the evolution Eq. (4.1c) can thus be written in the claimed form. [

5. Time integration for the equations of motion

In this section we first briefly review the classical Boris algorithm. Afterwards, we present the new Boris-type algorithm and a
modification of the classical Runge-Kutta method to solve Egs. (4.5) and (4.10).

5.1. Boris algorithm for classical equations of motion

The Boris algorithm was originally proposed in [4] for solving the classical equations of motion
g=u, 0V=vXB+E, (5.1)
for charged particles in an electro-magnetic field. We consider a time-grid *", n > 0, with step size r > 0. Given approximations

1 1
q" ~ q(t"") and v""2 ~ v(t""" 2), the algorithm can be written as

=TT 4 e, E" = E(™, "), (5.2a)

vt - = %(u+ +0v7) X B", B" = B(t"", ¢"), (5.2b)
V=t + %E", (5.2¢)
7 =g+ rv"+%. (5.2d)

Note that the algorithm provides approximations on a staggered grid, where the velocities are only given at half time-steps. Approx-
imations at "" can be obtained by averaging

1 1
V" = %(U"+§ +0"72 ) (5.2e)
Moreover, the scheme is explicit, since one can replace Eq. (5.2b) by
n
o= (o e x ) x —EE (5.26)
1+|5B"

see, e.g., [5]. The Boris algorithm is a second-order method which is not symplectic but conserves the phase-space volume as shown
in [11]. A recent analysis was presented in [12].
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5.2. Boris-type algorithm

We aim at solving the Euler-Lagrange system Eq. (4.5) together with the two phase Eqs. (4.10a) and (4.10b). The former are
closely related to the classical equations of motion of a charged particle Eq. (5.1) except that B is replaced by an averaged field (B),
and that the fields E and .SQ do not only depend on ¢ and Q but also in a nontrivial way on v and Y. While the means (B), can be
approximated by a suitable Gauss-Hermite quadrature formula, evaluating the fields E = E(t,¢,Q,Y) and S = S(t,4,0, v, Y) is more
involved since they require approximations to v and Y at time "". Unfortunately, these quantities are only defined on the staggered

1
grid 1""*7 and even worse, the update of Y is coupled to the evaluation of SQ, rendering the scheme implicit.
To be more precise, it is the matrix Y which is necessary to compute the fields E and S in Lemma 4.1. Averaging Y as in Eq. (5.2e)

1
would lead to a nonlinear system in Y"*2. Therefore, we propose the second-order extrapolation

1 3
Y = %Y”_i - %Y”‘i, (5.3)

and compute also E" and S” from it. In our numerical experiments, we saw that using fixed-point iterations to improve the accuracy
of Y” did not change the errors.

5.3. Discretization of the phase
Motivated by Eq. (4.10b), we define the approximation to {I(t"”“) as
o =g+ %(ln (det Q"“‘ — In|det Q"|). (5.4)
This update formula ensures norm preservation of the wave packet.

Lemma 5.1. Let u" and u™! denote two Gaussian wave packets with parameters (¢",v", Q",Y",{") and (¢"+!, v"*+!1, Qr+l, Y+l gntly
respectively. Then Eq. (5.4) is equivalent to

”un”L2 — un+] ”Lz.
Proof. Because of
d
"I, = exp(=2¢7)(ex)? |det O, (5.5)

the norm preservation is equivalent to

|det Q"

2 1
CXP(Z(q_qu )) = |detQVl+1|.
This proves the statement. [

Furthermore, for the integration of Eq. (4.10a), we propose to use the midpoint rule with time step size 2z. This results in a two-step

1 1
method. Since v"*2 and Y"*1 are already available, we apply averaging Eq. (5.2e) instead of extrapolation to obtain approximations
at t"". This results in

gl =gt 4 2T<%(U")2 + (AT~ <¢>;’)

+ S ((@m)0"Q" ~20"0") ™) (56

5.4. Complete Boris-type algorithm

Overall, combining the time discretization of center, width, and phase of the Gaussian variational wave packet, we get the following
algorithm for solving the equations of motion Egs. (4.5) and (4.10).

1 1
Algorithm 1 (One time step with the Boris algorithm). Input: Last steps (¢", v 2,Q",Y""2,¢", ¢ 1.
1 1
Output: Approximations (¢!, v"*2, 0", Y™ 7, ¢+,

1
e compute ¢"*!, v""2 with the Boris algorithm Eq. (5.2) applied to Eq. (4.5a)

1
e compute Q"*!, Y"*2 with the Boris algorithm Eq. (5.2) applied column-wise to Eq. (4.5b),
e compute CI"“ and gg“ from Eqs. (5.4) and (5.6), respectively.

In general, one has to apply a Gauss-Hermite quadrature rule to approximate the averages, see [1, Section 8] for details. Note that
for strong magnetic fields, filtered variants of the Boris algorithms might be more efficient, cf. [13].

10
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Fig. 2. Simulation of the motion of a particle in a magnetic field in dimension two with potentials Eq. (6.1) and initial values Eq. (6.2). Errors of
the numerical solution to Eq. (4.5) approximated by the Boris-type algorithm (left) and the mRK4 method (right) measured in the Frobenius norm
scaled with the inverse number of entries. Endtime is chosen as T = 8 and £ = 1073.

5.5. Modified classical Runge—Kutta method

As an alternative to the Boris-type algorithm, we propose a modification of the classical Runge-Kutta method (RK4) of order 4.
The modification consists of updating the component ¢; in each intermediate step by using Eq. (5.4) to get the approximations to
Gi(tyy1/2) and ¢(t,,1). All other components are updated by the standard RK4 procedure. In contrast to the original RK4 scheme, the
modification automatically conserves the L?-norm of a Gaussian wave packet.

6. Numerical experiments

In the following section, we present some numerical examples.

6.1. Sublinear magnetic potential in two dimensions

If we consider the potentials

sin(x; + x, + at)
—sin(x; + x, + at)

A(x, 1) = < >, @(x, 1) = sin(x; + x,) (6.1)

with & € {0, 1}, we can calculate the occurring averages (4),, (¢), analytically as

/ sin(x; + x, + af)|u(x)|? dx
R4
= (ze)*det(L™"exp(= 2 — 17 Q0 1) sin(g; + g, + at)

where 1 = (1 1)T and (QQ*)~! = LLT is the Cholesky decomposition. Since we compare the new time-integrators with the standard
RK4 method, which is not norm-conserving, we do not assume normalization of u. We use for the curl of a 2d vector potential A the
convention V X A = 0, A, — d,A;. Initial values are chosen as

o_ (0 o_ (1 o_(1 0 o_(1i O 0 _
N

The imaginary part of the phase §IO is chosen such that the corresponding initial Gaussian wave packet «° is normalized. Note that
the normalization is ¢ dependent and thus the initial value CIO changes for different values of e.

In Fig. 2 we depict the maximal component errors over all time steps of a Gaussian wave packet where we solve Eq. (4.5) with
the Boris-type Algorithm 1 (left) and the modified fourth order Runge-Kutta (mRK4) method (right). As end time we choose 7' = 8
and set a = 1, = 1073, We compare the numerical solution to a reference solution calculated by the standard RK4 method applied
to Egs. (4.1) and (4.2) with time step-size z = 10™*. As we see, the error decreases by order two for the Boris-type method and by
order four for the mRK4 method with decreasing time step-size.

In Fig. 3 we illustrate the maximal L?-error over all time steps of a Gaussian wave packet with parameters calculated by the Boris-
type method (left) and a Gaussian wave packet with parameters calculated by the mRK4 method (right). Again we compute the error
against a reference solution calculated with the standard RK4 method applied to Eqs. (4.1) and (4.2) with time stepsize = = 10~*. The
L*-norm between the two Gaussian wave packets is computed with a Gauss-Hermite quadrature rule. We see a reduction of order
two for the Boris-type method and of order four for the mRK4 method in the L?-norm. Moreover, we see that the error constant
scales as £~! in both cases, which is supported by the theoretical result [1, Thm. 7.7]. Further note that the L?-error between two

11



M. Scheifinger, K. Busch, M. Hochbruck et al. Journal of Computational Physics 541 (2025) 114349

10!
mRK4

. L
2
$ L
[

1077 F -

10—7 [ | [ |

103 1072 1073 1072
T T

e=102—+¢c =103 ¢ — 10" \

Fig. 3. L’-error of a Gaussian wave packet approximated by the Boris-type method Eq. (1) (left) and the mRK4 method (right) against a reference
Gaussian wave packet with coefficients approximated by the classical RK4 method with time stepsize = = 10~*. The potentials are given by Eq. (6.1)
and the initial values by Eq. (6.2). Different values for ¢ are considered. Endtime is chosen as T' = 8.

10_1 [ 1071 L
2w j/e/@
5] 10 @/e/eé’/ 1073
5o107TH ,
% 0 107° -
1077 -
1077 L
| | L | | | |
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T time ¢
é 1072 F
g RK4
E 10°F — RK4 modified
= —— Boris
o,lq 10-16 & KA~ . ‘ |
0 50 100 150 200
time ¢

Fig. 4. Energy error against the initial energy (top) and L?>-norm error (bottom) using the potentials and initial values in Section 6.1. The endtime
is chosen as T = 200 and £ = 10~. On the left, the maximal energy error is illustrated over all time stamps for different time stepsizes z. On the
right, the energy error over the time interval [0, 200] is plotted for a fixed time stepsize 7 = 10~".

normed Gaussian wave packets is bounded by 2, which explains the upper plateau in the left plot. The lower plateau in the right plot
corresponds to the numerical computation of the underlying integral at almost machine precision.

In Fig. 4 we compare the error between the energy Eq. (A.1) and the initial energy (top) of a Gaussian wave packet between the
three methods, Boris-type, mRK4, and standard RK4. We have fixed « = 0 in Eq. (6.1) such that we have time-independent potentials
and therefore theoretical energy conservation. As end time we chose T = 200 and ¢ = 1073. On the left, we plot the maximal energy
error at each time stamp to the initial energy for different time step-sizes . We see a reduction of order two of the error for the
Boris-type method and of order four for the mRK4 and standard RK4 methods. Note, however, that the error of the standard RK4
method is several powers of ten worse than that of the mRK4 method. In comparison to the Boris-type method, the error of the RK4
method is much larger for larger values of = but due to the higher order of error reduction of the RK4 method the lines intersect at
some point. Therefore, for larger values of ¢ the Boris-type method outperforms the RK4 method. In the right plot, we plot the energy
error against the initial error at each time stamp for a fixed time step-size = = 10~!. As we see, the error of the Boris-type method
oscillates at the same level, while we see for the standard RK4 and mRK4 methods a drift. Note, however, that the drift of the mRK4
method is way smaller than that of the standard RK4 method. Moreover, at the bottom of Fig. 4 we illustrate the error of the L? norm
of a Gaussian wave packet to norm conservation using time step-size = = 10~!. The error for the Boris-type method and the mRK4
method is close to the machine precision and hence shows conservation of the L?-norm, whereby using the standard RK4 method
results in a deviation. The L?>-norm of a Gaussian wave packet given its parameters can be calculated analytically by Eq. (5.5).
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Table 2

L?-norm error and error with respect to the L>-norm be-
tween the exact solution using the potentials Eq. (2.1) with
data given in Table 1 and initial values Eq. (6.3) and the
numerical solution «" by the mRK4 method measured at
endtime 7' = 2x.

step-size 7 25107 1073 5.0-107°
[l = lw@ll2| 1.6-1071° 2610710 3.4.10710
[l = w (@l 2 8.0-107° 19-107* 5.6-107°

&b

10711 L

parameter €Irrors

10~18 i i — i i
107* 1073 1072 10* 102 1072 10°* 1073 1072
T T T

-0-q-0- P—+—Q —+ P (r—(;

Fig. 5. Maximum errors of the parameters approximated by the Boris-type method Eq. (1) (left), the RK4 method (middle) and the mRK4 method
(right) against the exact solution using the potentials Eq. (2.1) with data given in Table 1 and initial values Eq. (6.3). Measured in the Frobenius
norm scaled with the inverse number of components. Endtime is chosen as T = 2.

6.2. Penning trap

As a second example, we apply the time-integrators to the three-dimensional quantum dynamics of a proton in a hyperbolic
Penning trap, see Section 2. We consider the Schrodinger Eq. (2.3) with the trap parameters of Table 1 and an initial Gaussian wave
packet with parameters (in dimensionless units)

=(0133 0133 0258)", Q°=diag(q"),
P =(0133 7492 3879)", P°=i-(Q%", (6.3)
¢°=1.009-1.84-107"i.

The initial condition is chosen such that the dynamics are coherent in the sense, that the width of the packet does not change over
time. The phase parameter has a non-vanishing real part to be aligned with the analytic expressions for the center motion that were
recently given in [14, eqgs. (12) and (17)] (with w, = Q/2). As previously mentioned, see for example Section 3.2, the variational
approximation is exact in this case, such that the observed numerical error is only due to the time integrator. In Table 2, we list
both the L2-norm error [l ;2 = llw (™)l ;2| and the error with respect to the L2-norm |[u" — w(")|| ;2 between our numerical solution
and the exact analytical solution by the mRK4 method measured at the end time 7 = 2z for some time step-sizes . The proof of [1,
Theorem 7.7] literally also applies here and implies that the error in the L?-norm scales with ! ~ 108. Hence, even if we choose the
time step-size small enough to reach machine precision for the parameters of the Gaussian wave packet, there is an accuracy bound for
this error measure. Moreover, due to the square-root in the calculation of the L?-norm, we also cannot meet machine precision in this
respect as was already mentioned in Section 6.1. The numerical time evolution does not require averages but only point evaluations,
see Remark 1. In this set-up, we see the exact errors of our numerical schemes to integrate the equations of motion Egs. (4.5) and
(4.10).

In Fig. 1, we showed the exact trajectory of the position center. Virtually the same trajectory is obtained by our numerical
simulations for < 1073, as confirmed by the small errors illustrated in Fig. 5.

There, we present the maximal error over all time steps of the parameters against the exact solution for different step-sizes r in
the Frobenius norm scaled by the inverse number of the components. As expected, the Boris-type method converges with order two
while the RK4 and mRK4 methods converge with order four. We are convinced that the plateau at larger time step-sizes occurs since
the parameter evolution is mildly oscillatory because the quotients w, /w_ ~ 113.25 and B/B,, = 114.25 of the potentials in Eq. (2.3)
are not small, and since we did not observe such plateaus when setting these quotients close to one. Moreover, the error for the
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Fig. 6. Energy error using the potentials Eq. (2.1) and initial values Eq. (6.3). The endtime is chosen as 7' = 2z. On the left, the maximal energy
error is plotted for different time step-sizes 7. On the right, we plotted the energy error over time for z = 2.5 - 107>.

imaginary phase ¢; using the RK4 method applied to Eq. (4.1) is close to the machine precision since the exact solution is constant.
In contrast, in the mRK4 method, the error of {; directly relates to the error of Q by Eq. (5.4) and thus shows order four. Finally, in
Fig. 6 we compare the maximal energy error over all time steps of the three methods, which shows a drift for the RK4 methods but
not for the Boris-type algorithm.
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Appendix A. Appendix: Gaussian calculus and energy formula

Lemma A.1. Consider smooth functions W : R — C¢ and w: R? — C, and an arbitrary matrix M € C¥“. Let u € L*(R?) be a
Gaussian wave packet with position q and width C = Cg +iC;. Then,

d

W= =5 X (W e )y
=1

(x—)TwM(x - q)), = %(w)utr Mch+ %tr (V2wy,crtMeh.
14
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In particular, (w(x - q)), = 5C; ' (Vw),.
Proof. The position density
2 1 T 2
|u(t, x)|” = exp —;(X —q) Gx—q)— ECI

satisfies V|u(z, x)|> = —%CI(x — @)|u(t, x)|?. Therefore, partial integration yields that

(W(x=q)), = —%/ W () 7V Ju(t, )| dx
R4

d
= %fz ((af(WC;l)kﬂ,,)Z:l.
=1

Similarly, two partial integrations imply that

d

(W= M=)y = Y, (w(Glx = (G ME ) (Gx = ) )

k=1 “

d
% k; (W), (CDe + (B w0(Cy(x — ‘I))k>u)(C1_1MC1_1)kf

1
d
=

k.t

2
] <§<w>u(cl)kf + %@k"fw)u)(C{lMCfl)kf

§<w>“ r (MY + %tr (V2w), 7 M.
O
Lemma A.2. Let u be a normalized Gaussian wave packet with center (g, p) and width C = Cg + iC;. Then it holds for the energy
(H), = 307 =P (A)y + 3 (4D), + (@) + SRy A1)
with remainder
Ry =tr ((G%+G% - 2T, GR)GT).
If the magnetic potential A is linear in x, then (A), = A(g) and

(A7), = AP + S (L, @ @) ) a2)

Proof. In the following, we ignore the dependence on ¢ to simplify the notation. Since (H), = (h), = %((5 — A)?), + (¢),, we only
need to work on the mean of opyyey (€ — A)%) = (0pyeyi (€ — A))>. We have

(€= AP), = (&= Au, (& — Au)
=((C(x = q) + (p— A)u. (C(x — g) + (p — A)u)
=((x =)' C*Clx = @), +((p— AT(C +C*)x = ), +((p— A)?),
= S (C ) = S (IDCH G+ = A7),
due to Lemma A.1. For the traces, we have
tr (C*CCTY) = tr ((Cg —iG)(Cr +iCNCTY) = tr (CR% + ¢
tr ((J}),(C+CHCTY) = 2tr (T),CrCTH.

Combining the terms, we obtain Eq. (A.1). In the linear case, we expand A(x) = A(q) + J4(¢)"(x — g) and use Lemma A.1 to prove
Eq. (A.2). O
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