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Abstract

A key challenge in additive manufacturing is the precise manipulation of microstructural
properties to mitigate issues such as residual stresses and poor mechanical performance.
In this context, laser treatments such as laser heat treatment and laser remelting offer a
promising approach to influence microstructure in the process of powder bed fusion with
laser beam melting (PBF-LB/M). However, the complex process-microstructure relationship
remains insufficiently characterized for systematic process control.
This work presents a novel approach for efficient modeling of this relationship using

Bayesian optimization (BO) with Gaussian process (GP) surrogate models. It addresses
the mentioned issues by integrating BO with on-machine eddy current (EC) sensing, where
the EC phase angle serves as an indirect metric for microstructural changes, such as the re-
tained austenite content in the H13 tool steel used in this work. The BO algorithm adaptively
proposes laser treatment parameters based on the GP surrogate model and an Upper Con-
fidence Bound (UCB) acquisition function, iteratively refining the process-microstructure
mapping.
The effectiveness of this approach was validated through two experiments that successfully

manipulated the EC angle and thereby the retained austenite content, as confirmed by X-
ray diffraction reference measurements. The trained GP model achieved high predictive
accuracy with R2 values up to 0.95, demonstrating its capability for closed-loop process
control of microstructure modification via laser treatment in PBF-LB/M machines.
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1. Motivation

Additive manufacturing (AM) processes,
particularly powder bed fusion with laser
beam melting (PBF-LB/M), are known to
produce complex microstructures that sig-
nificantly influence the mechanical proper-
ties of the final part [1, 2]. A critical chal-
lenge in PBF-LB/M is the presence of resid-
ual stresses, which can lead to part warping,
cracking, and a reduced fatigue life. There-
fore, it is crucial to understand and con-
trol the microstructure, as variations such
as the content of retained austenite play a
key role in determining the residual stress
state and overall mechanical performance of
PBF-LB/M components [3, 4].

Previous studies have highlighted the
severity of these challenges. For instance,
Yan et al. [3] observed high tensile resid-
ual stresses, up to 400 MPa, in PBF-LB/M-
produced H13 steel, which correlated with a
microstructure composed of martensite, re-
tained austenite, and various carbides. To
mitigate these issues, researchers have ex-
plored various methods such as preheating
the build plate or build chamber [2], opti-
mizing process parameters and scan strate-
gies [5, 6, 7], or controlling cooling tempera-
ture gradients using dual-laser PBF-LB/M
machines [8]. While these approaches can
partially reduce residual stress, they have
not been effective in eliminating them com-
pletely, require significant additional time,
or are not applicable on industrial machines.

Another approach is the laser treatment
of fabricated layers before building subse-
quent layers: Methods such as laser heat
treatment [9, 10], laser remelting [11, 4,
12], and laser shock peening [13, 14, 15]
have shown to influence microstructure and
residual stresses in other applications. Al-
though these laser-based methods exist, the

precise control is complicated by high pa-
rameter sensitivity and the typically un-
known initial state of the manufactured ma-
terial.

This inherent complexity makes it impos-
sible to predetermine optimal process pa-
rameters prior to manufacturing; instead,
adaptive adjustments must be performed on
a layer-by-layer basis during the manufac-
turing process. Consequently, such an ap-
proach needs integrated, on-machine mea-
surement capabilities. Previous work by
the authors has demonstrated that eddy
current (EC) sensing is well-suited for this
purpose, as it provides a non-destructive
means of monitoring microstructural states
during fabrication [16]. However, the re-
lationship between laser treatment param-
eters and the resulting microstructure re-
mains insufficiently characterized for sys-
tematic process control. Therefore, the next
step and objective of this work is to es-
tablish a model that captures the complex
mapping between laser treatment parame-
ters and the resulting microstructural state,
as measured by EC sensing.

The paper is structured as follows: It be-
gins with a review of the state of the art con-
cerning laser heat treatment, laser remelt-
ing and existing approaches used for mod-
eling the related process-microstructure-
relationships. Following this, the objectives
and methodology are detailed, which in-
clude the experimental setup, system archi-
tecture implementation, optimization strat-
egy and reference measurements for valida-
tion. We then present and discuss the re-
sults of the optimization, followed by a dis-
cussion of the limitations of our approach.
Finally, the paper concludes with a sum-
mary of the findings and an outlook on fu-
ture work.
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2. Literature Review

Understanding and controlling the mi-
crostructure evolution in laser-based treat-
ment processes is essential for influencing
residual stress states in components manu-
factured by PBF-LB/M. This section pro-
vides an overview of the current state of
research in this domain. First, laser-based
approaches to influence microstructural fea-
tures are covered. Subsequently, methods to
establish the relationship between process
parameters and microstructural outcomes
are reviewed.

2.1. Laser-based Approaches for Mi-
crostructure Modification

In this work, laser treatment is employed to
modify the microstructure and thereby in-
fluence the resulting residual stress. Several
types of laser treatment exist, which can
be classified according to DIN 8580 as pro-
cesses for “changing material properties.”
According to Hügel et al. [17], laser-based
methods that rely purely on thermal or me-
chanical effects without the addition of ma-
terial include laser heat treatment, laser
remelting, aynd laser shock peening. The
latter requires high-energy pulsed lasers,
which are not available in industrial PBF-
LB/M systems, and is therefore not consid-
ered further.

In laser treatment processes, generally
the following parameters can be varied:
laser power P [W]; scanning speed v
[mm/s]; laser beam radius [mm], spot size
d [mm2] or focus distance f [mm]; and
for some processes hatch distance h [mm].
From these primary parameters, quantities
such as the laser energy density E = P/(v ·
d) [J/mm²] can be derived. Additionally,
multiple treatment passes may be applied.

Depending on the selected parameter
combination, the resulting thermal cycle ei-
ther induces surface heat treatment or com-
plete surface remelting. The following sec-
tions review corresponding approaches fo-
cusing on their ability to modify the mi-
crostructure, the underlying mechanisms,
and the degree of controllability, i.e., the ex-
tent to which the resulting microstructure
can be adjusted by process parameters.

2.1.1. Laser heat treatment

Laser heat treatment aims to locally modify
the microstructure through controlled heat-
ing and self-quenching due to the rapid dis-
sipation of heat into the surrounding ma-
terial. Kostov et al. [9] investigate laser
heat treatment of AISI 4140 (42CrMo4) us-
ing a continuous-wave laser (P =6 kW,
d =7.5 × 7.5 mm²). The study reveals
that even a single laser pulse produced a
fully martensitic layer at the treated sur-
face. Additional pulses have negligible influ-
ence on the microstructure, suggesting that
the dominant mechanism was the austenite-
to-martensite transformation triggered by
rapid self-quenching. However, the system-
atic dependence on process parameters is
not explored, and thus controllability re-
mains unquantified.
In contrast, Telasang et al. [10] study

laser heat treatment of H13 tool steel
under varying laser energy densities and
identified distinct regimes of microstruc-
tural evolution. At low energy densities
between 22 J/mm² and 50 J/mm², no
significant hardening occurs and the mi-
crostructure consists primarily of tempered
martensite and fine carbides. Intermedi-
ate energy densities between 50 J/mm² and
75 J/mm² result in a martensitic surface
layer formed through austenitization and
subsequent self-quenching. At higher en-
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ergy densities above 75 J/mm², surface
melting occurrs, leading to an inhomoge-
neous microstructure composed of ferrite,
retained austenite, and carbides. These
findings demonstrate that the microstruc-
ture strongly depends on the applied energy
density and, consequently, on the thermal
cycle induced by the laser. Laser heat treat-
ment therefore provides a degree of con-
trollability, as process parameters such as
laser power and scan speed can be tuned to
achieve specific microstructural states.

2.1.2. Laser remelting

Laser remelting involves complete
surface melting and resolidification,
producing distinct thermal histories
compared to laser heat treatment.
Preußner et al. [11] examine laser remelting
on H11 (1.2343) tool steel with laser powers
ranging from 65 W to 320 W, spot diame-
ters between 150 and 800 µm, and up to 16
remelting passes. The retained austenite
content initially increases to approximately
30–40 % with rising power and beam
diameter but decreased again to 5–10 %
at very high values. The authors attribute
this non-linear behavior to variations in the
cooling rate: larger beam diameters result
in lower cooling rates and consequently
reduced retained austenite fractions. Mul-
tiple remelting passes also affect the phase
balance, though the effect depends on both
laser power and focus diameter. These
results indicate that the retained austenite
fraction can be tailored through process
parameter selection, suggesting a relatively
high degree of controllability.
Rezayat et al. [12] investigate the effect

of laser remelting on stress-relieved AISI
301LN using a nanosecond pulsed laser.
The study varies the laser power between
53.6 W and 63.3 W and the scan speed be-

tween 1.2 mm/s and 6 mm/s. The marten-
site content increases from 11.5% in the
base material to 18.4% at the highest laser
power and lowest scan speed, which is at-
tributed to a higher cooling rate. This find-
ing confirms that both laser power and scan
speed critically influence the local cooling
behavior and, consequently, the martensitic
transformation. Thus, careful parameter
control enables precise adjustment of the re-
sulting microstructure.
A further investigation by Zhang et al.

[4] examines laser remelting of H13 tool
steel with laser energy densities between 90
and 120 J/mm². Increasing energy den-
sity leads to complete austenitization in
the remelted zone, accompanied by coarser
microstructures and enhanced carbide for-
mation, while the martensite fraction de-
creases. Although retained austenite is not
quantified, the study confirmes that the
cooling rate determines the balance between
martensite and retained austenite forma-
tion. Consequently, the laser energy density
constitutes a key parameter for microstruc-
tural control in laser remelting.

2.2. Process–Microstructure Modeling Ap-
proaches

Establishing a quantitative link between
process parameters and the resulting mi-
crostructure is essential for process control
in laser treatment. Developing such mod-
els is particularly challenging due to sev-
eral practical constraints: experiments are
costly and time-consuming, material prop-
erties are often unknown, multiple pro-
cess parameters may interact in non-linear
and interdependent ways, and the resulting
model must be sufficiently fast to enable on-
machine microstructure control. The fol-
lowing sections review modeling approaches
that aim to address these challenges, which
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can be categorized into physics-based and
data-driven models.

2.2.1. Physics-based Models

Physics-based models describe pro-
cess–microstructure relationships using
governing equations for heat transfer, melt
pool dynamics, phase transformations, and
stress evolution. They can be further clas-
sified into analytical models and numerical
models, such as finite-element (FE) sim-
ulations. A representative example is the
study by Schüßler et al. [18], in which hard-
ness, residual stress, and phase composition
were predicted using a thermo-mechanical
FE model that incorporates geometry,
phase-dependent material behavior, and
laser interaction.
Physics-based models offer interpretable

results and allow mechanistic exploration
of parameter interactions. However, they
exhibit several limitations: accurate mate-
rial parameters are required, the simula-
tions are computationally expensive, and,
due to their high computational cost, these
models are generally not suitable for on-
machine control.

2.2.2. Data-driven Models

In contrast, data-driven models infer the re-
lationship between process parameters and
microstructural outcomes directly from ex-
perimental data. Successful application re-
quires two aspects: (1) an efficient strat-
egy for data acquisition and (2) appropriate
modeling techniques to extract meaningful
relationships.
To efficiently cover the process space with

minimal experiments, classical design-of-
experiment (DoE) approaches such as Cen-
tral Composite Design (CCD) [19] or Latin
Hypercube Sampling (LHS) [20] are com-
monly employed. These strategies enable

systematic exploration and provide a ba-
sis for initial model training. However, as
the number of process parameters increases,
the required number of experiments grows
rapidly, and initial designs may fail to cap-
ture complex, non-linear interactions not
anticipated a priori.
After data acquisition, models map in-

put parameters to target features using sta-
tistical techniques. Linear or polynomial
regression models provide a simple first
approach, whereas more flexible methods
such as neural networks can capture com-
plex, non-linear interactions. For exam-
ple, Chen et al. [21] demonstrate multi-
ple regression of laser-hardened microhard-
ness based on CCD-designed experiments,
achieving a maximum prediction error of
approximately 4%. While effective, such
approaches require sufficient data coverage;
in high-dimensional parameter spaces, the
number of experiments needed can become
prohibitive.
Data acquisition and model training can

also be combined in an iterative approach,
where, based on data from few experi-
ments, models are trained and used to se-
lect the next experiment that likely max-
imizes information gain. Bayesian Opti-
mization (BO) is the most prominent exam-
ple, often implementing a Gaussian Process
(GP) as surrogate model, and an acquisi-
tion function to iteratively select promising
experiments [22, 23]. For example, Menold
et al. [24] apply BO to laser welding, cut-
ting, and polishing, efficiently identifying
optimal process settings despite a high num-
ber of parameters. The resulting GP surro-
gate models can be directly applied for pro-
cess control, as illustrated by Kocijan and
Grancharova [25]. Other iterative strate-
gies, such as active learning, focus on ef-
ficiently learning the mapping rather than
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optimizing a specific target [26]. These it-
erative approaches effectively address the
main constraints: they reduce the number
of expensive experiments, do not require a
priori material data, can efficiently handle
multiple parameters and non-linear interac-
tions, and once trained, provide fast predic-
tions suitable for near real-time control.

2.2.3. Summary

Across all reviewed studies, laser-based
methods such as laser heat treatment and
laser remelting have been demonstrated to
enable local modification of microstructure
through thermally driven mechanisms. The
dominant mechanisms are the austenitiza-
tion and self-quenching process that leads
to martensitic transformation in laser heat
treatment, and the melting and resolidifica-
tion processes in laser remelting, which alter
the phase balance between martensite, re-
tained austenite, ferrite, and carbides. The
resulting microstructure depends strongly
on the local energy density and the asso-
ciated cooling rate. Previous work by the
authors has demonstrated that laser treat-
ment can be implemented directly within
an industrial PBF-LB/M system and are
able to influence retained austenite content,
confirming the feasibility of microstructural
modification in PBF-LB/M machines [16].
The ability to adjust the microstructure via
process parameters, is qualitatively demon-
strated in most studies but remains quanti-
tatively uncharacterized. Predictive models
have yet to be established.
To model the relationship between laser

treatment process parameters and the re-
sulting microstructure, both physics-based
and data-driven approaches were consid-
ered. While physics-based models offer in-
terpretability and insights into the under-
lying mechanisms, data-driven models pro-

vide the significant advantage of being ap-
plicable even in the absence of detailed ma-
terial properties. They also require less
computational effort and are generally fast
enough to be integrated into on-machine
feedback control. To address the high ex-
perimental effort, iterative methods such as
Bayesian Optimization (BO) can be em-
ployed, enabling the acquisition of substan-
tial knowledge about the relationship be-
tween process parameters and target prop-
erties with only a few targeted experiments.
In conclusion, the preceding analysis

highlights the absence of an approach that
combines laser treatment for microstruc-
tural modification with efficient iterative
data-driven modeling, which would enable
the targeted manipulation of microstructure
within the PBF-LB/M process.

3. Objectives and Methodology

The literature review highlights the poten-
tial of laser treatment as a promising ap-
proach for targeted microstructure modifi-
cation. However, achieving precise control
over the microstructure requires accurate
adjustment of process parameters, which re-
mains a significant challenge. Given the
complexity of the process-microstructure re-
lationship and the absence of physical mod-
els, in this work an iterative data-driven
method is the most viable modeling ap-
proach. To enable the application of such
methods, integrated on-machine measure-
ment systems are essential for characteriza-
tion of microstructural changes within the
PBF-LB/M machine.
In previous work, the authors demon-

strated the feasibility of influencing mi-
crostructural properties through integrated
laser treatment in PBF-LB/M systems
and on-machine measurement was demon-
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Figure 1: Iterative BO process used for training process-material surrogate model.

strated, establishing that both laser-based
modification and on-machine characteriza-
tion are technically viable [16]. Of the mea-
surement features investigated, the eddy
current (EC) phase angle was found to be
the metric most strongly correlated with
microstructural changes, particularly vari-
ations in retained austenite content [16].
These findings are consistent with those of
studies by Silva et al. [27] and Asadi et al.
[28], which also found a correlation with the
EC phase angle.

Building on this foundation, the present
work aims to establish a quantitative map-
ping between laser treatment parameters
and the resulting microstructure, as indi-
cated by the EC phase angle. Given the
challenges outlined in the literature review,
BO emerges as the most promising empir-
ical approach for efficiently modeling this
process-microstructure relationship.

Therefore, the primary objective of this
work is to train a process-microstructure
surrogate model using BO that captures
the relationship between laser treatment pa-
rameters and the resulting microstructure,
as measured by the EC phase angle. The

iterative approach is illustrated in Figure
1. Initially, a surrogate model is trained on
prior observations x → y. An acquisition
function then identifies unexplored regions
of the parameter space based on the predic-
tive mean µ(x) and standard deviation σ(x)
of the surrogate model, thereby determining
a promising set of process parameters xn+1

for the next laser treatment experiment.
The resulting microstructure is character-
ized using on-machine EC measurements,
yielding the EC phase angle yn+1, which,
as previously mentioned, correlates with the
microstructure. The surrogate model is
subsequently updated with the new obser-
vation (xn+1, yn+1), and the iteration con-
tinues.

Once trained, the surrogate model can
be employed for closed-loop process con-
trol, as illustrated in Figure 2. The con-
trol loop operates by first specifying a target
microstructure, from which the surrogate
model predicts the required laser treatment
parameters. Following laser treatment exe-
cution, on-machine measurements capture
the resulting microstructural state. This
feedback is used for updating the process
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Figure 2: Closed-loop process control by combining the surrogate model with on-machine EC measurements.
Adapted from [29, 30].

parameters using the surrogate model, al-
lowing for iterative convergence towards the
desired microstructure in subsequent laser
treatments.

Based on this iterative training approach
and our goal to systematically investigate
the limits of the effect of laser parameters on
the EC angle across a wide parameter space,
we conduct two separate experiments: one
aimed at maximizing the EC angle and an-
other focused on minimizing it. From prior
work, we know that the EC angle inversely
correlates with the retained austenite con-
tent, which serves as a quantitative metric
for microstructural assessment [16]. Thus,
BO is employed to identify laser treatment
parameters that either minimize or maxi-
mize the retained austenite content through
corresponding adjustments in the EC angle.

In the following sections, we explain
our experimental setup and hardware (Sec-
tion 3.1), the system architecture and au-
tomation solution (Section 3.2), the opti-
mization methodology (Section 3.3), and
the reference measurements (Section 3.4) in
detail.

3.1. Experimental Setup and Hardware

The experimental setup is built around an
SLM® 280 HL additive manufacturing sys-
tem from Nikon SLM Solutions. The mate-
rial chosen for the experiments is H13 tool
steel (X40CrMoV5-1, 1.2344) due to its mi-
crostructural properties, i.e. its capability
to form martensitic and austenitic material
phases depending on the thermal history [4].
The PBF-LB/M system features a 400 W
laser and a variable focus shift. It oper-
ates in a closed argon atmosphere with a
build plate preheating temperature of up to
200°C, which has been shown to improve
the density of test specimens according to
Narvan et al. [3]. The manufacturing pa-
rameters for the specimens were optimized
using the design of experiments method, re-
sulting in a layer thickness of 30µm, a laser
power of 250W, a scan speed of 750mm/s,
a hatch distance of 0.09mm, and a laser fo-
cus of -4mm. The specimens were cuboidal,
with dimensions of 8mm × 10mm × 6mm
(length × width × height).
For the on-machine measurements, an

eddy current system from AMiquam SA
with two sensors was integrated into the ma-
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chine’s recoater system, as depicted in Fig-
ure 3. The sensors are positioned at a height
of 0.2mm above the part, and the data is
transmitted wirelessly via Bluetooth to an
external measurement computer. The EC
angle serves as the optimization target and
an indirect measure of the retained austen-
ite content. Lower EC angle values in the
additively manufactured parts suggest an
increased retained austenite content.
The laser treatment parameters were con-

trolled by the BO algorithm within defined
operational limits. These bounds were se-
lected based on the machine’s technical ca-
pabilities and preliminary tests to avoid
process instabilities such as excessive heat
accumulation or insufficient energy input.
The parameter ranges used in this study are
summarized in Table 1.

3.2. System Architecture and Automation

The system architecture implements a
fully automated, closed-loop process con-
trol framework. The communication infras-
tructure, illustrated schematically in Fig-

Table 1: Operational limits for laser treatment pa-
rameters.

Parameter Min Max

P [W] 20 200
v [mm/s] 150 300
f [mm] -10 0
h [mm] 0.008 0.2

ure 4, consists of the PBF-LB/M machine
computer and a separate measurement com-
puter, which are interconnected through
wireless and wired connections for data
transfer and status exchange.
On the PBF-LB/M machine computer,

Python-based interface software utilizing
PyAutoGUI controls the proprietary Man-
ufacturing Software Controller (MSC). Fol-
lowing each laser treatment step, specimens
undergo EC measurement, with the data
transmitted via Bluetooth to the measure-
ment computer and the completion status
confirmed through WebSocket. The mea-
surement computer hosts the BO model and
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Figure 4: Schematic of the communication architecture for employing BO of laser treatments on the PBF-
LB/M machine.

performs EC data processing. It analyzes
the acquired EC data to compute the re-
sulting EC angle and determines the subse-
quent laser treatment parameters using the
BO algorithm. These optimized parame-
ters are transmitted back to the PBF-LB/M
machine computer via a Flask-based REST
API, triggering the next iteration automat-
ically.

3.3. Optimization Methodology

In this work, BO is employed, which re-
quires three components: (1) an approach
for generating an initial set of parameters
and data to initialize the surrogate model,
(2) a surrogate model that captures the re-
lationship between process parameters and
observed outcomes and (3) an acquisition
function that determines the next sampling
point based on that surrogate model.
First, for initial data generation, latin hy-

percube sampling (LHS) with 11 sampling
points is used to efficiently cover the mul-
tidimensional design space with a small,
well-distributed set of initial samples Dn =
{(xi, yi)}ni=1, where xi denotes the process
parameters and yi the corresponding objec-
tive value, i.e. the EC phase angle.
Secondly, the surrogate model f(x) is

then trained on the previously observed

data D. As surrogate model a GP is used
[22]:

f(x) ∼ GP
(
m(x), k(x,x′)

)
(1)

where m(x) is the mean function and
k(x,x′) the covariance kernel. After condi-
tioning on the observed data, the GP pro-
vides a predictive mean µ(x) and standard
deviation σ(x) for any new parameter con-
figuration [22].
Thirdly, the selection of the next sam-

pling point is governed by the acquisition
function. In this work, the Upper Confi-
dence Bound (UCB) criterion is used due to
its simplicity and strong theoretical conver-
gence guarantees. By adjusting its parame-
ter β, it balances the trade-off between ex-
ploring new parameter spaces (high β) and
exploiting known optimal regions (low β)
[22]:

αUCB(x) = µ(x) +
√

β σ(x) (2)

The next experimental setting xn+1 is
determined by maximizing the acquisition
function [22]:

xn+1 = argmax
x

αUCB(x) (3)

For each iteration, the GP model is re-
trained with the updated dataset, and the
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optimization continued until convergence of
the objective value, i.e. the EC angle, is
observed.

3.3.1. Model Evaluation

To assess the quality of the surrogate model,
both deterministic and probabilistic perfor-
mance metrics are computed for all eval-
uated samples. The deterministic metrics
quantify the accuracy of the predicted mean
values µ(x) relative to the observed EC an-
gles y, while the probabilistic metrics eval-
uate the calibration of the predictive uncer-
tainties σ(x).
As deterministic metrics, we compute

Root Mean Squared Error (RMSE) as the
average magnitude of prediction errors,
Mean Absolute Error (MAE) as a robust
measure of the typical prediction error, and
the Coefficient of Determination (R2) as an
indication of the proportion of variance in
the observed data captured by the model.
As a probabilistic metric, we compute

the empirical coverage, which is calculated
as the fraction of observed values lying
within the predicted confidence intervals
(e.g., 90% and 95%) [31]:

Cα =
1

N

N∑
i=1

1
{
yi ∈

[
µ(xi)± zα/2σ(xi)

]}
(4)

where zα/2 is the standard normal quan-
tile corresponding to the desired confidence
level.

3.4. Reference Measurements

To validate the effect of the optimization on
microstructural changes, X-ray diffraction
(XRD) measurements are carried out on se-
lected test specimens after the optimiza-
tion and post-processing steps. The mea-
surements are conducted using a Stresstech

XStress DR45 system equipped with a Cr-
Kα radiation source operated at 30 kV and
9 mA and using a 1mm collimator.
For each test specimen, three measure-

ment points are taken: one at the center
and two at positions ±2.5 mm from the
center. The retained austenite content at
each position is quantified and a weighted
average and weighted standard deviation of
these three measurements is calculated.

4. Results

The following section presents the results of
the two primary optimization experiments,
focusing on the performance of the BO loop,
the accuracy of the GP models, the repro-
ducibility of the outcomes and the valida-
tion of microstructural change.

4.1. Optimization Performance

Two experiments are conducted to evaluate
the optimization’s ability to manipulate the
EC angle.
The first experiment focuses on maximiz-

ing the EC phase angle to identify laser
treatment parameters that reduce retained
austenite content. The BO loop was ini-
tialized with LHS to provide diverse train-
ing data for the GP surrogate. An Upper
Confidence Bound acquisition function was
employed with an exploration-promoting
schedule: β was set to high values (be-
tween 4.0 and 6.0) in the early iterations
to encourage exploration of the parameter
space and was reduced progressively, reach-
ing β = 2.0 at iteration 30 and β = 0.5
at iteration 40 to promote exploitation of
promising regions.
The Convergence behaviour is shown in

Figure 5 by the best-so-far value of op-
timization, the evolution of the objective
value, the predicted mean of the GP model

11



10 0 10 20 30 40 50 60
Iteration

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

EC
 a

ng
le

 
 [r

ad
]

Initialization  = 4.0  = 6.0  = 5.0  = 2.0  = 0.5  = 0.1 JG
30

4

Best-so-far
Objective Value
Predicted Mean
Predicted Std. Dev.

Figure 5: Convergence behavior during the maximization of the EC angle.

and its predicted standard deviation. Dur-
ing the initial phase the objective values ex-
hibited large variability as the optimizer ex-
plores different regimes. After the sched-
uled reduction of β the search concentrates
on locally promising configurations and con-
vergence accelerated (also see Figure 5).
Over the full run, the highest EC angle ob-
served was 0.043 rad, corresponding to an
improvement of approximately 48% relative
to the EC angle range sampled during the
LHS initialization.
The model’s predicted mean values and

uncertainty, represented by the standard
deviation, are also shown in Figure 5. The
progressive reduction in predicted uncer-
tainty over iterations indicates increasing
model confidence in the explored parame-
ter regions. This behavior aligns with the
expected convergence of the BO process,
where the surrogate model becomes more
certain as it gathers more data in promis-
ing areas of the parameter space. However,

while the predicted mean values follow the
objective value closely in the first iterations,
some divergence is observed in later itera-
tions.
The second experiment aims to minimize

the EC angle to identify parameters that
promote significant microstructural change
and increase retained austenite content.
The convergence behavior is illustrated in
Figure 6, showing the best-so-far value of
the optimization and the evolution of the
objective value over iterations. The Upper
Confidence Bound (UCB) acquisition func-
tion again is initially configured with a high
exploration factor (β = 4.0) and progres-
sively reduced as the number of iterations
increases to favor exploitation.
During the optimization process, a high

variation in the objective values is observed
across all iterations, reflecting the explo-
ration of diverse parameter configurations.
Over the course of the experiment, the low-
est EC angle achieved was −0.03 rad, repre-
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Table 2: Optimized laser treatment parameters for
maximization and minimization of EC angle.

Parameter Maximization Minimization

P [W] 76.78 92.73
v [mm/s] 300.00 205.82
f [mm] 0.00 -4.45
h [mm] 0.200 0.010

senting an improvement of 167% compared
to the EC angle range sampled during the
LHS initialization phase.

However, the model’s uncertainty, as seen
in Figure 6, remains higher and does not
stabilize in the later iterations. This sug-
gests that the surrogate model struggles
to confidently predict outcomes in the ex-
plored parameter regions. The predicted
mean values follow the objective value
closely in the iterations where EC angles
above 0 rad are observed, but diverge sig-
nificantly in the lower EC angle regime.

The optimized laser treatment parame-
ters for maximizing and minimizing the EC
angle are summarized in Table 2. The
results reveal that the two objectives re-
quire clearly different parameter combina-
tions across laser power, scan speed, fo-
cus position, and hatch distance. For max-
imization, the optimization converges to-
wards conditions associated with a compar-
atively lower thermal input per unit area,
whereas the minimization solution shifts to-
ward settings that increase the local energy
density and intensify the thermal impact.

4.2. Model Accuracy

To evaluate the performance of the sur-
rogate models, predictions from the final
GPs are compared to the measured EC an-
gles across all evaluated parameter combi-

nations. In addition, a new GP model is re-
trained on all available data in order to eval-
uate if model performance can be further
improved. Table 3 summarizes the quan-
titative performance metrics for both the
maximization, minimization and retraining
surrogate models.

Table 3: Performance metrics for the maximization
model (GP Max), minimization model (GP Min)
and the model that has been retrained on all avail-
able data (GP Ret).

Model RMSE MAE R² C95%

GP Max 0.0063 0.0043 0.80 51.7%
GP Min 0.0140 0.0096 0.35 52.5%
GP Ret 0.0038 0.0024 0.95 82,5%

The deterministic metrics reveal a sub-
stantial difference in model quality between
the two experiments. The maximization
model achieves an R2 of 0.80 with an RMSE
of 0.0063 rad and MAE of 0.0043 rad, in-
dicating a strong correlation between pre-
dictions and observations. In contrast, the
minimization model exhibits an R2 of only
0.35 with an RMSE of 0.014 rad and MAE
of 0.0096 rad.

The probabilistic metrics reveal a sys-
tematic miscalibration of uncertainty esti-
mates in both models. The empirical cov-
erage probabilities fall significantly below
nominal levels: for the maximization model,
C95% = 51.7%, while for the minimization
model, C95% = 52.5%. These values indi-
cate that the predicted confidence intervals
are substantially narrower than the actual
data scatter.

To evaluate whether the GP model can
accurately fit the data, a retraining proce-
dure is conducted using a GP model with
new data preprocessing. In standard BO,
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Figure 6: Convergence behavior during the minimization of the EC angle.

normalization of the input space to the unit
cube [0, 1]D is commonly recommended to
ensure consistent scaling across dimensions
[32]. However, in our case, the distribution
of input parameters is highly uneven due to
the sampling behavior during optimization.
This leads to a situation where min–max
normalization becomes overly sensitive to
outliers: a single extreme value can com-
press the remaining inputs into a narrow
interval, reducing the effective variability
available to the GP and making model fit-
ting more challenging. To mitigate this
issue, the retraining employs standardiza-
tion, transforming each input dimension to
zero mean and unit variance. This ap-
proach is less affected by uneven sampling,
thereby preserving meaningful variations in
the data. As a result, we expect improved
model fit and a more reliable calibration of
predictive uncertainty.
Table 3 includes the performance metrics

for the retrained model. The R2 value im-

proves significantly to 0.95, while the RMSE
and MAE were reduce to approximately half
of the previous best model. Additionally,
the C95 value increases to 82.5%, indicat-
ing a more accurate calibration of the un-
certainty estimates in the retrained model.
Figure 7 illustrates the predicted versus ac-
tual values for all trained models. The re-
trained GP model demonstrates a notably
better fit to the data, whereas the ear-
lier models exhibit lower prediction accu-
racy, particularly the minimization model,
which had high prediction errors with low
actual values. However, the value of C95 =
95% and the deviations of the predictions
from the retrained GP model show that ei-
ther the model is not capable of fitting the
data perfectly or there are sources of vari-
ability in the measurement or the process-
microstructure relationship the model can-
not account for.
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Figure 7: Predicted vs. actual EC angle values for maximization, minimization and retrained GP models.

4.3. Reproducibility Test

To investigate potential sources of variabil-
ity in the process-structure relationship and
measurement system, a reproducibility test
was conducted. This involved experiments
on three separate build plates (Test 1-3) us-
ing identical process parameters, with the
eddy current measurement device restarted
after each build. Each build plate contained
two specimens for analysis.

The results of the reproducibility test are
summarized in Table 4. Across all tests, the
maximum variation in EC angle observed
was 0.0199 rad, while the maximum varia-
tion in retained austenite content was 4.4
percentage points. Within individual tests,
the maximum variation in EC angle was re-
duced to 0.0052 rad, and the maximum vari-
ation in retained austenite content was 1.2
percentage points. Notably, the variations
observed within individual tests were signif-
icantly lower than those observed across all
tests: approximately 50% less for retained
austenite content and about 75% less for EC
angle.

Table 4: Maximum differences within each group
for retained austenite content (RAC) and EC angle
φ.

Group RAC diff. [%-p.] φ diff. [rad]

Test 1 1.2 0.0052
Test 2 0.1 0.0047
Test 3 0.2 0.0039

Overall 4.4 0.0199

4.4. Validation of Microstructure Opti-
mization

To validate the effectiveness of the BO
aproach in manipulating microstructural
properties, X-ray diffraction (XRD) mea-
surements of retained austenite content
were performed on the specimens produced
during BO where the resulting EC angle was
highest and lowest. The primary focus was
to quantify the retained austenite content,
providing a direct link between maximiza-
tion and minimization of the EC phase an-
gle and actual microstructural changes.

Figure 8 presents the XRD results of
these specimens. The specimens are cate-
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Figure 8: Retained austenite content measured by XRD with corresponding EC angle for specimens produced
with BO-optimized parameters.

gorized into two groups based on their re-
spective optimization objectives. For each
specimen, three XRD measurements were
conducted at different positions. The re-
tained austenite content for each specimen
was determined by calculating the weighted
mean and standard deviation.

Based on the established relationship be-
tween the EC phase angle and microstruc-
tural composition, an inverse correlation
was expected: maximizing the EC angle
should correspond to a reduction in re-
tained austenite content, while minimizing
the EC angle should lead to an increase.
The experimental results confirm this hy-
pothesis. Specimens optimized for max-
imum EC angle exhibited a significantly
reduced mean retained austenite content,
with a minimum of 9.4% (standard devi-
ation 2.6%, specimen P373). Conversely,
specimens optimized for minimum EC an-
gle achieved a substantially higher retained
austenite content, reaching a maximum of
26.8% (standard deviation 5.5%, specimen
P470). These findings are in agreement

with the initial assumptions regarding the
relationship between the EC phase angle
and retained austenite content, thereby val-
idating the BO’s capability to effectively
control microstructural outcomes through
systematic parameter optimization.

5. Discussion

The BO approach successfully identified
process settings that yielded significant
changes in the observed EC phase an-
gle. Reference measurements confirmed
substantial variations in retained austenite
content.
However, certain issues regarding opti-

mization performance and model accuracy
warrant further investigation. Notably, the
fit of the maximization model was signifi-
cantly better than that of the minimization
model. The minimization model struggled
to accurately capture data points with neg-
ative EC angles, suggesting potential limi-
tations in the surrogate model’s ability to
represent the underlying process-structure
relationship in this regime. Additionally,
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both models were found to heavily under-
estimate predictive variance. Retraining a
new GP model on the dataset and employ-
ing improved data preprocessing using stan-
dardization revealed that a GP model can
accurately fit the data, though a small pre-
diction error still remained.
Considering the entire iterative frame-

work, these issues may arise from variabil-
ity in the process-microstructure relation-
ship, measurement uncertainty, or other un-
known sources.
To investigate variance in the process-

microstructure-relationship, reproducibility
tests with constant process parameters were
done. The tests revealed that retained
austenite content varies over multiple ex-
periments, while the variance was relatively
low within individual experiments. This in-
dicates that within one experiment, the be-
havior seems to be reproducible, but other
unknown external factors seem to influence
retained austenite content over multiple ex-
periments. Besides, it is possible that the
”process landscape” is smoother or more de-
terministic in some parts of the parameter
space than in others, which was not tested
in this work.
For investigating variance in the EC mea-

surements, the EC angle results for the
same reproducibility tests were compared.
The test revealed that despite nearly iden-
tical retained austenite content, EC an-
gle measurements deviated between runs.
However, within individual runs, deviation
was observed but it was relatively small.
This indicates calibration issues between
runs and some uncertainty of the measure-
ment equipment within runs.
In summary, both process-structure rela-

tionship and measurement uncertainty con-
tribute to overall variability. Given these
issues and the imperfect data preprocessing

procedure, it is explicable that the GP mod-
els underestimate predictive variance. The
current BO and GP setup appears inade-
quate, as the predictive variance of the GP
is too narrow to capture the inherent vari-
ability in the data.
For an improvement of the overall ap-

proach, three main directions can be iden-
tified: (1) enhancing the calibration proce-
dure of the EC measurements, (2) improv-
ing the preprocessing and uncertainty quan-
tification of the GP model used for BO, and
(3) investigating additional influencing fac-
tors that may affect retained austenite con-
tent:

• To enhance the calibration procedure
of the EC measurements, it is impor-
tant to account for the temperature of
the EC sensor, as literature indicates
that it plays a central role in measure-
ment accuracy. Systematic calibration
to known reference points between it-
erations could reduce overall measure-
ment uncertainty. Additionally, fac-
tors such as porosity and surface rough-
ness changes during remelting should
be considered by conducting system-
atic experiments with reference mea-
surements to identify and mitigate sys-
tematic errors.

• To improve the optimization perfor-
mance, the standardization instead of
normalization of the input data should
be employed for data preprocessing, as
the retrained GP model showed bet-
ter predictive accuracy. Furthermore,
the reproducibility tests revealed some
variance in the retained austenite con-
tent, and it is unclear whether this
variability is consistent across the en-
tire process landscape. For this rea-
son, it may be beneficial to investigate
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whether a heteroscedastic noise model
could improve the uncertainty quan-
tification of the GP during optimiza-
tion. A heteroscedastic noise model
explicitly accounts for input-dependent
noise levels [22] and could, in princi-
ple, provide more accurate predictive
variances, thereby potentially improv-
ing the guidance provided by the ac-
quisition function.

• To investigate additional influencing
factors affecting retained austenite con-
tent, the influence of temperature devi-
ations during processing should be ex-
plored, potentially through the use of
in-situ thermography to monitor and
quantify thermal effects on microstruc-
tural evolution. Furthermore, it would
be valuable to examine the potential
impact of sample position due to in-
cidence angle variations. Such data
could subsequently be integrated into
the BO approach.

Despite the imperfect results, the BO re-
mains a promising method for guiding ex-
perimental design, as it effectively prior-
itizes promising parameter regions. The
approach successfully identified new pa-
rameter sets that significantly influenced
microstructural changes by both increas-
ing and decreasing retained austenite con-
tent. The optimized parameters align well
with theoretical expectations and findings
from prior studies such as [11]. Specifi-
cally, for minimizing retained austenite con-
tent, the BO identified high scan speeds,
moderate laser power, and large hatch dis-
tances, which promote rapid cooling rates
conductive to martensite formation. Con-
versely, for maximizing retained austenite
content, the BO selected higher laser pow-
ers, lower scan speeds, and smaller hatch

distances, resulting in increased energy in-
put and reduced cooling rates, thereby lim-
iting martensite formation. Overall, the re-
sults underline that BO is a powerful tool
to steer microstructural outcomes in laser
treatment in metal additive manufacturing.

6. Conclusion

In the present study, a Gaussian Process
(GP) surrogate model was trained to estab-
lish a quantitative mapping between laser
treatment parameters and the resulting mi-
crostructure. Bayesian optimization (BO)
was employed to efficiently train the GP
model of this process-microstructure rela-
tionship by iteratively selecting laser pa-
rameters to maximize or minimize the EC
phase angle, which serves as an indirect
metric for microstructural changes. The
main findings include:

• The approach successfully identified
laser treatment parameters that signif-
icantly altered the EC phase angle.

• Validation using XRD measurements
confirmed that a maximum retained
austenite content of 26.8% and a min-
imum of 9.4% were achieved, demon-
strating the ability of BO to steer
microstructure through systematic ad-
justment of process parameters guided
by EC measurement feedback.

• The trained GP model exhibited high
predictive accuracy for maximization of
the EC phase angle (R2 = 0.80), while
lower accuracy was observed for min-
imization (R2 = 0.35). Both models
systematically underestimated predic-
tive uncertainty.

• Retraining a GP model on the avail-
able data using input-standardization
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instead of normalization exhibited high
predictive accuracy (R2 = 0.95) in
both the maximization and minimiza-
tion regime.

• Reproducibility tests revealed vari-
ance in process-microstructure rela-
tionship and measurement uncertainty
that should be examined further.

Future work will focus on improving
model performance through enhanced GP
uncertainty quantification, refined EC mea-
surement calibration, and investigation of
additional influencing factors. Based on the
established process-microstructure model,
a closed-loop control framework for laser
treatment in PBF-LB/M can be developed.
The final objective is to influence residual
stresses during PBF-LB/M manufacturing
through localized microstructural modifica-
tion via laser treatment, thereby enabling
targeted control of the associated residual
stress state.
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lund, Influence of Scanning Strategy on Resid-
ual Stresses in Laser-Based Powder Bed Fusion

19



Manufactured Alloy 718: Modeling and Ex-
periments, Materials 17 (2024) 6265. doi:10.
3390/ma17246265.

[7] A. Bernard, J.-P. Kruth, J. Cao, G. Lanza,
S. Bruschi, M. Merklein, T. Vaneker,
M. Schmidt, J. W. Sutherland, A. Donmez,
E. J. Da Silva, Vision on metal additive man-
ufacturing: Developments, challenges and fu-
ture trends, CIRP Journal of Manufactur-
ing Science and Technology 47 (2023) 18–58.
doi:10.1016/j.cirpj.2023.08.005.

[8] S. Searle, M. Vanini, L. Vanmunster,
B. Vrancken, Parameter prediction and laser
alignment for synergistic Multi-Laser Powder
Bed Fusion, Procedia CIRP 124 (2024) 82–88.
doi:10.1016/j.procir.2024.08.076.

[9] V. Kostov, J. Gibmeier, A. Wanner, Local
Residual Stress Distributions Induced by Re-
peated Austenite-Martensite Transformation
via Laser Surface Hardening of Steel AISI
4140, Materials Science Forum 681 (2011)
321–326. doi:10.4028/www.scientific.net/
MSF.681.321.

[10] G. Telasang, J. Dutta Majumdar, G. Padman-
abham, I. Manna, Structure–property correla-
tion in laser surface treated AISI H13 tool steel
for improved mechanical properties, Materials
Science and Engineering: A 599 (2014) 255–
267. doi:10.1016/j.msea.2014.01.083.

[11] J. Preußner, S. Oeser, W. Pfeiffer, A. Temm-
ler, E. Willenborg, Microstructure and resid-
ual stresses of laser remelted surfaces of a hot
work tool steel, International Journal of Ma-
terials Research 105 (2014) 328–336. doi:10.
3139/146.111027.

[12] M. Rezayat, H. Besharatloo, A. Mateo, Inves-
tigating the Effect of Nanosecond Laser Sur-
face Texturing on Microstructure and Mechan-
ical Properties of AISI 301LN, Metals 13
(2023) 2021. doi:10.3390/met13122021.

[13] L. Hackel, J. R. Rankin, A. Rubenchik, W. E.
King, M. Matthews, Laser peening: A tool for
additive manufacturing post-processing, Ad-
ditive Manufacturing 24 (2018) 67–75. doi:10.
1016/j.addma.2018.09.013.

[14] M. Morgano, N. Kalentics, C. Carminati,
J. Capek, M. Makowska, R. Woracek,
T. Maimaitiyili, T. Shinohara, R. Loge,
M. Strobl, Investigation of the effect of Laser
Shock Peening in Additively Manufactured
samples through Bragg Edge Neutron Imag-

ing, Additive Manufacturing 34 (2020) 101201.
doi:10.1016/j.addma.2020.101201.

[15] J. O’Brien, S. Montgomery, A. Yaghi, S. Afa-
zov, Process chain simulation of laser powder
bed fusion including heat treatment and sur-
face hardening, CIRP Journal of Manufactur-
ing Science and Technology 32 (2021) 266–276.
doi:10.1016/j.cirpj.2021.01.006.

[16] J. Groenewold, J. Hammes, F. Stamer,
G. Lanza, Influencing Residual Stress in
PBF-LB/M Processes through In-Process Mi-
crostructure Assessment and Selective Laser
Heat Treatment, in: J. J. Beaman, D. Kovar,
M. Cullinan, Z. Sha, R. Crawford, M. Tilton
(Eds.), Proceedings of the 35th annual in-
ternational SOLID FREEFORM FABRICA-
TION SYMPOSIUM 2024, Austin, Texas,
USA, 2024, pp. 1027–1035. doi:10.26153/
tsw/58156.
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