KIT | KIT-Bibliothek | Impressum | Datenschutz

Dirac-cone induced metallic conductivity in Cu$_3$(HHTP)$_2$ : high-quality MOF thin films fabricated via ML-driven robotic synthesis

Scheiger, Chatrawee 1; Pöhls, Jonas F.; Mostaghimi, Mersad 2; Pilz, Lena 1; Kozlowska, Mariana ORCID iD icon 2; Liu, Yidong 1; Heinke, Lars 1; Bufon, Carlos Cesar Bof; Weitz, R. Thomas; Wenzel, Wolfgang 2; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Metal–organic frameworks have garnered interest for over 25 years in energy and electronics, yet their adoption in devices has been hindered by low electrical conductivity, largely attributed to activated transport. Our study demonstrates a significant shift, revealing metallic conductivity in Cu$_3$(HHTP)$_2$ thin films—240 S m$^{−1}$ at room temperature and 300 S m$^{−1}$ at 100 K, a departure from its presumed semiconductive nature. Achieved through robotic, AI-based layer-by-layer assembly in a self-driving laboratory, this method produces SURMOFs with minimal defects, optimized via rapid surrogate characterization techniques. Our research, supported by both electronic structure calculations and experimental verification, identifies a persistent Dirac cone in the hexagonal D$_{6h}$ symmetry of 2D sheets as crucial for the observed metallic behavior. Notably, even with ABAB stacking in the bulk, this Dirac cone feature maintains metallic conductivity, enhancing at lower temperatures. This breakthrough not only clarifies the conduction mechanism in Cu$_3$(HHTP)$_2$ but also highlights the SDL's potential in developing high-quality MOF thin films for future applications. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189042
Veröffentlicht am 18.12.2025
Originalveröffentlichung
DOI: 10.1039/d5mh00813a
Scopus
Zitationen: 4
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 11.08.2025
Sprache Englisch
Identifikator ISSN: 2051-6347, 2051-6355
KITopen-ID: 1000189042
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Materials Horizons
Verlag Royal Society of Chemistry (RSC)
Band 12
Heft 16
Seiten 6189–6194
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page