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Abstract
Stein operators allow one to characterize probability
distributions via differential operators. Based on these
characterizations, we develop a new method of point
estimation for marginal parameters of strictly station-
ary and ergodic processes, which we call Stein’s Method
of Moments (SMOM). These SMOM estimators satisfy
the desirable classical properties such as consistency and
asymptotic normality. As a consequence of the usually
simple form of the operator, we obtain explicit estima-
tors in cases where standard methods such as (pseudo-)
maximum likelihood estimation require a numerical
procedure to calculate the estimate. In addition, with
our approach, one can choose from a large class of test
functions, which typically allows for improvements over
the moment estimator. Moreover, for i.i.d. observations,
we retrieve data-dependent functions that result in
asymptotically efficient estimators and give a sequence
of explicit SMOM estimators that converge to the
maximum likelihood estimator. Our simulation study
demonstrates that for a number of important univariate
continuous probability distributions, our SMOM estima-
tors possess competitive small sample behavior, in com-
parison to the maximum likelihood estimator and other
widely-used methods in terms of bias and mean squared
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error. We also illustrate the pertinence of our approach
on a real data set related to rainfall modelization.

K E Y W O R D S

Stein’s method, point estimation, univariate distribution, method of
moments

1 INTRODUCTION

Point estimation in a parametric model is one of the most classical problems in statistics. In
the case of independent and identically distributed (i.i.d.) data, maximum likelihood estimation
(MLE) can count itself among the most sought-after, which is mostly due to its simple idea and
asymptotic efficiency for regular target distributions. On the other hand, several difficulties can
occur, including highly complex probability density functions (PDFs), failure of numerical pro-
cedures due to local extrema of the likelihood function or to censoring, and the complexity of
extending the method to the non-i.i.d. case. Additionally, the efficient asymptotic behavior of the
MLE does not necessarily guarantee a high performance for smaller sample sizes.

The method of moments provides a simple alternative to the MLE but requires that the
moments of the target distribution can be calculated analytically. This is often the case for basic
univariate probability distributions, resulting in an explicit estimator that can serve as an initial
guess for the numerical procedure to calculate the MLE. However, if the moments are of a com-
plicated form, the moment estimator itself can only be computed through a numerical algorithm
and loses its simplicity. Moreover, it is well-known that moment estimation is in general, out-
played by the MLE regarding the asymptotic behavior in the i.i.d. case. The generalized method of
moments was introduced in Hansen (1982) and is applicable for stationary and ergodic time series
and does not require an i.i.d. setting. The generalized method of moments incorporates a wide
class of estimation techniques, such as MLE and the classical method of moments. A difficulty
that comes along with the method is the problem of finding a suitable target function. Moreover,
estimation can get numerically tedious if the target function is complicated, and necessitates a
first-step estimator if one wishes to minimise the asymptotic variance.

A vast number of alternative estimation techniques have been developed over the years.
Amongst others, different kinds of minimum-distance approaches have been considered that
compare characterizing functions of the target distributions, such as the Fourier or Laplace
transform, to empirical approximations. We refer to (Adler et al., 1998, Chapter 3) (𝛼-stable dis-
tributions), Koutrouvelis (1982) (Cauchy distribution), Meintanis (2016) (mixtures of normal
distributions), Weber et al. (2006) (Gompertz and Power exponential distribution among others),
to name just a few references.

However, the methods mentioned above can run into numerical hardships as soon as the char-
acterizing object used for estimation becomes complicated. In this context, several approaches
have been developed based on Stein’s characterizations of probability distributions, which lie at
the heart of the powerful probabilistic technique Stein’s method (Stein (1972)). Through Stein
characterizations it is possible to eliminate the normalizing constant; for example, Stein charac-
terizations based on the density approach to Stein’s method (Ley et al., 2017; Ley and Swan, 2013)
involve the ratio p′∕p, where p is the density of the target distribution.
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Betsch et al. (2021) developed a new class of minimum-distance-type estimators based on
Stein characterizations, in which new representations of the cumulative distribution function
(CDF), which do not involve the normalizing constant, are obtained in terms of an expectation
and compare the respective sample mean to the empirical CDF (see also Betsch and Ebner (2021)).
Recently, Barp et al. (2019) (see Oates (2024) for a more recent reference) introduced a new
class of estimators obtained through minimizing a Stein discrepancy, whereupon their method
incorporates the score matching approach, a further technique to estimate the parameters of
non-normalized model based on the score function (see Hyvärinen and Dayan (2005)). However,
through these approaches, explicit estimators are only obtained in simple models, and estimation
becomes computationally challenging as soon as a numerical procedure is required.

This is where we want to tie in. In this paper, we study a new class of point estimators, which
we refer to as Stein’s Method of Moments (SMOM) estimators, that are obtained through a Stein
characterization based on the density approach by applying the corresponding Stein operator to
selected test functions and solving the resulting empirical version of the Stein identity for the
unknown parameter. This combines the benefits of independence from a possibly complicated
normalizing constant and the simplicity of the estimator. A similar idea was already proposed in
Arnold et al. (2001), in which the authors considered a generalized version of Hudson’s identity to
develop parameter estimators for exponential families. In a similar spirit, Wang and Weiß (2023)
obtained a Stein-type characterization for the Lindley distribution and derived new estimators
based on this characterization, whilst Nik and Weiß (2024) have also used this approach to obtain
new parameter estimators for the exponential, inverse Gaussian and negative binomial distri-
butions. However, our work can be seen as an extension in which we consider a larger class of
probability distributions and Stein operators. We also develop an asymptotic theory for our Stein
estimators, addressing measurability, existence, (strong) consistency, and asymptotic normality
for marginal parameters of strictly stationary and ergodic processes, without even the need for
an i.i.d. assumption. We make a further contribution by addressing the problem of how to choose
“optimal” test functions that result in asymptotically efficient estimators, and we are able to obtain
sequences of explicit Stein estimators that converge to the MLE.

Stein’s method of moments is a rather universal approach to parameter estimation. Stein’s
density approach yields tractable Stein characterizations for many of the most important uni-
variate distributions, and, with a suitable Stein characterization at hand, one can readily deduce
estimators with the following desirable features: (i) simple, explicit moment estimators, which
through suitable choices of test functions, typically offer improvements on the usual moment
estimators in terms of efficiency or mean squared error (MSE); or (ii) asymptotically efficient
estimators that remain fully explicit. As illustrated in the simulations presented in Section 3 and
the Supporting Information, we observe that SMOM estimators often possess good small-sample
behavior. Moreover, as discussed in Section 4, SMOM has recently been extended to multivari-
ate continuous probability distributions (see Fischer et al. (2024, 2025)), and the performance of
the estimators in this setting remains competitive, which demonstrates the versatility of SMOM
for challenging estimation problems beyond the univariate setting of this article. We hope that
this paper will inspire further research into this method, and hope to see it further extended to a
discrete and multivariate setting beyond the recent work Fischer et al. (2024, 2025).

The rest of this paper is organized as follows. In Section 2.1, we provide the basic results con-
cerning the density approach in the framework of Stein’s method, which is used for the purpose
of characterizing the target distribution. In Section 2.2, we present the notation, terminology,
and setting that are employed in this paper. In Section 2.3, we introduce our new class of SMOM
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EBNER et al. 1597

estimators and deal with questions of existence, measurability, consistency, and asymptotic nor-
mality. In Section 2.4, we investigate the problem of how to choose the best possible estimator in
the SMOM estimators in terms of asymptotic variance and develop a new type of two-step esti-
mators that reach asymptotic efficiency. Moreover, we recover the MLE through an iteratively
defined sequence of the aforementioned estimators. In Section 3, we provide applications of our
new estimators to parameter estimation problems concerning the truncated normal, Cauchy, and
exponential polynomial models, as well as the Nakagami distribution, in which our estimators
are applied to a real data set related to rainfall modelization. We compare the new estimators to
other available approaches by means of competitive simulation studies.

In the Section A of the Supporting Information, we provide further details for Example 2.5 that
concerns SMOM for the gamma distribution, whilst in Section B we provide further details for the
truncated normal, Cauchy, and exponential polynomial model applications of Section 3. Section C
contains additional examples for the beta, Student’s t, Lomax, Nakagami, one-sided truncated
inverse-gamma distribution, and generalized logistic distributions, and an example for non-i.i.d.
random variables with marginal Cauchy density. Finally, the proofs are given in Section D.

2 STEIN’S METHOD OF MOMENTS

2.1 Elements of Stein’s method

We begin with a short introduction to the version of Stein’s method employed in this paper.
Let P𝜃 be a probability distribution on (a, b) ⊂ R with corresponding differentiable PDF p𝜃(x)

that depends on a parameter 𝜃 ∈ Θ ⊂ Rp, where we assume that P𝜃1 = P𝜃2 implies 𝜃1 = 𝜃2 for
𝜃1, 𝜃2 ∈ Θ. Throughout the paper, we assume that Θ is open and convex as well as that −∞ ≤
a < b ≤∞ and p𝜃(x) > 0 for all 𝜃 ∈ Θ and x ∈ (a, b). Let X be a real-valued random variable with
values in (a, b),ℱ𝜃 a class of functions f ∶ (a, b) → R, and𝜃 an operator defined onℱ𝜃 . We call
(𝜃,ℱ𝜃) a Stein pair for P𝜃 if the following is satisfied:

E[𝜃f (X)] = 0 for all f ∈ ℱ𝜃 if and only if X ∼ P𝜃; (1)

operator𝜃 is called a Stein operator for P𝜃 , andℱ𝜃 is the associated Stein class. There exist many
ways to obtain Stein pairs for any given distribution, see, for example, Anastasiou et al. (2023)
and Ley and Swan (2013). In this paper, we consider those obtained via the density approach
as developed in Ley et al. (2017) and Ley and Swan (2013). First-order density approach, Stein
operators are of the form

𝜃f (x) =
(𝜏𝜃(x)p𝜃(x)f (x))′

p𝜃(x)
, (2)

where 𝜏𝜃 is some differentiable function 𝜏𝜃 ∶ (a, b) → R; they act on the function class

ℱ𝜃 ∶=

{
f ∶ (a, b) → R | f is differentiable and

∫

b

a
(f (x)𝜏𝜃(x)p𝜃(x))′ dx = 0

}
. (3)

The next theorem states that (𝜃,ℱ𝜃) is a Stein pair for P𝜃 . In the Supporting Information, we
give a proof that goes along the lines of (Ley & Swan, 2013, Theorem 2.2).
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1598 EBNER et al.

Theorem 2.1. Let 𝜃 be the Stein operator defined in Equation (2) and ℱ𝜃 the corre-
sponding class of functions introduced in Equation (3). Moreover, assume that 𝜏𝜃(x) ≠ 0
almost everywhere on (a, b) and let X be a random variable with values in (a, b). Then
the Stein characterization (1) holds.

It is often convenient to use in Equation (2) the so-called Stein kernel 𝜏𝜃(x) =
(1∕p𝜃(x))∫

b
x (E[X] − y)p𝜃(y) dy, x ∈ (a, b), whose corresponding density approach Stein operator is

𝜃f (x) = 𝜏𝜃(x)f ′(x) + (E[X] − x)f (x). (4)

This last operator takes a simple form in many cases. For instance 𝜏𝜃 is polynomial for members
of the Pearson family (see (Stein, 1986, Theorem 1, p. 65) and (Gaunt et al., 2019, Lemma 2.9)). We
refer to (Ernst et al., 2020; Saumard, 2019) for an overview of Stein kernels and their properties.
Other choices of functions 𝜏𝜃 in Equation (2) are also sometimes better suited. We close this intro-
ductory section on Stein’s method with two simple examples of how the density approach can be
used to find suitable Stein operators, these being for the Gaussian and gamma distributions. In
Sections 2.3 and 2.4, we will use the Gaussian and gamma distributions as running examples that
demonstrate the application of Stein’s method of moments in an uncomplicated manner; more
involved applications are given in Section 3.

Example 2.1 (Gaussian distribution). Consider the Gaussian distribu-
tion N(𝜇, 𝜎2) with parameter 𝜃 = (𝜇, 𝜎2), 𝜇 ∈ R, 𝜎

2
> 0 and density p𝜃(x) =

1∕
√

2𝜋𝜎2 exp(−(x − 𝜇)2∕(2𝜎2)), x ∈ R. A simple calculation gives that the Stein ker-
nel is 𝜏𝜃(x) = 𝜎2. We have E[X] = 𝜇 and retrieve from Equation (4) the well-known
Stein operator of Stein (1972),

𝜃f (x) = 𝜎2f ′(x) + (𝜇 − x)f (x). (5)

Example 2.2 (Gamma distribution). Consider the gamma distribution Γ(𝛼, 𝛽) with
parameter 𝜃 = (𝛼, 𝛽), 𝛼, 𝛽 > 0, and density p𝜃(x) = 𝛽𝛼x𝛼−1e−𝛽x∕Γ(𝛼), x > 0. The Stein
kernel is 𝜏𝜃(x) = x. Since E[X] = 𝛼∕𝛽, we recover the gamma Stein operator of Diaco-
nis and Zabell (1991),

𝜃f (x) = xf ′(x) + (𝛼 − 𝛽x)f (x). (6)

2.2 Notation and setting

Let {Xn,n ∈ Z} be a real-valued strictly stationary and ergodic discrete-time process defined
on a common probability space (Ω, ,P). To clarify this terminology, we elaborate on what
we mean by strict stationarity and ergodicity. We say that {Xn,n ∈ Z} is strictly stationary if
{Xn,n ∈ Z} =D {Xn+k,n ∈ Z} for each k ∈ Z. Moreover, let 𝜁 ∶ Ω→ Ω be measurable such that
Xn+1(𝜔) = Xn(𝜁(𝜔)) for each 𝜔 ∈ Ω and n ∈ N. Then we say that {Xn,n ∈ Z} is ergodic if 𝜁
is measure-preserving (P(𝜁−1(A)) = P(A) for all A ∈ ) and the 𝜎-algebra of invariant events
 = {A ∈  | 𝜁−1(A) = 𝜁(A)} is P-trivial, that is, P(A) ∈ {0, 1} for all A ∈ . We assume that the
marginal distribution of each Xn, n ∈ Z, is P𝜃0 for some 𝜃0 ∈ Θ. Now suppose that the measures
P𝜃 are characterized through Stein pairs (𝜃,ℱ𝜃) and let ℱ = ∩𝜃∈Θℱ𝜃 .

In this paper, we will also employ the following notation. For a real-valued function (𝜃, x) →
g𝜃(x), where 𝜃 ∈ Rp and x ∈ R, we write 𝜕

𝜕𝜃

g𝜃(x) for its gradient with respect to 𝜃 = (𝜃1,…, 𝜃p)⊤,
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EBNER et al. 1599

which is a column vector of size p. If the function g𝜃(x) takes values in Rq with q ≥ 2, 𝜕

𝜕𝜃

g𝜃(x) is its
Jacobian with respect to 𝜃, which is a (q × p)-matrix. By 𝜕

𝜕𝜃i
g𝜃(x) we mean the partial derivative

with respect to 𝜃i. If we want to address the derivative with respect to the argument in the paren-
theses (with respect to x in g𝜃(x)) we simply write g′

𝜃
(x) which remains real-valued or a column

vector of size q. For a vector x = (x1,…, xn)⊤ ∈ Rn, we denote by ||x|| = (x2
1 + · · · + x2

n)1∕2 the stan-
dard Euclidean norm. For a (possibly non-square) matrix M ∈ Rp×q, we let ||M|| be the spectral
norm, which is defined as the square-root of the largest eigenvalue of X⊤X . We also introduce
the vectorization map that stacks the columns of a matrix M = (mi,j, 1 ≤ i ≤ p, 1 ≤ j ≤ q) ∈ Rp×q,
given by vec ∶ Rp×q → Rpq ∶ M → (m1,1,…,mp,1,m1,2,…,mp,2,…,…,mp,q)⊤. Finally, we will write
a.s.
−→ for convergence almost surely,

P

−→ for convergence in probability, and
D
−→ for convergence in

distribution.

2.3 Stein’s method of moments: Definition and properties

For the purpose of estimating the unknown parameter 𝜃0 from a sample X1,…,Xn drawn from a
real-valued strictly stationary and ergodic discrete-time process {Xn,n ∈ Z}, we choose p mea-
surable test functions f1,…, fp (belonging to ℱ ) and, in light of (1), replace the expectations with
their empirical counterparts. Therefore, we get the following system of equations:

1
n

n∑
i=1
𝜃f (Xi) = 0, (7)

where we write 𝜃f ∶ Θ × (a, b) → Rp for the function defined by (𝜃, x) → 𝜃f (x) ∶=
(𝜃f1(x),…,𝜃fp(x))⊤.

In the following, we will refer to (7) as the empirical Stein identity. Moreover, we will call any
solution to this system of equations with respect to 𝜃 a Stein estimator, which we denote by 𝜃̂n.

With this definition at hand, one observes that Stein estimators can be seen as moment estima-
tors (resp. generalized moment estimators as proposed in Hansen (1982)), whereupon we suggest
suitable target functions through Stein’s method.

Remark 2.1. We give a few more details on the related approaches of score matching
and minimum Stein discrepancy:

(1) Score matching: The score matching estimator (Hyvärinen, 2007; Hyvärinen
and Dayan, 2005) aims to minimise the Fisher-Hyvärinen distance between the
log-densities of the observed data and the model, and is defined through

argmin
𝜃∈Θ

1
n

n∑
i=1

𝜕
2

𝜕x2 log p𝜃(x)
|||x=Xi

+ 1
2

(
𝜕

𝜕x
log p𝜃(x)

|||x=Xi

)2

.

Therefore, score matching can be seen as a minimum distance estimation
technique and is also independent of the normalizing constant. If 𝜃 is the nat-
ural parameter of an exponential family and under some additional technical
assumptions, the score matching estimator can be recovered with our approach
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1600 EBNER et al.

by the test function choice f (x) = 𝜕
2

𝜕x𝜕𝜃
log p𝜃(x). Meanwhile, the score match-

ing method has been generalized to more complicated settings (see, e.g., (Liu
et al., 2022; Lyu, 2009; Yu et al., 2022) and the references therein). We compare
the Stein estimator to the score matching estimator in Section 3.3 for exponential
polynomial models.

(2) Minimum Stein discrepancy: The Minimum Stein discrepancy estimator (Barp
et al., 2019; Oates, 2024) is based on the distance

sup
f∈ℱ

|E[𝜃f (X)]|2,
where𝜃 is a density approach Stein operator for P𝜃 and X ∼ Q, where Q is the
true distribution of the data. Therefore, minimum Stein discrepancy estimators
are independent of the normalizing constant and are also minimum distance
estimators. For particular choices of ℱ one can compute the supremum above
in terms of an integral with respect to Q which is then estimated by means of
the empirical distribution of X1,…,Xn. In Barp et al. (2019) the authors consider,
for example, reproducing kernel Hilbert spaces for ℱ . The score matching esti-
mator can be recovered by choosing the appropriate density Stein operator and
function class. We compute a minimum Stein discrepancy estimator based on a
reproducing kernel Hilbert space for the gamma distribution in Section A.2.

The necessary conditions on the test functions f1,…, fp, the Stein operator 𝜃 and the tar-
get distribution P𝜃 to achieve existence, measurability and asymptotic normality of the Stein
estimator 𝜃̂n will be introduced below. Subsequently, we will impose the following assumptions.

Assumption 2.1.

(a) Let X ∼ P𝜃0 and 𝜃 ∈ Θ. Then f = (f1,…, fp) ∈ ℱ is such that E[𝜃f (X)] = 0 if and only if
𝜃 = 𝜃0.

(b) Let q ≥ p and X ∼ P𝜃0 . We can write𝜃f (x) = M(x)g(𝜃) for some measurable p × q matrix
M with E[||M(X)||] < ∞ and a continuously differentiable function
g = (g1,…, gq)⊤ ∶ Θ → Rq for all 𝜃 ∈ Θ, x ∈ (a, b). We also assume that E[M(X)] 𝜕

𝜕𝜃

g(𝜃)|𝜃=𝜃0

is invertible.

Assumption 2.1 (a) ensures that the true parameter 𝜃0 can be well identified by means of the
Stein operator 𝜃; this assumption can be easily verified (for a proper choice of test functions)
for operators of the form (2) with Theorem 2.1. Assumption 2.1 (b) requires that the parameters
can be well separated from the sample. Moreover, if the function g is fairly simple, we are likely to
obtain explicit estimators; this turns out to be the case for all examples considered in this paper.

Theorem 2.2. Suppose Assumption 2.1 (a), (b) is satisfied. The probability that a solu-
tion to (7), 𝜃̂n, exists and is measurable converges to 1 as n →∞. Furthermore, 𝜃̂n is
strongly consistent in the following sense: There is a set A ⊂ Ωwith P(A) = 1 such that for
all 𝜔 ∈ A there exists N = N(𝜔) ∈ N such that 𝜃̂n exists for all n ≥ N and 𝜃̂n(𝜔)→ 𝜃0.

As we will see in Section 3 and the further examples in the Supporting Information, the new
estimators will mostly be solutions to systems of linear equations which exist and are measurable
with probability 1 for any sample size if Θ = Rp. Nonetheless, it can happen that an estimator
returns a value which lies outside of the truncation domain if the parameter space is a strict subset
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EBNER et al. 1601

of Rp. These issues will be addressed separately for each example in Section 3 and the further
examples in the Supporting Information.

Asymptotic normality can be obtained similarly to the classical moment estimators. We state
the result in the next theorem. We slightly change the meaning of 𝜃̂n as we need our estimator to
be a random variable to establish weak convergence. To this end, let X ∼ P𝜃0 . Define the function
F(M, 𝜃) = Mg(𝜃), where M ∈ Rp×q and g is as in Assumption 2.1 (b). In the proof of Theorem 2.2,
we see that there are neighborhoods U ⊂ Rp×q, V ⊂ Rp of E[M(X)] and 𝜃0 such that there exists
a continuously differentiable function h ∶ U → V with F(M, h(M)) = 0 for all M ∈ U. We now
define An =

{
n−1∑n

i=1M(Xi) ∈ U
}

, and note that it is shown in the proof of Theorem 2.2 that
P(An)→ 1 as n → ∞. We now extend h to a differentiable function ̃h on Rp×q and define 𝜃̂n =
̃h
(

n−1∑n
i=1M(Xi)

)
(note that such an extension always exists by choosing U small enough). We

will also need some further assumptions, which can be efficiently stated by recalling a version of
a central limit theorem for strictly stationary and ergodic time series stated in Hannan (1973) and
originally proved in Gordin (1969) (see also Hansen (1982)).

Theorem 2.3. Let {Yn,n ∈ Z} be vector-valued, strictly stationary and
ergodic. Moreover, suppose that E[Y1] = 0 and E[||Y1Y⊤

1 ||] < ∞ as well as
E[E[Y0 | Y−j,…]E[Y0 | Y−j,…]⊤] → 0, j → ∞. Furthermore, for Y ′

j = E[Y0 | Y−j,…] −

E[Y0 | Y−j−1,…], j ≥ 0, we suppose that
∑∞

j=0E[(Y ′
j )
⊤Y ′

j ]
1∕2

< ∞. Then n−1∕2∑n
i=1Yi

D
−→

N(0,Ξ), where Ξ =
∑

i∈Z
E[Y0Y⊤

i ].

We can now state our asymptotic normality result.

Theorem 2.4. Let X ∼ P𝜃0 . Suppose Assumption 2.1 (a), (b) is fulfilled. Moreover,
assume that the matrix E[vec(M(X))vec(M(X))⊤] exists and that the time series
{Yn,n ∈ Z}, where Yn = vec(M(Xn)) − E[vec(M(X))], n ∈ Z, satisfies the assumptions
of Theorem 2.3. Now let

Ψ =
∑
j∈Z

E
[
𝜃0 f (X0)𝜃0 f (Xj)⊤

]
and G = E

[
𝜕

𝜕𝜃

𝜃f (X)|||𝜃=𝜃0

]
,

and let 𝜃̂n be defined as in the preceding paragraph. Then the sequence
√

n(𝜃̂n − 𝜃0) is
asymptotically normal with mean zero and covariance matrix G−1ΨG−⊤.

Remark 2.2. Note that in the case where {Xn,n ∈ Z} is i.i.d., the assumptions of
Theorem 2.3 are easily verified and the matrix Ψ appearing in the asymptotic covari-
ance simplifies to

Ψ = E
[
𝜃0 f (X)𝜃0 f (X)⊤

]
, X ∼ P𝜃0 .

Let us consider two simple examples to demonstrate our estimation method and its flexibility.
For that purpose, we write f (X) = n−1∑n

i=1f (Xi) for a measurable function f ∶ (a, b) → R.

Example 2.3 (Gaussian distribution, continuation of Example 2.1). Since we have
two unknown parameters, we choose two test functions f1, f2, and therefore from
Equation (5) get {

f1(X)𝜇 + f ′1(X)𝜎
2 = Xf1(X)

f2(X)𝜇 + f ′2(X)𝜎
2 = Xf2(X).
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1602 EBNER et al.

By solving this system of linear equations for 𝜇 and 𝜎2 we obtain the Stein estimators

𝜇̂n =
f ′2(X) Xf1(X) − f ′1(X) Xf2(X)

f1(X) f ′2(X) − f ′1(X) f2(X)
, 𝜎̂

2
n =

f1(X) Xf2(X) − f2(X) Xf1(X)

f1(X) f ′2(X) − f ′1(X) f2(X)
. (8)

Taking f1(x) = 1, f2(x) = x yields the MLE or moment estimators 𝜇̂n = X and 𝜎̂
2
n =

X2 − X
2
.

Here, we have vec(M(x)) =
(

f ′1(x) f ′2(x) f1(x) f2(x) xf1(x) xf2(x)
)
⊤. Let

{Zn, n ∈ Z} be the Gaussian AR(1) process, that is, Zn = 𝜌Zn−1 + 𝜖n, where |𝜌| < 1
and 𝜖n, n ∈ N, are i.i.d. centered Gaussian with variance 𝜎

2
𝜖
. We therefore have

that (Zn,…,Zn+k) are multivariate Gaussian for every k ∈ N with zero mean and
Cov(Zn1 ,Zn2 ) = 𝜌

|n1−n2|𝜎2
𝜖
∕(1 − 𝜌2). Let then Xn = Zn + 𝜇 for n ∈ Z and 𝜇0 ∈ R. In

this setting, we wish to estimate the two marginal parameters 𝜇0 and 𝜎2
0 = 𝜎

2
𝜖
∕(1 − 𝜌2)

from a sample X1,…,Xn. For all test functions f1, f2 that satisfy the assumptions of
Theorem 2.4, we have that the matrices for the asymptotic variance of the estimators
in Equation (8) are given by

Ψk,l =
∑
j∈Z

E
[(
𝜎

2
0 f ′k(X0) + (𝜇0 − X0)fk(X0)

)(
𝜎

2
0 f ′l (Xj) + (𝜇0 − Xj)fl(Xj)

)]
, k, l = 1, 2,

G =

(
E[f1(X0)] E[f ′1(X0)]
E[f2(X0)] E[f ′2(X0)]

)
.

For the test functions f1(x) = 1 and f2(x) = x we get vec(M(x)) =
(
0 1 1 x x x2)⊤

and moreover

E[X0 − E[X0] | X−j] = 𝜌j(X−j − 𝜇0)

and

E[X2
0 − E[X2

0 ] | X−j] = 𝜌2j(X−j − 𝜇0) + 𝜎2
𝜖

( j∑
i=0
𝜌

2i − 1
1 − 𝜌2

)
+ 2𝜇0𝜌

j(X−j − 𝜇).

We also give the formula

E[X2
0 − E[X2

0 ] | X−j] − E[X2
0 − E[X2

0 ] | X−j−1]
= (X−j−1 − 𝜇0)(1 − 𝜌)𝜌2j+1 + 𝜖−j(𝜌2j + 2𝜇0𝜌

j) − 𝜎2
𝜖
𝜌

2(j+1)

and conclude that all assumptions from Theorem 2.4 are satisfied. Then we have
asymptotic normality of the estimators 𝜇̂n and 𝜎̂2

n with

Ψ1,1 =
𝜎

2
0

1 − 𝜌
, Ψ1,2 = Ψ2,1 =

𝜇0𝜎
2
0

1 − 𝜌
, Ψ2,2 =

(2 + 𝜇2
0)𝜎

2
0

1 − 𝜌
, G =

(
1 0
𝜇0 1

)
,
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EBNER et al. 1603

from which we obtain that the asymptotic covariance matrix is given by

G−1ΨG−T = diag

(
𝜎

2
0

1 − 𝜌
,

2𝜎2
0

1 − 𝜌

)
.

Example 2.4 (Gamma distribution, continuation of Example 2.2). We choose two
different test functions f1, f2, and from Equation (6) we readily obtain the estimators

𝛼̂n =
Xf2(X) Xf ′1(X) − Xf1(X) Xf ′2(X)

Xf1(X) f2(X) − f1(X) Xf2(X)
, 𝛽n =

f2(X) Xf ′1(X) − f1(X) Xf ′2(X)

Xf1(X) f2(X) − f1(X) Xf2(X)
.

By choosing f1(x) = 1 and f2(x) = x we retrieve the moment estimators

𝛼̂
MO
n = X

2

X2 − X
2 and 𝛽

MO
n = X

X2 − X
2 .

Moreover, by choosing f1(x) = 1 and f2(x) = log x we obtain the logarithmic estimators

𝛼̂
LOG
n = X

X log X − X log X
and 𝛽

LOG
n = 1

X log X − X log X
, (9)

which show a behavior close to asymptotic efficiency and were obtained through the
generalized gamma distribution in Ye and Chen (2017) (see also Wiens et al. (2003)
for an earlier reference).

2.4 Optimal functions

We show that it is possible to achieve asymptotic efficiency under certain regularity conditions
using Stein estimators by using specific parameter-dependent test functions. To this end, we sup-
pose in this section without further notice that the sequence of random variables {Xn,n ∈ Z} is
i.i.d. (for possible extensions to non-i.i.d. data see Remark 2.3). In addition, we assume that the
Stein operator𝜃 can be written in the form (2). Within this framework, we compare our estima-
tors to the MLE, which we will denote by 𝜃̂ML

n , and which, under certain regularity conditions on
the likelihood function, is defined through the equation

𝜕

𝜕𝜃

log p𝜃(X)
|||𝜃=𝜃̂ML

n

= 0. (10)

It is well-known that for regular probability distributions, the expectation of the latter expression
is equal to zero. It is a standard result that, under certain regularity conditions, a suitable stan-
dardization of the MLE 𝜃̂ML

n is asymptotically efficient with covariance matrix I−1
ML(𝜃0), the inverse

of the Fisher-information matrix IML(𝜃).
Motivated by the definition of the MLE, we consider the score function as the right-hand side

of the Stein identity
𝜃f (x) = 𝜕

𝜕𝜃

log p𝜃(x). (11)
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1604 EBNER et al.

This is an ordinary differential equation whose solution f𝜃 clearly depends on the unknown
parameter 𝜃. If the Stein operator is of the form (2), then the solution of (11) is given by

f𝜃(x) =
(

f (1)
𝜃
(x),…, f (p)

𝜃
(x)

)
⊤

=
𝜕

𝜕𝜃

P𝜃(x) + c
𝜏𝜃(x)p𝜃(x)

, x ∈ (a, b), (12)

where c ∈ R and P𝜃 is the CDF corresponding to p𝜃 , with the convention that f𝜃(x) = 0 at all
x ∈ (a, b) such that 𝜏𝜃(x) = 0. We will refer to the functions (12) as the optimal functions. Thus,
𝜃f𝜃(X) = 0 is the maximum likelihood equation rewritten in terms of Stein operators. One can

now use a consistent first-step estimator 𝜃n for the unknown parameter 𝜃 in f𝜃 =
(

f (1)
𝜃
,…, f (p)

𝜃

)
⊤

and resolve the system of equations (7) with respect to these test functions. This holds the advan-
tage that estimators may remain explicit if the Stein operator is simple. Mathematically speaking,
given a first-step estimator 𝜃n, we define 𝜃̂⋆n through the equation


𝜃̂

⋆

n
f
𝜃n
(X) = 0 (13)

if such a solution exists. In this setting, the matrix M from Assumption 2.1 (b) depends on
the parameter 𝜃 through data-dependent test functions. Hence, we introduce a new set of
assumptions.

Assumption 2.2.

(a) 𝜃n is a consistent estimator, that is, 𝜃n
P

−→ 𝜃0.
(b) Let X ∼ P𝜃0 and 𝜃1, 𝜃2 ∈ Θ. Then f𝜃2 ∈ ℱ , and E[𝜃1 f𝜃2(X)] = 0 if and only if 𝜃1 = 𝜃0.
(c) For q ≥ p, we can write𝜃1 f𝜃2(x) = M𝜃2(x)g(𝜃1) for some measurable p × q matrix M𝜃2 and

a continuously differentiable function g = (g1,…, gq)⊤ ∶ Θ → Rq for all 𝜃1, 𝜃2 ∈ Θ,
x ∈ (a, b). Moreover, we assume that E[M𝜃0(X)]

𝜕

𝜕𝜃

g(𝜃)|𝜃=𝜃0 , where X ∼ P𝜃0 , is invertible
and the function 𝜃 → vec(M𝜃(x)) is continuously differentiable on Θ for all x ∈ (a, b).

(d) For X ∼ P𝜃0 there exist two functions F1, F2 on (a, b) with E[Fi(X)] <∞, i = 1, 2, and
compact neighborhoods Θ′,Θ′′ of 𝜃0 such that ||M𝜃(x)|| ≤ F1(x) for all 𝜃 ∈ Θ′ and|| 𝜕
𝜕𝜃

vec(M𝜃(x))|| ≤ F2(x) for all 𝜃 ∈ Θ′′, x ∈ (a, b).

Assumption 2.2 (b), (c) are adapted versions of Assumption 2.1 (a), (b) with the supplement
that the optimal function f𝜃 needs to be an element of the Stein class ℱ for each 𝜃 ∈ Θ. The
invertibility of E[M𝜃0(X)]

𝜕

𝜕𝜃

g(𝜃)|𝜃=𝜃0 , X ∼ P𝜃0 , in (c) is easily verified for Stein operators that are
linear in 𝜃. However, we have the additional Assumption 2.2 (d), which can be tedious to verify if f𝜃
is complicated. Nevertheless, the latter assumption is satisfied for all our applications in Section 3
and the Supporting Information.

Theorem 2.5. Suppose Assumption 2.2 (a) to (d) are fulfilled. The probability that a
solution to (13), 𝜃̂⋆n , exists and is measurable converges to 1 as n →∞.

In the following theorem, we show that, under some additional technical assumptions, the
two-step Stein estimators are asymptotically normal and reach asymptotic efficiency. Again, to
manoeuvre around existence and measurability issues, we define 𝜃̂⋆n = ̃h

(
n−1∑n

i=1M
𝜃n
(Xi)

)
, where

̃h is the differentiable extension to Rp×q of the function h from the proof of Theorem 2.5. In view
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EBNER et al. 1605

of the proof of Theorem 2.5, it follows immediately from the continuous mapping theorem that

we have 𝜃̂⋆n
P

−→ 𝜃0.

Theorem 2.6. Suppose that Assumption 2.2 (a) to (d) are satisfied. Moreover, assume
that p𝜃 is differentiable with respect to 𝜃 and

(i) the sequence of random vectors
√

n(𝜃n − 𝜃0) is uniformly tight;
(ii) 𝜃 is of the form (2) with 𝜏𝜃 differentiable with respect to 𝜃;

(iii) we have limx→a,b
𝜕

𝜕𝜃

(p𝜃(x)𝜏𝜃(x))
|||𝜃=𝜃0

f𝜃0(x) = 0;
(iv) and IML(𝜃0) exists and is finite.

Then, for 𝜃̂⋆n as defined in the preceding paragraph,
√

n(𝜃̂⋆n − 𝜃0)
D
−→ N(0, I−1

ML(𝜃0)),
as n → ∞.

We refer the reader as well to (Newey & McFadden, 1994, section 6), in which the asymptotic
theory of two-step estimators is studied—although under slightly different assumptions and with
the additional restriction that the first-step estimate needs to be obtained through the generalized
method of moments.

Remark 2.3. It is possible to extend the results from Theorems 2.5 and 2.6 to strictly
stationary and ergodic time series as introduced in Section 2.3. For Theorem 2.5,
it suffices to apply an adapted uniform strong law of large numbers as stated
in (Hansen, 2012, Theorem 2.1) (note that with Assumption 2.2 (d) the random
function 𝜃 → M𝜃(X),X ∼ P𝜃0 , is automatically first-moment-continuous, compare
(DeGroot, 2005, p. 206)). With the latter result together with Theorem 2.3 we can
also generalize Theorem 2.6, although we need the additional assumption that the
sequence {𝜃0 f𝜃0 (Xn),n ∈ Z} satisfies the assumptions of Theorem 2.3. We then get

√
n(𝜃̂⋆n − 𝜃0)

D
−→ N

(
0, I−1

ML(𝜃0)

(∑
j∈Z

E
[
𝜃0 f𝜃0 (X0)𝜃0 f𝜃0(Xj)⊤

])
I−1

ML(𝜃0)

)
, n → ∞.

Remark 2.4. There is another possibility to achieve the asymptotic efficiency
of point estimators. Carrasco and Florens (2000) proposed a generalized
method-of-moments-type estimator with a continuum of moment conditions. The
idea is based on using an uncountably infinite number of moment conditions, that
is, a class of functions ht ∶ Θ × (a, b) → R, t ∈ Π ⊂ R such that E[ht(𝜃0,X)] = 0
for all t ∈ Π, where X ∼ P𝜃0 . Under some conditions, the sequence of functions
n−1∕2∑n

i=1ht(𝜃,Xi), t ∈ Π, converges to some zero-mean Gaussian process with
covariance operator Υ by the functional central limit theorem as n →∞. Let Υ𝛼n

be its Tikhonov regularization with smoothing term 𝛼n. Then, under additional
assumptions, it can be shown that the estimator

𝜃̂n = arg min
𝜃∈Θ

‖‖‖(Υ𝛼n
n )−1∕2ht

n(𝜃,X)
‖‖‖ℒ 2

,

where (Υ𝛼n
n )−1∕2 is an estimate of (Υ𝛼n)−1∕2, ht

n(𝜃,X) = n−1∑n
i=1ht(𝜃,Xi) and || ⋅ ||ℒ 2 is

the standard ℒ 2-norm with respect to some positive measure, is asymptotically effi-
cient (see Carrasco and Florens (2014)). Note that this procedure requires an estima-
tion of a covariance operator and is computationally ambitious. For more information
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1606 EBNER et al.

and some applications, see also (Carrasco et al., 2007; Carrasco & Florens, 2002a;
Carrasco & Florens, 2002b).

Example 2.5 (Gamma distribution, continuation of Example 2.4). Let us now intro-
duce a two-step Stein estimator for the gamma distribution. We first recall that the
CDF of the gamma distribution is given by P𝜃(x) = 𝛾(𝛼, 𝛽x)∕Γ(𝛼), where 𝛾(⋅, ⋅) is the
lower incomplete gamma function. With this formula at hand, we can calculate the
optimal functions, which are given by

f (1)
𝜃
(x) = e𝛽x

(
𝛾(𝛼, 𝛽x)
(𝛽x)𝛼

(
log(𝛽x) − 𝜓(𝛼)

)
− 1
𝛼

2 2F2(𝛼, 𝛼; 1 + 𝛼, 1 + 𝛼; −𝛽x)
)
, f (2)

𝜃
(x) = 1

𝛽

,

where 2F2 denotes the generalized hypergeometric function. Taking 𝜃̂

LOG
n as a

first-step estimate results in a two-step estimator, which we denote by 𝜃̂

ST
n . This

estimator takes a rather complicated form, but can be expressed in closed-form in
terms of the generalized hypergeometric function. However, in practice, it is com-
putationally more efficient to estimate the derivative in Equation (12) numerically.
In the Supporting Information, we show that the assumptions of Theorems 2.5
and 2.6 hold, which implies (strong) consistency and asymptotic efficiency of 𝜃̂ST

n .
Simulation results are reported in the Supporting Information, which show that the
Stein estimator 𝜃̂ST

n has a marginally improved performance in terms of lower bias and
mean square error over the (non-explicit) MLE in small sample sizes across a range
of parameter values.

As the CDF of the gamma distribution is expressed in terms of special functions,
the optimal functions take a rather complicated form. For distributions with sim-
pler CDFs, simpler optimal functions can be obtained; see, for example, the Cauchy
distribution in Section 3.2.

In the remainder of this section, we study the sequence of Stein estimators which is obtained
as follows: Choose some 𝜃0 ∈ Θ as a value for 𝜃 in f𝜃 and solve for the two-step Stein estimator
𝜃̂

⋆

n . Take then the obtained estimate as a new value for 𝜃 in f𝜃 to update the Stein estimator 𝜃̂⋆n .
Formally speaking, we consider the sequence of Stein estimators 𝜃̂(m)n defined by

0 = 
𝜃̂

(m+1)
n

f
𝜃̂

(m)
n
(X), (14)

where 𝜃̂(0)n = 𝜃0 ∈ Θ is the starting value of the iterating process. Moreover, let Θ0 ⊂ Θ be com-
pact and convex with 𝜃0, 𝜃

0 ∈ Θ0. We briefly discuss the existence of such a sequence. It is clear
from Theorem 2.5 that, for fixed m ∈ N, the probability that 𝜃̂(m)n exists converges to 1. However,
this does not guarantee the existence of the sequence. Therefore, when we study the asymptotic
behavior of the sequence 𝜃̂(m)n , m ∈ N, we have to assume that such a sequence of solutions of (14)
exist. Before stating the theorem, we introduce a new set of assumptions.

Assumption 2.3.

(a) The MLE exists and is unique with probability converging to 1. Moreover, we assume that
the MLE is consistent (in the sense of Theorem 2.5) and that if the MLE exists, it is
characterized by (10).
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EBNER et al. 1607

(b) Let X ∼ P𝜃0 and 𝜃1, 𝜃2 ∈ Θ0. Then f𝜃2 ∈ ℱ , and E[𝜃1 f𝜃2 (X)] = 0 if and only if 𝜃1 = 𝜃0.
(c) For q ≥ p, we can write𝜃1 f𝜃2(x) = M𝜃2(x)g(𝜃1) for some measurable p × q matrix M𝜃2 and

g = (g1,…, gq)⊤ ∶ Θ → Rq continuously differentiable for all 𝜃1, 𝜃2 ∈ Θ0, x ∈ (a, b).
Moreover, we assume that E[M𝜃(X)] 𝜕

𝜕𝜃

g(𝜃) (where X ∼ P𝜃0 ) is invertible for all 𝜃 ∈ Θ0 and
that the function 𝜃 → vec(M𝜃(x)) is continuously differentiable on Θ0 for all x ∈ (a, b).

(d) For X ∼ P𝜃0 , there exist two functions F1, F2 on (a, b) with E[Fi(X)] < ∞, i = 1, 2, such
that ||M𝜃(x)|| ≤ F1(x) and || 𝜕

𝜕𝜃

vec(M𝜃(x))|| ≤ F2(x) for all 𝜃 ∈ Θ0, x ∈ (a, b).

Assumptions 2.3(b)–(d) introduced above are mostly equivalent to Assumptions 2.2(b)–(d),
although we have a slight modification in (c). Here, we require the matrix E[M𝜃(X)] 𝜕

𝜕𝜃

g(𝜃), X ∼
P𝜃0 , to be invertible for all 𝜃 ∈ Θ0, in contrast to 2.2(c) in which this needs to be the case only for
𝜃 = 𝜃0, which can be difficult to verify, especially if f𝜃 is complicated.

Theorem 2.7. Suppose that Assumptions 2.3(a) to (d) hold. Then, for each sequence
𝜃̂

(m)
n , m ∈ N, satisfying (14), there exists a sequence of sets An ⊂ Ω, n ∈ N, with P(An) →

1 as n → ∞ such that for each n we have that on An, 𝜃̂(m)n → 𝜃̂

ML
n as m →∞.

3 APPLICATIONS

In this section, we apply Stein’s method of moments to three challenging estimation problems
for univariate distributions that have received interest in the literature. Here we establish small
sample performance of our asymptotically efficient estimators obtained in Section 2.4, and, by
choosing suitable test functions, we propose alternatives to moment estimation that are as sim-
ple and improve significantly in terms of asymptotic variance. We conclude the section with an
application to a less challenging setting for which censoring can break down the performance of
ML and other MOM estimates, thereby demonstrating the usefulness of our approach even for
regular models. For all examples, we suppose that {Xn,n ∈ Z} is i.i.d. However, we stress that
SMOM can be applied to dependent data, and we give such an application in Example C.7 of the
Supporting Information.

In each example, we compare to the MLE and, where appropriate, the classical moment
estimators, as well as more specialist estimators that have been found to perform well for the
particular distribution under consideration. It would seem that the minimum Stein discrepancy
estimators developed in Barp et al. (2019) would be natural competitors as the discrepancy is
based on the density approach Stein identity. However, we have excluded them from our simula-
tion studies, as we found that they are outperformed for almost all parameter values in terms of
bias and MSE, involve more computational effort and for certain distribution require a numerical
procedure even when our Stein estimators are completely explicit; a more detailed justification is
given in Section A of the Supporting Information.

Further examples for the beta, Student’s t, Lomax, Nakagami, one-sided truncated
inverse-gamma distribution, and generalized logistic distributions, as well as a non-i.i.d. example,
are given in the Supporting Information. Some of these estimators also have competitive
performance.
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1608 EBNER et al.

(a) (b)

F I G U R E 1 Asymptotic confidence regions for the estimators of the TN(𝜇, 𝜎2) distribution for q = 0.95,
a = 0, and b = 1 in the directions of the eigenvectors v1 and v2. Plotted are the MLE , the moment estimator , and
the Stein estimator . The x-axis scale is transformed via x → arctan x. (a) 𝜇 = 0.5, 𝜎 = 0.2, (b) 𝜇 = 0.5, 𝜎 = 0.3.

3.1 Truncated normal distribution

The density of the two-sided truncated Gaussian distribution on (a, b) with a, b ∈ R, denoted by
TN(𝜇, 𝜎2), 𝜃 = (𝜇, 𝜎2), is given by p𝜃(x) = C−1

𝜃
𝜙((x − 𝜇)∕𝜎), where C𝜃 = 𝜎[Φ(b − 𝜇)∕𝜎) − Φ(a −

𝜇)∕𝜎)] and 𝜙 and Φ are the standard Gaussian PDF and CDF, respectively. With 𝜏𝜃(x) = 𝜎2 we
obtain the same Stein operator as in Example 2.1. Note that the function classℱ𝜃 differs from the
one in the untruncated case. As we have the same Stein operator as in Example 2.1, we obtain for
two test functions f1, f2 the same expressions for the Stein estimators as in the untrucated case,
as given by (8). Note that the normalizing constant drops out, and therefore, completely explicit
and easily computable estimators are retrieved. A natural choice seems to be the polynomials

f1(x) = −x2 + (a + b)x − ab, f2(x) = x3 − 3
2
(a + b)x2 + 1

2
(a2 + 4ab + b2)x − 1

2
(a2b + ab2).

We denote the Stein estimator based on the latter test functions by 𝜃̂ST
n = (𝜇̂ST

n , 𝜎̂
ST
n ).

The first and second moments of the truncated normal distribution take a rather complicated
form involving the functions 𝜙 and Φ (see the Supporting Information), and consequently the
classical moment estimators, which we denote by 𝜇̂MO

n and 𝜎̂MO
n , must be obtained numerically.

The MLE 𝜃̂

ML
n = (𝜇̂ML

n , 𝜎̂
ML
n ) is also not explicit, and, as for the classical moment estimator, the

numerical calculation can be tedious.
A q-confidence region of the corresponding asymptotic normal distribution for the above esti-

mation techniques is reported in Figure 1 for two parameter constellations. The ellipses are plotted
with respect to the two eigenvectors v1 and v2 of the covariance matrix and are therefore parallel to
the x- and y-axes, respectively. One can see that the performance of the proposed Stein estimator
essentially coincides with that of the MLE, indicating a behavior close to efficiency. The moment
estimator performs poorly and was hence excluded from our finite sample simulation study.

Hegde and Dahiya (1989) showed that the MLE exists if and only if Y
2
< Y 2

< 1 − 2Y∕x⋆
with coth(x⋆) − 1∕x⋆ = Y , where Yi = 2(Xi − a)∕(b − a). The conditions for the existence of the
moment estimator seem to be difficult to work out. It is a known issue for any explicit estimator
that it is possible for the estimate to lie outside of the parameter space if the latter is restricted to
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EBNER et al. 1609

T A B L E 1 Simulation results for the TN(𝜇, 𝜎) distribution with a = 0, b = 1 for n = 20 and 10, 000
repetitions.

Bias MSE NE

𝜽0 𝜽̂
ML
n 𝜽̂

ST
n 𝜽̂

ML
n 𝜽̂

ST
n 𝜽̂

ML
n 𝜽̂

ST
n

(0.5, 0.05) 𝜇 −4.56e−5 −4.64e−5 1.22e−4 1.22e−4 0 0

𝜎 −1.27e−4 −1.21e−4 6.07e−7 6.14e−7

(0.5, 0.1) 𝜇 2.58e−4 2.97e−4 4.95e−4 5e−4 0 0

𝜎 −4.84e−4 −3.59e−4 9.94e−6 1.05e−5

(0.5, 0.2) 𝜇 −4.48e−5 −4.76e−5 2.87e−3 3.46e−3 0 0

𝜎 1.37e−3 1.88e−3 1.45e−3 1.44e−3

(0.5, 0.3) 𝜇 −3.18e−3 −1.7e−3 0.038 0.044 3 3

𝜎 0.044 0.044 0.061 0.06

(0.6, 0.05) 𝜇 −1.93e−4 −1.86e−4 1.25e−4 1.25e−4 0 0

𝜎 −1.31e−4 −1.24e−4 6.09e−7 6.19e−7

(0.6, 0.1) 𝜇 −2.65e−4 −1.6e−4 5e−4 5.08e−4 0 0

𝜎 −5.49e−4 −4.24e−4 9.76e−6 1.06e−5

(0.6, 0.2) 𝜇 4.64e−3 4.31e−3 3.29e−3 3.43e−3 0 0

𝜎 1.67e−3 2.28e−3 6.87e−4 7.64e−4

(0.7, 0.05) 𝜇 1.12e−4 1.3e−4 1.26e−4 1.27e−4 0 0

𝜎 −1.39e−4 −1.3e−4 6.1e−7 6.34e−7

(0.7, 0.1) 𝜇 2.44e−4 1.37e−4 5.28e−4 5.42e−4 0 0

𝜎 −4.01e−4 −3.68e−4 1.11e−5 1.23e−5

(0.7, 0.2) 𝜇 0.015 0.016 0.013 0.015 0 0

𝜎 3.92e−3 4.83e−3 3.06e−3 4.16e−3

a certain subset of Euclidean space. This problem also applies to the Stein estimator. We added a
column NE to the tables to report the estimated relative frequency of cases in which the estimator
does not exist (the relative frequency is given as a number between 0 and 100). These estimates
are based on the same Monte Carlo samples as the estimates for bias and MSE. However, for the
considered parameter constellations, the existence of the estimator seems to be hardly an issue.
Nevertheless, we noticed that in cases where parameter estimation for the TN(𝜇, 𝜎2)-distribution
becomes in general more difficult (e.g., when 𝜇 lies outside of the truncation domain and 𝜎2 is
large), the number of Monte Carlo samples for which the MLE and the Stein estimator does not
exist grows rapidly. As can be seen in Tables 1 and 2, the Stein estimator performs well compared
to the MLE throughout all parameter constellations and both sample sizes (the best performances
are highlighted in orange). However, we remark that we used the truncated mean to estimate the
bias and MSE, as we considered large estimates as outliers. We set the truncation threshold equal
to 5 for the bias and equal to 25 for the MSE. Estimates not taken into account for bias or MSE
were then considered as non-existent.
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1610 EBNER et al.

T A B L E 2 Simulation results for the TN(𝜇, 𝜎) distribution with a = 0, b = 1 for n = 50 and 10, 000
repetitions.

Bias MSE NE

𝜽0 𝜽̂
ML
n 𝜽̂

ST
n 𝜽̂

ML
n 𝜽̂

ST
n 𝜽̂

ML
n 𝜽̂

ST
n

(0.5, 0.05) 𝜇 3.8e−6 4.67e−6 4.87e−5 4.87e−5 0 0

𝜎 −5.43e−5 −5.14e−5 2.45e−7 2.46e−7

(0.5, 0.1) 𝜇 −8.44e−5 −1.32e−4 2e−4 2.02e−4 0 0

𝜎 −1.91e−4 −1.45e−4 3.97e−6 4.14e−6

(0.5, 0.2) 𝜇 −1.1e−4 −5.72e−5 9.02e−4 9.53e−4 0 0

𝜎 2.53e−4 4.83e−4 1.19e−4 1.3e−4

(0.5, 0.3) 𝜇 1.03e−4 −4.65e−5 9.33e−3 9.97e−3 0 0

𝜎 0.017 0.017 0.013 0.014

(0.6, 0.05) 𝜇 6.62e−6 6.46e−6 4.84e−5 4.85e−5 0 0

𝜎 −4.97e−5 −4.69e−5 2.46e−7 2.49e−7

(0.6, 0.1) 𝜇 3.19e−5 4.72e−5 2.02e−4 2.05e−4 0 0

𝜎 −1.9e−4 −1.43e−4 3.94e−6 4.18e−6

(0.6, 0.2) 𝜇 1.71e−3 1.41e−3 1.02e−3 1.08e−3 0 0

𝜎 2.48e−4 4.89e−4 1.25e−4 1.37e−4

(0.7, 0.05) 𝜇 2.06e−5 2.77e−5 4.9e−5 4.9e−5 0 0

𝜎 −4.46e−5 −4.1e−5 2.5e−7 2.59e−7

(0.7, 0.1) 𝜇 2.85e−4 2.58e−4 2.02e−4 2.09e−4 0 0

𝜎 −1.44e−4 −1.27e−4 4.48e−6 4.96e−6

(0.7, 0.2) 𝜇 4.21e−3 4.13e−3 1.72e−3 1.84e−3 0 0

𝜎 6.31e−4 9.94e−4 1.78e−4 2e−4

3.2 Cauchy distribution

For 𝜃 = (𝜇, 𝛾) ∈ R × (0,∞), the density of the Cauchy distribution is given by p𝜃(x) =
(𝜋𝛾)−1(1 + ((x − 𝜇)∕𝛾)2)−1, x ∈ R. We fix 𝜏𝜃 = (x − 𝜇)2 + 𝛾2, and obtain 𝜃f (x) =(
(x − 𝜇)2 + 𝛾2)f ′(x) (see also Schoutens (2001)). For test functions f1, f2 we obtain the estimators

𝜇̂n =
f ′2(X) X2f ′1(X) − f ′1(X) X2f ′2(X)

2
[

f ′2(X) Xf ′1(X) − f ′1(X) Xf ′2(X)
] , 𝛾̂2

n =
X2f ′2(X) Xf ′1(X) − X2f ′1(X) Xf ′2(X)

f ′1(X) Xf ′2(X) − f ′2(X) Xf ′1(X)
− 𝜇̂2

n.

The CDF is P𝜃(x) = 𝜋−1 arctan((x − 𝜇)∕𝛾) + 1∕2, and we thus obtain simple optimal functions:

f (1)
𝜃
(x) = − 1

𝛾
2 + (x − 𝜇)2

and f (2)
𝜃
(x) = 𝜇 − x

𝛾

(
𝛾

2 + (x − 𝜇)2
) . (15)
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EBNER et al. 1611

With a suitable first step estimate, we have an efficient estimator which is considerably simpler to
compute than the MLE, which involves solving polynomial equations of degree 2n − 1 given by

n∑
i=1

2(Xi − 𝜇)
𝛾

2 + (Xi − 𝜇)2
= 0 and n

𝛾

−
n∑

i=1

2𝛾
𝛾

2 + (Xi − 𝜇)2
= 0.

In (Copas, 1975; Gabrielsen, 1982) it is shown that, in the case where both parameters 𝜇 and 𝛾
are unknown, the likelihood function is unimodal under some regularity assumptions. Clearly,
moment estimation is not tractable due to the non-existence of all moments.

Interestingly, parameter estimation for the Cauchy distribution can be difficult in the case
where 𝛾 is known and one is left with estimation of the location parameter 𝜇. We therefore now
focus on the case that 𝛾 is known. The parameter space thus reduces to Θ = R with 𝜃 = 𝜇. This
estimation problem has received great attention in the literature; see Zhang (2010) for an overview
of available estimation techniques. The MLE of 𝜇 with known 𝛾 is often cited as an example of
computational failure (Bai and Fu, 1987; Zhang, 2010, summarize the challenges) although Bai
and Fu (1987) show that the MLE remains the asymptotically optimal estimator in the Bahadur
sense. One reason for this is a multimodal likelihood function (in fact, the number of local maxima
is asymptotically Poisson distributed with mean 1∕𝜋; see Reeds (1985)). However, closed-form
expressions for the MLE exist for sample sizes 3 and 4; see Ferguson (1978). Due to the difficulties
concerning the MLE, other methods have been developed. In our simulation study we consider
the L-estimator methods of Rothenberg et al. (1964), Bloch (1966), Chernoff et al. (1967) and
Zhang (2010), which we denote by 𝜇̂L1

n , 𝜇̂L2
n , 𝜇̂L3

n and 𝜇̂L4
n , respectively. We also consider the Pitman

estimator of Freue (2007), which we denote by 𝜇̂PI
n . The explicit forms of these estimators are given

in the Supporting Information. Zhang (2010) modified the estimator 𝜇̂L3
n to also achieve high

efficiency for finite sample sizes, and so we do not include the estimator 𝜇̂L3
n in our simulation

study.
Let us now describe a procedure based on the Stein operator. Note that if we choose one test

function (since we only have to estimate 𝜇), the corresponding equation is quadratic and has, in
general, two solutions. This is why we choose two test functions and consider the estimator 𝜇̂n
with test functions f (1)

𝜃
(x) and f (2)

𝜃
(x) as defined in Equation (15), whereby 𝛾 is now considered

known. We take 𝜇̂L4
n as a first-step estimate, and denote the resulting estimator by 𝜇̂ST1

n . Note that
𝜇̂

ST1
n is not translation-invariant, and we therefore consider different values of 𝜇 in our simulation.

This slight modification of the estimation procedure still results in an asymptotically efficient
estimator. We apply Theorem 2.5 in the setting where both parameters are estimated (where we
take 𝛾̃n = 𝛾0 as the first-step estimator for 𝛾). Then the asymptotic variance of 𝜇̂ST1

n is the top-left
element of the inverse Fisher information matrix in the case where 𝛾 is unknown. The latter
is given by the diagonal matrix I−1

ML(𝜇, 𝛾) = diag(2𝛾2
, 2𝛾2), and we conclude that the asymptotic

variance for both estimators 𝜇̂ST1
n and the (one-dimensional) MLE equals 2𝛾2.

However, when performing the simulations we noticed a very large variance for 𝜇̂ST1
n for small

sample sizes, which is consistent with the trade-off between small sample size and asymptotic effi-
ciency noticed by Zhang (2010) for 𝜇̂L3

n and 𝜇̂L4
n . This is why we propose a modified version of 𝜇̂ST1

n ,
denoted by 𝜇̂ST2

n . In a similar manner to the estimator 𝜇̂L1
n , we cut off the bottom and top p-quantile

of the sample at hand and calculate the sample means in 𝜇̂n and 𝛾̂2
n by the means of the remaining

observations. Pursuant to 𝜇̂L1
n , we choose p = 0.38 and disregard the first and last ⌊np⌋ observa-

tions of the sorted sample. Simulation results can be found in Tables 3 and 4. For the sample size
n = 20, the Pitman estimator 𝜇̂PI

n seems to be globally the best, with the modified L-estimator 𝜇̂L4
n
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1612 EBNER et al.

T A B L E 3 Simulation results for the C(𝜇, 𝛾) distribution for n = 20 and 10, 000 repetitions.

Bias MSE

𝜽0 𝝁̂
L1
n 𝝁̂

L2
n 𝝁̂

L4
n 𝝁̂

PI
n 𝝁̂

ST2
n 𝝁̂

L1
n 𝝁̂

L2
n 𝝁̂

L4
n 𝝁̂

PI
n 𝝁̂

ST2
n

(−5, 1) 𝜇 −0.725 0.131 −2.54e−3 1.72e−4 0.085 0.721 0.944 0.136 0.116 0.158

(−4, 1.5) 𝜇 −0.506 0.193 −4.22e−3 −3.13e−5 0.122 0.695 1.04 0.307 0.261 0.351

(−2, 2) 𝜇 −0.099 0.261 8.84e−3 3.88e−3 0.182 0.782 2.26 0.537 0.46 0.627

(0, 1) 𝜇 0.118 0.117 5.1e−3 3.95e−3 0.091 0.206 0.296 0.134 0.113 0.161

(0, 3) 𝜇 0.343 0.394 5.14e−3 3.29e−3 0.273 1.87 4.81 1.22 1.02 1.42

(2, 0.1) 𝜇 0.345 0.013 3.05e−4 2.73e−4 9.01e−3 0.121 5.89e−3 1.36e−3 1.15e−3 1.59e−3

(2, 0.5) 𝜇 0.388 0.065 −1.29e−3 −1.22e−3 0.043 0.2 0.24 0.034 0.028 0.039

(4, 0.8) 𝜇 0.751 0.092 −4.79e−3 −4.02e−3 0.066 0.69 0.325 0.087 0.074 0.101

(6, 2.3) 𝜇 1.26 0.29 7.79e−3 3.64e−3 0.217 2.59 2.02 0.693 0.59 2.92

(10, 0.2) 𝜇 1.69 0.026 5.34e−4 3.58e−4 0.018 2.86 0.03 5.62e−3 4.49e−3 6.78e−3

close behind. The Stein estimator 𝜇̂ST2
n delivers good results as well, outperforming 𝜇̂L1

n and 𝜇̂L2
n

for most parameter constellations. For the sample size n = 50, 𝜇̂L4
n , 𝜇̂PI

n and 𝜇̂ST1
n show the best per-

formance regarding the bias and the Stein estimator 𝜇̂ST1
n has the lowest MSE for most parameter

constellations. Further simulation results for the sample size n = 100 are given in the Supporting
Information. For this sample size, the Stein estimator 𝜇̂ST1

n has the lowest MSE for all parameter
constellations, and the Pitman estimator performs very poorly. Indeed, our simulations suggest
that 𝜇̂PI is not a consistent estimator.

3.3 Exponential polynomial models

For 𝜃 = (𝜃1,…, 𝜃p) ∈ Rp−1 × (−∞, 0), the density of an exponential polynomial model is given by
p𝜃(x) = C−1

𝜃
exp(𝜃1x + · · · + 𝜃pxp), x > 0, where C𝜃 = ∫

∞
0 exp(𝜃1x + · · · + 𝜃pxp) dx is the normal-

izing constant which cannot be calculated analytically. We choose 𝜏𝜃(x) = 1 and obtain the Stein
operator

𝜃f (x) = (𝜃1 + 2𝜃2x + · · · + p𝜃pxp−1)f (x) + f ′(x).

Here, we need p test functions f1,…, fp and the Stein estimator is then given by

𝜃̂n = A−1b,

where A is a p × p matrix with (i, j)-th entry jXj−1fi(X) and b = (−f ′1(X),…,−f ′p(X))⊤. We propose
the test functions f1(x) = xi, for i = 1,…, p, and denote the corresponding estimator by 𝜃̂ST1

n . We
also consider fi(x) = xie−ix, for i = 0,…, p − 1, and call the respective Stein estimator 𝜃̂ST2

n . Fur-
ther, we study the two-step Stein estimator, which we denote by 𝜃̂ST3

n , whereby we take 𝜃̂ST2
n as a

first-step estimate. This estimator is consistent and asymptotically efficient.
Let us walk through the estimation methods in the literature. Hayakawa and Takemura (2016)

and Nakayama et al. (2011) used the holomorphic gradient method to compute the MLE. For
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1614 EBNER et al.

exponential polynomial models, the MLE coincides with the moment estimator. Gutmann and
Hyvärinen (2012) (a refined version of one from Gutmann and Hyvärinen (2010)) proposed the
noise-contrastive estimator, which we denote by 𝜃̂NC

n . We consider the score matching approach
from Hyvärinen (2007) (a refined version of Hyvärinen and Dayan (2005)) and denote the score
matching estimator by 𝜃̂SM

n . The estimators 𝜃̂NC
n and 𝜃̂SM

n are computed via numerical optimiza-
tion, and the procedure for implementing them is given in the Supporting Information. It is also
natural to consider the minimumℒ q-estimator obtained from Betsch et al. (2021), which is also
motivated by a Stein characterization; more precisely, by an expectation-based representation of
the CDF. The minimum distance estimator is only explicit for a parameter space of dimension
less than or equal to 2, and we thus exclude this estimator from our simulation study, since the
numerical calculation turns out to be too heavy for a parameter space dimension of 3 or higher.

In our simulation study, for the MLE, C𝜃 is calculated through numerical integration, and
optimizing the log-likelihood function is performed with the Nelder-Mead algorithm. The vector
(−1,…,−1)⊤ ∈ Rp is used as an initial guess for the optimization procedure. This implementation
seems, at least for the parameter constellations we consider, to be computationally manage-
able and numerically stable. For the noise-contrastive estimator 𝜃̂NC

n and the score matching
approach 𝜃̂SM

n , we also used the Nelder-Mead algorithm with initial guess (−1,…,−1)⊤ ∈ Rp. For
the two-step Stein estimator 𝜃̂ST3

n , the normalizing constant C𝜃 needs to be calculated to evaluate
the optimal function. This is done through numerical differentiation.

The results are reported in Tables 5 and 6. The column NE is interpreted as follows. First, the
last element of the parameter vector 𝜃p has to be negative. Thus, if any estimator returns a positive
value for this parameter, we count the estimator as non-existent. Secondly, we restrict the compu-
tation time for each estimator to 20 s, meaning that an estimator counts equally as non-existent
if it requires more time to be calculated or if the numerical procedure fails completely. Concern-
ing 𝜃̂ST3

n , we also used the parameter vector (−1,…,−1)⊤ ∈ Rp as a first-step estimate if 𝜃̂ST2
n was

not available for a Monte Carlo sample. The sample size for this simulation was chosen to be
larger than in the other simulation studies, since we are concerned with an estimation problem
in which the variance of the estimator typically increases as the dimension of the parameter space
grows. This makes it difficult to compare estimators for small sample sizes in the case of param-
eter dimensions of 3 and 4. Additionally, the Stein estimators 𝜃̂ST1

n and 𝜃̂ST2
n often return positive

values for 𝜃p, which makes a comparison even more difficult since the number of samples on
which the bias and MSE are based is in truth lower than the number of Monte Carlo repetitions.
However, for rather small sample sizes of n = 20 or n = 50, we found that our simulation results
are reliable for a parameter space dimension of 2 with similar results as described below, which
is why we did not include a separate table for these results. Therefore, we chose the sample size
n = 1000, where we feel comfortable in drawing conclusions from the study. Overall, we observe
a solid performance of the Stein estimators. For example, the explicit Stein estimators 𝜃̂ST1

n and
𝜃̂

ST2
n outperform all other methods for the parameter vector (−2, 0.1, 3,−2)⊤ in terms of bias and

MSE. The two-step Stein estimator 𝜃̂ST3
n together with 𝜃̂ML

n and 𝜃̂NC
n seem to be globally the best.

Moreover, one observes that 𝜃̂ST3
n can often improve in terms of bias and MSE with respect to the

first-step estimator 𝜃̂ST2
n (although there are some exceptions). In the end, we advise to use 𝜃̂ST3

n ,
the MLE or the noise-contrastive estimator 𝜃̂NC

n , while the explicit Stein estimators can serve as a
reliable initial guess, if they exist.
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EBNER et al. 1615

T A B L E 5 Simulation results regarding the bias for the exponential polynomial models for n = 1000 and
10, 000 repetitions.

Bias

𝜽0 𝜽̂
ML
n 𝜽̂

NC
n 𝜽̂

SM
n 𝜽̂

ST1
n 𝜽̂

ST2
n 𝜽̂

ST3
n

(1,−2) 𝜃1 0.02 0.019 0.085 0.03 0.03 0.017

𝜃2 −0.017 −0.017 −0.055 −0.024 −0.024 −0.015

(−2,−1) 𝜃1 0.025 0.026 0.13 0.035 0.035 0.023

𝜃2 −0.031 −0.032 −0.106 −0.04 −0.04 −0.029

(1, 2,−3) 𝜃1 −0.025 −0.027 −0.477 −0.122 −0.122 −0.011

𝜃2 0.073 0.079 0.737 0.244 0.244 0.042

𝜃3 −0.051 −0.054 −0.34 −0.134 −0.134 −0.033

(−3, 5,−1) 𝜃1 2.6 2.59 −4.83 −0.078 −0.078 2.82

𝜃2 −0.92 −0.923 1.62 0.048 0.048 −0.986

𝜃3 0.107 0.107 −0.18 −7.71e−3 −7.71e−3 0.113

(0.2,−0.8,−2) 𝜃1 −0.048 −0.054 −0.923 −0.208 −0.189 −0.093

𝜃2 0.156 0.176 1.83 0.532 0.491 0.252

𝜃3 −0.127 −0.142 −1.04 −0.359 −0.336 −0.183

(3, 0.5,−0.5) 𝜃1 −0.018 0.019 −0.332 −0.101 −0.101 0.052

𝜃2 0.026 −5.63e−4 0.205 0.075 0.075 −0.026

𝜃3 −7.56e−3 −1.87e−3 −0.04 −0.016 −0.016 3.63e−3

(0.1, 2,−3) 𝜃1 −0.036 −0.04 −0.544 −0.136 −0.136 −0.022

𝜃2 0.102 0.112 0.909 0.296 0.295 0.067

𝜃3 −0.07 −0.077 −0.445 −0.172 −0.171 −0.049

(3, 0,−4) 𝜃1 −0.018 −0.021 −0.745 −0.164 −0.16 −5.05e−3

𝜃2 0.088 0.093 1.38 0.391 0.382 0.049

𝜃3 −0.082 −0.085 −0.763 −0.258 −0.253 −0.054

(1, 2, 0.5,−2) 𝜃1 −0.881 −0.94 3.42 1.16 0.888 0.58

𝜃2 2.19 2.34 −7.61 −3.14 −2.43 −1.65

𝜃3 −2.01 −2.16 6.73 3.15 2.48 1.71

𝜃4 0.614 0.66 −2.06 −1.06 −0.842 −0.591

(−2, 0.1, 3,−2) 𝜃1 1.2 1.57 1.9 0.382 0.344 0.139

𝜃2 −3.21 −4.2 −4.51 −1.19 −1.08 −0.43

𝜃3 3.04 3.97 4.01 1.26 1.14 0.458

𝜃4 −0.939 −1.22 −1.19 −0.421 −0.386 −0.159

3.4 Nakagami distribution for censored data: A real data application

The Nakagami distribution NG(m,O), also known as the m-distribution Nakagami (1960), is a
continuous probability distribution on the positive real numbers. Its probability density function
is given by

p𝜃(x) =
2mm

Γ(m)Om x2m−1 exp
(
−m

O
x2
)
, x > 0
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1616 EBNER et al.

T A B L E 6 Simulation results regarding the MSE and existence for the exponential polynomial models for
n = 1000 and 10, 000 repetitions.

MSE NE

𝜽0 𝜽̂
ML
n 𝜽̂

NC
n 𝜽̂

SM
n 𝜽̂

ST1
n 𝜽̂

ST2
n 𝜽̂

ST3
n 𝜽̂

ML
n 𝜽̂

NC
n 𝜽̂

SM
n 𝜽̂

ST1
n 𝜽̂

ST2
n 𝜽̂

ST3
n

(1,−2) 𝜃1 0.073 0.079 0.28 0.09 0.09 0.073 0 0 0 0 0 0

𝜃2 0.039 0.042 0.109 0.047 0.047 0.039

(−2,−1) 𝜃1 0.084 0.092 0.289 0.09 0.09 0.084 0 0 0 0 0 0

𝜃2 0.069 0.074 0.171 0.074 0.074 0.068

(1, 2,−3) 𝜃1 0.687 0.743 4.83 1.15 1.15 0.687 0 0 0 0 0 0

𝜃2 2.08 2.26 10.7 3.4 3.4 2.08

𝜃3 0.533 0.576 2.12 0.834 0.834 0.532

(−3, 5,−1) 𝜃1 6.74 6.73 44.8 39.6 39.6 29.4 0 0 0 0 0 0

𝜃2 0.873 0.882 5.29 4.99 4.99 3.7

𝜃3 0.013 0.013 0.069 0.068 0.068 0.051

(0.2,−0.8,−2) 𝜃1 0.675 0.725 3.8 0.839 0.871 0.62 0 0 9 3 3 1

𝜃2 3.46 3.72 14.8 4.43 4.57 3.16

𝜃3 1.42 1.51 4.85 1.82 1.86 1.31

(3, 0.5,−0.5) 𝜃1 0.873 0.769 3.82 1.38 1.38 0.67 0 0 0 0 0 0

𝜃2 0.402 0.345 1.35 0.565 0.565 0.292

𝜃3 0.018 0.015 0.047 0.023 0.023 0.013

(0.1, 2,−3) 𝜃1 0.636 0.681 4.23 0.967 0.968 0.636 0 0 1 0 0 0

𝜃2 2.31 2.48 11.1 3.48 3.49 2.31

𝜃3 0.684 0.73 2.53 0.996 0.997 0.681

(3, 0,−4) 𝜃1 1.08 1.17 6.92 1.77 1.78 1.08 0 0 2 0 0 0

𝜃2 4.75 5.18 22.4 7.55 7.6 4.71

𝜃3 1.78 1.94 6.59 2.71 2.73 1.77

(1, 2, 0.5,−2) 𝜃1 1.34 1.27 33.2 6.71 7.23 3.31 0 0 16 13 9 1

𝜃2 9.3 8.96 161 45.2 48.7 21.6

𝜃3 10.2 10 128 44.2 47.2 21.6

𝜃4 1.29 1.28 12.3 4.93 5.22 2.51

(−2, 0.1, 3,−2) 𝜃1 2.61 3.2 13.8 1.94 2.02 2.54 0 0 9 2 1 0

𝜃2 19.9 24.2 78 16.4 17.1 21.4

𝜃3 18.9 22.9 62 17 17.7 22

𝜃4 1.9 2.31 5.54 1.83 1.9 2.34

where the parameter 𝜃 = (m,O) has strictly positive components: m (the shape parameter) and O
(a scale parameter). This distribution, which is the distribution of the square root of a gamma vari-
able, is designed to model phenomena characterized by fading and variability and its applications
span various fields, including wireless communications, hydrology, mining, medical imaging (see,
e.g., Bağci, 2024; Kolar et al., 2004; Kumar et al., 2024; Miyoshi and Shirai, 2015; Reyes et al., 2020;
Tegos et al., 2022, among many others).
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EBNER et al. 1617

Although this is a regular family with straightforward theoretical properties (and thus the
MLE is the best all-round estimator), the problem of estimating the parameters of the Nak-
agami distribution has attracted much attention because of the importance of this distribution for
modeling purposes. The MLE of the scale O is

ÔML
n = X2

,

and this cannot be improved upon. The MLE of the shape m requires solving the likelihood
equations

log m̂ML
n − 𝜓(m̂ML

n ) − log ÔML
n + 2log X = 0

with 𝜓(⋅) the digamma function. See, for example, Kolar et al. (2004) for a comparative study of
various algorithms computing roots of digamma functions numerically; see Schwartz et al. (2013)
for a bias-corrected version. Starting points for the optimization are given by the MOM estimators;
the MOM estimate for O is the same as above, but for m can only be computed through a numerical
solver and has high asymptotic variance. In Artyushenko and Volovach (2019) the modified MOM
estimator

m̂MO2
n = (X2)2

X4 − (X2)2
, ÔMO2

n = X2 (16)

is proposed and it is argued through simulations (the asymptotic properties are not studied) that
this estimator is a more suitable first-step estimator. More recently, Zhao et al. (2021) uses a
generalized Nakagami distribution to derive another closed-form moment-type estimator

m̂MO3
n = 1

2
X2

X2 log(X) − X2 log X
, ÔMO3

n = X2 (17)

whose asymptotic variance is obtained and is shown to be very close to that of the MLE.
Setting up our SMOM estimators for Nakagami distributions is simple. A Stein operator is

known for the Nakagami distribution (and is also easy to obtain, for example, through the density
approach) and is given by

𝜃f (x) = 2m(O − x2)f (x) + xOf ′(x).

As the approach conceals no surprise, we postpone the details of the computations to the
Supporting Information (Section C.4). In particular, one immediately sees that both previous
modified MOM estimators fall directly within our general SMOM estimation procedure, with
(16) obtained through f1(x) = 1 and f2(x) = x, and (17) through f1(x) = 1 and f2(x) = log(x). Our
Theorem 2.4 immediately yields the asymptotic variance of these estimators, confirming Zhao
et al. (2021) in that particular case and also indicating that m̂MO2

n is not competitive in terms of
variance. All expected behaviors are illustrated in our simulation study, detailed in Section C.4
from the Supporting Information.

Despite their excellent performances, the above 𝜃̂ML
n and 𝜃̂

MO3
n estimators are nevertheless

plagued by numerical instability whenever the data contains 0’s, as can happen for instance when
the data is rounded to the first decimal. This is a classical issue, see, for example, Wilks (1990), and
such data does occur in many real-life scenarios, as we shall illustrate below. Here, the flexibility of
our SMOM estimators can be exploited to design explicit estimators with low asymptotic variance,
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1618 EBNER et al.

which are not sensitive to the presence of 0’s in the data. Some explorations lead us to propose
the compromise f1(x) = 1 and f2(x) = x which yields the new estimator

m̂ST1
n = 1

2
X2 X

X3 − X X2
, ÔST1

n = X2 (18)

which is explicit, immediate to compute, does not suffer from the numerical instability of (17)
and has a better variance (since it involves lower moments) than (16). We illustrate the var-
ious behaviors in Tables 7 and 8 where all the estimators are applied to the same samples
rounded to the first decimal over a variety of problematic parameter ranges (the MLE is started
at initial estimates provided by the estimator 𝜃̂MO2

n ). For the rather small sample size of n = 50,
the MLE and 𝜃̂

MO3
n estimator do not exist for a significant number of Monte Carlo samples;

increasing the sample size increases the volume of zeros and MLE and 𝜃̂MO3
n break down com-

pletely for the more problematic parameter constellations, hence requiring more sophisticated
approaches for these estimators. 𝜃̂ST

n remains good irrespective of the parameter values, range, or
sample size.

To illustrate the use of our estimators on real-world data, we consider rainfall measurements
for which it is well-established that Nakagami distributions provide an excellent fit (see, e.g.,
Bağci (2024)). Specifically, we use the 20,820 daily rainfall entries recorded at the Rhymney at
Bargoed station (grid reference ST1559698381) between January 01, 1961, and December 31, 2017,
available from the National River Flow Archive1.

Aggregating this data by summing daily values over each month across the entire timespan, we
construct twelve datasets (one per calendar month), each containing 57 yearly totals. All monthly
datasets exhibit characteristics consistent with i.i.d. samples. Goodness-of-fit (GOF) tests indi-
cate that the Nakagami distribution models the monthly data reasonably well. Since none of the
monthly totals are zero, all parameter estimation methods yield consistent results across months.
The corresponding shape estimates are plotted in Figure 2a.

T A B L E 7 Bias and MSE for NG(m,O) over 10, 000 simulations of samples of size n = 50, with the prescribed
parameters; each time the samples are rounded to the first decimal.

Bias MSE NE

𝜽0 𝜽̂
MO2
n 𝜽̂

MO3
n 𝜽̂

ML
n 𝜽̂

ST1
n 𝜽̂

MO2
n 𝜽̂

MO3
n 𝜽̂

ML
n 𝜽̂

ST1
n 𝜽̂

MO2
n 𝜽̂

MO3
n 𝜽̂

ML
n 𝜽̂

ST1
n

(1, 1) m 0.111 0.068 0.069 0.073 0.092 0.044 0.041 0.06 0 11 11 0

(0.8, 1) m 0.096 0.073 0.078 0.058 0.064 0.03 0.029 0.04 0 32 32 0

(1.4, 0.8) m 0.14 0.083 0.079 0.1 0.164 0.093 0.089 0.118 0 2 2 0

(3, 5) m 0.227 0.164 0.159 0.185 0.583 0.422 0.412 0.48 0 0 0 0

(3, 1) m 0.227 0.157 0.151 0.183 0.587 0.431 0.423 0.486 0 0 0 0

(2, 5) m 0.177 0.118 0.115 0.138 0.291 0.188 0.183 0.225 0 0 0 0

(4, 0.5) m 0.222 0.141 0.131 0.172 0.95 0.738 0.723 0.814 0 0 0 0

(8, 4) m 0.476 0.416 0.414 0.435 3.57 3.19 3.18 3.32 0 0 0 0

(3, 3) m 0.247 0.184 0.179 0.205 0.618 0.446 0.435 0.508 0 0 0 0

(0.8, 0.2) m 0.095 0.147 0.167 0.055 0.065 0.048 0.05 0.04 0 74 74 0
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(a) (b)

F I G U R E 2 Estimates of the shape parameter m obtained via the four methods, using monthly data (a) and
weekly data (b) from January 01, 1961 to December 31, 2017. Vertical lines indicate datasets containing zero
values; in these cases, the estimators 𝜃̂ML

n and 𝜃̂MO3
n were adjusted by excluding zeros. Vertical lines are only

visible in Figure 2b since this issue does not arise in the data plotted in Figure 2a. (a) Monthly rainfall data,
(b) weekly rainfall data.

We also aggregate the data into weekly totals, producing 52 values per year across 57 years. In
this higher-resolution dataset, the presence of zeros (the weeks corresponding to summer months
contain as many as 9 zero-entries) causes the estimators 𝜃̂ML

n and 𝜃̂MO3
n to break down, leaving 𝜃̂ST1

n
as the only reliable estimator for the full data set. GOF tests based on the Stein estimator confirm
an excellent fit of the Nakagami distribution to the weekly data. We modified estimators 𝜃̂MO3

n

and 𝜃̂ML
n to handle zero entries. This comes at the cost of the loss of information. The resulting

weekly estimates are shown in Figure 2b. Using 𝜃̂MO3
n or 𝜃̂ML

n estimators on corrected data does not
confirm a good fit. Simulation results confirm that for such parameter constellations on rounded
data with zeros only, our Stein estimator is reliable.

It may also be interesting to investigate GOF or CP analysis with our approach. A more detailed
study of such data sets will be the topic of a future publication.

4 DISCUSSION

In this paper, we have developed Stein’s method of moments in the context of univariate contin-
uous probability distributions, which can be characterized in a tractable manner via the density
approach. Restricting ourselves to this setting has allowed us to develop a detailed asymptotic
theory and analysis of “optimal functions” and to carefully assess performance via simulations;
however, many directions for research remain. Whilst we have treated a number of important uni-
variate continuous distributions, our treatment is not comprehensive. We refer the reader to the
recent references Wang and Weiß (2023) and Nik and Weiß (2024) for applications to the Lindley,
exponential, and inverse Gaussian distributions, as well as the discrete negative binomial distri-
bution. In this direction, it would be interesting to develop a general theory for univariate discrete
distributions akin to our detailed treatment of the continuous case. The density approach gen-
eralizes in a natural manner to multivariate continuous distributions (see Mijoule et al. (2023)),
and SMOM has recently been applied in a multivariate setting to truncated multivariate distribu-
tions Fischer et al. (2025) and to the notoriously difficult problem of parameter estimation on the
sphere by Fischer et al. (2024). Finally, a number of important univariate continuous distributions
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EBNER et al. 1621

do not have simple characterizations via the density approach, and characterizations are instead
based on higher-order differential operators (e.g., the variance-gamma distribution Gaunt (2014))
or fractional operators (e.g., stable distributions Xu (2019)). It would therefore be interesting to
extend Stein’s method of moments beyond the current density method setting.
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