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A B S T R A C T

Measurements of radio signals induced by an astroparticle generating a cascade present a challenge because
they are always superposed with an irreducible noise contribution. Quantifying these signals constitutes a
non-trivial task, especially at low signal-to-noise ratios (SNR). Because of the randomness of the noise phase,
the measurements can be either a constructive or a destructive superposition of signal and noise. To recover the
electromagnetic energy of the cascade from the radio measurements, the energy fluence, i.e. the time integral
of the Poynting vector, has to be estimated. Conventionally, noise subtraction in the time domain has been
employed for energy fluence reconstruction, yielding significant biases at low signal-to-noise ratios. In several
analyses, this bias is mitigated by imposing an SNR threshold cut, though this option is not ideal as it excludes
valuable data. Additionally, the uncertainties derived from the conventional method are underestimated, even
for large SNR values. To address this known issue, the uncertainties have so far typically been approximated
and corrected by using ad-hoc terms. This work tackles these challenges by detailing a method to correctly
estimate the uncertainties and lower the reconstruction bias in quantifying radio signals, thereby, ideally,
eliminating the need for an SNR cut. The development of the method is based on a robust theoretical and
statistical background, and the estimation of the fluence is performed in the frequency domain, allowing for
the improvement of further analyses by providing access to frequency-dependent fluence estimation.
1. Introduction

Radio detection can be employed to measure cosmic-rays, photons,
and neutrinos generating extensive air showers and particle cascades
in dense media [1,2]. Since the radio emission is proportional to
the number of electrons and positrons in the cascade, by quantifying
the underlying signal of a measured radio pulse we can access the
electromagnetic component of a shower, and, thus, estimate the elec-
tromagnetic energy of the originating particle. As the electromagnetic
energy is proportional to the area integral of the energy fluence (the
energy deposit per unit area in terms of radio waves) [3], a correct
reconstruction of the electromagnetic energy and its uncertainty relies
on the determination of the energy fluence and its uncertainty.

The total energy fluence 𝑓t ot at a given antenna position is the time
integral of the Poynting vector. For discretely sampled measurements,
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this means:

𝑓t ot = 𝜖0 𝑐 𝛥𝑡
∑

pol

(

∑

𝑗
𝐸2
pol(𝑡𝑗 )

)

, (1)

where 𝛥𝑡 is the sampling interval of 𝐸⃗(𝑡), the observed three-
dimensional electric-field vector (in the equation broken down into its
components), 𝜖0 is the vacuum permittivity, and 𝑐 is the speed of light.
In an analogous way, we can express the energy fluence as the sum of
component-dependent contributions 𝑓pol:

𝑓pol = 𝜖0 𝑐 𝛥𝑡
∑

𝑗
𝐸2
pol(𝑡𝑗 ) → 𝑓t ot =

∑

pol
𝑓pol. (2)

In radio measurements, the noise requires a sophisticated treatment:
the measured pulse is either enhanced or diminished compared to the
true signal depending on the random phase of the noise. This makes the
evaluation of the fluence in the presence of noise non-trivial, especially
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Fig. 1. Example of an electric-field component simulated in the absence of noise (red) and in the presence of noise (orange).
at low signal-to-noise ratios (SNR) [4].
So far, the conventional way of reconstructing the signal energy

fluence consisted of estimating and subtracting the noise fluence in
the time domain [5]. This way of treating the noise leads to a non-
negligible reconstruction bias at low SNR values. To mitigate potential
reconstruction bias, especially in the case of electromagnetic energy,
a minimum required SNR value can be introduced as a prerequisite to
using data from a given antenna. This approach is used, for example, in
Refs. [6–8], where a cut is applied at the electric field level for inclusion
of a given antenna station. One of the aims of this work is to diminish
the reconstruction bias allowing the lowering and, ideally, removal of
the need for an SNR cut. Furthermore, the uncertainties derived from
the noise-subtraction method are known to be underestimated [7,9,10].
In this work, we detail a method for the quantification of the energy flu-
ence and its uncertainty, exploiting a solid statistical background based
on Rice distributions. The same statistical background has already been
used within the ANITA experiment to achieve an estimation of the
fluence in the frequency domain by employing fitting procedures [11].
Our method is based on estimating the fluence in the frequency domain,
too, i.e., providing access to a frequency-dependent fluence estimation.
Since the spectral shape can be described more easily than the pulse
shape in the time domain, the method presented here can be further
developed by combining it with the information derived from spectral
modeling [12]. In the following, we validate the Rice-distribution
method and compare it to the so-far widely adopted noise subtraction
method. The bias of the reconstructed fluence as a function of the SNR
will be discussed, as well as the evaluation of the uncertainties.

In the following, both methods are applied to the same data set
of simulated air showers initiated by cosmic-rays. Because of its com-
plexity, it is a non-trivial task to artificially generate realistic noise. To
realistically simulate radio measurements, we have added the ambient
background recorded at a particular site of the Pierre Auger Observa-
tory to the radio-emission simulations. By using these measurements
we get a realistic SNR distribution. We simulate the antenna response of
the Radio Detector (RD) [13] of the Pierre Auger Observatory, sensitive
to the 30–80 MHz frequency bandwidth. Nevertheless, the results of
our study are independent of the detector simulation, and the Rice-
distribution method can be applied to larger frequency bandwidths
than the one tested in this work.

In Appendix B, we also present a method for estimating the spectral
amplitudes of the signal and their uncertainties based on maximizing
the Rice likelihood function. In Appendix C, the reader can find tables
listing most of the notation and variables adopted in the following.

2. Simulated data set

Here, we shortly describe the set of simulations used to study the
performance of the estimation methods.

2.1. Particle simulations and simulated radio-footprints

We exploit the same set of simulated air showers as used in Ref.
[14]. The showers are initiated by four different cosmic-ray primaries:
2 
proton, helium, nitrogen, and iron. For each primary, the particle and
radio-emission footprints of about 2000 showers are simulated with
CORSIKA/CoREAS v7.7401 [15,16], using the high energy interaction
model QGSJETII-04 [17] and an optimized thinning level of 10−6 [18].
The primaries have energies in the interval between 1018.4 eV and
1020.1 eV. The arrival directions of the showers are uniformly dis-
tributed across azimuth angles, while the zenith angle 𝛩, ranging from
65◦ to 85◦, is uniformly distributed according to a cos2(𝛩) weighting.
The environmental conditions are set to match the Pierre Auger Ob-
servatory site, as is the detector layout. The cores of the showers are
randomly distributed within this detector layout.

2.2. Simulations of electric fields in the absence of noise

The CoREAS simulations are processed through the reconstruction
framework of the Pierre Auger Observatory, Of f line [19]. The RD
response simulation is performed and the electric field traces are re-
constructed from the raw signal traces by using the Monte Carlo values
of the arrival direction and the sensitivity pattern of the RD antennas.
This means that the antenna response is applied to the CoREAS radio
pulses and then again deconvolved. The electric field traces obtained
correspond to the air shower pulses as they would be reconstructed in
the absence of noise, in the 30–80 MHz frequency band. Each trace has
a length of 8192 ns and 𝛥𝑡 = 1 ns, upsampled from the nominal 250
MSPS sampling rate with a factor of four.

2.3. Simulations of measured electric fields in the presence of noise

To get the simulated measurements of the cosmic-ray pulses in the
presence of noise, we apply the detector simulation to the CoREAS
simulations and add measured noise data. The measured traces of the
ambient background recorded at the Pierre Auger Observatory site
operating over one year are added to the digitized simulated traces.
Each noise measurement is used multiple times by rolling the trace.
In Fig. 1, we show an example of a simulated trace in the absence of
noise and the corresponding trace simulated in the presence of noise,
obtained as just described.

3. The noise subtraction method

The noise subtraction method is based on the assumption that the
measured amplitude of the electric field is given by the sum of the
cosmic-ray radio pulse and Gaussian-distributed noise 𝑒(𝑡), having a
certain standard deviation 𝜎𝑒 and centered on zero [5]. To estimate
the energy fluence, we define a noise window, delimited by 𝑡1 and 𝑡2,
and a signal window, delimited by 𝑡3 = 𝑡peak − 𝛥 and 𝑡4 = 𝑡peak + 𝛥,
where 𝑡peak indicates the position of the radio pulse in the time trace,
and 𝛥 has to be chosen such as to contain most of the pulse. As shown
in Fig. 2, the noise window has to be far away from the signal window
to contain mainly only noise contribution. For each component of the
measured electric field at a given antenna position 𝐸 (𝑡), the energy
pol
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Fig. 2. Signal window (between red lines) and noise window (between blue lines) as used in the noise subtraction method.
Fig. 3. Signal window (between red lines) and noise windows (between blue lines) as used in the Rice-distribution method. In the example, 𝑁 = 57 noise windows are used.
Fig. 4. Flowchart representing the logic of the energy fluence estimation for a single polarization of the electric field. Combining the 𝑀 estimators of the noise fluence obtained
from the 𝑁 noise windows, and the fluence measured in the signal window, we get the polarization fluence estimator and its uncertainty.
fluence is estimated as:

𝑓pol = 𝜖0 𝑐 𝛥𝑡
( 𝑡4
∑

𝑡𝑗=𝑡3

𝐸2
pol(𝑡𝑗 ) −

𝑡4 − 𝑡3
𝑡2 − 𝑡1

𝑡2
∑

𝑡𝑗=𝑡1

𝐸2
pol(𝑡𝑗 )

)

, (3)

where the normalized fluence in the noise window is subtracted from
the fluence calculated in the signal window. When dealing with very
noisy pulses, the above equation can yield negative values. To prevent
unphysical results, negative-valued estimators are typically set to zero,
and we do the same in the analysis presented here. The uncertainty on
the fluence estimator, as derived in [5], consists of:

𝛿
(

𝑓pol
)

=
√

4 𝜖0 𝑐 𝛥𝑡 𝑓pol 𝜎2𝑒 + 2 (𝜖0 𝑐)2 𝛥𝑡 𝜎4𝑒 , (4)

where 𝜎𝑒 can be approximated with the root-mean-square of the trace
computed in the noise window. The estimator of the total energy
fluence at the antenna position is given by 𝑓t ot =

∑

pol 𝑓pol, and its
uncertainty is obtained by propagating the errors 𝛿

(

𝑓pol
)

.

4. Rice-distribution method

Unlike the relatively straightforward noise subtraction method, the
Rice-distribution method comprises several steps. Here, we summarize
the general logic behind the method, with detailed explanations and
discussion provided in the subsequent sections.1

1 The implementation of the algorithm can be found at https:
//gitlab.iap.kit.edu/saramartinelli/fluence-and-uncertainty-estimation-based-
on-rice-distribution.
3 
For each component of the measured electric field at a given an-
tenna position, we define a signal window and 𝑁 noise windows along
the time trace (see Fig. 3). Since our method relies on estimating the
energy fluence in the frequency domain, we ensure a correct and effi-
cient evaluation by applying windowing before performing any Fourier
transform (Section 4.1). This results in a signal-window frequency spec-
trum of 𝑀 Rice-distributed spectral amplitudes, and 𝑁 noise frequency
spectra, each having 𝑀 spectral amplitudes assumed to be Rayleigh-
distributed (Section 4.2). We express the measured fluence as the
sum of 𝑀 frequency-dependent contributions. For each frequency, we
estimate the noise fluence over the 𝑁 windows and, finally, estimate
the signal fluence and its uncertainty. A summary of the formulas used
is provided in Section 4.3, while the derivation of these formulas -
obtained by exploiting the statistical background based on the Rice
distribution - can be found in Appendix A. In Section 4.4, we study
the bias of the signal fluence estimator and the coverage of its error
by performing a toy Monte Carlo for a single frequency. Finally, by
summing up the 𝑀 signal estimators and propagating the errors, we
obtain the estimator of the polarization fluence and its uncertainty. The
logic is illustrated in the flowchart of Fig. 4.

To finally estimate the total fluence at the antenna position and its
uncertainty, we repeat this process for the remaining polarizations.

4.1. Signal and noise windows

When calculating a discrete Fourier transform (DFT), we implicitly
assume that the finite sequence of considered samples is periodic in
time. If the start and end points of the sequence do not match each

https://gitlab.iap.kit.edu/saramartinelli/fluence-and-uncertainty-estimation-based-on-rice-distribution
https://gitlab.iap.kit.edu/saramartinelli/fluence-and-uncertainty-estimation-based-on-rice-distribution
https://gitlab.iap.kit.edu/saramartinelli/fluence-and-uncertainty-estimation-based-on-rice-distribution
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Fig. 5. Examples of signal window (upper plots) and noise window (lower plots) as defined for the Rice-distribution method. On the left, we show the time trace before (orange)
and after (black) applying the Tukey function in the signal window (red) and the noise window (blue). On the right, the corresponding frequency spectra are shown using the
same color code, with the black dots indicating the spectral amplitudes included in the 30–80 MHz frequency band.
other, artificial spectral contributions are introduced in the frequency
spectrum. To reduce the spectral leakage, it is recommended to apply a
tapering function [20]. In the implementation of our method, anytime
we perform a DFT of a sequence of samples, we employ a fast Fourier
transform (FFT) algorithm, and first we apply in the time domain the
so-called Tukey window [21]. This is a symmetrical function consisting
of a rectangular function combined with two halves of a Hann window,
also known as raised cosine bell window [20]. For this reason, the Tukey
window is often referred to as split cosine bell or cosine-tapered window.
Given a Tukey window of total length 𝐿t ot = 𝑁t ot𝛥 𝑡, where 𝑁t ot is the
total number of the samples of the considered sequence, one can require
the proportion 𝑝 of the sequence to be tapered by the two halves of the
Hann window. In other words:

𝐿H = 𝑝 𝐿t ot = 𝑁H 𝛥𝑡, wit h 𝑁H = 𝑝 𝑁t ot , (5)

where 𝐿H is the length of the Hann window and 𝑁H is the total number
of samples covered by its two halves.

To properly define the signal window, we employ the Tukey
window just introduced. First, we fix 𝐿t ot = 140 ns, and 𝐿H = 40 ns,
then, we clip the time trace around the pulse position 𝑡peak such that
the resulting clipped trace has a length equal to 𝐿t ot . Finally, we apply
the Tukey window and we perform the FFT of the windowed trace.
Because of the usage of windowing, the time trace is damped at the
edges of the signal window, where usually the noise is stronger than
the signal (see Fig. 5). The resulting spectrum could present a non-
negligible contribution outside the sensitive frequency band of interest,
mainly due to the noise. For this reason, these spectral amplitudes are
not considered. To evaluate the noise level of the measurement, we
now define 𝑁 noise windows. Starting from the beginning of the trace,
we apply the Tukey window every multiple of 𝐿t ot , until we cover the
entire trace length. We take care of skipping the signal window and
applying additional spacing to reduce the signal contribution to the
noise evaluation. In this work, we use a spacing of ± 20 ns and the same
𝐿t ot and 𝐿H employed for the signal window. This results in having
about 𝑁 ≈ 60 noise windows per measured trace. We perform the FFT
in each noise window and we exclude the spectral amplitudes outside
the sensitive frequency band of interest, as done in the signal window.
As shown in Fig. 5, we get 𝑀 = 7 spectral amplitudes within the 30–
80 MHz bandwidth both for the signal window and each of the noise
windows.

4.2. Rice distribution

After defining the signal window and performing the FFT, we obtain
𝑀 measured spectral amplitudes 𝑎(𝜈𝑗 ), where the index 𝑗 runs over 𝑀 .
These amplitudes are given by the superposition of the true signal and
the measurement noise of each frequency bin. To recover the unknown
spectral amplitudes of the true signal 𝑠(𝜈𝑗 ), we need to use a formalism
that allows us to properly disentangle the phase information from the
amplitude. To do this, the phasors formalism can be adopted.
4 
Let us first focus on a single-frequency bin, where 𝑠 is a constant
phasor representing the true signal, and 𝑚⃗ = 𝑎 𝑒𝑖𝜃 is the measurement
phasor, having amplitude 𝑎 and phase 𝜃. Following the derivation
of Ref. [22], we express the noise contribution to the measurement
as the sum of  random distributed phasors. The random phasors
represent the elementary and monochromatic disturbances to the true
signal we aim to estimate. Since many noise sources can contribute to
the disturbances (e.g. narrow-band TV transmitters, electronics noise,
atmospheric disturbances, broadband galactic background, and so on),
it is reasonable to assume  to be large. We make further assump-
tions on the noise phasors. We assume that the amplitude and phase
characterizing them are statistically independent. Furthermore, we as-
sume that their amplitudes are identically distributed and that their
phases are uniformly distributed between [−𝜋 , 𝜋). According to these
conditions, it can be demonstrated that the marginal probability density
function (PDF) of the length of the resultant phasor 𝑛, given by the noise
random phasors’ sum, is Rayleigh2 distributed. According to [22], we
can express our measurement 𝑚⃗ as the sum of 𝑠 and 𝑛 (as depicted in
Fig. 6), whose amplitude 𝑎 follows the marginal PDF given by the Rice
distribution:

𝑝a(𝑠, 𝜎) =
⎧

⎪

⎨

⎪

⎩

𝑎
𝜎2

⋅ exp
(

− 𝑎2+𝑠2
2𝜎2

)

⋅ 𝐼0
(

𝑎𝑠
𝜎2

)

a > 0

0 a ≤ 0,
(6)

In Eq. (6), 𝑠 is the amplitude of the signal, 𝜎 is the scale parameter of
the function and represents the noise level of the measurement, and
𝐼0 is the modified Bessel function of the first kind and order zero.
When the signal is large compared to the noise, the Rice distribution
can be approximated with a normal distribution having a standard
deviation equal to 𝜎 and centered on

√

𝑠2 + 𝜎2. For low signals, the Rice
distribution approaches a Rayleigh distribution. In our case, each of the
𝑀 amplitudes measured in the signal window will follow a different
Rice distribution depending on the unknown underlying signal and
noise level of the frequency bin. Note that the described formalism is
valid both in the time and frequency domains, thus the development of
further applications is possible in both domains. We refer the reader to
Appendix B if interested in the method we have developed to estimate
the amplitudes 𝑠(𝜈𝑗 ) and their errors based on maximizing the Rice
likelihood function. In Appendix B, we also describe how to estimate
the noise level of the bin over the 𝑁 noise windows.

4.3. Energy fluence estimator and its uncertainty

To evaluate the energy fluence in the frequency domain, we recall
Parseval’s theorem:

𝑓pol = 𝜖0𝑐 𝛥𝑡
𝑁s−1
∑

𝑗=0
𝐸2
pol(𝑡𝑗 ) ≈ 2 𝜖0𝑐 𝛥𝜈 𝛥𝑡2

𝑀−1
∑

𝑗=0
|𝐷(𝑣𝑗 )|

2, (7)

2 The Rayleigh distribution is a 𝜒 distribution with two degrees of freedom
after the rescaling of the random variable by a constant factor.
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Fig. 6. Representation of radio measurements using the phasor formalism. In the images, the signal phasor 𝑠 is depicted on the real axis (red). The measurement 𝑚⃗ (orange) is
given by the sum of 𝑠 and the sum of the  random noise phasors. The probability density function of the noise phasor is illustrated as a blue cloud.
Fig. 7. Histograms of the signal fluence estimators obtained by running a toy Monte Carlo for three fixed values of 𝑅. The vertical black lines indicate the underlying true signal
fluence used in the toy Monte Carlo. For comparison, the mean values of the histograms are shown through the colored vertical lines.
where 𝑁s is the number of samples considered belonging to the time
trace, 𝐷 are the corresponding complex-valued DFTs, 𝑀 = 𝑁s

2 is the
number of positively valued frequencies, 𝛥𝜈 is the frequency sample
size, and the time sample size is given by 𝛥𝑡 = 1

𝑁s𝛥𝜈
. We express Eq. (7)3

as a sum of the fluences for each frequency:

𝑓 (𝜈𝑗 ) = 𝐾 |𝐷(𝑣𝑗 )|
2 → 𝑓pol =

𝑀−1
∑

𝑗=0
𝑓 (𝜈𝑗 ), (8)

where 𝐾 = 2 𝜖0 𝑐 𝛥𝜈 𝛥𝑡2. Let us now consider the ideal case of a signal
in the complete absence of noise. The energy fluence of the unknown
signal is:

𝑓s = 𝐾
𝑀−1
∑

𝑗=0
𝑠2(𝑣𝑗 ) =

𝑀−1
∑

𝑗=0
𝑓s(𝜈𝑗 ). (9)

The estimator of the polarization fluence and the estimator of the total
fluence at the antenna position will be of the form:

𝑓pol =
𝑀−1
∑

𝑗=0
𝑓s(𝜈𝑗 ) → 𝑓t ot =

∑

pol
𝑓pol, (10)

where 𝑓s(𝜈𝑗 ) are the signal fluence estimators in the 𝑗th frequency. The
fluence of the same signal measured in the presence of random noise
will be:

𝑓a = 𝐾
𝑀−1
∑

𝑗=0
𝑎2(𝑣𝑗 ) =

𝑀−1
∑

𝑗=0
𝑓a(𝜈𝑗 ), (11)

with 𝑓a(𝜈𝑗 ) being the frequency-dependent contributions to the ampli-
tude fluence measured in the signal window.

For simplicity, let us analyze a single-frequency bin. We estimate the
noise fluence of the 𝑗th frequency by exploiting the 𝑁 noise windows:

𝑓n(𝜈𝑗 ) = 𝐾
𝑁

𝑁−1
∑

𝑖=0
𝑛2𝑖 (𝑣𝑗 ), (12)

3 In Eq. (7), we approximate 𝜖0𝑐 𝛥𝜈 𝛥𝑡2
(

|𝐷(𝑣0)|
2 + 2 ∑𝑀−2

𝑗=1 |𝐷(𝑣𝑗 )|
2 +

|𝐷(𝑣𝑀−1)|
2) by double counting the contribution from the first and the last

bin, which are typically zero due to bandpass filtering.
5 
where 𝑛𝑖(𝑣𝑗 ) indicates the Rayleigh-distributed random noise of the 𝑗th
bin measured in the 𝑖th noise window. In Eq. (12), we use the sample
mean over the windows, but depending on the characteristic noise of
the measurements, one could consider excluding some of the noise
windows from the evaluation, or using a more robust estimator as the
one of Eq. (24). Finally, we define the fluence estimator of the signal in
the 𝑗th frequency by subtracting the noise fluence from the amplitude
fluence estimators:

𝑓s(𝜈𝑗 ) =
{

𝑓a(𝜈𝑗 ) − 𝑓n(𝜈𝑗 ) 𝑓a(𝜈𝑗 ) ≥ 𝑓n(𝜈𝑗 )
0 𝑓a(𝜈𝑗 ) < 𝑓n(𝜈𝑗 ).

(13)

The statistical uncertainty can be estimated as:

𝛿(𝑓s(𝜈𝑗 )) =
√

𝑓n(𝜈𝑗 )
(

𝑓n(𝜈𝑗 ) + 2 𝑓s(𝜈𝑗 )
)

(14)

Finally, the fluence estimator of the polarization and the total fluence
estimator can be calculated, as well as their uncertainties.

4.4. Toy Monte Carlo: Bias and error coverage for single-frequency estima-
tor

In Eq. (13), we included the second condition to prevent the signal
estimator of a frequency bin from assuming negative unphysical values.
However, including this condition introduces a bias, that we evaluated
with a toy Monte Carlo. Exploiting the fact that the random variables
𝑎 are Rice-distributed, we generate 𝑁MC = 5000 random variables by
setting 𝑠, and thus 𝑓s, to fixed values. Without loss of generality, we
keep 𝜎 = 1 for simplicity and we define the noise parameter 𝑓n ∶= 2 𝜎2.
For each amplitude 𝑎, we evaluate the noise fluence estimator 𝑓n as the
mean over 𝑁 random variables following a normal distribution having
mean 𝜇 = 2 𝜎2 and variance Var = 4 𝜎4∕𝑁 , where 𝑁 is the number
of noise windows used in this work (see Appendix A for a detailed
explanation). Finally, we evaluate the signal fluence estimator 𝑓s and
its uncertainty.

In Fig. 7, we show some examples of estimator distributions gen-
erated with the toy Monte Carlo for three fixed values of 𝑅 = 1.12,
3.12, 8.0, the signal-to-noise ratio of the frequency bin given by 𝑅 =
𝑓 ∕𝑓 . In the histograms relative to 𝑅 = 1.12, 3.12, the presence of a
s n
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Fig. 8. Intrinsic bias of the signal fluence estimator (top) and errors coverage (bottom) obtained by running a toy Monte Carlo for several values of 𝑅. The orange shadowed area
indicates the 𝑅 range which is strongly biased. In both plots, the error bars are divided by
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peak in correspondence of the bin including the estimators 𝑓s = 0 can
be noticed. On the contrary, in the histogram relative to 𝑅 = 8.0, the
number of entries in the same bin decreases significantly. This reflects
a bias that gets less prominent with increasing values of 𝑅. We tackled
the dependence on 𝑅 by scanning several values and computing the
relative intrinsic bias and its standard deviation as:

𝜓 = 𝑓s∕𝑓s − 1, 𝜎𝜓 =

√

√

√

√

√

𝑁MC−1
∑

𝑖=0

(𝑓s,𝑖 − 𝑓s)2

𝑁MC − 1 , (15)

where 𝑓s is the mean value of the estimators obtained through the toy
Monte Carlo. As shown in the upper plot of Fig. 8, the relative bias is
larger than 10% up to 𝑅 = 2. For higher values of 𝑅, the bias decreases
and can be neglected. The bias of the single-frequency estimator seems
to affect the bias of the fluence estimator of a single polarization mostly
up to SNR ≈ 2.5 (see Section 5.1). We studied also the coverage of the
errors as a function of 𝑅. We define the coverage as the percentage of
data satisfying the condition:

𝑓s ∈ [𝑓s − 𝛿(𝑓s), 𝑓s + 𝛿(𝑓s)]. (16)

As shown in the lower plot of Fig. 8, in correspondence of large bias,
e overestimate the errors, while for 𝑅 > 2 the coverage approaches

he classical definition of standard deviation.

5. Validation of the method

In this section, we validate the Rice-distribution method and com-
pare it to the noise subtraction method. Both methods are applied to
imulated noisy electric field traces (Section 2.3). No additional signal

cleaning or RFI suppression is applied. The fluence estimators are com-
pared to the reference values evaluated from the same electric fields
simulated in the absence of noise (Section 2.2). In this way, the analysis
is not affected by biases potentially introduced by the unfolding of the
antenna response. Since the methods differ, we compare the estimators
to different reference values. Concerning the noise subtraction method,
the reference values are calculated in the time domain by evaluating
Eq. (2) in the signal window. Because of the usage of windowing in the

ice-distribution method, this equation would yield a different value.4
Instead, the reference values are obtained evaluating Eq. (8) over the
frequency spectrum of the signal window after applying the Tukey
window and excluding the frequencies outside the 30–80 MHz band. In
the following, error coverage, bias, and uncertainty for both methods
are analyzed as functions of the SNR.

4 For the window function adopted, we estimate an average difference of
% for antennas within 1.5 Cherenkov radii.
 t

6 
For a single polarization, we define the signal-to-noise ratio as:

SNRpol =
(

|𝐸Hilb
pol (𝑡peak )|

RMSpol

)2
, (17)

where 𝑡peak is the estimated pulse position, 𝐸Hilb
pol (𝑡peak ) is the amplitude

f the Hilbert envelope of the electric-field component at the pulse
position, and RMSpol is the root-mean-square of the Hilbert envelope
in the noise window. Similarly, we define the signal-to-noise ratio over
he three polarizations as:

SNRt ot =
(𝐴Hilb

t ot (𝑡peak )
RMSt ot

)2
, (18)

with RMSt ot being the root-mean-square in the noise window of the
trace:

𝐴Hilb
t ot (𝑡) =

√

∑

pol

|

|

|

𝐸Hilb
pol (𝑡)

|

|

|

2
. (19)

In real data, the position of pulses with a small signal-to-noise-ratio is
not known. It can, however, be estimated, for example by fitting a radio
wavefront model [23] to pulses with sufficient signal-to-noise ratio. In
this work, we assume that the approximate pulse position is known.

o this end, we start from the Monte Carlo position 𝑡MC
peak and then

etermine 𝑡peak by evaluating the maximum of the Hilbert envelope
round 𝑡MC

peak ±30 ns. Simulated traces strongly affected by thinning
artifacts are excluded by applying a cut based on antenna position.
Following [24], we exclude antennas with a distance from the shower
axis greater than 2 Cherenkov radii.

5.1. Polarization fluence 𝑓pol

For each electric field component, we evaluate the fluence esti-
mators 𝑓pol and their uncertainties 𝛿(𝑓pol),5 along with the reference
values 𝑓pol and the signal-to-noise ratios SNRpol. After calculating the

atios 𝜓 =
𝑓pol
𝑓pol

, we examine different signal-to-noise ratio intervals.
lectric fields are broken down into East-West (EW), North-South (NS),
nd Vertical (V) components. We combine the data irrespective of the
olarization, collecting all ratios 𝜓 within a given SNR range without

distinguishing between EW, NS, and V components. To reduce the im-
pact of outliers, in each SNR interval, we calculate 𝜓̃ , the median value
of 𝜓 . Finally, we define the average reconstruction bias in the bin as
Bias = 𝜓̃− 1. The dispersion of each bin is described by the interquartile
range (i.q.r.) of the distribution. We calculate the equivalent standard
deviation as 𝜎r ec ≈ i.q.r.

1.35 .

5 We used the estimator of Eq. (24) to estimate 𝑓𝑛(𝜈𝑗 ), the noise fluence of
he 𝑗th frequency bin.
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Fig. 9. Estimation of 𝑓pol for the noise subtraction method (upper figure) and the Rice-distribution method (lower figure) up to SNRpol = 20 (as defined in Eq. (17)). In the upper
plots, we show the bias together with the error bar given by 𝜎r ec. In the middle plots, the resolution of each bin is compared with 𝛿(𝑓 )∕𝑓 of the same bin on a logarithmic scale.
The coverage of the uncertainties (Eq. (20)), together with its error normalized to the number of entries of the bins, are shown in the lower plots.
As shown in Fig. 9, where SNR values up to 20 are investigated,
we found that for the noise subtraction method, SNR values below 2.5
are characterized by an extremely large bias (exceeding 75%). In the
first bin, the bias reaches 100%, as the negative-valued estimators have
been set to zero, significantly influencing the result. For larger values,
the bias decreases: starting from SNR ≈ 9, the average bias is contained
within 10%. In many works, SNR values of at least 10 are required
for higher-level analyses [6–8]. In comparison, the Rice-distribution
method exhibits a smaller bias. On average, up to SNR ≈ 2.5, the bias
fluctuates between 25% and 15%. The bias in this region is probably
due to a combination of the estimator intrinsic bias discussed in Sec-
tion 4.4, and the lack of RFI suppression. For increasing SNR values,
the bias fluctuates between 10 and 5%, and can be neglected. We now
focus on the uncertainty estimation of the two methods. We compare
𝛿(𝑓pol)∕𝑓pol, the median value of the relative uncertainties of each bin,
with 𝜎r ec. For unbiased estimators, we would expect the uncertainties
to reflect the reconstruction resolution. The uncertainties of the noise
subtraction method result in being systematically underestimated, as
shown in Fig. 9. To further corroborate this conclusion, we investigate
7 
the uncertainty coverage of the method. We define the coverage as the
percentage of data points satisfying the condition:

𝑓pol ∈ [𝑓pol − 𝛿(𝑓pol), 𝑓pol + 𝛿(𝑓pol)]. (20)

The error coverage of the noise subtraction method oscillates between
30% and 40%. The coverage of the Rice-distribution method aligns with
its bias. For SNR values above 2.5, where the bias is less significant, the
coverage fluctuates around 68%, close to the classical definition of one
standard deviation (SD) coverage.

We found that for higher values of SNR, both methods converge
to a reconstruction bias below 5%, as shown in Fig. 10, where the
region up to SNR = 400 is studied. For a fair comparison, in all of
the plots of the figure, we exclude the data points corresponding to
SNR < 10, where the noise subtraction method is strongly biased. Once
more, the noise subtraction method systematically underestimates the
uncertainties. The average coverage is about 40%, while our method
provides a more consistent way of uncertainty estimation, with an error
coverage slightly below the desired 68%.
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Fig. 10. Estimation of 𝑓pol for the noise subtraction method (upper figure) and the Rice-distribution method (lower figure) up to SNRpol = 400 (as defined in Eq. (17)).
5.2. Total fluence 𝑓t ot

We repeat the analysis presented in the previous section, adapting
it to the estimation of the total fluence evaluated at the antenna
position. The noise subtraction method exhibits a large bias at the
lowest SNR values, still exceeding 10% up to SNR ≈ 6.5. From this
value, the bias starts fluctuating around 10% and then stabilizes within
5% with increasing SNR (see Fig. 11). The uncertainties derived from
the method are underestimated, with an average coverage of about
35%. We can draw the same conclusion for higher values of SNR,
despite the bias remaining contained within 5% (see Fig. 12, where
we show the SNR range from 10 up to 400). In contrast, the bias of
the method we implemented fluctuates around 10% up to SNR ≈ 7.5,
and around 5% with increasing SNR (see Figs. 11, 12). On average, the
error coverage fluctuates around 60% at any SNR value.

6. Discussion

In this article, we focused on an unbiased comparison of signal-
estimation methods, using a generic approach and not tailoring their
application to any specific experiment. The Rice distribution method
shows promising improvements, especially for incorporating low-SNR
signals. The extent of improvement achievable in the reconstruction of
shower observables, such as primary particle energy or depth of shower
maximum, will be dependent on the specifics of said reconstruction
algorithm. For example, it may be limited by the reliability of the
lateral distribution function at low SNR values. Other technical aspects
should also be considered in higher-level analyses. For example, due
to the power loss associated with windowing, careful selection of the
window function, length, and tapering percentage is necessary. This
step may require renormalizing fluences and radiation energies when
relating them to particle energies. Lastly, if pulse position determina-
tion is inaccurate, it could introduce additional biases in the fluence
8 
estimation. We note that none of these limitations are specific to the
Rice method for signal estimation, which will yield a minimally biased
estimate of the energy fluence and an adequate quantification of its
uncertainty. The Rice method thus provides the potential to incorporate
data from lower-SNR measurements in reconstruction procedures based
on fluence estimation, when proper care is taken regarding limitations
such as the ones described above.

7. Conclusions

In this work, we quantified the bias at low SNR values in the
noise-subtraction method, which is conventionally used to reconstruct
the energy fluence. We also quantified the underestimation of the
uncertainties associated with this method. To address these known
limitations, we developed a method based on Rice distributions for a
more accurate estimation of the fluence at low SNR values and a correct
evaluation of its uncertainty. At the antenna level, we achieve an
average bias of 10% up to signal-to-noise ratios of about 7.5. Above this
value, the bias fluctuates around 5%. We also significantly improved
the estimation of the uncertainties, reaching a reliable coverage close
to 68%. With the Rice-distribution method, the estimation of energy
fluence and its uncertainty can thus be significantly improved, and
signal-to-noise cuts can be lowered or possibly completely avoided in
higher-level analyses.

The Rice-distribution method is generic and can be applied to any
kind of radio observations of air showers and in-ice cascades. Since the
method is not constrained by the frequency bandwidth of sensitivity,
radio experiments in the field of astroparticle physics can make use of
it. Among others, the Pierre Auger Observatory, RNO-G [25], LOFAR,
ANITA, GRAND [26], SKA [27], and the IceCube Neutrino Observa-
tory [28] could benefit from adopting this approach. The statistical
background employed to develop the fluence estimation method can
be further exploited, as we show in Appendix B. There, we describe
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Fig. 11. Estimation of 𝑓t ot for the noise subtraction method (upper figure) and the Rice-distribution method (lower figure) up to SNRt ot = 20 (as defined in Eq. (18)).
how to estimate the signal amplitude employing the Rice likelihood
function. Further improvements and applications are still feasible by
combining this statistical approach and the signal modeling in the
frequency domain.
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Appendix A. Derivation of the fluence estimator and its uncer-
tainty

We derive the energy fluence estimator and its uncertainty as pre-
sented in Section 4.3. For a monochromatic signal with 𝐾 = 1, we
rewrite Eqs. (9), (11) as:
𝑓𝑠 = 𝑠2(𝜈0) ≡ 𝑠2, 𝑓a = 𝑎2(𝜈0) ≡ 𝑎2. (21)
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Fig. 12. Estimation of 𝑓t ot for the noise subtraction method (upper figure) and the Rice-distribution method (lower figure) up to SNRt ot = 400 (as defined in Eq. (18)).
We aim for an estimator of 𝑓𝑠 proportional to 𝑎2. We standardize
𝑎 as 𝑏 = 𝑎∕𝜎, where 𝑏 ∼ 𝑝a(𝑠∕𝜎 , 1), equivalent to a non-central
𝜒-distribution with two degrees of freedom (DF) and non-centrality
parameter 𝜆 = 𝑠∕𝜎. Thus, 𝑏2 follows a non-central 𝜒2-distribution:

𝑏2 ∼ 𝜒2
nc(𝐷 𝐹 = 2, 𝜆 = (𝑠∕𝜎)2), (22)

with 𝐸(𝑏2) = 2 + (𝑠∕𝜎)2 and Var (𝑏2) = 2 (2 + 2 (𝑠∕𝜎)2).

Noise fluence estimator
Estimating the signal fluence requires a noise fluence estimator. We

sample the noise trace in 𝑁 windows, each yielding a noise amplitude
𝑛𝑖 assumed to be Rayleigh-distributed. Each (𝑛𝑖∕𝜎)2 follows a chi-square
distribution with two DF, so the sum 𝑇 =

∑𝑁−1
𝑖=0 (𝑛𝑖∕𝜎)2 follows a chi-

square distribution with 2𝑁 DF, approximated by a normal distribution
with mean 𝜇 = 2𝑁 and variance Var = 4𝑁 for large 𝑁 . The noise
fluence estimator is the sample mean of the squared noise amplitudes:

𝑓n =
1
𝑁

𝑁−1
∑

𝑖=0
𝑛2𝑖 =

𝜎2

𝑁
𝑇 , (23)

which is normally distributed with mean 𝜇 = 2𝜎2 and variance Var =
𝜎4∕𝑁 . Defining 𝑓n ∶= 2𝜎2, we find 𝑓n to be an unbiased estimator of
𝑓n. For 𝑁 ≈60, its relative uncertainty is around 13%. We derive a
more robust estimator in the presence of outliers using the population
median, as:

𝑓n =
2

1.405
⋅ median

[

𝑛2𝑖
]

, (24)

where we exploit that the median value of a 𝜒2
DF distribution can be

approximated as DF⋅
(

1 − 2 )3, and that 𝑛2 ∼ 𝜎2 ⋅ 𝜒2.
9⋅DF 𝑖 2
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Signal fluence estimator
We derive the expected value of 𝑓a as:

𝐸(𝑓a) = 𝐸(𝑎2) = 𝜎2 𝐸(𝑏2) = 2 𝜎2 + 𝑠2 (25)

By setting 𝑠 = 0, for the noise estimator we get:

𝐸(𝑓n) = 2 𝜎2 ∶= 𝑓n. (26)

Estimating the signal fluence as 𝑓s = 𝑓a − 𝑓n, its mean value will be:

𝐸(𝑓s) = 𝐸(𝑓a) − 𝐸(𝑓n) = 𝑠2 = 𝑓s, (27)

meaning that such an estimator would be unbiased. Since the energy
fluence has to be positively defined, we have to introduce the condition:

𝑓s = 0 𝑓a < 𝑓n. (28)

As discussed in Section 4.4, the above condition introduces a positive
bias that can be neglected for 𝑅 > 2.

Signal fluence uncertainty
We derive the variance of 𝑎2 :

Var (𝑎2) = 𝜎4 Var (𝑏2) = 2 𝜎2(2 𝜎2 + 2 𝑠2). (29)

To derive the variance of 𝑓s, we make the assumptions:

• The noise fluence is measured with much better precision than 𝑎2.
This can be considered a valid assumption since the variable 𝑎 is
a single measurement (from the signal window), while the noise
fluence is estimated through 𝑁 ≈ 60 noise windows;

• The probability of hitting the physical limit of Eq. (28) is negligi-
ble, i.e. we are assuming 𝑅 > 2;

• (𝑠∕𝜎2) is large, meaning that 𝑎2 and 𝑏2 are normal in a good
approximation, and, again 𝑅 is large.
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Under these assumptions, the variance of 𝑓s is:

Var (𝑓s) = Var (𝑎2) ≈ 𝑓n
(

𝑓n + 2 𝑓s
)

, (30)

where we approximate the parameters as 𝑠2 ≈ 𝑓s and 2 𝜎2 ≈ 𝑓n. We
define the confidence interval as 𝑓s ± 𝛿(𝑓s), with:

𝛿(𝑓s) =
√

Var (𝑓s) =
√

𝑓n
(

𝑓n + 2 𝑓s
)

. (31)

Appendix B. Spectral amplitude estimator and its uncertainty

The theoretical background described in Section 4.2 has much more
otential to exploit than what has been shown so far. Here we introduce
he Rice likelihood function and provide an application example. In par-
icular, we present a method to estimate the signal spectral amplitude
nd its uncertainty.

Let us consider the case of a single-frequency signal 𝑠0 ≡ 𝑠(𝜈0), with
0 ≡ 𝑎(𝜈0) being the measured spectral amplitude, and 𝜎̂0 the estimator
f the noise level. The Rice likelihood function will be:

𝐿(𝑠 ∣ 𝑎 = 𝑎0, 𝜎 = 𝜎̂0) = 𝑎
𝜎2

exp
(

−𝑎
2 + 𝑠2

2𝜎2

)

𝐼0

(

𝑎𝑠
𝜎2

)

, (32)

where 𝑠 ≥ 0. We evaluate 𝜎̂0 over the 𝑁 noise windows:

̂0 =
1
𝑁

𝑁−1
∑

𝑖=0
𝑎𝑖(𝑣0) → 𝜎̂0 ≡ 𝜇0

√

2∕𝜋 , (33)

where in the last equivalence we assumed the noise to be Rayleigh-
istributed with scale parameter 𝜎0 and mean value 𝜇0. We define the

estimator of the parameter 𝑠0 as the amplitude 𝑠̂ML that maximizes
(𝑠). Since it is not possible to solve analytically 𝑑 𝐿(𝑠)

𝑑 𝑠
|

|

|𝑠=𝑠̂ML
= 0, we

ecommend the reader to run a scalar minimization algorithm to find
he minimum of the cost function 𝐽 (𝑠) = −ln(𝐿(𝑠)). To avoid unphysical
olutions, such as negative results, and to make the minimization pro-
ess reliable, we exploit a bounded solver. We set as bounds [𝑎0− 1.5 𝜎̂0,
0 + 1.5 𝜎̂0].6 There are some intervals where it is not strictly necessary

to run the minimizer solver. In particular, for 𝑎0∕𝜎̂0 ≤
√

2, 𝑠̂ML = 0.
or larger ratios, as 𝑎0∕𝜎̂0 ≥4, we can approximate 𝐿(𝑠) by a normal
istribution having SD = 𝜎̂0 and centered in

√

𝑎20 − 𝜎̂
2
0 , thus 𝑠̂ML ≈

𝑎20 − 𝜎̂
2
0 . To evaluate the estimator uncertainty 𝛿, we work in Gaussian

approximation. First, we approximate the likelihood 𝑐 𝑜𝑠𝑡 function as:

𝐽 (𝑠) ≈ 𝐽 (𝑠̂ML) + (𝑠 − 𝑠̂ML) ⋅
𝜕 𝐽 (𝑠)
𝜕 𝑠

|

|

|𝑠=𝑠̂ML
+

+(𝑠 − 𝑠̂ML)2 ⋅
1
2
𝜕2𝐽 (𝑠)
𝜕 𝑠2

|

|

|𝑠=𝑠̂ML
,

(34)

where the first two terms are null by definition. Since the 𝑐 𝑜𝑠𝑡 function
f a Gaussian distribution is a parabolic function, we can approximate
(𝑠) to a parabola as well. This would lead to the following system of

equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐽 (𝑠) = (𝑠 − 𝑠̂ML)2 ⋅
1
2
𝜕2𝐽 (𝑠)
𝜕 𝑠2

|

|

|𝑠=𝑠̂ML

= 𝛿2 ⋅ 1
2
𝜕2𝐽 (𝑠)
𝜕 𝑠2

|

|

|𝑠=𝑠̂ML

𝐽 (𝑠) ≈ 𝑘2 → 𝛿 = 𝑘 ⋅ 𝑆 𝐷

(35)

Finally, by requiring a one-sigma interval, i.e. 𝛿 = 1 SD, the solution of
Eq. (35) is given by:

𝛿 = 1
/

√

1
2
𝜕2𝐽 (𝑠)
𝜕 𝑠2

|

|

|𝑠=𝑠̂ML
. (36)

6 The bounds were found by studying the first and second derivative spaces
of the likelihood function.
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Appendix C. Table of variables and notation

Generic variables
𝐸pol Electric field component in the chosen

coordinates system
𝑓pol Energy fluence relative to the considered electric

field component
𝑓t ot Total energy fluence at the antenna position
SNRpol Signal-to-noise ratio relative to the considered

electric field component
SNRt ot Signal-to-noise ratio calculated over all the

electric field components
Notation
𝑦 Unknown parameter (true value)
𝑦̂ Estimator of the parameter (or measurement)
𝛿
(

𝑦̂
)

Uncertainty on the estimator (or measurement)
ℎ Mean value of the variable
ℎ̃ Median value of the variable
Rice-distribution variables (fixed frequency or time)
𝑠 Signal amplitude in the absence of noise
𝑎 Measured amplitude of the signal in the presence

of noise
𝑓s, 𝑓s Signal energy fluence, its estimator
𝑓n, 𝑓n Noise energy fluence, its estimator
𝑓a Signal energy fluence measured in the presence of

noise

Data availability

Code of the algorithm available at: https://gitlab.iap.kit.edu/sar
amartinelli/fluence-and-uncertainty-estimation-based-on-rice-distributi
on.
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