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 a b s t r a c t

We present the library ggxy, written in C++, which can be used to compute partonic and hadronic cross sections 
for gluon-induced processes with at least one closed heavy quark loop. It is based on analytic ingredients which 
avoids, to a large extent, expensive numerical integration. This results in significantly shorter run-times than 
other similar tools. Modifying input parameters, changing the renormalization scheme and varying renormaliza-
tion and factorization scales is straightforward. In Version 1 of ggxy we implement all routines which are needed 
to compute partonic and hadronic cross sections for Higgs boson pair production up to next-to-leading order in 
QCD. We provide flexible interfaces and allow the user to interact with the built-in amplitudes at various levels.
PROGRAM SUMMARY
Program title: ggxy
Developer’s repository link: https://gitlab.com/ggxy/ggxy-release
Licensing provisions: GNU General Public License Version 3
Programming language: C++ and Fortran
External routines/libraries used: avhlib, boost, Collier, CuTtools, eigen, LHAPDF, lievaluate, OneLOop, Recola, 
CRunDec
Nature of problem: The computation of partonic and hadronic cross sections for gluon-induced processes. In 
Version 1, the Higgs boson pair production process is implemented at next-to-leading order in Quantum Chro-
modynamics.
Solution method: For the virtual corrections, deep expansions around the forward and high energy limit are used.
Restrictions: The run-times depend crucially on the requested precision. Results at the per-mille level can be ob-
tained in about 30 minutes using a single core on a AMD Ryzen Threadripper PRO 3955WX processor.
References and Links: are provided in the paper

1.  Introduction

At the Large Hadron Collider (LHC) at CERN, gluon-induced pro-
cesses have a comparatively large cross section and are thus important 
for various phenomenological analyses, in particular in the context of 
the Higgs boson (see, e.g., Ref. [1]). This is also true for Higgs boson 
pair production, a process which already receives a lot of attention from 
the experimental groups. It will be further scrutinised during the high-
luminosity phase of the LHC, since it is the only way to access the self-
interaction of the Higgs boson directly.

Higgs boson pair production is one of the first gluon-initiated loop-
induced 2 → 2 processes which has been computed to next-to-leading 
order (NLO) in QCD without relying on any approximation [2–4]. This 
was an important milestone since the NLO corrections amount to al-
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most 100% of the LO and are thus very important. In addition, there is 
a large theoretical uncertainty due to the dependence on the renormal-
ization scheme of the top quark which comes with a change in the mass
value [5,6].

The first calculation with exact 𝑚𝑡 dependence at NLO from Refs. [2,
3] suffered from large run-times. This has been circumvented by gen-
erating an interpolation grid for the virtual amplitude [7]. However, 
this approach has the disadvantage that the top quark and Higgs bo-
son masses have fixed values. As a consequence, studies using the MS
definition of the top quark mass with an energy-dependent renormaliza-
tion scale are prohibitively expensive. In Ref. [4] such a study has been 
performed, however no (detailed) timings are provided in the paper.

A possibility to reduce or even eliminate the bottlenecks related to 
the run-time and the lack of flexibility to modify numerical input values 
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is to incorporate analytic results from expansions in various phase-space 
regions. In a first approach in this direction, the analytic results obtained 
in the high-energy region were combined with the purely numerical re-
sults of Ref. [7], which are then only needed in a restricted region of 
phase space [8]. In a later work the expansion around small transverse 
Higgs boson momenta has been combined with the high-energy expan-
sion which completely avoids expensive numerical calculations [9,10].

In this work we implement the results of Ref. [10] in a fast and flex-
ible C++ library: ggxy. We supplement these results by our implemen-
tation of the real radiation contribution and the possibility to compute 
differential and total hadronic cross sections. Higgs boson pair produc-
tion serves as a sample process. The structure of ggxy is such that it can 
easily be extended to other processes in the future.

The remainder of the paper is structured as follows: In Sections 2 
and 3 we comment on the virtual and real corrections to 𝑔𝑔 → 𝐻𝐻 , 
respectively, and put special emphasis on the implementation in ggxy. 
Section 4 provides details on the installation and the structure of ggxy. 
We describe the dependencies and provide a manual for using the func-
tions implemented in ggxy. Section 5 contains various examples which 
demonstrate the various ways to use ggxy. The user is invited to adapt 
the examples to their own purpose. We conclude in Section 6.

2.  Virtual corrections

The virtual corrections to Higgs boson pair production have the same 
kinematics as the Born process. They are conveniently parameterized in 
terms of two form factors reflecting the two possible tensor structures 
for 𝑔𝑔 → 𝐻𝐻 . We follow the notation introduced in [10] and refer to 
this paper for details. For convenience we summarize in the following 
only those formulae which are relevant for the implementation in ggxy.

We introduce the perturbative expansion of the form factors 𝐹1 and 
𝐹2 as 

𝐹 = 𝐹 (0) +
(

𝛼𝑠(𝜇𝑟)
𝜋

)

𝐹 (1) +
(

𝛼𝑠(𝜇𝑟)
𝜋

)2
𝐹 (2) +⋯ , (1)

and decompose them into “triangle” and “box” form factors (𝑘 = 0, 1,…)

𝐹 (𝑘)
1 =

3𝑚2
𝐻

𝑠 − 𝑚2
𝐻

𝐹 (𝑘)
tri + 𝐹 (𝑘)

box1 + 𝐹 (𝑘)
dt1 ,

𝐹 (𝑘)
2 = 𝐹 (𝑘)

box2 + 𝐹 (𝑘)
dt2 . (2)

𝐹 (𝑘)
dt1 and 𝐹

(𝑘)
dt2 denote the contribution from one-particle reducible 

double-triangle diagrams, see e.g. Fig. 1(f) of Ref. [8] (note that 𝐹 (0)
dt1 =

𝐹 (0)
dt2 = 0). Analytic results for the leading-order form factors are avail-
able from Refs. [11,12]. The two-loop triangle form factors have been 
computed in Refs. [13–15], but we refrain from implementing them in 
ggxy since the analytic expansions provide excellent approximations. 
The exact results for the double-triangle contribution can be found in 
Ref. [16], and are implemented in ggxy.

In the pre-factor of 𝐹 (𝑘)
tri  it is possible to identify the trilinear self-

coupling of the Higgs boson, 𝜆3, present in the Higgs potential 

𝑉 (𝐻) =
𝑚2
𝐻
2

𝐻2 + 𝜆3𝑣𝐻
3 +

𝜆4
4
𝐻4, (3)

where 𝑣 is the vacuum expectation value and 𝐻 is the Higgs boson 
field. In the Standard Model we have 𝜆SM3 = 𝜆SM4 = 𝑚2

𝐻∕(2𝑣2). Deviations 
from this value are often parametrized in the so-called 𝜅 framework by 
introducing 𝜅𝜆 = 𝜆3∕𝜆SM3 . In ggxy it is possible to choose a value for 
𝜅𝜆 ≠ 1. The current experimental bounds for 𝜅𝜆 from ATLAS and CMS are 
−1.2 < 𝜅𝜆 < 7.2 [17] and −1.39 < 𝜅𝜆 < 7.02 [18], respectively.

For the virtual corrections we introduce the Mandelstam variables 
𝑠, 𝑡 and 𝑢 which are defined in the usual way with 𝑠 + 𝑡 + 𝑢 = 2𝑚2

𝐻 , and 
we also need the transverse momentum of the Higgs bosons which is 
given by 𝑝2𝑇 = (𝑡𝑢 − 𝑚4

𝐻 )∕𝑠.
For the virtual corrections we implement the (semi-)analytic expan-

sions around the forward and the high-energy limits as obtained in 

Ref. [10], where for the form factors 𝐹1 and 𝐹2 expansions in 𝑡 up to 
order 𝑡5 and in 𝑚𝑡 up to order 𝑚120

𝑡  have been computed.1 In both kine-
matic limits we expand in 𝑚𝐻  up to quartic order. Although this is the 
limitation in precision of our approach, it is more than sufficient for all 
practical purposes. For higher values of the partonic centre-of-mass en-
ergy √𝑠 and of 𝑝𝑇  the uncertainty is (far) below the percent level; close 
to the production threshold √𝑠 ≈ 250 GeV it can be larger (in particu-
lar for 𝐹2), however, there the numerical values of the form factors are 
small. Overall it has been shown [10] that the expansions approximate 
the (exact) numerical results with high precision.

In ggxy ultraviolet renormalized and infrared (IR) subtracted form 
factors are implemented. For the renormalization we apply the MS
scheme for 𝛼𝑠 and renormalize the external gluon field on-shell. For the 
top quark mass there is the option to choose the on-shell (𝑀𝑡) or MS
scheme (𝑚𝑡(𝜇𝑡)), where 𝜇𝑡 is the corresponding renormalization scale. 
Our final results are expressed in term of 𝛼(5)𝑠 (𝜇𝑟).

The subsequent subtraction of the remaining IR poles in 𝜖 leads to 
finite form factors. Since there are different schemes concerning the sub-
traction we provide explicit expressions for our implementation. We ob-
tain the finite form factors via 
𝐹 (1),f in = 𝐹 (1) − 1

2
𝐼 (1)𝑔 𝐹 (0), (4)

where the quantities on the right-hand side are ultraviolet-renormalized 
and 𝐼 (1)𝑔  is given by [22] 

𝐼 (1)𝑔 = −

(

𝜇2
𝑟

−𝑠 − 𝑖𝛿

)𝜖
𝑒𝜖𝛾𝐸

Γ(1 − 𝜖)
1
𝜖2

[

𝐶𝐴 + 2𝜖𝛽0
]

, (5)

with 
𝛽0 = 1

4

(11
3
𝐶𝐴 − 4

3
𝑇 𝑛𝑙

)

. (6)

In addition to the form factors, in ggxy we also implement the virtual 
finite NLO corrections in the form (see, e.g., Refs. [23,24]) 

̃fin =
𝛼2
𝑠

(

𝜇𝑟
)

16𝜋2

𝐺2
𝐹 𝑠

2

64

[

𝐶 + 2
(

𝐹 (0)∗
1 𝐹 (1)

1 + 𝐹 (0)∗
2 𝐹 (1)

2 + 𝐹 (0)
1 𝐹 (1)∗

1 + 𝐹 (0)
2 𝐹 (1)∗

2

)]

, (7)

where 𝐹 (𝑖) = 𝐹 f in,(𝑖)(𝜇2
𝑟 = −𝑠) and 

𝐶 =
(

|

|

|

𝐹 (0)
1

|

|

|

2
+ |

|

|

𝐹 (0)
2

|

|

|

2
)

(

𝐶𝐴𝜋
2 − 𝐶𝐴 log2

𝜇2
𝑟
𝑠

)

, (8)

with 𝜇𝑟 being the renormalization scale which is also present at the 
hadronic level. Here, 𝛼𝑠 corresponds to the five-flavour strong coupling 
constant. Furthermore, we introduce 

fin =
̃fin

𝛼2𝑠 (𝜇𝑟)
. (9)

Details on the implementation can be found in Section 5.2.
In the remaining part of this section we comment on the implemen-

tation of the analytic expressions. After expansion in 𝑚2
𝐻 , the expan-

sion of the form factors in 𝑡 is a simple Taylor expansion with coef-
ficients depending on 𝑠∕𝑚2

𝑡 . We express the amplitude in terms of 48 
master integrals which we compute with the help of the “expand and 
match” method [25–27]. This provides results for each 𝜖 coefficient of 
each master integral as a power-log expansion around properly cho-
sen values for 𝑠∕𝑚2

𝑡 . The combination of these expansions provides re-
sults with a precision of 10 or more digits over the whole √𝑠 range. 
In practice we parametrize the 𝜖 expansion of each master integral in 
terms of coefficients, which depend on 𝑠∕𝑚2

𝑡 . We insert the generic ex-
pansion into the amplitude and convert this expression into C++. For 

1 Results to lower expansion depths in the high-energy expansion have been 
obtained in Refs. [19,20]. In the forward limit three expansion terms have been 
computed in Ref. [21] in the context of the expansion in the transverse momen-
tum of the Higgs boson, 𝑝𝑇 .
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the numerical evaluation we provide routines which implement the re-
sults of the “expand and match” results for the coefficients of the mas-
ter integrals. In order to make the routine more efficient, we do not 
implement all of the series expansions provided by the method, but ap-
proximate the results via Chebychev polynomials, see e.g. Ref. [28]. 
In practice we use Chebychev approximations with 100 terms in the 
regions 50 ≤ 𝑠∕𝑚2

𝑡 < 500, 25 ≤ 𝑠∕𝑚2
𝑡 < 50, 8 ≤ 𝑠∕𝑚2

𝑡 < 25, 4.2 ≤ 𝑠∕𝑚2
𝑡 < 8, 

2 ≤ 𝑠∕𝑚2
𝑡 < 3.8, 0.1 ≤ 𝑠∕𝑚2

𝑡 < 2. To cover the regions around the sin-
gular points 𝑠∕𝑚2

𝑡 = {0, 4,∞} we include generalized series expansions 
with {10, 10, 7} expansion terms, respectively. The implementation of 
the master integrals rather than the approximation of the amplitude it-
self provides the possibility to re-use the implementation also for other 
scattering processes in the future. For numerical stability in the limit 
𝑠∕𝑚2

𝑡 → ∞, however, it was necessary to insert the expansions of the 
master integrals and implement the expanded amplitudes in C++. We 
switch to these explicit expansions for 𝑠∕𝑚2

𝑡 > 500.
In the high-energy limit one encounters a complicated asymptotic 

expansion for |𝑠|, |𝑡|, |𝑢| ≫ 𝑚2
𝑡  which is discussed in detail in Refs. [19,

20,29]. The efficient use of the differential equations for the master inte-
grals enables us to compute more than 100 expansion terms in the limit 
𝑚𝑡 → 0. For the numerical evaluation of the form factors based on these 
expansions, for 𝑝𝑇 ≲ 500 GeV, it is necessary to construct Padé approx-
imations [30]. In Ref. [10] it has been shown that a deep expansion in 
𝑚𝑡 leads to precise results even close to the top–anti-top quark thresh-
old if 𝑝𝑇 ≳ 150 GeV. We implement the Padé approximation following 
Ref. [28]. To be self-contained, we provide some details here:

In the high-energy expansion, our results are given as series expan-
sions in the variable 𝑥 = 𝑚2

𝑡 ∕𝑠: 

𝐹 (𝑥) =
𝑁+𝑀
∑

𝑘=0
𝑐𝑘𝑥

𝑘,

where the 𝑐𝑘 can still depend on log(𝑥). We wish to find the Padé ap-
proximant 

𝑅(𝑥) =

𝑀
∑

𝑖=0
𝑎𝑖𝑥𝑖

1 +
𝑁
∑

𝑗=1
𝑏𝑗𝑥𝑗

,

which satisfies 
d𝑖

d𝑥𝑖
𝐹 (𝑥)

|

|

|

|𝑥=0
= d𝑖

d𝑥𝑖
𝑅(𝑥)

|

|

|

|𝑥=0
(10)

with 0 ≤ 𝑖 < 𝑁 +𝑀 . This problem is equivalent to finding the solution 
to the following system of equations:
𝑁
∑

𝑚=1
𝑏𝑚𝐶𝑁−𝑚+𝑘 = −𝑐𝑁+𝑘, 𝑘 = 1,… , 𝑁, (11)

𝑘
∑

𝑚=0
𝑏𝑚𝑐𝑘−𝑚 = 𝑎𝑘, 𝑘 = 1,… , 𝑁. (12)

In order to solve this equation we use the QR decomposition with 
the help of Householder transformations implemented in the Eigen li-
brary [31]. We follow Ref. [30] and compute several Padé approxima-
tions and combine them in a weighted way to obtain a central value and 
an uncertainty estimate of our procedure. Numerical instabilities can 
show up when we compute Padé approximations for rather small values 
of 𝑝𝑇 ≲ 200GeV, where the expansion coefficients become very large. 
The instabilities can be identified due to a large Padé uncertainty on 
the approximation in a region where our procedure should still provide 
accurate results. Whenever we find these large uncertainty estimates 
we rerun the Padé procedure in quadruple precision. Although we have 
over 100 expansion coefficients at hand, we implement only the first 
48 terms in ggxy; higher expansion terms quickly become numerically 
unstable in double precision. We observe that this is sufficient to obtain 
precise numerical values down to 𝑝𝑇 ∼ 175 GeV, where we can switch 
to the small-𝑡 expansion. In practice, we interpolate between the small-𝑡
and high-energy expansions in the region 200GeV < 𝑝𝑇 < 220 GeV.

3.  Real radiation

The proper treatment of IR divergences at NLO in QCD is very well 
studied. However, in order to motivate the implementations in ggxy we 
briefly repeat the main features.

The partonic NLO QCD cross section can be written schematically
as

𝜎NLO𝑎𝑏 = ∫𝑛+1
d𝜎R𝑎𝑏 + ∫𝑛

[

d𝜎LO+V𝑎𝑏 + d𝜎C𝑎𝑏
]

, (13)

where the subscript on the integrals indicates the dimension of the 
phase-space integration, 𝜎R𝑎𝑏 is the partonic process with an additional 
parton, d𝜎LO+V𝑎𝑏  is the combination of the LO cross section and the virtual 
NLO corrections, and d𝜎C𝑎𝑏 is the counterterm coming from the redefini-
tion of PDFs due to the absorption of initial-state collinear singularities. 
While the partonic NLO cross section is IR finite, d𝜎V𝑎𝑏 and d𝜎C𝑎𝑏 contain 
explicit IR 𝜖 poles and further IR singularities arise in the first term af-
ter the phase-space integration of the unresolved parton in 𝑑 = 4 − 2𝜖
dimensions. In order to make a phase-space integration in 𝑑 = 4 dimen-
sions possible, we use the Catani-Seymour dipole subtraction scheme 
[32], where the partonic cross section is rewritten as

𝜎NLO𝑎𝑏 = ∫𝑛+1

[

𝜎R𝑎𝑏 − 𝜎A𝑎𝑏
]

+ ∫𝑛

[

d𝜎LO+V𝑎𝑏 + d𝜎C𝑎𝑏 + ∫1
d𝜎A𝑎𝑏

]

, (14)

where a new subtraction term d𝜎A𝑎𝑏 is introduced which mimics 𝜎R𝑎𝑏 in 
all IR limits and makes the integrand of the first term IR finite. The 
same term is added back to the second integrand and the phase-space 
integration over the unresolved parton leads to explicit IR 𝜖 poles which 
cancel exactly those from d𝜎LO+V𝑎𝑏  and d𝜎C𝑎𝑏. In summary, both terms are 
separately IR finite and can be safely integrated over the phase space in 
𝑑 = 4 dimensions.

In the Catani-Seymour subtraction scheme the last two terms in 
Eq.  (14) are rewritten in terms of the so-called integrated dipole op-
erators as

∫𝑛

[

d𝜎C
𝑎𝑏 + ∫1

d𝜎A
𝑎𝑏

]

= ∫𝑛

[

𝐈(𝜇2
𝑟 )⊗ d𝜎LO

𝑎𝑏 +
∑

𝑎′ ,𝑏′
∫

1

0
d𝑥𝐊𝐏𝑎𝑏,𝑎′𝑏′ (𝑥, 𝜇2

𝑓 )⊗ d𝜎LO
𝑎′𝑏′ (𝑥)

]

, (15)

where the symbol ⊗ denotes colour correlations and the dependence on 
the IR and factorization scales is made explicit. The explicit definitions 
of the operators can be found in Ref. [32]. The 𝐊𝐏𝑎𝑏,𝑎′𝑏′  operator is 
further convoluted with the LO cross section and contains non-diagonal 
terms in flavour space with respect to the initial-state partons. Since at 
NLO we can have at most one 1 → 2 splitting, all terms in the 𝐊𝐏𝑎𝑏,𝑎′𝑏′

are proportional to either 𝛿𝑎𝑎′  or 𝛿𝑏𝑏′ .
For the 𝑔𝑔 → 𝐻𝐻 process we have implemented the two initial-state 

dipoles with initial-state spectators corresponding to the 𝑔 → 𝑔𝑔 and 
𝑔 → 𝑞𝑞 splittings. In addition, we have implemented the phase-space 
restriction on the subtraction terms [33,34] parametrized by 𝛼CS. This 
parameter can be used to cross-check the calculation since the sum of all 
parts is independent of this artificial parameter, where the case 𝛼CS = 1
corresponds to no phase-space restriction. In ggxy we set 𝛼CS = 0.1. Fol-
lowing Ref. [35], the parameter 𝛼CS is also used to parametrize a tech-
nical cut to avoid numerical instabilities due to large cancellations be-
tween the real emission contribution and the subtraction terms. We have 
cross-checked our implementation of the Catani-Seymour subtraction 
scheme against the program Helac-Dipoles [35] for single phase-space 
points and after phase-space integration. The finite part of the real cor-
rections can be safely combined with the finite virtual correction ̃fin, 
defined in Eq.  (7), where the latter contribution has to be multiplied by 
a factor of 𝛼𝑠2𝜋 .

For the real corrections to Higgs boson pair production, which 
have already been calculated in Refs. [2–4,36–38], the following sub-
processes have to be taken into account

𝑔𝑔 → 𝐻𝐻𝑔, 𝑔𝑞∕𝑞𝑔 → 𝐻𝐻𝑞,
𝑞𝑞∕𝑞𝑞 → 𝐻𝐻𝑔, 𝑔𝑞∕𝑞𝑔 → 𝐻𝐻𝑞.

(16)
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The corresponding one-loop amplitudes, as well as the spin-
correlated squared matrix element of 𝑔𝑔 → 𝐻𝐻 required for the sub-
traction terms, are calculated with Recola [39,40] where the one-loop 
matrix elements are written in terms of tensor coefficients 𝑐(𝑡)𝜇1…𝜇𝑟𝑡

 and 
tensor integrals 𝑇 𝜇1…𝜇𝑟𝑡

(𝑡)  as

1−loop =
∑

𝑡
𝑐(𝑡)𝜇1…𝜇𝑟𝑡

𝑇
𝜇1…𝜇𝑟𝑡
(𝑡) . (17)

The tensor integrals are defined as

𝑇
𝜇1…𝜇𝑟𝑡
(𝑡) =

(2𝜋𝜇)4−𝐷

𝑖𝜋2 ∫ d𝐷𝑞
𝑞𝜇1 … 𝑞𝜇𝑟𝑡

𝐷(𝑡)
0 …𝐷(𝑡)

𝑘𝑡

, (18)

where 𝑘𝑡 is the number of propagators and 𝑟𝑡 the rank of the tensor 
integral. The denominators are given by

𝐷(𝑡)
𝑖 =

(

𝑞 + 𝑝(𝑡)𝑖
)2

−
(

𝑚(𝑡)
𝑖

)2
, (19)

with 𝑝(𝑡)0 = 0.
The tensor coefficients are calculated in a recursive approach in 

Recola and the tensor integrals are calculated with Collier [41], which 
performs an uncertainty estimation on the precision of the tensor inte-
grals. If we encounter a phase-space point that leads to tensor integrals 
that are marked as unstable by Collier, we perform an alternative 
reduction to scalar integrals using the OPP reduction technique [42] 
with the program CutTools [43] by using the interface with Recola 
of Ref. [44]. In this case, we construct the numerator of the one-loop 
integrals using the tensor coefficients calculated by Recola (in double 
precision) and multiply it with the tensor 𝑞𝜇1 … 𝑞𝜇𝑟𝑡 . The reduction as 
well as the calculation of the scalar integrals with OneLOop [45] is done 
in quadruple precision.

The rescaling of the Higgs boson self coupling by 𝜅𝜆 = 𝜆3∕𝜆SM3  in 
Recola is performed with the already built-in function to rescale a spe-
cific tree-level vertex, which is sufficient for our purpose. On the other 
hand, Recola does not support modifications of numerical input pa-
rameters after the process initialization, such as the top-quark mass, 
which would be required in the MS top-quark mass scheme when us-
ing a dynamical scale definition for 𝜇𝑡. A similar problem has already 
been encountered in Ref. [46] when using Recola 2 [47], where the 
authors reinitialized this program for each phase-space point, leading 
to an increase in computation time by a factor of 5. Instead, we have 
implemented in Recola the possibility to update the top-quark mass 
even after the initialization phase, following the same approach that is 
already used in Recola to update the UV counterterms. In ggxy this op-
tion is only enabled if the MS top-quark mass scheme is used and results 
in only a moderate increase of computation time of about 10% of the 
matrix elements. Because of this modification in the Recola version in-
cluded in ggxy, it is not straightforward to replace it with a different 
version.2

As an additional cross check we have computed analytic results for 
the one-loop helicity amplitudes of 𝑔𝑔 → 𝐻𝐻𝑔 in terms of scalar in-
tegrals that are evaluated with CutTools and OneLOop. For the com-
putation of the helicity amplitudes we have generated all Feynman di-
agrams with qgraf [48], which are mapped onto different topologies 
and converted to FORM [49] notation with tapir [50] and exp [51,52]. 
The computation of the diagrams is then performed with the in-house 
code calc and the reduction to master integrals is carried out with Kira 
[53,54]. We find good agreement between the calculation with Recola 
and the analytic results. However, in the latter case the coefficients in 
front of the scalar integrals turn out to be not sufficiently numerically 
stable over the whole phase space. For this reason we use the approach 
based on Recola as our default option.

2 Currently, all modifications necessary for this can be tracked by searching 
the tag dynamic_params in the source code.

4.  Using ggxy

4.1.  Installation and structure

ggxy can be downloaded or cloned from the repository hosted at 
https://gitlab.com/ggxy/ggxy-release. It contains the files and directo-
ries

CMakeLists.txt    README.md    example-
build.sh    examples/
include/          lib_ext/     src/

where CMakeLists.txt is the CMake configuration file of ggxy, 
README.md contains useful information, example-build.sh is an exam-
ple script to build ggxy using CMake. The directory examples/ contains 
two subdirectories gghh-FF/ and gghh-nlo/ which contain examples 
for the usage of ggxy to calculate the two form factors as well as fin, 
and the calculation of integrated and differential hadronic cross sec-
tions at LO and NLO QCD. The examples are discussed in more detail in 
the next section. The directories src/ and include/ contain the source 
code and the corresponding header files of ggxy, respectively. For con-
venience the source code of the following external libraries is located in 
the directory lib_ext:

• avhlib [55,56]: Phase-space generation.
• Collier [41]: Numerical evaluation of one-loop functions for real 
radiation.

• CRunDec [57]: Running and decoupling for 𝛼𝑠 and the top quark 
mass.

• CutTools [43]: Fall-back option for reduction to scalar integrals.
• OneLOop [45]: Fall-back option for numerical evaluation of one-loop 
functions for real radiation.

• Recola [40]: Generation of amplitudes for real corrections.
They are directly compiled together and correctly linked with ggxy by 
CMake. In addition, it is required that the following libraries are already 
installed:

• boost [58] and eigen [31]: C++ libraries with convenient containers 
and functions, in particular in the context of linear algebra.

• LHAPDF [59,60]: Provides parton distribution functions.
We note that we have developed and tested ggxy using GCC 7.5 and 

13.3, boost 1.66 and 1.83, eigen 3.4 and LHAPDF 6.2.0. In order to 
evaluate polylogarithmic functions we have included the code from the 
ancillary files of Ref. [61] directly into ggxy, which can be found in 
src/lievaluate/.

For the installation of ggxy it is sufficient to provide only the path 
to the LHAPDF directory which contains the directories include and 
lib/lib64, in the variable LHAPDFPATH in example build script. In ad-
dition, it is possible to compile ggxy only for the evaluation of the 
form factors by setting onlyFF=On in example-build.sh. In this case 
the path to LHAPDF is ignored and only CRunDec from the external 
libraries is compiled together with ggxy. With onlyFF=On the exam-
ples in examples/gghh-FF/ can still be compiled whereas the examples 
in examples/gghh-nlo/ require onlyFF=Off. Further details about the 
compilation can be found in README.md.

By running the installation script all external libraries of lib_ext/ 
and ggxy are built in the directory example-build/. In addition, a sec-
ond directory is created, example-install/, that contains the subdi-
rectory include/ with all header and module files of the external li-
braries and ggxy. The shared-libraries of all external libraries and ggxy 
are placed in the directory example-install/lib/, so that the content 
of example-install/ is sufficient to link ggxy with other programs.

4.2.  Partonic form factors

The elementary building blocks implemented at the partonic level 
are functions for the form factors 𝐹1 and 𝐹2 at one- and two-loop order 
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in QCD. ggxy allows for an easy access to the finite parts of the form 
factors as defined in Eq.  (4). The function prototype looks as follows
complex<double> gghhFF(int loops, int ff, double s, double t,
double mhs, double mts,
double murs = gghhFFmursDefault,
double muts = 0.0, unsigned scheme = 0,
double kappa_lam = 1.0, double dTriCoeff = 1.0);

where the parameters are defined as follows,
• loops: QCD loop order, 1 or 2
• ff: choice of form factor, 1 or 2
• s,t: Mandelstam variables
• mhs: squared Higgs boson mass, 𝑚2

𝐻
• mts: squared top quark mass, 𝑚2

𝑡
• murs: squared renormalization scale 𝜇2

𝑟
• muts: squared renormalization scale for the MS top quark mass 𝜇2

𝑡
• scheme: choice of renormalization scheme for top quark mass, 0 (OS) 
or 1 (MS).

• kappa_lam: corresponds to 𝜅𝜆
• dTriCoeff: additional coefficient for the double-triangle contribu-
tion, see Eq.  (2); can be used, for e.g., to switch on and off the 
double-triangle contribution

The default value of murs is set to the pre-processor variable 
gghhFFmursDefault which stands for the choice 𝜇2

𝑟 = −𝑠. At one-loop 
order the exact results [11,12] are implemented.3 At two-loop order, 
depending on the numerical value of 𝑝𝑇 , routines for either the small-𝑡
or the high-energy expansions [10] are called.

Using the function gghhFF() it is straightforward to construct the 
quantity f in in Eq.  (9) using the on-shell or MS scheme for different 
choices of 𝜇𝑡. For convenience ggxy provides the function
double gghh2lVfin(double s, double t, double mhs, double
mts, double GF,
double murs = gghhFFmursDefault, double muts = 0.0,
unsigned scheme = 0, double kappa_lam = 1.0);

where the meaning of the parameters is as above with the addi-
tional parameter GF for 𝐺𝐹 . In this case, the pre-processor variable 
gghhFFmursDefault stands for 𝜇2

𝑟 = 𝑠∕4. Note that this is in contrast 
to the default value of murs = 𝜇2

𝑟 = −𝑠 used for the form factors. 
gghh2lVfin only accepts positive values for murs.

In addition, we provide the function
double gghh1l(double s, double t, double mhs, double mts,
double GF, double kappa_lam = 1.0);

which can be used to calculate the LO squared matrix element with a 
factor of 𝛼2𝑠  is factored out, and the function
vector<double> gghh2l(double s, double t, double mhs,
double mts,
double GF, double murs = gghhFFmursDefault,
double muts = 0.0, unsigned scheme = 0,
double kappa_lam = 1.0);

which returns the LO squared matrix element as the first vector element 
and f in as the second.

4.3.  Functions for hadronic cross sections

The calculation of hadronic total and differential cross sections is 
managed by the class mc_gen which has the following functionality:

• Set input parameters (𝑚𝑡, 𝑚𝐻 , top-quark mass scheme, renormaliza-
tion and factorization scales, PDF set, …).

3 At the border of the phase space we switch to expansions which provide 
more stable results.

• Integrate all contributions needed for NLO predictions together, or 
each contribution individually.

• Optimize phase-space integration.
• Perform Monte-Carlo integration.
• Fill results into histograms and write final results to disk.

The Monte-Carlo integration is constructed based on several integration 
channels for the different subprocesses in the real corrections and of the 
individual contributions with a Born-like phase space. The individual 
weights of these channels are optimized during the optimization phase 
of the program following the approach of Ref. [62]. The phase spaces 
of Born-like contributions and of the real corrections are generated with 
Kaleu [55,56] as part of the avhlib library, which is a multi-channel 
phase-space generator that performs further optimizations on-the-fly.

In the following we provide a brief summary of the functions that 
can be called; a detailed example of the class is given in the file 
examples/gghh-nlo/nlo-gghh.cpp. The mc_gen class is called as
mc_gen gen = mc_gen(int seed, double ss);

where the first parameter is the seed for the initialization of the ran-
dom numbers and the second parameter is the hadronic centre-of-mass 
energy √𝑠 in units of GeV. The structure of this class is process inde-
pendent. However, currently we offer only a configuration of mc_gen for 
the production of two Higgs bosons at the LHC that is called with
configure_mc_gghh(string& mode, mc_gen& gen);

The first parameter defines the contribution that should be integrated 
over the phase space and can be one of the following keywords:

• lo: LO cross section
• nlo: NLO cross section
• V: Virtual corrections given by 𝛼𝑠2𝜋 ̃fin
• I: 𝐈 operator of Catani-Seymour subtraction scheme
• KP: Sum of 𝐊 and 𝐏 operator of Catani-Seymour subtraction scheme
• RS: Real subtracted contribution using Catani-Seymour subtraction 
scheme

• LOVDIP: Sum of lo, V, I and KP.

Note that nlo corresponds to the sum of LOVDIP and RS.
The parameters of the process should be modified by one of the fol-

lowing class methods
void set_mass_top(double mtop);
void set_mass_higgs(double mhiggs);
void set_gfermi(double gfermi);

where the default values can be found in src/tools/params.cpp. In 
addition, it is possible to rescale the trilinear self-coupling of the Higgs 
boson by 𝜅𝜆 with the function
void set_kappa_lam(double kappa_lam);

The top-quark mass scheme can be set with the function
void set_mtscheme(unsigned mtscheme, int crd_runLoops_as = 5,

int crd_runLoops_mt = 5, int crd_convLoops_mt = 4);

where again mtscheme=0 corresponds to the on-shell and mtscheme=1 to 
the MS scheme. The last three parameters of the function set_mtscheme 
control the loop order for the running of the strong coupling constant 
and top-quark mass, and the loop order for the conversion from the 
on-shell to the MS top-quark mass. The conversion and the running are 
performed with CRunDec and the default values of the parameters are set 
to highest orders available. The input values 𝛼𝑠(𝑚𝑍 ) and 𝑚𝑍 for the run-
ning are read from the PDF set. The strong coupling constant, which ap-
pears explicitly in the matrix element, is always calculated with LHAPDF, 
where the parameters are controlled by the given PDF set. Thus, the last 
two parameters are always ignored in the on-shell scheme.

The generator is able to produce results for different values of the 
renormalization and factorization scales in a single run. In particular, it 
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is possible to perform the usual 7-point scale variation to estimate the-
oretical uncertainties, where the central values (𝜇𝑟,0, 𝜇𝑓,0) of the renor-
malization and factorization scales are varied as follows:
(

𝜇𝑟
𝜇𝑟,0

,
𝜇𝑓
𝜇𝑓,0

)

∈ {(1, 1), (0.5, 0.5), (2, 2), (2, 1), (0.5, 1), (1, 2), (1, 0.5)}. (20)

The names of the corresponding scale definitions, the information about 
the variation, and the PDF set is either initialized with
void set_scales_pdfs(vector<string>& scale_names,
int gridtype,
string pdf_name);

or

void set_scales_pdfs(vector<string>& scale_names,
vector<vector<double>> igrid,
string pdf_name);

where the first input parameter is a vector with the names of the scales. 
They are only used for bookkeeping purposes and appear as a label in the 
histogram files which are generated by ggxy. The actual definition of the 
scales happens in the function set_scale (see also below) where vectors 
for the renormalization and factorization scales, with the same length 
as the vector containing the names of the scales, are introduced. The 
last input parameter, set_scales_pdfs, is the name of the PDF set as 
defined in LHAPDF. The second input parameter is either an integer num-
ber to use a predefined grid, where gridtype=0 corresponds to the case 
where only the central value of the scale is calculated. With gridtype=1 
the 7-point scale variation as given in Eq.  (20) is performed. Alterna-
tively, a matrix that contains the information about the scale variations 
can be provided. For example, the 7-point scale variation of Eq.  (20) 
can also be calculated with
igrid={{1.0,1.0},{0.5,0.5},{2.0,2.0},{2.0,1.0},
       {0.5,1.0},{1.0,2.0},{1.0,0.5}}

The renormalization and factorization scales are then defined with
void set_scalefunc(scalefunc set_scale);

where scalefunc is a type definition of a function (or pointer to a func-
tion) with the following prototype
void set_scale(vector<int>& iproc,
vector<lorentz_vec>& p,
params& pars,
vector<double>& muR, vector<double>& muF,
double& mut);

Here iproc is a vector containing the identification of the particles of 
the process following the conventions of the PDG [63] and p is a vector 
containing the corresponding four momenta in the center-of-mass sys-
tem. The parameter pars is a class containing all numerical parameters, 
so that the top-quark or Higgs boson mass can be obtained by pars.mt 
or pars.mh, respectively. The different scale settings for the renormal-
ization and factorization scales are defined in the vectors muR and muF, 
where the length of these vectors is equal to the length of the vector 
scale_names which has been used in the function set_scales_pdfs to 
initialize the scale and PDF settings. In the case of the MS top-quark mass 
scheme the corresponding scale 𝜇𝑡 has to be passed as the parameter mut. 
For convenience the top-quark mass 𝑚𝑡(𝑚𝑡) is stored in pars.mtmt.

Histograms can be defined and filled with the functions
void set_hinit(histo_init hinit);

and

void set_hfill(histo_fill hfill);

where histo_init and histo_fill are type definitions to functions 
with the following prototypes

void hinit(histo& hlist);

and

void hfill(histo& hlist,
vector<int>& iproc,
vector<lorentz_vec>& plab,
params& pars);

The histograms can then be initialized in the function hinit with the 
following class method of hlist

void add(string& name, int bn,
double start, double end);

where the first input parameter is the observable name, bn is the num-
ber of bins and the variables start and end define the range of the 
histogram. Alternatively, it is possible to add histograms with
void add(string& name, int bn,
vector<double>& bins);

where in this case the vector bins should contain the edges of the his-
tograms so that this function can be used to create histograms with un-
equal bin sizes. The observables should then be constructed in the func-
tion hfill where the variables iproc and pars are the same as in the 
function set_scale and plab are the particle momenta in the laboratory 
frame. The histograms should then be filled in this function with
void fill(int ih, double val);

which is a class method of hlist. The variable ih is used to identify a 
histogram defined in hfill, where the first histogram defined with add 
has ih= 0, and the variable val is the value of the observable for this 
event. Finally, it is possible to define a function for possible phase-space 
cuts

bool event_cut(vector<int>& iproc,
vector<lorentz_vec>& plab,
params& pars);

where the input parameters are identical to hfill. This function should 
return false if the event should be rejected and otherwise true. The 
function can then be given to the generator by using the class method
void set_event_cut(cutfunc event_cut);

of mc_gen.
The initialization of the generator is considered complete when the 

class method
void finish_init();

is called, after which none of the functions above should be called and 
the optimization phase is activated. In this phase the weights of all in-
tegration channels and the phase-space generator Kaleu are optimized. 
The generation of phase-space points is then achieved with the class 
method

vector<double> integrate(int npT, int istep=10000);

where the variable npT is the number of phase-space points that should 
be generated and istep defines the number of phase-space points after 
which log information is printed. The return vector contains the cross 
section of the first scale definition and the corresponding MC uncer-
tainty. The optimization phase is deactivated by calling the class method
void set_phase_optim(bool phase_optim);

with phase_optim=false, after which the histogram will be filled in 
the next call of integrate. All MC integration weights including the 
histograms, can be reset with the class method
void reset_weights();

of mc_gen. Finally, the histograms can be saved to disk with
void output(string outfile);

where outfile is the output file.

Computer Physics Communications 320 (2026) 109933 

6 



J. Davies, K. Schönwald, M. Steinhauser et al.

5.  Example results

The example files to compute partonic and hadronic quantities are 
in the subdirectories examples/gghh-FF/ and examples/gghh-nlo/, re-
spectively. They are compiled by executing the script build.sh in the 
corresponding directory.

5.1.  One- and two-loop form factors

Using the functions gghh<n>lFF<i> it is straightforward to repro-
duce numerical results for the form factors present in the literature. The 
example file examples/gghh-FF/ff.cpp shows how the data points for 
the (exact) one- and two-loop curves in Fig. 3 of Ref. [64] can be gener-
ated. In addition the example shows how the corresponding data points 
for a MS top quark mass can be generated.

5.2.  Virtual NLO corrections

The ultraviolet renormalized and IR subtracted virtual corrections 
fin from Eq.  (9) are implemented in the function gghh2lVfin(), de-
scribed above. The example given in the file examples/gghh-FF/check-
hhgrid.cpp calls this function for all 6320 data points contained in the 
hhgrid [7] interpolation grid and evaluates them in less than 10 sec-
onds; this performance allows the use of ggxy for Monte-Carlo studies. 
In principle the use of the grid for interpolation might be even faster, 
however it lacks the flexibility to change the parameters such as the 
masses of the top quark or the Higgs boson. Extending the grid, for 
example for a running top quark mass with an 𝑚𝐻𝐻 -dependent scale 
𝜇𝑡 would require computational resources many orders of magnitude 
greater than our implementation. All results from Ref. [7] are validated 
within the uncertainties.

5.3.  Hadronic cross sections

The file examples/gghh-nlo/nlo-gghh.cpp illustrates how 
hadronic cross sections can be computed. It contains auxiliary functions 
to define the renormalization and factorization scales and to initialize 
and fill the histograms. In the main part of the program one first 
selects which part of the NLO corrections to compute and initializes the 
Monte-Carlo generator. Afterwards one specifies the input parameters 
using, e.g.
gen.set_mass_top(mt);

The renormalization scheme for the top quark mass is selected via
gen.set_mtscheme(mtscheme);

After initializing the histograms and specifying cuts4 it is possible to ini-
tiate the Monte-Carlo integration. Finally the generated data are stored 
to disk. They are used to obtain total and differential cross sections 
which are discussed in the following subsections.

5.3.1.  Total hadronic cross section
In the sample file examples/gghh-nlo/nlo-gghh.cpp the total 

hadronic cross section is computed using the input values from Ref. [3]. 
In particular, we use the PDF set PDF4LHC15_nlo_100_pdfas which is 
obtained via the interface of LHAPDF [59]. The renormalization and 
factorization scales are set to a common scale 𝜇𝑟 = 𝜇𝑓 = 𝑚𝐻𝐻∕2. We re-
produce the central values and uncertainties based on the on-shell top 
quark mass given in Ref. [3] both for √𝑠 = 14 TeV and √𝑠 = 100 TeV. 
The comparison is shown in Table 1. The results from ggxy are pro-
duced by averaging the results from five different seeds. The relative 
uncertainty for each seed is about 0.2% with a run time of about 30
minutes on a single core on a AMD Ryzen Threadripper PRO 3955WX 

4 In our example no cuts are applied.

Table 1 
Comparison with results of Ref. [3] for √𝑠 = 14 TeV 
and √𝑠 = 100 TeV.
√

𝑠  ggxy  Ref. [3]
 14 TeV 𝜎LO [fb] 19.848(4)+27.6%−20.5% 19.85+27.6%−20.5%

𝜎NLO [fb] 32.92(2)+13.6%−12.6% 32.91+13.6%−12.6%

 100 TeV 𝜎LO [fb] 731.2(2)+20.9%−15.9% 731.3+20.9%−15.9%
𝜎NLO [fb] 1150(1)+10.8%−10.0% 1149+10.8%−10.0%

Table 2 
Comparison with results of Ref. [6].
√

𝑠 𝜅𝜆 𝜎NLO
𝚐𝚐𝚡𝚢

 [fb] 𝜎NLO[6] [fb]
13 TeV −10.0 1424.1(9) 1438(1)
13 TeV −5.0 509.4(3) 512.8(3)
13 TeV −1.0 113.53(7) 113.66(7)
13 TeV 0.0 61.36(4) 61.22(6)
13 TeV 1.0 27.72(2) 27.73(7)
13 TeV 2.0 12.777(9) 13.2(1)
13 TeV 2.4 12.035(8) 12.7(1)
13 TeV 3.0 16.50(1) 17.6(1)
13 TeV 5.0 80.00(5) 83.2(3)
13 TeV 10.0 564.7(4) 579(1)
14 TeV 1.0 32.79(2) 32.81(7)

processor. An example script examples/gghh-nlo/run.sh is provided 
to illustrate the usage of the sample file to compute cross sections with 
different seeds in parallel followed by a combination of the results using 
python scripts.

For illustration the total cross section using the MS scheme can also 
be calculated with the example file by only setting mtscheme=1, where 
we use 𝜇𝑡 = 𝑚𝑡(𝑚𝑡). We obtain 
𝜎tot (𝑔𝑔 → 𝐻𝐻) = 31.63(2) fb . (21)

The cross section is calculated again by averaging over five seeds 
which all have a relative uncertainty of less than 0.2%. The runtime 
increased slightly to about 35 minutes.

5.3.2.  Differential distributions
The data files generated in the runs for the total cross section in the 

above example also contain the data points for the differential cross sec-
tion distributions. As an example in Fig. 1 the invariant mass distribution 
of the di-Higgs system and the average of both transverse momenta of 
the two Higgs bosons are presented at LO and NLO QCD. These plots are 
generated by the python scripts provided in examples/gghh-nlo/. By 
default, the example script considers five seeds. However, depending on 
the observable and the kinematic ranges, more seeds might be required 
to obtain smooth distributions.

5.4.  Variation of 𝜆

With the command
gen.set_kappa_lam(kappa_lam);

the quantity 𝜅𝜆 can be modified.
In Table 2 we compare the results for the total cross section to 

Refs. [6] (see also Ref. [5]) for different choices of 𝜅𝜆. We observe 
good agreement within the uncertainties for small values of 𝜅𝜆 (i.e., 
for |𝜅𝜆| ≲ 1). However for larger values of |𝜅𝜆| significant differences 
are observed. Similar deviations are also observed in Ref. [37], see the 
discussion in Section 3.1 of that paper.

Finally, in Table 3 we compare to the results provided in Ref. [37] 
for different values of 𝜅𝜆. After adopting their input parameters 
i.e., √𝑠 = 13.6 TeV, 𝑀𝑡 = 172.5 GeV, 𝑚𝐻 = 125 GeV and the PDF 
set NNPDF31_nlo_as_0118 we observe good agreement, however in 
Ref. [37] no Monte Carlo uncertainties are given with which we could 
compare. We also agree with the results given in the revised version of 
Ref. [65], see also Ref. [66].
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Fig. 1. LO and NLO QCD predictions for the invariant mass distribution of the di-Higgs system and the average of both transverse momenta of the two Higgs bosons. 
Theoretical uncertainties from scale variation are shown as bands and the statistical uncertainties from Monte Carlo integration are shown as vertical lines. Note that 
the latter are small and are only visible for larger values of 𝑀𝐻𝐻 and 𝑝𝑇 ,𝐻avg

.

Fig. 2. NLO predictions for 𝑚𝐻𝐻 and 𝑝𝑇 ,𝐻𝐻 distributions using the on-shell mass scheme as well as the MS scheme for different settings of 𝜇𝑡. Input parameters are 
adapted from Ref. [37] with √𝑠 = 13.6 TeV. The lower panels display the ratio to the on-shell predictions. Statistical uncertainties from Monte Carlo integration are 
shown as vertical lines.

Table 3 
Comparison with results of Ref. [37].
𝜅𝜆  Top-mass scheme 𝜎NLO

𝚐𝚐𝚡𝚢
 [fb] 𝜎NLO[37] [fb]

−0.6  on-shell 100.34(6)+15.7%−13.6% 100.77+15.8%−13.7%
0.0  on-shell 68.08(4)+15.1%−13.4% 68.38+15.1%−13.4%
1.0  on-shell 30.83(2)+13.8%−12.7% 30.93+13.7%−12.7%
1.0 MS, 𝜇𝑡 = 𝑚𝑡(𝑚𝑡) 29.78(2)+14.3%−13.0% 29.78+14.3%−13.0%
1.0 MS, 𝜇𝑡 = 𝑀𝐻𝐻∕2 28.79(2)+15.3%−13.5% 28.90+15.2%−13.5%
2.4  on-shell 13.369(9)+14.7%−13.2% 13.41+14.8%−13.1%
6.6  on-shell 203.4(1)+19.0%−15.1% 203.91+19.0%−15.2%

5.5.  Top quark mass renormalization scheme dependence

The sample file examples/nlo-gghh.cpp can also be used to study 
the dependence on the top quark mass renormalization scheme. We per-
form separate runs for the on-shell (mtscheme=0) and the MS scheme 
(mtscheme=1). The scale 𝜇𝑡 can be modified in the function set_scale. 
For example, 𝜇𝑡 = 𝑚𝑡(𝑚𝑡) corresponds to mut = pars.mtmt and 𝜇𝑡 =
𝑚𝐻𝐻∕2 is obtained with mut = phh.mass()/2.0. In Fig. 2 we show the 

differential distributions for the observables 𝑚𝐻𝐻  and 𝑝𝑇 ,𝐻𝐻  in the on-
shell and the MS scheme for different choices of 𝜇𝑡. The lower panels 
display the ratio to the on-shell predictions. We reproduce the results 
from Refs. [5,37].

6.  Conclusions and outlook

In this paper we present the fast and flexible library ggxy which 
can be used to compute partonic and hadronic quantities related to the 
loop-induced gluon-initiated processes. In Version 1 we implement the 
functionality which allows the computation of NLO QCD corrections to 
Higgs boson pair production. Example files are provided which demon-
strate how to compute LO and NLO corrections to the form factors, NLO 
virtual corrections, total cross sections and distributions. All results can 
be obtained for on-shell or MS top quark masses. Furthermore, it is possi-
ble to modify the self-coupling of the Higgs boson 𝜆. The typical runtime 
for partonic quantities is a few milliseconds and for hadronic quantities 
minutes to hours. The high degree of flexibility and the low runtime 
makes ggxy attractive for use as an amplitude library for parton shower 
programs such as, e.g., POWHEG [67].
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It is straightforward to extend ggxy in various directions. NLO QCD 
corrections to processes such as top-quark mediated 𝑔𝑔 → 𝑍𝑍 or 𝑔𝑔 →
𝑍𝐻 can be implemented in complete analogy to 𝑔𝑔 → 𝐻𝐻 and will be 
made available in a future version. The implementation of the virtual 
corrections for other gluon-induced processes is quite straightforward, 
once sufficiently deep small-𝑡 and high-energy expansions are avail-
able since they have the same structure as for the 𝑔𝑔 → 𝐻𝐻 process. 
In particular, we can re-use the implementation of the master integrals 
for the small-𝑡 expansion and the routines for the construction of the 
Padé approximants. For some processes (e.g. for 𝑔𝑔 → 𝑍𝑍) there are 
also contributions which do not involve the top quark. If these correc-
tions are available in the literature they can be implemented in ggxy to 
provide the full amplitude. As for the real-radiation contributions, the 
corresponding processes can be provided in a straightforward way us-
ing Recola. In future versions we additionally plan to implement NNLO 
QCD and NLO electroweak corrections for these processes.
Note added:

A user process for 𝑔𝑔 → 𝐻𝐻 based on ggxy has been implemented in 
the POWHEG-BOX framework, and can be obtained from https://gitlab.
com/POWHEG-BOX/V2/User-Processes/ggxy_ggHH.
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Appendix A.  Low-level functions

Beyond the “high-level” interface to the form factors described in 
Section 4.2, it is also possible to call the “low-level” functions which 
provide results for the exact (at one loop) and high-energy and small-𝑡
expansions (at one and two loops) as well as the exact two-loop double-
triangle contribution. In these functions, the triangle contribution of 𝐹1
is separated from the box contribution; these pieces are called FF0 and
FF1 in the function names, and 𝐹2 is called FF2.

The exact one-loop form factors can be evaluated using the functions 
defined in the header file ff/gghh/EXgghh1lFF.h,

complex<double> EXgghh1lFF{0,1,2}(double s, double t,
double mhs, double mts);

and the exact two-loop double-triangle contribution using the functions 
defined in the header file ff/gghh/DTgghh2lFF.h,

complex<double> DTgghh2lFF{1,2}(double s, double t,
double mhs, double mts);

where although the triangle contribution is 𝑡-independent, each 
function has the same signature. Here and below, the notation
EXgghh1lFF{0,1,2} implies that each of EXgghh1lFF0, EXgghh1lFF1
and EXgghh1lFF2 is defined in the library.

At one and two loops, the high-energy and small-𝑡 expansion re-
sults can be evaluated using the functions defined in the header files
ff/gghh/HEgghh{1,2}lFF.h and ff/gghh/t0gghh{1,2}lFF.h,

complex<double> HEgghh{1,2}lFF{0,1,2}(double s, double t,
double mhs, double mts);

where the Padé approximation procedure has been already used, and
complex<double> t0gghh{1,2}lFF{0,1,2}(double s, double t,
double mhs, double mts);

which returns the sum of the small-𝑡 expansion terms. At this level, the 
functions should return numerically stable results within each expan-
sion’s region of validity, but return nonsensical results beyond these re-
gions.

At the “lowest” level, vectors of the expansion coefficients 
can be obtained. At this level, no attempt is made to return 
sensible results in numerically unstable regions or regions be-
yond the validity of the expansions. These functions are de-
fined in the header files ff/gghh/HEgghh{1,2}lFF-lowlevel.h and
ff/gghh/t0gghh{1,2}lFF-lowlevel.h. For the high-energy expansion, 
the expansion coefficients for the real and imaginary parts of each of the 
𝑚2
𝐻  expansion terms are returned by

vector<double> HEgghh{1,2}lFF{0,1,2}mhs{0,1,2}{re,im}(
double s, double t,
double mhs, double mts,
unsigned mtsExpDepth = 24);

where the final parameter controls the depth at which the expansion is 
evaluated (at most 24). The small-𝑡 expansion coefficients are given by
vector<complex<double>> t0gghh{1,2}lFF{0,1,2}mhs{0,1,2}(
double s, double t,
double mhs, double mts,
unsigned tExpDepth = 6);

where again the final parameter controls the expansion depth (at most 
6). At one loop, higher-order 𝑚2

𝐻  terms are available: mhs{3,4}.
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