KIT | KIT-Bibliothek | Impressum | Datenschutz

Free Boundary Problems via Da Prato–Grisvard Theory

Danchin, Raphaël; Hieber, Matthias; Mucha, Piotr Bogusław; Tolksdorf, Patrick 1
1 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

An L$_1$-maximal regularity theory for parabolic evolution equations inspired by the pioneering work of Da Prato and Grisvard (J. Math. Pures Appl. (9) 54 (1975), no. 3, 305–387) is developed. Besides of its own interest, the approach yields a framework allowing global-in-time control of the change of Eulerian to Lagrangian coordinates in various problems related to fluid mechanics. This property which is of course decisive for free boundary problems is, firstly, illustrated by the analysis of the free boundary value problem describing the motion of viscous, incompressible Newtonian fluids without surface tension and, secondly, the motion of compressible, pressureless gases.

To this end, an endpoint maximal L$_1$-regularity approach to the Stokes and Lamé systems is developed. It is applied then to establish global, strong well-posedness results for the free boundary problems described above in the case where the initial domain coincides with the half-space, and the initial velocity is small with respect to a suitable scaling invariant norm.


Originalveröffentlichung
DOI: 10.1090/memo/1578
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Karlsruher Institut für Technologie (KIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 1947-6221, 0065-9266
KITopen-ID: 1000189074
Erschienen in Memoirs of the American Mathematical Society
Verlag American Mathematical Society
Band 311
Heft 1578
Seiten 1
Vorab online veröffentlicht am 30.06.2025
Schlagwörter homogeneous version of Da Prato–Grisvard theory, L1-maximal regularity, Lamé system, free boundary problems in hydrodynamics, global solutions, global-in-time change of Eulerian to Lagrangian coordinates
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page