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Abstract. We prove the existence of infinitely many nontrivial solutions
for time-harmonic nonlinear Maxwell’s equations on bounded domains
and on R

3 using dual variational methods. In the dual setting we apply
a new version of the Symmetric Mountain Pass Theorem that does not
require the Palais-Smale condition.
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1. Introduction

Nonlinear boundary value problems of the form

∇ × (
μ(x)−1∇ × E

) − ω2ε(x)E = f(x,E) in Ω,

E × ν = 0 on ∂Ω.
(1)

originate from Maxwell’s equations for time-harmonic electric fields E(x)eiωt

propagating in an optically nonlinear medium. Here, ω ∈ R is the frequency of
the wave, μ denotes the permeability matrix, ε is the permittivity matrix of the
propagation medium and ν denotes the outer unit normal field of the domain
Ω ⊂ R

3. The nonlinearity f(x,E) ∈ R
3 represents the superlinear part of the

electric displacement field within the propagation medium, see [21, pp. 825-
826]. Several existence results for nontrivial solutions of nonlinear Maxwell
boundary value problems like (1) have been proved [6–8,28] under various
assumptions on the data, notably for bounded C2−domains Ω ⊂ R

3 and the
model nonlinearity f(x,E) = |E|p−2E for 2 < p < 6 with uniformly positive
definite matrices ε, μ such that ε ∈ W 1,∞(Ω;R3×3), see Theorem 2.2 and
Proposition 3.1 in [7]. In this paper we set up an alternative approach by
implementing the dual variational method for

∇ × (
μ(x)−1∇ × E

) − ω2ε(x)E = f(x, E) in Ω, μ(x)−1(∇ × E) × ν = 0 on ∂Ω. (2)
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By analogy with classical elliptic boundary value problems we will call (1) a Dirichlet problem
and (2) a Neumann problem. We refer to Remark 32 for a justification of this nomenclature.
Given that the Dirichlet problem has already been studied to some extent, we focus on the
Neumann problem in the following.

In our first main result we show that (2) has a ground state and infinitely many bound
state solutions under the following assumptions on the data:

(A1) Ω is a bounded C1-domain satisfying an exterior ball condition.

(A2) ε, μ ∈ L∞(Ω; R
3×3) are uniformly positive definite with ε ∈ W 1,3

(Ω; R
3×3).

(A3) f : Ω × R
3 → R

3 is measurable with f(x, E) = f0(x, |E|)|E|−1E where, for almost
all x ∈ Ω,

s �→ f0(x, s) is positive, differentiable and increasing on (0, ∞),

s �→ s−1f0(x, s) is increasing on (0, ∞)

and there are c1, c2 > 0 and 2 < p < 6 such that

1

2
f0(x, s)s −

∫ s

0
f0(x, t) dt ≥ c1sp ≥ c2f0(x, s)s for all s ≥ 0.

As we explain further below, the W 1,3-regularity for ε is needed to ensure Sobolev-
type embeddings of the function spaces we are working in. To find solutions of (2) under
the given assumptions, it is reasonable to perform a Helmholtz decomposition where a given
vector field E is splitted according to E = E1 + E2 such that εE1 is divergence-free and
E2 is curl-free in a suitable sense. To make this rigourous we introduce the Hilbert space
H := H(curl; Ω) as the completion of C∞(Ω; R

3) with respect to the inner product

〈E, F 〉 :=

∫

Ω
μ(x)−1(∇ × E) · (∇ × F ) + ε(x)E · F dx. (3)

The appropriate function space for (2) turns out to be V ⊕ W where

V :=
{

E1 ∈ H :

∫

Ω
ε(x)E1 · ∇Φ dx = 0 for all Φ ∈ C1(Ω)

}
,

W :=
{∇u : u ∈ W 1,p(Ω)

}
.

Note that V, W are formally orthogonal to each other and that the curl operator vanishes
identically on W. The Sobolev-type embeddings of V that we shall prove later ensure that
the associated Euler functional

I(E) :=
1

2

∫

Ω
μ(x)−1(∇ × E1) · (∇ × E1) dx

−ω2

2

∫

Ω
ε(x)E · E dx −

∫

Ω
F (x, E) dx (4)

is continuously differentiable where E = E1+E2 with E1 ∈ V, E2 ∈ W. Here, F (x, ·) denotes
the primitive of f(x, ·) with F (x, 0) = 0. A weak solution E ∈ V ⊕ W of (2) is then defined
as a solution of the Euler-Lagrange equation I′(E) = 0. A nontrivial weak solution having
least energy among all nontrivial weak solutions is called a ground state. Our first result
reads as follows.

Theorem 1. Assume (A1),(A2),(A3) and ω2 ≥ 0. Then (2) has a ground state and infinitely
many bound states in V ⊕ W.

Almost the same proof gives the corresponding result for the Dirichlet problem (1)
and we shall comment on the necessary modifications in Appendix 6. In particular, the

proof of Theorem 1 indicates an alternative method to prove [7, Theorem 2.2] under slightly
different assumptions on the data. It is noteworthy that our proof, which relies on the dual
variational method, avoids saddle-point reductions to the Nehari-Pankov manifold and the
rather involved critical point theory for strongly indefinite functionals.
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We demonstrate that the dual variational approach is applicable on R
3 as well. This

problem is substantially different given that it resembles a nonlinear Helmholtz equation
rather than an elliptic boundary value problem. We have to make our assumptions on the
permittivity ε and permeability μ more restrictive by requiring both to be constant and
scalar: (ε, μ) ≡ (ε0, μ0) where ε0μ0 ∈ (0, ∞). This leads to the problem

∇ × ∇ × E − ω2ε0μ0E = f(x, E) in R
3. (5)

Our aim is to prove the existence of infinitely many Lp-solutions for this problem. The main
difference compared to the case of a bounded domain is that the curl-curl operator on R

3

does not come with discrete point spectrum in (0, ∞) but continuous spectrum just like the
Helmholtz operator. In particular, a resolvent at the spectral parameter ω2ε0μ0 > 0 does
not exist, but some sort of right inverse can be constructed by means of the Limiting Ab-
sorption Principle. This linear operator R, defined in (27) below, enjoys boundedness and

compactness properties as an operator from the divergence-free functions in Lp′
(R3; R

3) to
the divergence-free functions in Lp(R3; R

3) provided that 4 < p < 6. Evequoz and Weth [14]
showed how to exploit these properties in the context of dual variational methods for non-
linear Helmholtz equations. In order to adapt this to the Maxwell setting on R

3 we sharpen
our assumptions on the nonlinearity.

(A4) f satisfies (A3) with 4 < p < 6 where f0(·, s) is Z
3-periodic for all s ∈ R and there are

c, C > 0 with

csp−2 ≤ ∂sf0(x, s) ≤ Csp−2 for almost all x ∈ R
3 and all s ∈ R.

Our main result about (5) reads as follows.

Theorem 2. Assume (A4) and ω2ε0μ0 ∈ (0, ∞). Then the equation (5) admits a dual ground
state and infinitely many geometrically distinct solutions in Lp(R3; R

3).

Here, the notion of a dual ground state is the same as in [14], i.e., P := f(x, E) is a
ground state for some associated dual functional J involving the operator R, see Section 5
and in particular (28) further below. As a new feature compared to the Nonlinear Helmholtz
Equation [13] our analysis makes use of the so-called Div-Curl-Lemma.

In view of the result on bounded domains, one may aim for an extension of Theorem 2
to more general permittivities ε and permeabilites μ. Here the main challenge is the construc-
tion of a bounded linear operator R with analogous properties as well as a corresponding
Helmholtz Decomposition Theorem.

We emphasize that, up to our knowledge, this is the first variational existence result
for (5) in the case ω2ε0μ0 > 0 and it is much stronger than Theorem 3(ii) in [19] which has
been obtained by a fixed point argument. Note that much research has been devoted to the
complementary case ω2ε0μ0 ≤ 0 within the framework of cylindrically symmetric and thus
divergence-free solutions [3,5,9,12,18] where the variational analysis is somewhat parallel
to the well-studied case of stationary nonlinear Schrödinger equations on R

3. This follows
from the identity ∇ × ∇ × E = −ΔE for divergence-free vector fields E.

Our strategy is to prove the above-mentioned results using dual variational methods
based on a partially new variant of the Symmetric Mountain Pass Theorem (SMPT). Note
that the classical SMPT [1, Corollary 2.9] is not sufficient to prove Theorem 2 given that
the Palais-Smale condition does not hold. For this reason we first provide a critical point
theorem (Theorem 5) that allows to prove both our main theorems simultaneously. In this
result, the C1-functional is only required to be “PS-attracting” in the sense of Definition 4
below. Having proved this result in Section 2, we apply it in our proofs of Theorem 1 in
Section 4 and Theorem 2 in Section 5. Section 3 provides the underlying Linear Theory.

2. A Symmetric Mountain Pass Theorem without PS-condition

In this section we prove a variant of the Symmetric Mountain Pass Theorem with the
distinguishing feature that it does not require the Palais-Smale condition. The idea for this
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abstract result and its proof is due to Szulkin-Weth [26] and an earlier paper by Bartsch-
Ding [4] where the existence of infinitely many geometrically distinct solutions has been
proved for some periodic nonlinear Schrödinger equation of the form

−Δu + V (x)u = f(x, u) in R
n

with an odd nonlinearity f(x, ·). Several refinements and applications can be found in the
literature. Here we want to highlight the contributions by Squassina and Szulkin [24] and
Evequoz [13] given their relevance for our paper. Our first goal is to provide an abstract
critical point theorem for functionals J : Z → R on a general Banach space with some sort
of Mountain Pass Geometry. In general, the PS-condition for J may fail, but some useful but
weaker compactness property, a “PS-attracting” property, is required to hold. This property
is essentially extracted from the paper by Szulkin and Weth [26] and functionals satisfying
the PS-condition are easily seen to be PS-attracting, see Remark 6(a). As a consequence,
our variant of the SMPT generalizes the original one and yields the existence of infinitely
many solutions in various applications. In the presence of discrete translational equivariance
it provides the existence of infinitely many geometrically distinct solutions, see Remark 6(b).

For a given functional J ∈ C1(Z) we define the sets of critical points

K :=
{
u ∈ Z : J ′(u) = 0

}
, Kd := {u ∈ K : J(u) = d} .

We first introduce the notion of a K-decomposition where K is subdivided into suitable
bounded and symmetric pieces that are discrete. Here, a set A ⊂ Z is called symmetric
provided that it is even, i.e., we have x ∈ A if and only if −x ∈ A.

Definition 3. Let J ∈ C1(Z) be even. We say that J admits a K-decomposition K =
⋃

i∈I Ki

for some set I if the following holds for all i, j ∈ I:

(i) Ki is bounded, symmetric and non-empty,
(ii) inf{‖u − v‖ : u, v ∈ Ki ∪ Kj , u �= v} > 0,
(iii) {J(u) : u ∈ Ki} is a finite set.

Such a K-decomposition is called finite if #I < ∞ and infinite if #I = ∞.

We stress that (ii) needs to be checked for i = j as well and that the lower bound
in (ii) need not be uniform with respect to i, j. As to (iii), note that the Ki need not be
finite. In fact, we have #Ki = ∞ in relevant applications, see Remark 6(b). To formulate
our result we introduce the notion of a PS-attracting functional.

Definition 4. We say that J is PS-attracting if for any given Palais-Smale sequences (vn)n, (wn)n

of J we have ‖vn − wn‖ → 0 as n → ∞ or

lim sup
n→∞

‖vn − wn‖ ≥ κ where κ := inf
{‖u − v‖ : u, v ∈ K, u �= v

}
.

We stress that there is no need to prove κ > 0. The importance of this observation
is discussed in Remark 6(c). In fact, even in situations where the Palais-Smale condition
holds, κ can be 0. For instance, consider any functional J ∈ C1(R) satisfying J(x) = 1 for
1 ≤ |x| ≤ 2 as well as |J ′(x)| ≥ c > 0 outside some compact set. Obviously, J satisfies
the PS-condition, but the set of critical points is not discrete and hence κ must be zero.
The definition of κ involves the set K that is, of course, unknown a priori. Nevertheless, we
shall see below that this compactness property can be verified in applications by proving
that PS-sequences with a positive distance converge, after applying suitable isometries, to
distinct critical points. The assumptions on the energy functional are the following:

(G1) Z is a Banach space Z with Z = Z+ ⊕ Z− and dim(Z−) < ∞, dim(Z+) = ∞.
(G2) J ∈ C1(Z) is even with J(0) = 0 and, for some ρ > 0,

inf
S+

ρ

J > 0 where S+
ρ = {v ∈ Z+ : ‖v‖ = ρ}.

(G3) For any given m ∈ N there is a finite-dimensional subspace Zm ⊂ Z+ such that
J(u) → −∞ uniformly for u ∈ Z− ⊕ Zm as ‖u‖ → ∞ and dim(Zm) ↗ +∞ as
m → ∞.
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(G4) J is PS-attracting.

Note that Z− = {0} is a valid choice in (G1) and the uniformity in (G3) need only
hold for a fixed m ∈ N. Our variant of the Symmetric Mountain Pass Theorem without
Palais-Smale condition reads as follows.

Theorem 5. Assume (G1), (G2), (G3), (G4). Then every K-decomposition of J is infinite. In

particular, J has infinitely many pairs of critical points.

Remark 6.

(a) If J ∈ C1(Z) satisfies the PS-condition, then J is PS-attracting. Indeed, for two
PS-sequences (vn), (wn) with lim supn→∞ ‖vn − wn‖ ≥ μ > 0 we may subsequently
pass to subsequences such that (vn), (wn) strongly converge to v, w, respectively. The
continuity of J ′ implies that v, w are critical points of J with ‖v − w‖ ≥ μ > 0. So
v �= w and

lim sup
n→∞

‖vn − wn‖ ≥ ‖v − w‖ ≥ κ.

So J is PS-attracting. This implication shows that Theorem 5 contains the original
Symmetric Mountain Pass Theorem [1, Corollary 2.9] and even the more general
version [25, Theorem 6.5] as special cases.

(b) In the context Z
d-equivariant stationary nonlinear Schrödinger equations this theorem

applies to K-decompositions given by sets of the form

Kv = {v(· + n) : n ∈ Z
d} ∪ {−v(· + n) : n ∈ Z

d}.

Indeed, in the papers [13,24] the authors implicitly check the properties required in
Definition 3, notably that different orbits have positive distance to each other, see
[13, Lemma 3.1]. The PS-attracting property of the energy functional is verified using
the Nonvanishing Property [14, Theorem 2.3] of R as well as the Rellich-Kondrachov
theorem. Our reasoning in the proof of Theorem 2 follows the same lines.

(c) Theorem 4.2 in [4] is more general regarding the regularity assumptions on the func-
tional and it even allows for infinite-dimensional Z− up to modifications of the topol-
ogy on Z−. On the other hand, in assumption (Φ5) the authors assume κ > 0. This is
responsible for the fact that this Theorem cannot be applied directly in typical situa-
tions, but must be used in some indirect reasoning just as in the proof of Theorem 1.2
in [4]. In particular, [4, Theorem 4.2] does not generalize the SMPT. Theorem 5 re-
moves this inconvenience.

The strategy to prove Theorem 5 is as follows: We assume for contradiction that the
claim is false, i.e.,

There is a finite K − decomposition for J. (6)
With this assumption and Definition 3(ii) we know that κ from Definition 4 is positive. This
enables us to perform a deformation argument involving the minmax values

dk := inf
A∈Σ,ι∗(A)≥k

sup
u∈A

J(u).

where Σ := {A ⊂ Z : A is symmetric and compact} and ι∗ is defined as in [13,24], namely

ι∗(A) := min
{
γ(h(A) ∩ S+

ρ ) : h ∈ H}
where

H :=
{
h : Z → h(Z) is an odd homeomorphism with J(h(u)) ≤ J(u)

for all u ∈ Z
}

with ρ as in (G2) and the Krasnoselski genus γ. Exploiting (6) and hence κ from Definition 4
is positive we show that the dk are critical values of J and form an increasing sequence.
In particular, infinitely many different critical values exist. This, however, contradicts the
assumption (6) given that Definition 3(iii) implies that finite K-decomposition allow for at

most finitely many critical values. This contradiction finishes the proof.

Proposition 7. Given the assumptions of Theorem 5 we have 0 < dk ≤ dk+1 < ∞ for all
k ∈ N.
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Proof. The inequality dk ≤ dk+1 holds by definition. These values are not +∞ given that, for
any given k ∈ N, the combination of (G1), (G2), (G3) and the argument from [24, Lemma 2.16
(iv)] or [4, Lemma 4.5] implies the existence of a set A ∈ Σ with ι∗(A) ≥ k. Moreover, any
A ∈ Σ with ι∗(A) ≥ 1 implies γ(h(A)∩S+

ρ ) ≥ 1 for some h ∈ H, in particular h(A)∩S+
ρ �= ∅.

So

dk ≥ d1 = inf
A∈Σ,ι∗(A)≥1

sup
u∈A

J(u) ≥ inf
h(A)∩S+

ρ 	=∅
sup
u∈A

J(h(u)) ≥ inf
S+

ρ

J > 0.

�

In the following, we write Uδ(Kd) := {z ∈ Z : dist(z, Kd) < δ}, so Uδ(∅) = ∅.

Proposition 8. In addition to the assumptions of Theorem 5 suppose (6). Let κ be given as
in Definition 4.

(a) For 0 < δ < κ and d ∈ R such that for all non-empty K ⊂ Kd we have τ > 0 where

τ := inf
{

‖J ′(v)‖ : v ∈ Uδ(K) \ U δ
2
(K)

}
.

(b) If d ∈ R \ {0} then γ(Kd) ≤ 1.

(c) For all d ∈ R there is ε0 > 0 such that Kd̃ = ∅ for 0 < |d − d̃| < ε0.

Proof. To prove (a) assume for contradiction that there is a sequence (vn)n ⊂ Uδ(K) \
Uδ/2(K) such that J ′(vn) → 0. Then we can find a sequence (wn) ⊂ K ⊂ Kd with

0 <
δ

2
≤ ‖vn − wn‖ ≤ δ < κ for all n ∈ N.

Since (vn), (wn) are PS-sequences and J is PS-attracting, this contradicts our choice of κ.
So we must have τ > 0 and (a) is proved. Since J is PS-attracting and d �= 0, Kd is a
discrete set that does not contain 0. Hence, Kd =

⋃
i∈I{vi, −vi} is a disjoint union for some

set I, then h : Kd → R \ {0}, ±vi �→ ±1 defines an odd and continuous map, so γ(Kd) ≤ 1.
This proves (b).

Finally, (6) and Definition 4(iii) imply that the set of critical values {J(u) : u ∈ K} is
finite and hence discrete. This gives (c). �

To prove the theorem we consider a pseudo-gradient field on Z \ K, i.e., a locally
Lipschitz continuous map H : Z \ K → Z with

‖H(w)‖ ≤ 2‖J ′(w)‖, J ′(w)[H(w)] ≥ ‖J ′(w)‖2. (7)
We define the associated flow η as the unique maximal solution of the initial value problem

d

dt
η(t, w) = −H(η(t, w)), η(0, w) = w for w ∈ Z \ K. (8)

The maximal existence time in positive time direction is denoted by T+(w). The flow η is
continuous at all points (t, w) with w ∈ Z \K and 0 ≤ t < T+(w) by unique local solvability
of (8). The most important property is that t �→ J(η(t, w)) is decreasing on [0, T+(w)) due
to

d

dt

(
J(η(t, w))

)
=−J ′(η(t, w))[H(η(t, w))] ≤−‖J ′(η(t, w))‖2for 0 < t < T+(w).

We use this in the following deformation argument involving suitable sublevel sets Jc :=
{u ∈ Z : J(u) ≤ c}.

Lemma 9. In addition to the assumptions of Theorem 5 suppose (6), let d := dk for some
k ∈ N and 0 < δ < κ. Then there exists ε > 0 such that

lim
t→T+(w)

J(η(t, w)) < d − ε for all w ∈ Jd+ε \ Uδ(Kd). (9)

Moreover, the entrance time map

e : Jd+ε \ Uδ(Kd) → [0, ∞), w �→ min
{
t ≥ 0 : J(η(t, w)) ≤ d − ε

}

is well-defined, even and continuous.
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Proof. In the following we verify the claim for

0 < ε < min

{
δτ√
32

,
κ

2
, ε0

}

where τ, κ, ε0 > 0 are as in Proposition 8. Assume for contradiction that (9) does not hold

for such ε. Then we find some w ∈ Jd+ε \ Uδ(Kd) such that

d − ε ≤ J(η(t, w)) ≤ d + ε for all t ∈ [0, T+(w)). (10)

Using (10) we first show that the flow converges to some critical point at energy level d, i.e.,

lim
t→T+(w)

η(t, w) = w∗ where w∗ ∈ Kd. (11)

We first prove this in the case T+(w) < ∞. For 0 < t̃ < t < T+(w) we have

‖η(t, w) − η(t̃, w)‖ ≤
∫ t

t̃
‖H(η(s, w))‖ ds

(7)

≤ 2

∫ t

t̃
‖J ′(η(s, w))‖ ds

(7)

≤ 2

∫ t

t̃

√
J ′(η(s, w))[H(η(s, w))] ds

≤ 2
√

t − t̃

(∫ t

t̃
J ′(η(s, w))[H(η(s, w))] ds

) 1
2

(8)
= 2

√
t − t̃

(
J(η(t̃, w)) − J(η(t, w))

) 1
2

(10)

≤ 2
√

t − t̃ (2ε)
1
2 .

(12)

Since T+(w) is finite, this estimate implies that η(t, w) is Cauchy and hence converges as
t → T+(w). The limit w∗ must be a critical point of J because otherwise the trajectory
t �→ η(t, w) could be continued beyond T+(w) thanks to the local solvability of the initial
value problem (8) with initial data in Z \ K. So we have w∗ ∈ K and (10) gives d − ε ≤
J(w∗) ≤ d + ε. From 0 < ε < ε0 and Proposition 8(c) we conclude w∗ ∈ Kd, so (11) is
proved.

Next we show (11) in the case T+(w) = ∞. Since the map t �→ J(η(t, w)) is decreasing and
bounded from below in view of (10), we find that J(η(t, w)) converges as t → +∞. We now
deduce that η(t, w) converges as well. Assume for contradiction that this is not the case.
Then there exists a sequence (tn)n ⊂ [0, ∞) with tn → ∞ and ‖η (tn, w) − η (tn+1, w) ‖ = ε

for every n. Choose the smallest t1n ∈ (tn, tn+1) such that ‖η (tn, w) − η
(
t1n, w

) ‖ = ε
3

and

let μn := mins∈[tn,t1n] ‖J ′(η(s, w))‖. Then

ε

3
=

∥
∥η

(
t1n, w

) − η (tn, w)
∥
∥ ≤

∫ t1n

tn

‖H(η(s, w))‖ds
(7)

≤ 2

∫ t1n

tn

‖J ′(η(s, w))‖ds

≤ 2

μn

∫ t1n

tn

‖J ′(η(s, w))‖2ds
(7)

≤ 2

μn

∫ t1n

tn

J ′(η(s, w))[H(η(s, w))]ds

(8)
=

2

μn

(
J (η (tn, w)) − J

(
η

(
t1n, w

)) )
.

Since J(η(t, w)) converges as t → ∞, we have J(η(tn, w)) − J(η(t1n, w)) → 0 and thus
μn → 0 as n → ∞. So there exist s1

n ∈ [
tn, t1n

]
such that J ′(vn) → 0, where vn := η(s1

n, w).

Similarly, we find a largest t2n ∈ (t1n, tn+1) for which
∥
∥η(tn+1, w) − η(t2n, w)

∥
∥ = ε

3
and then

wn := η(s2
n, w) satisfies J ′(wn) → 0. As ‖vn − η(tn, w)‖ ≤ ε

3
and ‖wn − η(tn+1, w)‖ ≤ ε

3
,

(vn)n , (wn)n are Palais-Smale sequences with
ε

3
≤ ‖vn − wn‖ ≤ 2ε < κ.

This, however, contradicts our choice of κ, so the assumption was false. Hence, η(t, w)

converges as t → ∞. The limit must be a critical point of J because otherwise d
dt

(
J(η(t, w))

)
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would be uniformly negative for large t, which violates (10). So (11) also holds in the case
T+(w) = +∞.

From (11) we infer that the flow t �→ η(t, w) eventually enters the region Uδ({w∗}) at
some time t1 ∈ (0, T+(w)) and remains outside of the region Uδ/2({w∗}) until some time

t2 ∈ (t1, T+(w)). Formally,

t1 := max
{
t ∈ [

0, T+(w)
)

: η(t, w) /∈ Uδ({w∗})
}
,

t2 := inf
{
t ∈ (

t1, T+(w)
)

: η(t, w) ∈ Uδ/2({w∗})
}
.

As in (12) we get the inequality

δ

2
≤ ‖η(t2, w) − η(t1, w)‖ ≤ 2

√
t2 − t1 (2ε)1/2, and thus t2 − t1 ≥ δ2

32ε
.

On the other hand, Proposition 8(a) gives ‖J ′(η(s, w)‖ ≥ τ > 0 for all s ∈ [t1, t2] and thus

d
(11)
= lim

t→T+(w)
J (η (t, w)) ≤ J (η (t2, w))

(10)

≤ d + ε + J (η (t2, w)) − J (η (t1, w))

(8)
= d + ε −

∫ t2

t1

J ′(η(s, w))[H(η(s, w))] ds

(7)

≤ d + ε −
∫ t2

t1

‖J ′(η(s, w))‖2 ds

≤ d + ε − τ2 (t2 − t1) ≤ d + ε − τ2δ2

32ε
< d,

which yields a contradiction. So (10) is false and (9) is proved.

Finally, thanks to (9) we know that e(w) ∈ [0, T (w)) is a well-defined finite nonnegative
number characterized by J(η(e(w), w)) = min{J(w), d − ε}. Since J and η are continuous
and t �→ J(η(t, w)) is decreasing near each w ∈ Jd+ε \ Uδ(Kd), we obtain that the entrance
time map is continuous. �

Proof of Theorem 5. Assume for contradiction that (6) is true. We then show

Kdk
�= ∅ and dk+1 > dk for all k ∈ N.

Indeed, by the continuity property of the genus and Proposition 8(b), there exists δ > 0 such
that γ(Ū) = γ(Kdk

) ≤ 1 where U := Uδ(Kdk
) and 0 < δ < κ. We may then choose ε > 0

as in Lemma 9. By definition of ι∗ we can find A ∈ Σ with ι∗(A) ≥ k and supA J ≤ dk + ε.
Then we have A \ U ∈ Σ and, by (9),

sup
u∈A\U

J(η(e(u), u)) ≤ dk − ε. (13)

The map h̃(u) := η(e(u), u) is well-defined, odd and continuous on Jdk+ε \ U and can be
extended to some function h ∈ H that is defined on Jdk+ε. For instance, define for u ∈ Jdk+ε

h(u) := η(e(u), u) if u ∈ dist (u, Kdk
) ≥ δ,

h(u) := η
(
(2λδ−1 − 1)e(u), u

)
if dist (u, Kdk

) = λ ∈ ( δ

2
, δ

)
,

h(u) := u if dist (u, Kdk
) ≤ δ

2
.
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From the definition of dl and (13) we get ι∗(h(A \ U)) = ι∗(h̃(A \ U)) ≤ k − 1. So the
mapping properties of ι∗ from [24, Lemma 2.16] and Proposition 8(b) give1

k ≤ ι∗(A) ≤ ι∗(A \ U) + γ(U) ≤ ι∗(h(A \ U)) + γ(Kdk
) ≤ k − 1 + γ(Kdk

).

So γ(Kdk
) ≤ 1 implies Kdk

�= ∅. Moreover, dk = dk+1 is impossible. Indeed, under this
assumption we may even choose A ∈ Σ with ι∗(A) ≥ k + 1 with the properties given above,
so

k + 1 ≤ ι∗(A) ≤ k − 1 + γ(Kdk
) ≤ k,

a contradiction. Given that the critical levels are nondecreasing, we obtain dk+1 > dk for all
k ∈ N. So there are infinitely many critical levels and every K-decomposition of J is infinite.
So the assumption (6) is false, which is all we had to prove. �

3. The linear Neumann problem on bounded domains

We are first interested in a solution theory for the linear boundary value problem

∇ × (
μ(x)−1∇ × E

) − λε(x)E = ε(x)g in Ω,

(μ(x)−1∇ × E) × ν = 0on ∂Ω (14)
where λ ∈ R and E ∈ V. A weak solution E ∈ V of (14) is characterized by

∫

Ω
μ(x)−1(∇ × E) · (∇ × Φ) dx − λ

∫

Ω
ε(x)E · Φ dx =

∫

Ω
ε(x)g · Φ dx for all Φ ∈ V. (15)

In order to identify the right function space for g we use a Helmholtz Decomposition. Define

Xp′
:=

{
E ∈ Lp′

(Ω; R
3) :

∫

Ω
ε(x)E · ∇φ dx = 0 for all φ ∈ W 1,p(Ω)

}
,

Y p′
:=

{∇u : u ∈ W 1,p′
(Ω)

}
.

By the Gauss-Green formula elements of Xp′
are not only divergence-free in Ω, but also

satisfy ε(x)E · ν = 0 on ∂Ω in a distributional sense. We also need

(Y p′
)⊥ε :=

{
f ∈ Lp(Ω; R

3) :

∫

Ω
ε(x)f · g dx = 0 for all g ∈ Y p′}

,

(Xp′
)⊥ε :=

{
g ∈ Lp(Ω; R

3) :

∫

Ω
ε(x)f · g dx = 0 for all f ∈ Xp′}

.

From [2, Theorem 1] and W 1,3(Ω) ⊂ VMO(Ω) [?, Theorem 3.3(ii)] we get the following.

Proposition 10. (Auscher, Qafsaoui) Assume (A1),(A2) and 1 < p < ∞. Then for any

given f ∈ Lp′
(Ω; R

3) the boundary value problem

∇ · (
ε(x)(f + ∇u)

)
= 0 in Ω, ε(x)(f + ∇u) · ν = 0 on ∂Ω (16)

has a weak solution in u ∈ W 1,p′
(Ω) that is unique up to constants and satisfies ‖∇u‖p′ �

‖f‖p′ .

This preliminary result provides a Helmholtz Decomposition that allows to set up a
Fredholm theory for (14). To see this define

LE := ε(x)−1∇ × (
μ(x)−1∇ × E

)
, 〈E, F 〉ε :=

∫

Ω
ε(x)E · F dx.

Then the problem reads (L − λ)E = g where L is a selfadjoint operator in the Hilbert space
(L2(Ω; R

3), 〈·, ·〉ε). In the following we write E ⊥ε F if 〈E, F 〉ε = 0 and analogously for

subspaces of L2(Ω; R
3).

1Lemma 2.16 in [24] is stated and proved only for Z− = {0}, but the same proof yields the
result for any finite-dimensional Z−.
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Proposition 11. Assume (A1),(A2) and 1 < p < ∞. Then we have

Lp′
(Ω; R

3) = Xp′ ⊕ Y p′
with (Y p)⊥ε = Xp′

, Y p = (Xp′
)⊥ε .

Proof. First of all, Xp′
, Y p′

are closed subspaces of Lp′
(Ω; R

3) and the intersection of these

subspaces is {0}. Indeed, for E ∈ Xp′ ∩ Y p′
we have E = ∇u for some u ∈ W 1,p′

(Ω) with
∫

Ω
ε(x)∇u · ∇φ dx = 0 for all φ ∈ W 1,p(Ω).

Proposition 10 for f = 0 then implies ∇u = 0, i.e., E = 0. We thus conclude that the

sum is direct and Xp′ ⊕ Y p′ ⊂ Lp′
(Ω; R

3). To prove equality we define, for any given

f ∈ Lp′
(Ω; R

3), Πf := f + ∇u where u is the solution from Proposition 10. Then Π is a

bounded linear operator on Lp′
(Ω; R

3) with
∫

Ω
ε(x)(Πf) · ∇φ dx =

∫

Ω
ε(x)(f + ∇u) · ∇φ dx = 0 for all φ ∈ W 1,p(Ω)

in view of (16). We conclude Π : Lp′
(Ω; R

3) → Xp′
, so ∇u ∈ Y p′

implies f = Πf − ∇u ∈
Xp′ ⊕ Y p′

. We thus obtain

Lp′
(Ω; R

3) = Xp′ ⊕ Y p′
.

The equality (Y p)⊥ε = Xp′
holds by definition. To show Y p = (Xp′

)⊥ε first note that

the inclusion ⊂ is trivial. So let us assume g ∈ (Xp′
)⊥ε , in particular g ∈ Lp(Ω; R

3). Since

f := ε(x)−1(∇ × Φ) ∈ Xp′
whenever Φ ∈ C∞

0 (Ω; R
3), we get

∫

Ω
(∇ × Φ) · g dx =

∫

Ω
ε(x)f · g(x) dx = 0 for all Φ ∈ C∞

0 (Ω; R
3). (17)

This and Lemma 33 imply that g must be a gradient, which proves the claim. �

Remark 12. In the case of homogeneous and isotropic permittivities, i.e.,
ε(x) ≡ ε0 with ε0 ∈ (0, ∞), the above Helmholtz Decomposition Theorem was proved
by Fujiwara-Morimoto in [16] for smooth domains and Simader and Sohr [23, Theorem 1.4]
extended this result to C1-domains. We refer to [15, Theorem 11.1],[17, Theorem 1.3] for
alternative proofs and variants of this result in Lipschitz domains.

In order to use the Fredholm theory of symmetric compact operators we first show
the following.

Proposition 13. Assume (A1),(A2). Then V is a closed subspace of H1(Ω; R
3).

Proof. The space V is a subset of F (Ω, ε, ν) defined in [22] given that all vector fields E ∈ V
satisfy

E ∈ L2(Ω; R
3), ∇ × E ∈ L2(Ω; R

3), ∇ · (εE) = 0 in Ω, (εE) · ν = 0 on ∂Ω.

By [22, Theorem 1.1] and (A1),(A2) the norms ‖ · ‖H1(Ω;R3) and ‖ · ‖ from (3) are equivalent

on F (Ω, ε, ν) and in particular on V, which proves the result. �

Note that [22, Theorem 1.1] requires the exterior ball condition for Ω, which is why we
included it in (A1). As a consequence of the previous proposition, V inherits all embeddings
of H1(Ω; R

3). The Rellich-Kondrachov Theorem as well as the definitions of V, Xp imply

V ↪→ Xp boundedly for 1 ≤ p ≤ 6 and compactly for 1 ≤ p < 6 (18)
given that the Sobolev-critical exponent for the embeddings of H1(Ω; R

3) into Lp(Ω; R
3) is

p = 6 by our assumption on the domain regularity (A1). The Riesz Representation Theorem

in V implies that L + 1 has a bounded resolvent from V ′ into V, which, by (18), is compact

as an operator from Xp′
to Xp for 1 ≤ p < 6 and in particular from the Hilbert space X2

into itself. We write

σ(L) :=
{
λ ∈ R : L(E) = λE for some E ∈ V \ {0}}
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for the spectrum of L and denote by Eigλ ⊂ V the (possibly trivial) eigenspace of L asso-
ciated with λ ∈ R. In view of (18) we have Eigλ ↪→ Xp and, for notational convenience,
we write Eigp

λ whenever this set is considered as a closed subspace of Xp and hence of

Lp(Ω; R
3). Fredholm theory for selfadjoint operators in Hilbert spaces gives the following.

Proposition 14. Assume (A1),(A2), 1 ≤ p ≤ 6 and λ ∈ R.

(i) The selfadjoint operator L in the Hilbert space (X2, 〈·, ·〉ε) has countably many eigen-
values such that the corresponding eigenfunctions form an orthonormal basis of (X2, 〈·, ·〉ε)
and of (V, 〈·, ·〉). All of these eigenvalues are positive and they tend to +∞.

(ii) The linear problem (14) with g ∈ Xp′
has a weak solution if and only if g ⊥ε Eigp

λ.
The solution is unique up to elements of Eigλ.

(iii) For all λ ∈ R \ σ(L) the resolvent (L − λ)−1 : Xp′ → V is bounded for all p ≤ 6 and
it is compact provided that p < 6. The analogous statement is true for λ ∈ σ(L) if

Xp′
, V are replaced by the subspaces {g ∈ Xp′

: g ⊥ε Eigp
λ} and {E ∈ V : E ⊥ Eigλ}.

Proof. The claims are standard except for the positivity and the unboundedness of the eigen-
values. The eigenvalues are unbounded from above given that the corresponding Rayleigh
quotients are unbounded from above over V. To see this one may choose nontrivial divergence-
free test functions with shrinking support, e.g., Eτ (x) := χ(τ |x − y|2)(y2 − x2, x1 − y1, 0)
for suitable χ ∈ C∞

0 (R), y ∈ Ω and τ ↗ ∞. Moreover, every eigenpair (E, λ) ∈ V × R of L
satisfies, in view of (A2),

λ‖E‖2
ε = λ

∫

Ω
ε(x)E · E dx =

∫

Ω
μ(x)−1(∇ × E) · (∇ × E) dx �

∫

Ω
|∇ × E|2 dx.

As a consequence, eigenvalues λ satisfy λ ≥ 0 and λ = 0 if and only if the associated
eigenfunction satisfies ∇ × E = 0. Given that E ∈ V, the latter is equivalent to E = 0
because Lemma 33 implies E = ∇u for some u ∈ H1(Ω) and thus, by definition of V,
‖∇u‖2

ε = 〈E, ∇u〉ε = 0. As a consequence, λ must be positive. �

Now we extend the considerations to the linear problem (14) for right hand sides

g ∈ Xp′ ⊕ Y q for suitable q ∈ [1, ∞]. The right ansatz for the solution space is V ⊕ Y q . A
weak solution E ∈ V ⊕ Y q of (14), with E = E1 + E2, E1 ∈ V, E2 ∈ Y q , is supposed to
satisfy

∫

Ω
μ(x)−1(∇ × E1) · (∇ × Φ1) dx − λ

∫

Ωε(x)E·

Φ dx=

∫

Ω
ε(x)g · Φ dx for all Φ ∈ V ⊕ Y q .

This extends the notion of a weak solution in V given by (15). To have well-defined integrals
we assume2 1 ≤ p ≤ 6 as before as well as q ≥ max{2, p′}. By orthogonality, this is equivalent
to

∫

Ω
μ(x)−1(∇ × E1) · (∇ × Φ1) dx − λ

∫

Ω
ε(x)E1 · Φ1 dx =

∫

Ω
ε(x)g1 · Φ1 dx for all Φ1 ∈ V,

−λ

∫

Ω
ε(x)E2 · Φ2 dx =

∫

Ω
ε(x)g2 · Φ2 dx for all Φ2 ∈ Y q .

2Defining the integral
∫

Ω
ε(x)g · Φ dx :=

∫

Ω
ε(x)g1 · Φ1 dx +

∫

Ω
ε(x)g2 · Φ2 dx

by formal orthogonality with respect to 〈·, ·〉ε we can even relax the assumption q ≥
max{2, p′} to q ≥ 2. Indeed, g1 ∈ Xp′

, Φ1 ∈ V ⊂ Xp, 1 ≤ p ≤ 6 justifies the first inte-
gral and g2, Φ2 ∈ Y q , q ≥ 2 justifies the second one. However, given that our applications
only concern the range 2 < p < 6, this extension is not needed in this paper.
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From Proposition 14 we get the solution theory for the first equation and the solution of the
second equation is trivial by our choice of the solution space. We obtain the following.

Theorem 15. Assume (A1),(A2) as well as g = g1 + g2 where g1 ∈ Xp′
, g2 ∈ Y q for

exponents 1 ≤ p ≤ 6, max{2, p′} ≤ q ≤ ∞ and λ ∈ R.

(i) If λ ∈ R \ (σ(L) ∪ {0}) then the unique weak solution E ∈ V ⊕ Y q of (14) is given by

E = (L − λ)−1g1 + λ−1g2.

(ii) If λ ∈ σ(L) then (14) admits weak solutions if and only if g1 ⊥ε Eigp
λ. In this case

all weak solutions E ∈ V ⊕ Y q are given by

E ∈ (L − λ)−1g1 + λ−1g2 + Eigλ .

(iii) If λ = 0 then (14) admits weak solutions if and only if g2 = 0. In this case all weak
solutions E ∈ V ⊕ Y q are given by

E ∈ L−1g1 + Y q .

Later, in the discussion of the nonlinear Neumann problem for λ = ω2 ∈ σ(L), it will
turn out convenient to choose g1 as in (ii). To this end, we introduce for 1 ≤ p ≤ 6 and
λ ∈ R

Xp′
λ :=

{
f ∈ Xp′

:

∫

Ω
ε(x)f · φ dx = 0 for all φ ∈ Eigp

λ

}
.

This definition makes sense for 1 ≤ p ≤ 6 and λ ∈ R. We then have g1 ∈ Xp′
, g1 ⊥ε Eigp

λ if

and only if g1 ∈ Xp′
λ . This is why the function space Xp′

λ and its properties will be needed
later on.

Proposition 16. Assume 6
5

≤ p ≤ 6 and λ ∈ R. Then Xp′
= Xp′

λ ⊕ Eigp′
λ with

(Xp′
λ )⊥ε = Eigp

λ ⊕Y p, (Eigp′
λ ⊕Y p′

)⊥ε = Xp
λ.

Proof. We only prove (Xp′
λ )⊥ε ⊂ Eigp

λ ⊕Y p, so let f ∈ (Xp′
λ )⊥ε ⊂ Lp(Ω; R

3) and define

Π(f) := f −
n∑

i=1

〈f, φi〉εφi ∈ Lp(Ω; R
3) where {φ1, . . . , φn}

is an ONB of ( Eig p
λ, 〈·, ·〉ε).

With this definition we find Π(f) ∈ (Xp′
)⊥ε = Y p by Proposition 11. This implies f ∈

Eigp
λ ⊕Y p. �

4. Proof of Theorem 1

The nonlinear Neumann problem (2) reads

(L − ω2)E = P where P := ε(x)−1f(x, E) and E ∈ V ⊕ W.

Aiming for a dual formulation of this problem, we solve the linear problem and treat the
resulting equation as a problem for the vector field P . The inversion of the map E �→ P is
possible thanks to our assumption on the nonlinearity f . In the Appendix (Proposition 34)
we show that (A3) implies that an inverse ψ(x, ·) := f(x, ·)−1 exists almost everywhere with
the following properties:

(A3’) ψ : Ω × R
3 → R

3 is measurable with ψ(x, P ) = ψ0(x, |P |)|P |−1P where, for almost
all x ∈ Ω,

z �→ ψ0(x, z) is positive, increasing and differentiable on (0, ∞),

z �→ z−1ψ0(x, z) is decreasing on (0, ∞).
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Moreover, there are c1, c2 > 0 and 2 < p < 6 such that for almost all x ∈ Ω and
z > 0 we have

∫ z

0
ψ0(x, s) ds − 1

2
ψ0(x, z)z ≥ c1|z|p′ ≥ c2ψ0(x, z)z (19)

We anticipate Proposition 34 for the sake of the presentation.

Proposition 17. Assume that f : Ω×R
3 → R

3 satisfies (A3). Then ψ(x, ·) := f(x, ·)−1 exists
for almost all x ∈ Ω and satisfies (A3’).

As a consequence, solving the nonlinear Neumann problem amounts to solving the
quasilinear problem

(L − ω2)
(
ψ(x, ε(x)P )

)
= P. (20)

The case distinction (i),(ii),(iii) in Theorem 15 leads to a separate discussion of (20) accord-
ing to the following cases:

(I) ω2 ∈ (0, ∞) \ σ(L) or (II) ω2 ∈ σ(L) or (III) ω2 = 0.

Case (I) will be treated in full detail whereas our presentation of the cases (II),(III) focusses
on the modifications with respect to (I).

4.1. Case (I)

Here we assume ω2 ∈ (0, ∞) \ σ(L).

The first step is to prove that the original problem is equivalent to finding ground and
bound states of the functional

J(P ) :=

∫

Ω
Ψ(x, ε(x)P ) dx +

1

2ω2

∫

Ω
P2 · ε(x)P2 dx

− 1

2

∫

Ω
(L − ω2)−1P1 · ε(x)P1 dx (21)

for P ∈ Z := Xp′ ⊕ Y 2. It is straightforward to check J ∈ C1(Z) with Fréchet derivative

J ′(P )[h] =

∫

Ω
ψ(x, ε(x)P ) · ε(x)h dx + ω−2

∫

Ω
P2 · ε(x)h2 dx

−
∫

Ω
(L − ω2)−1P1 · ε(x)h1 dx

for all h ∈ Z. Here one uses that (L − ω2)−1 is symmetric with respect to 〈·, ·〉ε. Exploiting

the formulas for (Xp′
)⊥ε and (Y 2)⊥ε from Proposition 11 we find that the Euler-Lagrange

equation of J reads

ψ(x, ε(x)P ) = (L − ω2)−1P1 − ω−2P2 for P1 ∈ Xp′
, P2 ∈ Y 2. (22)

Lemma 18. Assume (A1),(A2),(A3) and ω2 ∈ (0, ∞) \ σ(L). Then I′(E) = 0, E ∈ V ⊕ W if
and only if J ′(P ) = 0, P ∈ Z, where P, E are related to each other via P = ε(x)−1f(x, E),
E = ψ(x, ε(x)P ) with ψ as in Proposition 17.

Proof. Assume I′(E) = 0 where E = E1+E2 for E1 ∈ V, E2 ∈ W, define P := ε(x)−1f(x, E).
From E ∈ V ⊕ W ⊂ Lp(Ω; R

3) and the growth properties of f from (A3) we infer P ∈
Lp′

(Ω; R
3). We write P = P1 + P2 according to the Helmholtz Decomposition from Propo-

sition 11. According to the formula of I from (4) we get for Φ1 ∈ V, Φ2 = 0

0=

∫

Ω
μ(x)−1(∇ × E1) · (∇ × Φ1) dx − ω2

∫

Ωε(x)E · Φ1 dx−
∫

Ω
f(x, E) · Φ1 dx

=

∫

Ωμ(x)−1(∇ × E1) · (∇ × Φ1) dx − ω2

∫

Ωε(x)E1 · Φ1 dx−
∫

Ωε(x)P1 · Φ1 dx.

Choosing instead Φ1 = 0 and Φ2 ∈ W we get

0 = −ω2

∫

Ω
ε(x)E2 · Φ2 dx −

∫

Ω
ε(x)P2 · Φ2 dx
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for all Φ2 ∈ W. This implies

E1 = (L − ω2)−1P1, E2 = −ω−2P2.

In particular, P2 = −ω2E2 ∈ W = Y p ⊂ Y 2, so

P = P1 + P2 ∈ Xp′ ⊕ Y 2 = Z and

ψ(x, ε(x)P ) = E = E1 + E2 = (L − ω2)−1P1 − ω−2P2.

So (22) holds and we conclude J ′(P ) = 0. To prove the reverse implication assume J ′(P ) =

0 for P ∈ Xp′ ⊕ Y 2 so that (22) holds. This implies P ∈ Lp′
(Ω; R

3) and hence E :=
ψ(x, ε(x)P ) ∈ Lp(Ω; R

3) in view of (A3’). Recall that (A3’) is equivalent to (A3) thanks to
Proposition 17. From (22) we even get E1 = (L − ω2)−1P1 ∈ V by Proposition 14(iii), so
E ∈ V ⊕ W. So (22) and Theorem 15(i) imply I′(E) = 0. �

Knowing that the dual problem (22) and the original one are equivalent, we may now
focus on proving the existence of critical points of J with the aid of Theorem 5.

Proposition 19. Assume (A1),(A2),(A3’). Then J from (21) satisfies
Palais-Smale condition.

Proof. Let (Pn) be a Palais-Smale sequence for J , so J(Pn) → c ∈ R and J ′(Pn) → 0. From
(A3’) we get

c + o(1)‖Pn‖p′ = J(Pn) − 1

2
J ′(Pn)[Pn]

=

∫

Ω
Ψ(x, Pn) − 1

2
ψ(x, Pn) · Pn dx �

∫

Ω
|Pn|p′

dx = ‖Pn‖p′
p′ ,

so (Pn) is bounded in Lp′
(Ω; R

3). This and J(Pn) → c imply that (P 2
n) is bounded in

L2(Ω; R
3) as well, so we may assume P 1

n ⇀ P 1 in Xp′
and P 2

n ⇀ P 2 in Y 2. From J ′(Pn) →
0, Pn ⇀ P and the compactness of (L − ω2)−1 : Xp′ → Xp, see Proposition 14(iii), we get
as n → ∞.

o(1) = J ′(Pn)[Pn − P ] − J ′(P )[Pn − P ]

=

∫

Ω

(
ψ(x, ε(x)Pn) − ψ(x, ε(x)P )

) · ε(x)(Pn − P )

+ ω−2(P 2
n − P 2) · ε(x)(P 2

n − P 2) dx

−
∫

Ω
(L − ω2)−1(P 1

n − P 1) · ε(x)(P 1
n − P 1) dx

=

∫

Ω

(
ψ(x, ε(x)Pn) − ψ(x, ε(x)P )

) · ε(x)(Pn − P )

+ ω−2(P 2
n − P 2) · ε(x)(P 2

n − P 2) dx + o(1).

The integrand is nonnegative and hence converges to zero in L1(Ω). By a Corollary of the
Riesz-Fischer Theorem, a subsequence, still denoted by (Pn), is pointwise almost everywhere
bounded by some function H ∈ L1(Ω) and converges to zero pointwise almost everywhere.
Since ψ(x, ·) is strictly monotone for almost all x ∈ Ω and ε(x) is uniformly positive definite,
we deduce Pn → P and P 2

n → P 2 pointwise almost everywhere. Furthermore, combining

(
ψ(x, ε(x)Pn) − ψ(x, ε(x)P )

) · ε(x)(Pn − P ) + ω−2(P 2
n − P 2) · ε(x)(P 2

n − P 2) ≤ H on Ω

with the estimates ψ(x, ε(x)Pn) · ε(x)Pn � |Pn|p′
and |ψ(x, ε(x)Pn)| � |Pn|p′−1 from (A3’)

gives

|Pn|p′
+ |P 2

n |2 ≤ Ĥ on Ω

where Ĥ ∈ L1(Ω) is defined in terms of H, P, ψ(x, ε(x)P ). So the Dominated Convergence

Theorem implies Pn → P in Lp′
(Ω) and P 2

n → P 2 in L2(Ω), hence ‖Pn − P‖ → 0. In
particular, J ′(P ) = 0 and the claim is proved. �
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We finally prove the existence of critical points. As usual, a ground state is a nontrivial
critical point with least energy among all nontrivial critical points. We will see that ground
states for J give rise to ground states for I and hence minimal energy solutions for the
original problem.

Theorem 20. Assume (A1),(A2),(A3’) and ω2 ∈ (0, ∞) \ σ(L). Then J admits a ground
state and infinitely many bound states.

Proof. The Banach space Z = Xp′ ⊕ Y 2 satisfies (G1) with Z+ = Z, Z− = {0}. We check
that the functional J ∈ C1(Z) has the Mountain Pass Geometry (G2), (G3). Indeed, (G2)
is straightforward. To prove (G3) let m ∈ N be arbitrary. Then define Zm as the span of m
linearly independent eigenfunctions associated with eigenvalues λ1, . . . , λm ∈ (ω2, ∞)∩σ(L).
With this choice, we get for a linear combination of eigenfunctions P :=

∑m
i=1 ciφi ∈ Zm

∫

Ω
(L − ω2)−1P · ε(x)P dx =

m∑

i,j=1

cicj

∫

Ω
(L − ω2)−1φi · ε(x)φj dx

=
m∑

i,j=1

cicj

λi − ω2

∫

Ω
φi · ε(x)φj dx

=
m∑

i=1

c2i
λi − ω2

‖φi‖2
ε

≥ min{(λi − ω2)−1 : i = 1, . . . , m} · ‖P‖2
ε

≥ cm‖P‖2

for some cm > 0. Hence, P = P1 and P2 = 0 gives for some C > 0

J(P ) =

∫

Ω
Ψ(x, ε(x)P ) dx − 1

2

∫

Ω
(L − ω2)−1P · ε(x)P dx ≤ C‖P‖p′

p′ − cm

2
‖P‖2,

which implies J(P ) → −∞ as P ∈ Zm, ‖P‖ → ∞. Finally, Proposition 19 shows that J satis-
fies the Palais-Smale condition, so (G4) holds by
Remark 6(a). Theorem 5 then implies the existence of infinitely many finite energy solu-
tions. Finally, a critical point exists at the mountain pass level [27, Theorem 1.15] and this
solution is in fact a ground state by [27, Theorem 4.2]. �

Proof of Theorem 1 for ω2 ∈ (0, ∞) \ σ(L): Since f satisfies (A3), the function
ψ(x, ·) := f(x, ·)−1 satisfies (A3’) by Proposition 17. So Theorem 20 implies that the func-
tional J has a ground state P � ∈ Z \ {0}. By Lemma 18, E�(x) := ψ(x, P �(x)) satisfies
E� ∈ V ⊕W \{0} as well as I′(E�) = 0. In fact, E� is even a ground state, which is proved3

as in [20]. Moreover, Theorem 20 provides infinitely many other nontrivial critical points of
J and hence of I, which finishes the proof of Theorem 1. �

3 One may argue as in the proof of [20, Theorem 15]. In the notation of that paper,

X := V ⊕ W, Y := Z = Xp′ ⊕ Y 2, G := J, ϕ(h) :=

∫

Ω
h dx

Q1(E, Ẽ) :=

∫

Ω
μ(x)−1(∇ × E) · (∇ × Ẽ) − ω2ε(x)E · Ẽ dx,

Q2(E, Ẽ) :=

∫

Ω
(L − ω2)−1E · Ẽ dx.

The theorem requires the equivalence of the original and the dual problem, see eq. (10) in
[20], which we checked in Lemma 18. Even though F, G are in general not twice continuous
differentiable, the same argument as in [20] gives the claim.
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4.2. Case (II)

We proceed as in the previous section and start by defining the energy functional

J(P ) :=

∫

Ω
Ψ(x, ε(x)P ) dx +

1

2ω2

∫

Ω
P2 · ε(x)P2 dx

− 1

2

∫

Ω
(L − ω2)−1P1 · ε(x)P1 dx, (23)

on the Banach space Zω2 := Xp′
ω2 ⊕Y 2. Note that by our choice of Zω2 the resolvent is well-

defined as a linear operator acting on P1 ∈ Xp′
ω2 , see Theorem 15(i). We have J ∈ C1(Zω2 )

with

J ′(P )[h] =

∫

Ω
Ψ(x, ε(x)P ) · ε(x)h dx + ω−2

∫

Ω
P2 · ε(x)h2 dx

−
∫

Ω
(L − ω2)−1P1 · ε(x)h1 dx

for all h ∈ Zω2 and the Euler-Lagrange equation J ′(P ) = 0 actually reads, in view of
Proposition 16,

ψ(x, ε(x)P ) ∈ (L − ω2)−1P1 − ω−2P2 + Eigp
ω2 . (24)

Lemma 21. Assume (A1),(A2),(A3) and ω2 ∈ σ(L). Then I′(E) = 0, E ∈ V⊕W if and only

if J ′(P ) = 0, P ∈ Xp′
ω2 ⊕ Y 2, where P, E are related to each other via P = ε(x)−1f(x, E),

E = ψ(x, ε(x)P ) with ψ as in Proposition 17.

Proof. From P ∈ Zω2 ⊂ Lp′
(Ω; R

3) and from the fact that ψ satisfies (A3′) we get E :=
ψ(x, ε(x)P ) ∈ Lp(Ω; R

3), in particular E2 ∈ Y p = W. Now if J ′(P ) = 0, then (24) implies

E = E1 + E2, E1 ∈ (L − ω2)−1P1 + Eigp
ω2 , E2 = −ω−2P2

From P1 ∈ Xp′
we infer (L − ω2)E1 = P1 in the weak sense, in particular E1 ∈ V. Then

I′(E) = 0 follows and the claim is proved. �

The verification of the Palais-Smale condition and the existence proof for critical

points is the same as above as it suffices to replace Xp′
by Xp′

ω2 in the proof.

Theorem 22. Assume (A1),(A2),(A3’) and ω2 ∈ σ(L). Then J from (23) satisfies the
Palais-Smale condition and admits ground states as well as infinitely many bound states.

Proof of Theorem 1 for ω2 ∈ σ(L): Same reasoning as in the case ω2 ∈ (0, ∞)\σ(L)
up to replacing Theorem 20 by Theorem 22. �
4.3. Case (III)

We finally deal with the static case ω2 = 0 where the boundary value problem does not
involve the permittivity matrix ε any more, so may without loss of generality assume ε(x) :=

I3×3 and ignore (A2). The energy functional is given by J : Xp′ → R with

J(P ) :=

∫

Ω
Ψ(x, P ) dx − 1

2

∫

Ω
L−1P · P dx.

Once more, this functional belongs to C1(Xp′
) and the Euler-Lagrange equation reads

ψ(x, P ) ∈ L−1P + Y p

For the definition of L−1 : Xp′ → V ↪→ Xp and the Euler-Lagrange equation see Theo-
rem 15(iii). Proceeding as above we get the following.

Lemma 23. Assume (A1),(A3) and ω2 = 0. Then I′(E) = 0, E ∈ V ⊕ W if and only if

J ′(P ) = 0, P ∈ Xp′
where P, E are related to each other via P = f(x, E), E = ψ(x, P ) and

ψ is given by Proposition 17.
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Theorem 24. Assume (A1),(A3’) and ω2 = 0. Then J ∈ C1(Xp′
) satisfies the Palais-Smale

condition and admits ground states as well as infinitely many bound states.

Proof of Theorem 1 for ω2 = 0: Same reasoning as in the case ω2 ∈ (0, ∞) \ σ(L)

up to replacing Theorem 20 by Theorem 24. �

5. Proof of Theorem 2

We now use the dual variational method to prove the existence of infinitely many Lp-
solutions to the Nonlinear time-harmonic Maxwell’s equation (5) under the assumption

ε(x)=ε0 ∈ (0, ∞), μ(x)=μ0 ∈ (0, ∞), ω2 >0, f(·, E) satisfies (A4). (25)
So the equation to solve is

∇ × ∇ × E − λE = f(x, E) in R
3 where λ := ω2ε0μ0.

To this end we adapt the strategy that Evequoz and Weth [14] used to prove the existence
of dual ground states for the Nonlinear Helmholtz Equation. In order to implement the dual
variational method in the Maxwell setting, we use the Helmholtz Decomposition on R

3. We
recall that Ẇ 1,p(R3; R

3) is a homogeneous Sobolev space, i.e., the closure of test functions
with respect to u �→ ‖∇u‖p. We define

Xp′
:=

{
E ∈ Lp′

(R3; R
3) :

∫

Ω
E · ∇Φ dx = 0 for all Φ ∈ Ẇ 1,p(R3; R

3)
}

,

Y p′
:=

{
∇u : u ∈ Ẇ 1,p′

(R3; R
3)

}
.

Proposition 25. Assume 1 < p < ∞. Then Lp′
(R3; R

3) = Xp′ ⊕ Y p′
with (Xp′

)⊥ =

Y p, (Y p′
)⊥ = Xp. We have, in the distributional sense,

∇×∇×E1 =−ΔE1 for E1 ∈ Xp′
, ∇ × ∇ × E2 =0 for E2 ∈Y p′

. (26)

Proof. For any given E ∈ Lp′
(R3; R

3) we define

Ê1(ξ) := Ê(ξ) − |ξ|−2(ξ · Ê(ξ))ξ, Ê2(ξ) := |ξ|−2(ξ · Ê(ξ))ξ

Mikhlin’s Multiplier Theorem implies that E1, E2 indeed belong to Lp′
(R3; R

3). It is straight-

forward to check (Xp′
)⊥ = Y p, (Y p′

)⊥ = Xp. Then (26) follows from the identity ∇ × ∇ ×
Φ = −ΔΦ+∇(∇·Φ) for Φ ∈ C∞

0 (R3; R
3) and from the fact that the curl operator annihilates

gradients. �

As a consequence, it suffices to find solutions for

(−Δ − λ)E1 − λE2 = f(x, E1 + E2) in R
3.

To prove the existence of nontrivial solutions to this problem we study a dual problem
that, in contrast to the situation on bounded domains studied earlier, is not equivalent to

the original problem. This is due to the fact that −Δ − λ is not invertible on Xp′
, but

admits some sort of a right inverse R defined via the Limiting Absorption Principle for the
Helmholtz equation. We define R := �[

(−Δ − λ − i0)−1
]
, i.e.,

R : Xp′ → Xp, g �→ lim
ε→0+

�
(

F−1

(
ĝ

| · |2 − λ − iε

))
. (27)

It is known [14, Theorem 2.1] that this is a well-defined bounded linear operator for 4 ≤
p ≤ 6. Note that 2(n+1)

n−1
= 4 corresponds to the Stein-Tomas exponent and 2n

n−2
= 6 to

the Sobolev-critical exponent for n = 3. Introducting P := f(x, E1 + E2) we find that it is
sufficient to find a solution to

E1 = R(P 1), E2 = −λ−1P 2.
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This leads to the study of the energy functional

J(P ) =

∫

R3
Ψ(x, P ) dx +

1

2λ

∫

R3
|P 2|2 dx − 1

2

∫

R3
P 1 · R(P 1) dx (28)

that is well-defined on the Banach space

Z := Xp′ ⊕ (Y 2 ∩ Y p′
) with norm ‖P‖ := ‖P‖p′ + ‖P 2‖2.

Note that the assumption P2 ∈ Y 2 is not sufficient. The functional J is continuously differ-
entiable and the Euler-Lagrange equation reads

ψ(x, P ) = R(P1) − λ−2P2. (29)
It turns out that solutions P of this dual problem lead to solutions of the function space
V ⊕ W where

V := R(Xp′
), W := Y p ∩ Y p′

, so V ⊕ W ⊂ Lp(R3; R
3).

Moreover, local elliptic regularity theory implies V ⊂ W 2,p′
loc (R3; R

3). A function E = E1 +
E2 ∈ V ⊕ W is called a weak solution of (5) if

∫

R3
(∇ × E1) · (∇ × Φ1) − λE · Φ dx =

∫

R3
f(x, E) · Φ dx

for all Φ ∈ (V ⊕ W) ∩ C∞
0 (Ω; R

3)

and all integrals are well-defined by the choice of our space of test functions.

Lemma 26. Assume (25). Then J ′(P ) = 0, P ∈ Z implies I′(E) = 0, E ∈ V ⊕ W ⊂
Lp(R3; R

3) where E = ψ(x, P ) and ψ is given by Proposition 17.

Proof. Let P ∈ Z satisfy J ′(P ) = 0, so (29) holds. From Z ⊂ Lp′
(R3; R

3) and the growth
conditions of ψ from (A3’) we deduce E := ψ(x, P ) ∈ Lp(R3; R

3). The Euler-Lagrange
equation gives

E = E1 + E2, E1 = R(P1), E2 = −λ−1P2

and thus E1 ∈ V, E2 ∈ W and I′(E) = 0 in the sense of (30). �

Now we construct infinitely many nontrivial critical points for J with the aid of
Theorem 5. We shall need the following local compactness property that generalizes [13,
Lemma 2.2]. As a new feature, it uses Div-Curl-Lemma.

Proposition 27. Assume (25). Then for any PS-sequence (Pn) of J there is a subsequence
(Pnj ) and a critical point P of J such that

Pnj ⇀ P in Z, Pnj → P in Lp′
loc (R3; R

3), P 2
nj

→ P 2 in L2
loc (R3; R

3).

Proof. As in the case of a bounded domain, one finds that (Pn) is bounded and w.l.o.g.
weakly convergent to some P ∈ Z. From J ′(Pn) → 0 and Pn ⇀ P we infer for all bounded
balls B ⊂ R

3

o(1) = (J ′(Pn) − J ′(P ))[(Pn − P )1B ]

=

∫

B

(
ψ(x, Pn) − ψ(x, P )

) · (Pn − P ) + λ−1(P 2
n − P 2) · (Pn − P ) dx

−
∫

B
(Pn − P ) · R(P 1

n − P 1) dx

=

∫

B

(
ψ(x, Pn) − ψ(x, P )

) · (Pn − P ) + λ−1|P 2
n − P 2|2 dx

−
∫

B
(Pn − P ) · R(P 1

n − P 1) dx

+ λ−1

∫

B
(P 2

n − P 2) · (P 1
n − P 1) dx as n → ∞.
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We emphasize that for a fixed n ∈ N the last term does not necessarily vanish given that the
integral is over B and not R

3. The compactness of 1BR established in [14, Lemma 4.1 (i)]
implies

lim
n→∞

∫

B
(Pn − P ) · R(P 1

n − P 1) dx = 0.

The Div-Curl-Lemma [11, Theorem 4.5.16] and ∇ · (P 1
n − P 1) = 0, ∇ × (P 2

n − P 2) = 0 give

lim
n→∞

∫

B
(P 2

n − P 2) · (P 1
n − P 1) dx = 0.

So we conclude

lim
n→∞

∫

B

(
ψ(x, Pn) − ψ(x, P )

) · (Pn − P ) + λ−1|P 2
n − P 2|2 dx = 0.

As in the proof of Proposition 19 we obtain, up to the choice of a suitable subsequence,

Pn → P in Lp′
(B) and P 2

n → P 2 in L2(B) as well as J ′(P ) = 0. �

Proposition 28. Assume P, Q ∈ Lp′
(R3; R

3) and (A4). Then

‖P − Q‖p′ �
(∫

R3

(
ψ(x, P ) − ψ(x, Q)

) · (P − Q) dx

) 1
2 · (‖P‖p′ + ‖Q‖p′ )

2−p′
2 .

Proof. We content ourselves with proving

(
ψ(x, P ) − ψ(x, Q)

) · (P − Q) � (|P | + |Q|)p′−2|P − Q|2

given that the remaining argument based on Hölder’s inequality is straightforward. Define
f(τ) := ψ(x, Q + τ(P − Q)) · (P − Q). Then

(
ψ(x, P ) − ψ(x, Q)

) · (P − Q) = f(1) − f(0) = f ′(τ) for some τ ∈ (0, 1).

So it remains to estimate f ′(τ) from below. To do this we recall ψ(x, ξ) = ψ∗
0(x, |ξ|)ξ where

ψ∗
0(x, z) := z−1ψ0(x, z) for almost all x ∈ R

3, z > 0. Since s �→ s−1f0(x, s) is increasing, we

have ∂zψ∗
0(x, z) ≤ 0 for all z > 0. Hence, for ξτ := Q + τ(P − Q),

f ′(τ) = Dψ(x, ξτ )[P − Q] · (P − Q)

= ψ∗
0(x, |ξτ |)|P − Q|2 + |ξτ |∂zψ∗

0(x, |ξτ |)(|ξτ |−1ξτ · (P − Q)
)2

≥ (
ψ∗

0(x, |ξτ |) + |ξτ |∂zψ∗
0(x, |ξτ |))|P − Q|2

= ∂zψ0(x, z)|z=|ξτ ||P − Q|2
(A4)

� |ξτ |p′−2|P − Q|2

� (|P | + |Q|)p′−2|P − Q|2.

Here we used p′, q′ < 2. �

Theorem 29. Assume (25). Then J has a ground state and infinitely many geometrically
distinct critical points.

Proof. We apply Theorem 5 to the infinite-dimensional Banach space Z = Xp′ ⊕(Y 2∩Y p′
).

The assumptions (G1), (G2) of that theorem are straightforward to check for Z− := {0}. As
to (G3), for any given m ∈ N choose Zm := span{φ1, . . . , φm} ⊂ Z where

φ̂j(ξ) := χj(|ξ|2)

⎛

⎝
−ξ1
ξ2
0

⎞

⎠

where χj ∈ C∞
0 (R) and ∅ � supp (χi) ⊂ (ω2ε0μ0 + j, ω2ε0μ0 + j + 1).
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Then {φ1, . . . , φm} is a linearly independent set of divergence-free Schwartz functions. More-

over, all elements of Zm are divergence-free, so Zm ⊂ Xp′
. Exploiting that all norms are

equivalent on finite-dimensional spaces, one finds a cm > 0 such that

∫
R3 R(P 1) · P 1 dx =

∫
R3 R(P ) · P dx =

∫
R3

|P̂ (ξ)|2
|ξ|2−ω2ε0μ0

dξ ≥ cm‖P‖2 for all P ∈ Zm.

Furthermore,
1

2λ

∫

R3
|P 2|2 dx = 0 for all P ∈ Zm.

These facts imply J(P ) → −∞ uniformly as P ∈ Zm, ‖P‖ → ∞ and (G3) is proved. Finally,
we verify (G4) following [13, Lemma 3.2]. Assume we have two PS-sequences (Pn), (Qn) for
J . In the case ∫

R3
(P 1

n − Q1
n) · R(P 1

n − Q1
n) dx → 0

we get

o(1) = (J ′(Pn) − J ′(Qn))[Pn − Qn]

=

∫

R3

(
ψ(x, Pn) − ψ(x, Qn)

) · (Pn − Qn) + λ−1|P 2
n − Q2

n|2 dx

−
∫

R3
(P 1

n − Q1
n) · R(P 1

n − Q1
n) dx

=

∫

R3

(
ψ(x, Pn) − ψ(x, Qn)

) · (Pn − Qn)

+ λ−1|P 2
n − Q2

n|2 dx + o(1) as n → ∞,

which implies ‖Pn − Qn‖ → 0 in view of Proposition 28. In the complementary case the
nonvanishing property of R from [14, Theorem 2.3] gives, for a suitable ball B ⊂ R

3, a

positive number ζ and xn ∈ Z
3, that P̃n = Pn(· − xn), Q̃n := Qn(· − xn) are still PS-

sequences of J with
∫

B
|P̃ 1

n − Q̃1
n|p′

dx ≥ ζ > 0 for all n ∈ N.

Here, the Z
3-periodicity of f is used. By Proposition 27 we can select a subsequence, still

denoted by P̃n, Q̃n with weak limits P, Q ∈ K satisfying
∫

B
|P 1 − Q1|p′

dx ≥ ζ > 0.

Hence, P, Q ∈ K, P �= Q and thus, by weak convergence,

lim sup
n→∞

‖Pn − Qn‖ ≥ ‖P − Q‖ ≥ κ.

So J is PS-attracting and (G4) is proved. So all assumptions of Theorem 5 hold, hence any
K-decomposition of J must be infinite. In particular, by Remark 6(b), there are infinitely
many periodic orbits in K, which proves the claim. �

Proof of Theorem 2. It suffices to combine the existence of infinitely many periodic orbits
in K from Theorem 29 with the fact that critical points of J yields critical points of I by
Lemma 26. �

6. Comments on the Dirichlet problem

Only few adjustments are necessary to treat the Dirichlet problem in the same way as the
Neumann problem. Essentially it suffices to modify the function spaces. The linear Dirichlet
boundary value problem reads

∇ × (
μ(x)−1∇ × E

) − λε(x)E = ε(x)g in Ω, E × ν = 0 on ∂Ω. (30)



NoDEA Dual variational methods for. . . Page 21 of 26    22 

In contrast to the Neumann problem, the right function spaces for E now is

V0 :=
{

E1 ∈ H0 :

∫

Ω
ε(x)E1 · ∇Φ dx = 0 for all Φ ∈ C1

0 (Ω)
}

where H0 is defined as the closure of test functions with respect to the inner product 〈·, ·〉
defined in (3). In particular, V0 ⊂ V is a closed subspace, but it is also a closed subspace of
H1

0 (Ω; R
3). This follows just as in the Neumann case with the aid of [22, Theorem 1.1]. A

weak solution of (30) satisfies
∫

Ω
μ(x)−1(∇ × E) · (∇ × Φ) dx − λ

∫

Ω
ε(x)E · Φ dx =

∫

Ωε(x)g · Φ dxfor all Φ ∈ V0.

We introduce

Xp′
0 :=

{
E ∈ Lp′

(Ω; R
3) :

∫

Ω
ε(x)E · ∇φ dx = 0 for all φ ∈ W 1,p

0 (Ω)
}

,

Y p′
0 :=

{∇u : u ∈ W 1,p′
0 (Ω)

}
.

Notice that Xp′
0 � Xp′

and Y p′
0 � Y p′

given that elements of Xp′
0 do not carry any

information about the boundary behaviour in contrast to elements of Xp′
. For instance, in

the case of a ball Ω = {x ∈ R
3 : |x| < 1} we have E(x) := ε(x)−1(x2, x1, 0) ∈ Xp′

0 \ Xp′
.

Indeed, the vector field ε(x)E is divergence-free in Ω with ε(x)E(x) · ν(x) = ε(x)E(x) · x =
2x1x2 �≡ 0 on ∂Ω. As before we define

(Y p′
0 )⊥ε :=

{
f ∈ Lp(Ω; R

3) :

∫

Ω
ε(x)f · g dx = 0 for all g ∈ Y p′

0

}
,

(Xp′
0 )⊥ε :=

{
g ∈ Lp(Ω; R

3) :

∫

Ω
ε(x)f · g dx = 0 for all f ∈ Xp′

0

}
.

The Helmholtz Decomposition for the Dirichlet problem relies on the following result [2,
Theorem 1].

Proposition 30. [Auscher, Qafsaoui] Assume (A1),(A2) and 1 < p < ∞. Then, for any

given f ∈ Lp′
(Ω; R

3) the boundary value problem

∇ · (
ε(x)(f + ∇u)

)
= 0 in Ω

has a unique weak solution in u ∈ W 1,p′
0 (Ω). It satisfies ‖∇u‖p′ � ‖f‖p′ .

Proposition 31. Assume (A1),(A2) and 1 < p < ∞. Then we have

Lp′
(Ω; R

3) = Xp′
0 ⊕ Y p′

0 with (Y p
0 )⊥ε = Xp′

0 , Y p
0 = (Xp′

0 )⊥ε .

Proof. The proof of Lp′
(Ω; R

3) = Xp′
0 ⊕ Y p′

0 is the same as the one of Proposition 11 up to

replacing Proposition 10 by Proposition 30. We only show (Xp′
0 )⊥ε ⊂ Y p

0 . For f ∈ (Xp′
0 )⊥ε

we have f ∈ (Xp′
)⊥ε thanks to Xp′

0 ⊃ Xp′
. So Proposition 11 gives f = ∇F for some

F ∈ W 1,p(Ω). We want to show that we even have F ∈ W 1,p
0 (Ω) after substracting a suitable

constant. To see this let φ ∈ C1(∂Ω) be arbitrary with zero average and let u ∈ W 1,p′
(Ω)

denote the unique weak solution of

−Δu = 0 in Ω, ∇u · ν = φ on ∂Ω.

This is possible by [15, Theorem 9.2]. Then u is harmonic with ε(x)−1∇u ∈ Xp′
0 . Hence,

0 =

∫

Ω
ε(x)∇F · ε(x)−1∇u dx =

∫

Ω
∇F · ∇u dx =

∫

∂Ω
Fφ dσ.

As a consequence,

0 =

∫

∂Ω
Fφ dσ whenever

∫

∂Ω
φ dσ = 0.
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So F is constant on ∂Ω and after substracting the constant, we find f = ∇F for some

F ∈ W 1,p
0 (Ω), so f ∈ Y p

0 . Here we used that F ∈ W 1,p
0 (Ω) holds if and only if F ∈ W 1,p(Ω)

has zero trace [10, p.315]. This finishes the proof. �
As in the Neumann setting V0 inherits the embeddings from H1

0 (Ω; R
3), which allows

to set up Fredholm theory for the linear Dirichlet problem (30) using

V0 ↪→ Xp
0 boundedly for 1 ≤ p ≤ 6 and compactly for 1 ≤ p < 6.

In this way one finds that Theorem 15 admits a counterpart for the Dirichlet problem with

V, W, Xp′
, Y q replaced by V0, W0, Xp′

0 , Y q
0 , respectively. Replacing the function spaces in

the discussion of the nonlinear problems the leads to existence results for infinitely many
solutions of the nonlinear Dirichlet problem under the same assumptions (A1),(A2),(A3).
We close this section by a remark on the interpretation of the boundary condition E ×ν = 0
on ∂Ω.

Remark 32. In the context of (1) the metallic boundary condition E × ν = 0 on ∂Ω holds
in the sense

∫

Ω

(
(∇ × Φ) · E − Φ · (∇ × E)

)
dx = 0 for all Φ ∈ C1(Ω; R

3).

In fact, this identity holds for all E ∈ C∞
0 (Ω; R

3) and hence, by density with respect to
‖ · ‖, for all E ∈ H0. It encodes the boundary condition given that, under suitable regularity
assumptions, the integral equals, by the Divergence Theorem,

∫

Ω
∇ · (Φ × E) dx =

∫

∂Ω
(Φ × E) · ν dσ =

∫

∂Ω
(E × ν) · Φ dσ

for the outer unit normal field ν : ∂Ω → R
3. This is analogous to the classical Dirichlet

problem for the Laplacian where the zero trace boundary condition comes with the space
H1

0 (Ω). This motivates the name “Dirichlet problem” for (1). In the context of (2) the

boundary condition (μ(x)−1∇×E)×ν = 0 on ∂Ω is encoded in the Euler-Lagrange equation
for the functional I over H. So it shows up as a free boundary condition, which is analogous
to the Neumann problem for the Laplacian.
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Appendix A. Some technical results

Lemma 33. Assume (A1),(A2) and 1 ≤ p < ∞. If f ∈ Lp(Ω; R
3) satisfies ∇ × f = 0 in the

distributional sense, then f = ∇u for some u ∈ W 1,p(Ω).

Proof. By assumption we have
∫

Ω
f · (∇ × Φ) dx = 0 for all Φ ∈ C∞

0 (Ω; R
3).

Take mollifiers (ητ )τ>0 that form a smooth approximation of the identity with supp(ητ ) ⊂
Bτ (0) and define

fτ (x) := (ητ ∗ f)(x) :=

∫

Ω
ητ (x − y)f(y) dy.

For any given Φ ∈ C∞
0 (Ω; R

3) we have Φτ ∈ C∞
0 (Ω) for all positive τ < dist(supp(Φ), ∂Ω).

This implies, using integration by parts, (∇ × Φ)τ = ∇ × Φτ as well as
∫

Ω
(∇ × fτ ) · Φ dx =

∫

Ω
fτ · (∇ × Φ) dx =

∫

Ω
f · (∇ × Φ)τ dx =

∫

Ω

f · (∇ × Φτ ) dx
(17)
= 0.

Given that the test function Φ is arbitrary as long as τ < dist(supp(Φ), ∂Ω), we conclude
that for any given strictly contained ball B ⊂⊂ Ω we have ∇ × fτ = 0 in B provided that
0 < τ < dist(B, ∂Ω). Since fτ is smooth and any such ball is simply connected, we have

fτ |B = ∇uB,τ for a unique uB,τ ∈ C∞(B) with
∫

B
uB,τ dx = 0 where 0 < τ < dist(B, ∂Ω).

By Poincaré’s Inequality there is a constant C = C(B) depending on B such that

‖uB,τ − uB,δ‖W1,p(B) ≤ C‖∇uB,τ −∇uB,δ‖Lp(B) =‖fτ − fδ‖p → 0 as τ, δ → 0+.

We conclude uB,τ → uB for some u ∈ W 1,p(B) and it is standard to verify

f = ∇uB on B.

If (χi)i∈N is a partition of unity subordinate to some open cover Ω =
⋃

i∈N
Bi with balls

Bi ⊂ Ω, it is straightforward to check

f = ∇u on Ω where u :=
∑

i∈N

χiFBi
.

Since f ∈ Lp(Ω), we have u ∈ W 1,p(Ω), which is all we had to show. �

Proposition 34. Assume that f : Ω×R
3 → R

3 satisfies (A3). Then ψ(x, ·) := f(x, ·)−1 exists
for almost all x ∈ Ω and satisfies (A3’).

Proof. By assumption (A3), for almost all x ∈ Ω the function z �→ f0(x, z) is positive,
differentiable and increasing on (0, ∞) with f0(x, z) → 0 as z → 0 and f0(x, z) → +∞ as z →
∞. In particular, f0(x, ·) : [0, ∞) → [0, ∞) admits a positive, differentiable and increasing
inverse ψ0(x, ·) := f0(x, ·)−1 for such x ∈ Ω. Moreover, z �→ z−1ψ0(x, z) is decreasing on
(0, ∞) because s �→ s−1f0(x, s) is increasing on (0, ∞). This implies f(x, ·)−1 = ψ(x, ·)
where ψ(x, P ) := ψ0(x, |P |)|P |−1P and the claimed properties of ψ0 except (19).

To prove (19) note that (A3) implies z := f0(x, s) ∼ sp−1 and thus ψ0(x, z) = s ∼
zp′−1. This implies the second inequality in (19).

Furthermore, by differentiation we find the identity
∫ f0(x,s)

0
ψ0(x, t) dt +

∫ s

0
f0(x, t) dt = sf0(x, s) for all s ≥ 0
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and conclude with the aid of assumption (A3)
∫ z

0
ψ0(x, t) dt − 1

2
ψ0(x, z)z =

1

2
f0(x, s)s −

∫ s

0
f0(x, t) dt � sp ∼ zp′

.

This provides the first inequality in (19) and the claim is proved. �
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