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A B S T R A C T

The asymmetric transformation elasticity provides a promising method for controlling elastic waves. However, it 
requires elastic materials capable of supporting asymmetric stresses, which are not admissible within the line
arized Cauchy elasticity under small deformations. In contrast, asymmetric stress tensors naturally arise in 
micropolar continuum theory, yet the connection between micropolar media and the asymmetric transformation 
elasticity has remained largely unexplored. In this work, we demonstrate that extremal micropolar media, which 
are micropolar materials exhibiting soft modes, can be used to design elastic cloaks via asymmetric trans
formation elasticity. Our first contribution is to establish a rigorous theoretical formulation of the asymmetric 
transformation method within the micropolar continuum framework. Second, we propose a micropolar meta
material model that exhibits required soft modes for cloaking. A two-dimensional metamaterial cloak is then 
constructed and its cloaking performance is verified through full-wave numerical simulations. This study unveils 
a novel strategy for controlling elastic waves through micropolar media and also sheds light on interesting 
physical properties of extremal micropolar materials.

1. Introduction

Transformation theory, firstly proposed in electromagnetic wave 
fields [1], has become a successful design tool for various wave fields, e. 
g., acoustic waves, optics and so on [2–6]. Many interesting wave de
vices have been designed based on this theory over the past decade, such 
as omni-directional absorbers or cloaks [7–9]. However, the application 
of transformation theory for elastic waves is still challenging due to the 
complexity of elastic waves, which contain both longitudinal compo
nents and transverse components. Transformation elasticity is mainly 
available for a number of limited situations, e.g., flexure waves in plates 
or approximation control at high frequency range [10,11].

Controlling elastic waves via transformation elasticity generally re
quires two steps. Firstly, the Navier equation for Cauchy materials in a 
virtual space is transformed to a new governing equation in a physical 
space [2,4]. The second step is to realize materials or metamaterials 
[12–14] that follow the transformed governing equation. For elastic 
waves, two types of transformed equations exist. In one case, the 
transformed equations become quite complex and involve the use of 
Willis materials [2,15–16], which exhibit coupling between stress/mo
mentum and velocity/strain fields [15]. In recent developments, a 

formulation of Willis elasticity based on microcontinuum field theory 
has been proposed, which subsequently enabled the design of elastic 
cloaks [17]. In another version, the transformed equation has the same 
form as the Cauchy theory, while the fourth order elasticity tensor loses 
its minor symmetry, likewise the stress tensor [4,18]. The theory is also 
called asymmetric transformation elasticity [19]. However, the asym
metric elasticity theory is not physical or well defined, since the theory 
doesn’t not take into the account of the unbalanced angular momentum 
caused by asymmetric stress. This problem caused concern on the pos
sibility of designing cloaks following the asymmetric transformation 
elasticity [20]. At first sight, it seems impossible to design an asym
metric elastic material. Interestingly, the propagation of a small 
disturbance superimposed upon a largely-deformed hyperelastic mate
rial (i.e. the small-on-large theory) is governed by an effective asym
metric elasticity tensor [21–23]. Therefore, hyperelastic materials, like 
semi-linear materials, have been theoretically shown to be able to 
cloak elastic waves [22–24]. Yet, the cloaking effect is limited due to 
geometry restrictions [22]. The required hyperelastic behavior is also 
challenging to achieve with artificial microstructures.

Recently, asymmetric elastic materials have been effectively realized 
by metamaterials [25–31]. In the first type of design, each unit cell 
contains a mass block that can freely translate but is restrained against 
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rotation by grounded torsional springs [25,26], or by external magnetic 
fields [31]. The asymmetric stress is balanced by external torque sup
plied by the torsional springs or the magnetic fields. By employing a 
complex mechanism that restricts rotational degrees of freedom (DOFs) 
while permitting translational motion, this type of metamaterial cloak 
has been experimentally realized [28]. In the second type of design, a 
discrete metamaterial with local rotational resonance is adopted [29]. 
The asymmetric shear stress expressed by a metamaterial unit cell is 
compensated by its inner rotation inertia. Both strategies have been 
employed to achieve the asymmetric elasticity tensors required for 
asymmetric transformation. We note here that although asymmetric 
elasticity theory and its corresponding materials do not naturally occur 
[4], they can nevertheless be effectively approximated by appropriately 
designed metamaterials. This reflects a central idea of metamaterials 
[14], achieving effective-medium properties that are seemingly unat
tainable in conventional materials, e.g., negative index [32,33]. In this 
work, we pursue a different route to achieve elastic wave cloaking—
through the use of micropolar elastic media, which inherently support 
asymmetric stress. The advantage lies in the fact that micropolar elas
ticity is a physically consistent theory with a well-established theoretical 
foundation, in contrast to the asymmetric elasticity theory. Our initial 
idea is inspired by the observation that pentamode materials [34–41] 
can control acoustic waves through the framework of transformation 
acoustics [42,43]. Pentamode materials are a typical example of 
extremal Cauchy materials, which allow soft modes that, in principle, 
incur no strain energy [44–49]. Therefore, we anticipate that special 
extremal higher-order elastic media [50] can potentially be used to 
control elastic waves in Cauchy materials. A promising candidate is the 
micropolar continuum media, also called Cosserat media [51–53], 
which is relatively simple in mathematics and more importantly can 
capture asymmetric stresses. We remark that micropolar elasticity was 
utilized to account for asymmetric stress behavior in granular mechanics 
[54,55], long before the emergence of transformation theory and met
amaterials. Later, the study of surface waves in micropolar media was 
applied to seismology [56,57]. Recently, some studies have further 
incorporated micropolar theory into phase-field models to investigate 
fracture problems [58,59].

In our paper, we particularly focus on the micropolar media with a 
vanishing higher-order elasticity tensor, also referred to as reduced 
Cosserat media [60,61], in which all gradients of micro-rotations act as 
soft modes. We find that a type of extremal micropolar medium, which 

supports not only these soft modes but also shear–rotation coupled soft 
modes, can serve as a viable foundation for realizing asymmetric 
transformation elasticity. Accordingly, we develop design guidelines to 
achieve the required soft modes and propose a discrete metamaterial 
that realizes the corresponding extremal micropolar parameters. 
Furthermore, we design a 2D elastic cloak based on the proposed met
amaterial, and demonstrate the effectiveness of both the theory and the 
metamaterial through numerical simulations.

In contrast to grounded elastic cloaks [25,26,28], the proposed 
design based on extremal micropolar media eliminates complicate 
rotational constraints, enabling much simpler design for applications. 
Compared with our previous elastic cloak based on rotational resonance 
[29], the current design is not limited to a background medium with a 
Poisson’s ratio below 0.25. Other studies bypass asymmetric elasticity 
altogether. One common strategy symmetrizes the elasticity tensor for 
easier implementation, but at the cost of reduced cloaking efficiency 
[62,63]. Another approach optimizes material parameters or topology 
for static cloaking, which requires the cloak to be tailored to specific 
loads [64–66].

Micropolar homogenization has been increasingly developed and 
applied in recent years to describe biological materials [67], composite 
materials [68,69], and both two-dimensional (2D) [70–72] and 
three-dimensional (3D) [73,74] lattice materials. Classical homogeni
zation methods generally determine effective micropolar parameters by 
establishing energy equivalence between the microstructure and the 
effective continuum [70,74]. In contrast, this work applies Taylor ex
pansions of the field variables in the dynamic equations, leading to a 
continuum version of Lagrangian equations. Effective micropolar pa
rameters can then be derived by comparing the coefficients in the gov
erning equations [75]. In recent years, enhanced homogenization 
methods have been developed to account for nonlocal effects, allowing 
for improved accuracy in modeling microstructure systems even when 
the long-wavelength assumption does not hold [76–79]. In designing the 
metamaterial cloak in this paper, the homogenized material parameters 
in Cartesian coordinates are adopted. Such an approach remains valid 
when the metamaterial unit cells are small enough compared to the 
cloak since the curvature effect on each unit cell is negligible. Existing 
methods have demonstrated that conformal mapping can be used to 
directly transform periodic microstructures into quasi-periodic micro
structures in polar coordinates, while establishing the relationship be
tween the elasticity tensors before and after mapping [80–82]. 

Nomenclature

x, X The spatial coordinates in the physical and virtual spaces
Fij, J, η The mapping gradient tensor, its determinant and the 

stretching ratio
σ’ij, ε’ij Transformed stress and strain
C0ijkl,ρ0 Elasticity tensor and mass density of the background 

medium
λ0, μ0, ν Lamé constants and Poisson’s ratio of the background 

medium
Cʹ

ijkl, ρ́ Transformed elasticity tensor and mass density
ϕi, κij, mij Micro-rotation, curvature and couple stress of micropolar 

media
Cijkl, ρ Elasticity tensor and mass density of micropolar media
Aijkl, Dijkl, I Higher-order elasticity tensor, coupling tensor and 

micro-rotation inertia
Ceff

ijkl Effective asymmetric elasticity tensor of micropolar media
εo, εd, εs, εa Four basic deformation modes of micropolar media with 

Aijkl = 0
ε, εd, εs, εa The projection of the strain onto the four basic modes
e1, e2, er, eθ Cartesian basis vectors and polar coordinate basis 

vectors
ai Lattice vectors
l, h, d, γ, Scell Size parameters of the microstructure
k, K, s Elastic parameters of the microstructure
M, j Mass and rotational inertia of the mass block
up,q, vp,q, ϕp,q Discrete field variables of the discrete metamaterial 

model
uI

p,q,uII
p,q Displacements of hidden nodes

m, n Lattice coordinates relative to (p, q)
k Wave vector
ωr, ωext The optical cut-off angular frequency and the operating 

angular frequency
cT, cL Transverse and longitudinual wave velocities of the 

background medium
N The number of unit cells per shear wavelength
Nr, Nθ The number of layers in the cloak along the radial direction 

and the θ direction
Pϕ The proportion of micro-rotation kinetic energy
a, b, δ Size parameters of the cloak
Esc The total scattered power
Pin The incident power density
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Extending such techniques to micropolar framework may improve the 
accuracy of the cloak design.

The paper is organized as follows. We establish in detail the 
connection between micropolar continuum theory and asymmetric 
transformation in Section 2. The required soft modes of extremal 
micropolar media for transformation are discussed in Section 3. Then, an 
extremal metamaterial model with required soft modes is proposed and 
its effective micropolar elastic parameters are derived analytically. We 
numerically calculate its band structure and simulate its wave behavior 
to verify the metamaterial design. In Section 4, we design a 2D elastic 
cloak based on the proposed micropolar metamaterial. The cloaking 
performance is validated numerically and compared with results from 
effective-medium model. These results serve to validate our cloaking 
theory based on extremal micropolar materials. Finally comes the 
conclusion.

2. Micropolar continuum theory for elastic cloaking

Conventional micropolar media cannot be directly applied for elastic 
cloaking in Cauchy media, since the number of hard modes in a typical 
micropolar medium does not match that of a Cauchy medium. The most 
intuitive manifestation of this mismatch lies in the couple stresses pre
sent in micropolar media, which cannot exist in Cauchy elasticity. 
However, by introducing soft modes and retaining only those hard 
modes that are compatible with the Cauchy medium, asymmetric 
transformation elasticity becomes feasible.

In this section, we first briefly review the governing equations of 
asymmetric elasticity and micropolar elasticity in the 2D case. Then, by 
imposing the condition Aijkl = 0, which corresponds to the presence of 
two soft modes, we eliminate the micro-rotation ϕ from the linear mo
mentum equations of micropolar elasticity. This yields a governing 
equation that is formally consistent with that of asymmetric elasticity. 
By comparing the resulting effective elasticity tensor with the asym
metric elasticity tensor, we identify the required micropolar parameters 
for implementing asymmetric transformation elasticity.

2.1. Asymmetric transformation elasticity

We briefly revisit the asymmetric transformation elasticity [4] 
through the example of a 2D annular cloak. A more detailed discussion 
on the cloak design and material realization will be provided in Section 
4. A virtual space (Fig. 1(a)) is assumed to be filled with a Cauchy ma
terial with the mass density ρ0 and the elasticity tensor C0ijkl = C0jikl =

C0klij. We limit the study in this paper to small deformations and only 
consider linear elastic waves propagating inside the material. Omitting a 

time harmonic term exp(− iωt), with i being the imaginary unit, ω the 
angular frequency and t the time, the dynamic equation and constitutive 
equation for waves propagating in the virtual space in frequency domain 
write as 

− ρ0ω2ui(X) =
∂σji(X)

∂Xj
, σij = C0ijkl

∂ul(X)
∂Xk

, (1) 

in which, ui(X) and σij(X) = σji(X) represent the displacement and the 
symmetric stress tensor in the virtual space, respectively.

We consider a spatial mapping x = x(X) that maps a circular domain 
Ω with a small hole in the virtual space onto an annular cloak region Σ in 
the physical space. The small hole is deliberately introduced in order to 
obtain a compatible singular-free mapping between the two regions. 
Otherwise, the required material parameters close to the inner boundary 
of the cloak will approach zero or infinite. Eq. (1) then can be rewritten 
as the following form by a change of variable [83] 

− ρ’ω2u’
i(x) =

∂σ’
ji(x)

∂xj
, σ’

ji(x) = C’
ijkl(x)

∂u’
i(x)

∂xk
. (2) 

The displacement and stress in the physical space are uʹ
i(x) = ui(X)

and σʹ
ij(x) = J− 1Fikσkj(X), respectively. In the formula, the mapping 

gradient Fij = ∂xi/∂Xj and J = det
(
Fij
)

are defined. We remark that the 
mapping gradient F should not be confused with the deformation 
gradient in finite deformation elasticity. Here, F doesn’t represent 
physical deformation but stands for spatial mapping. The mass density 
and elasticity tensor in the cloak region Σ are 

ρ’(x) = J− 1ρ0(X), C’
ijkl(x) = J− 1FimFknC0mjnl(X). (3) 

The transformed elasticity tensor maintains the major symmetry 
C’ijkl = C’klij, while violates the minor symmetry C’ijkl ∕= C’jikl. As a 
consequence, the transformed stress tensor is not symmetric σ’

ij ∕= σ’
ji. In 

the above process, the circular domain Ω with a small hole is not 
physically deformed into the annular region Σ. Instead, the entire pro
cess is a purely mathematical mapping or a change of variables. If one 
assigns materials to the cloak region Σ according to the above parame
ters in Eq. (3), elastic waves coming from the background domain Σout 

cannot detect the cloaked inner region Σin. For clarity, we assume that 
the mapping gradient can be diagonalized, i.e., F = F11e1⊗e1 +

F22e2⊗e2, where e1 and e2 are the orthonormal basis vectors of the 
principal coordinate. The material in the virtual space has an isotropic 
elasticity tensor C0ijkl = λ0δijδkl + μ0(δikδjl + δilδjk). The assumption is 
valid for mapping for typical wave controlling function, such as cloaks. 
The required mass density and the elasticity matrix in Eq. (3) for the 
annular cloak can be simplified in the principal coordinate as 

Fig. 1. Illustration of asymmetric transformation elasticity through the design of a 2D cloak. (a) Virtual space with a background domain Ωout and a circular domain 
Ω with a small hole of 2δ in diameter. (b) Physical space with a background domain Σout, an annular cloak domain Σ, and a cloaked inner domain Σin. Cartesian 
coordinate systems XOY andxoy are assigned for the virtual space and physical space, respectively. The cloak region Σ in the physical space is mapped from the 
domain Ω in the virtual space through a spatial mapping x = x(X).
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⎟
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⎟
⎟
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, (4) 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C’
11 = η(λ0 + 2μ0), C’

22 =
λ0 + 2μ0

η , C’
12 = λ0,

C’
66 = ημ0, C’

99 =
μ0

η , C’
69 = μ0.

(5) 

Here, the stretching ratio η = F11/F22 and the asymmetric strain έij =

uʹ
j,i are defined. For a trivial stretching ratio η = 1, the required material 

is a conventional Cauchy material with Cʹ
66 = Cʹ

99 = Cʹ
69 = μ0. For this 

Cauchy material, an antisymmetric strain or an infinitesimal rotation 
(u1,1 = u2,2 = 0, u1,2 = − u2,1) results in zero stresses and can be regarded 
as its soft mode. However, for a nontrivial ratio η ∕= 1, the required 
material is an asymmetric elastic material, since the three shear 
modulus, Cʹ

66, Cʹ
99, and Cʹ

69, are different, which means an infinitesimal 
rotation can lead to non-zero stresses in the material. It can be verified 
that the asymmetric material also exhibits an soft mode [25]. This soft 
mode is a combination of an infinitesimal rotation and a shear defor
mation, as indicated by C’

66C’
99 − C’2

69 = 0 from Eq. (5). In the following, 
we will show how to achieve the asymmetric elastic properties using 
extremal micropolar materials with special soft modes.

2.2. Basics of micropolar continuum theory

We provide a brief introduction to micropolar continuum theory. In 
micropolar elasticity, micro-rotation DOFs, ϕi, in addition to displace
ment DOFs, ui, are introduced for each material point. The deformation 
is characterized by [51] 

εij =
∂uj

∂xi
− ϵijkϕk, κij =

∂ϕj

∂xi
, (6) 

where ϵijk,εij, and κij represents the Levi-Civita tensor, the micropolar 
strain tensor and the micropolar curvature tensor, respectively. All 
indices range from 1 to 2 for 2D space and from 1 to 3 for 3D space. The 
balance law for linear momentum and angular momentum in frequency 
domain read 

− ω2ρui =
∂σji

∂xj
, − ω2Iϕi =

∂mji

∂xj
+ ϵijkσjk, (7) 

in which, ρ is the mass density, I represents the micro-rotation inertia 
density (micro-rotation inertia per unit volume), σij and mij stand for the 
stress tensor and the couple stress tensor, respectively. In Cauchy theory, 
the stress tensor can be proved to be symmetric from the balance law for 
angular momentum, owing to the absence of couple stress and micro- 
rotation DOFs. Here, the micropolar stress doesn’t need to be symmet
ric and the asymmetric part is balanced by the couple stress and the 
micro-rotation inertia.

For infinitesimal deformations, a quadratic strain energy density 
function in terms of the micropolar strain and the micropolar curvature 
is assumed [51] 

w =
1
2

εijCijklεkl + εijDijklκkl +
1
2

κijAijklκkl. (8) 

The constitutive law for the stress tensor and the couple stress tensor 
are derived by differentiating the strain energy density w with respect to 
the strain and the curvature, respectively, 

σij = Cijklεkl + Dijklκkl, mij = Dklijεkl + Aijklκkl. (9) 

The fourth-rank tensor Aijkl is denoted as the higher-order elasticity 

tensor in micropolar elasticity [74,84] since it accounts for the gradient 
of micro-rotation — a higher-order deformation measure beyond strain. 
The micropolar elasticity tensor Cijkl and the higher-order elasticity 
tensor Aijkl exhibit major symmetry, Cijkl = Cklij, Aijkl = Aklij, but not 
minor symmetry. Both Cijkl and Aijkl are normal tensors, while the 
coupling tensor Dijkl is a pseudo-tensor [75]. This tensor becomes zero 
for a material or metamaterial with centrosymmetry [85,86]. In 3D 
cases, a non-zero coupling tensor enables modeling interesting chiral 
effects, such as push-to-twisting coupling effect, or circularly polarized 
transverse elastic waves [87,88]. This paper is concerned with 2D set
tings. The coupling tensor and higher-order tensor reduce to third-order 
Dijk3 and second-order Ai3j3, respectively. The relationship between 
chirality and centrosymmetry becomes subtle. In particular, a 2D ma
terial can still be chiral even with centrosymmetry, such as tetra-chiral 
or hexa-chiral metamaterials, albeit the coupling tensor becomes zero 
[52,75,89]. In these cases, chiral effects, e.g., coupling between dilation 
and rotation, are modeled by certain components of the tensor Cijkl [90,
91].

2.3. Micropolar continuum parameters for elasticity cloak

Now, we introduce the similarity between extremal micropolar 
elastic materials and asymmetric elastic materials, following a previous 
method [92]. We consider micropolar materials with a zero higher-order 
elasticity tensor Aijkl = 0. Such materials are also called reduced Cosserat 
media [61]. The zero higher-order tensor leads to soft modes related to 
the micropolar curvatures. According to thermodynamic stability, the 
coupling tensor also vanishes Dijkl = 0. Both conditions can be met with a 
proposed micropolar metamaterial later. The constitutive equations and 
the dynamic equations in Eq. (7) and (9) reduce to 

σij = Cijkl
∂ul

∂xk
− Cijklϵklmϕm, mij = 0, (10) 

− ω2ρui =
∂σji

∂xj
, − ω2Iϕi = ϵijkσjk. (11) 

The displacement DOFs and the micro-rotation DOFs are coupled in 
the constitutive law. To achieve Eq. (2) for the asymmetric elasticity 
theory, we need to decouple the displacement and the micro-rotation. 
Substituting the stress tensor in Eq. (10) into the balance law of 
angular momentum in Eq. (11), we obtain, 

Hmnϕn = − ϵmijCijkl
∂ul

∂xk
, Hmn = Hnm = Iω2δmn − ϵmijCijklϵnkl. (12) 

We have det(H) = 0 for some frequencies, ωr, which correspond to 
the cut-off frequencies of optical modes of the micropolar material. For 
frequencies other than the cut-off frequency ω ∕= ωr, the micro-rotation 
can be solved from Eq. (12). Substituting the solved micro-rotation into 
Eq. (10) yields 

− ω2ρui =
∂σji

∂xj
, σij = Ceff

ijkl
∂ul

∂xk
, Ceff

ijkl = Cijkl + H− 1
nmCijrsϵrsnϵmpqCpqkl. (13) 

One can see that the micropolar Eq. (13) exactly matches the equa
tion of the asymmetric elasticity Eq. (2). Additionally, the effective 
tensor Ceff

ijkl shares the same major symmetry as the target tensor C’ijkl 

defined in Eq. (2). As a result, one can effectively realize the required 
asymmetric elastic tensor, Ceff

ijkl = C’ijkl, by properly selecting the tensor 
Cijkl. The effective asymmetric elasticity tensor Ceff

ijkl is frequency depen
dent or dispersive. We remark that Eq. (13) for balance of linear mo
mentum is only one part of the complete dynamics equation for the 
micropolar material. It is this part that shares the same form with Eq. (2) 
for asymmetric transformation elasticity. A complete description of the 
dynamics of the micropolar material must be supplemented by the 
balance law for angular momentum Eq. (12). Otherwise, we will face the 
same issue as the asymmetric elasticity theory, i.e., the unbalanced 
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angular momentum caused by asymmetric stresses.
By comparing the effective elastic parameters, Ceff

ijkl, with asymmetric 
elastic parameters C’ijkl given in Eq. (5), we obtain the following 
micropolar parameters that can mimic the asymmetric elastic parame
ters 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ =
ρ0

F11F22
, I > 0, Aijkl = 0, Dijkl = 0,

C11 = η(λ0 + 2μ0), C22 =
(λ0 + 2μ0)

η , C12 = λ0,

C66 = ημ, C99 =
μ
η, C69 = μ, μ =

μ0Iω2η
μ0(η − 1)2

+ Iω2η
.

(14) 

The micro-rotation inertia parameter I > 0 can be chosen arbitrarily. 
The required micropolar material has an soft mode resulting from C66C99 

− C2
69 = 0. Mathematically, one can characterize the soft mode as 

( 0 0 1 − η )T, which stands for a linear combination of pure shear 
and rotation. A metamaterial example with such soft mode is presented 
in next section (see Figs. 2 and 3). It is noted that the three shear pa
rameters, C66, C99, andC69, depend on the desired working frequency. 
When the micro-rotation inertia I becomes very large, the effective pa
rameters tend to become approximately frequency independent. In such 
a case, a designed micropolar material can approximate an asymmetric 
elastic material over a broad frequency range. Furthermore, if an 
external torque is applied to constrain the micro-rotation to zero, the 
micropolar material can be regarded as a nondispersive asymmetric 
elastic material. This is equivalent to a previous 2D broadband elastic 
cloak, in which the rotation of the inner block in each unit cell was 
externally constrained to zero [25]. For realizing 3D asymmetric 
transformation, the required micropolar parameters are given in Ap
pendix A. In the following, we demonstrate how to achieve such 
extremal micropolar material.

3. Design of the extremal micropolar material

While the micropolar parameters required for asymmetric trans
formation elasticity have been theoretically determined, the key chal
lenge lies in constructing an extremal micropolar material that realizes 
these parameters. In this section, we begin by analyzing the deformation 
modes of a 2D reduced Cosserat medium. The strain energy of the 
required micropolar medium is expressed as a quadratic form of these 
modes, thereby identifying the physical meaning of the third soft mode 
in addition to curvatures. Based on this understanding, we design a 
discrete lattice metamaterial whose deformation mechanisms accom
modate the required soft modes. By tuning the geometric and material 
properties of the unit cell, the desired effective micropolar parameters 
can be achieved. To validate the wave manipulation capability of the 
proposed metamaterial, we compare its band structure with that of the 
target micropolar medium, and perform full-wave simulations to 
confirm its ability to match elastic waves in a background Cauchy 
medium.

3.1. Deformation modes of extremal micropolar materials

In this section, we discuss soft modes of the above extremal micro
polar media. The discussion can provide a guideline for designing soft 
modes. The required 2D extremal micropolar material for cloaking 
exhibit two types of soft modes. The first type is related to the vanishing 
higher-order elasticity tensor Aijkl = 0. From the constitutive law, Aijkl =

0 means that the gradient of micro-rotation should not induce couple 
stress. In other words, a nonzero micro-rotation of a material particle 
should not induce micro-rotation of its neighboring particles. For a 
metamaterial model based on mass blocks and linear Hooke’s springs, as 
shown in next subsection, it is required that all springs must be coupled 
to geometry centers of those mass blocks.

As we have noted above, the second type of soft modes is represented 
by micropolar strain, resulting from C66C99 − C2

69 = 0 in Eq. (14). Before 

Fig. 2. Four basic deformation modes represented by the micropolar strain tensor, ε. A Cartesian coordinate with two orthonormal bases, e1 and e2, is defined. A 
general micropolar strain ε can be decomposed into four basic deformation modes: (i) the hydrostatic deformation εεo =

(
u1,1 + u2,2

)
(e1 ⊗ e1 + e2 ⊗ e2) /2, (ii) the 

first pure shear mode εdεd = (u1,1 − u2,2)(e1⊗e1 − e2⊗e2)/2, (iii) the second pure shear mode εsεs = (u1,2 + u2,1)(e1⊗e2 + e2⊗e1)/2, and (iv) the pure rotation mode 
− εaεa = (ϕ − ψ)(e1⊗e2 − e2⊗e1), with ψ = (u2,1 − u1,2)/2 being the displacement-induced macro-rotation. For the extremal micropolar material in Eq. (14), the soft 
mode is a combination of a shear and the pure rotation, as shown here.
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getting into the detail, we first provide a schematic of all possible 
deformation modes (not necessary be soft modes) related to the strain 
tensor. In general, we can decompose a micropolar strain tensor (2D 
case) into the following four parts, corresponding to four basic defor
mation modes 

ε = ∇u − ϕεa = εεo + εdεd + εsεs + εaεa (15) 

in which, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo = e1 ⊗ e1 + e2 ⊗ e2, ε =
u1,1 + u2,2

2
,

εd = e1 ⊗ e1 − e2 ⊗ e2, εd =
u1,1 − u2,2

2
,

εs = e1 ⊗ e2 + e2 ⊗ e1, εs =
u1,2 + u2,1

2
,

εa = e1 ⊗ e2 − e2 ⊗ e1, εa =
u2,1 − u1,2

2
− ϕ,

(16) 

with e1 and e2 representing two orthogonal bases of the coordinate 
system. One can verify that the four tensors,εo, εd,εs, and εa are 
orthogonal to each other. εεo, εdεd, and εsεs in together represents the 

symmetric part of the micropolar strain tensor, i.e., εεo + εdεd + εsεs =

(∇u + u∇)/2. The asymmetric part of the strain tensor is exclusively 
represented by εaεa. We refer − εa as the pure rotation [75] because it 
represents the difference between the micro-rotation, ϕ, and the 
displacement-related macro-rotation (∇u:εa)/2. We schematically 
represent in Fig. 2 the four deformation modes based on an infinitesimal 
square element. As expected, ε corresponds to a hydrostatic deforma
tion, omnidirectional expansion or omnidirectional compression. Both 
εd and εs represent a pure shear mode though the deformation for εd is 
quite different from that of εs at first sight (compare (ii) and (iii) in 
Fig. 2). The mode for εd becomes the same as εs if one represent εd in a 
coordinate that is rotated by 45o. The pure rotation mode, − εa, is also 
schematically represented.

The above four modes themselves can be soft modes or their com
binations can be soft modes. The soft mode of the extremal micropolar 
material with the parameters in Eq. (14) belongs to the latter case. The 
soft mode can be identified by analyzing the strain energy density  

From the last term, we identify a soft mode that is a linear combi
nation of shear and pure rotation, characterized by ε = εd = 0 and εs/εa 
= (1 − η)/(1 + η). This soft mode is a direct consequence of the rank- 

Fig. 3. A metamaterial model for realizing extremal micropolar materials. (a) The metamaterial is consisted of rigid mass blocks (yellow rectangles) and massless 
springs (blue, gray and cyan lines). In physical realizations, such spring-like elements can be approximated by thin beam structures. Geometry parameters and spring 
constants are indicated. The gray springs have two massless common nodes, I and II. (b) A rectangular unit cell (highlighted by the dashed box) of the metamaterial in 
(a). (c) The equivalence between the micropolar medium unit cell and the metamaterial unit cell, where ϕp,q = ϕ and j = IScell. (d) Illustration of a soft mode of the 
metamaterial within the linear approximation. The mode is composed of shear and pure rotation.

w =
1
2

ε : C : ε = Pε2 + Qε2
d + Rεεd +

μ
2η[(1 + η)εs − (1 − η)εa]

2
,

P =
(1 + η)2λ0 + 2(1 + η2)μ0

2η , Q =
(1 − η)2λ0 + 2(1 + η2)μ0

2η , R =
(η2 − 1)(λ0 + 2μ0)

2η .

(17) 
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deficiency of the elasticity tensor Cijkl discussed earlier, i.e., C66C99 −

C2
69 = 0. Therefore, the following proposed metamaterial must allow 

this soft mode.

3.2. An extremal micropolar metamaterial model

Here, we propose a discrete metamaterial model (Fig. 3(a)) to realize 
the above extremal micropolar material. Two lattice vectors of the 
metamaterial are defined as a1 = {l, − h}T and a2 = {l, + h}T, respec
tively. Each unit cell contains a mass block (yellow rectangle) with mass 
M and length d. The width of the mass block is assumed to be negligible. 
These mass blocks are coupled to their neighbors by linear Hooke’s 
springs. A zoom-in view of a single unit cell is shown in Fig. 3(c), where 
the central yellow rectangular block has one rotational and two trans
lational DOFs. The micro-rotation inertia originates from this rotational 
DOF and is important for balancing the asymmetric shear stress. In later 
derivation, the volume average of the rotational inertia j of the yellow 
block serves as the effective micro-rotation inertia. As the width of the 
mass blocks is negligible, one can image that the rotation of any mass 
block doesn’t cause rotation of its neighbors. This is consistent with the 
requirement by a vanishing higher-order elasticity tensor. The specific 
angle γ, the blue springs with spring constant k/2, and the vertical cyan 
springs with spring constant K enable us to adjust the anisotropy of the 
effective elasticity tensor. Furthermore, the gray springs with spring 
constant 2s serve to tune C12 independently.

We consider a rectangular unit cell (Fig. 3(b)) to illustrate the soft 
mode of the metamaterial more intuitively. First, an affine displacement 
represented by u,x = u,y = v,y = 0, v,x > 0 is assumed for all mass blocks. 
Then, all mass blocks are rotated by the same angle ϕ. The total defor
mation is indicated in Fig. 3(d). It can be checked that all springs exhibit 
zero stretching if ϕd/2 = lv,x and we thus obtain an soft mode of the 
metamaterial. According to Eq. (16), the soft mode is represented by ε =
εd = 0,εs = v,x/2, andεa = v,x/2 − ϕ = (1 − 4l/d)εs, which is exactly a 
combination of shear and pure rotation, as indicated by Eq. (17). It 
should be noted that the metamaterial has a stretching ratio η = 2l/(2l −
d) > 1. One can simply rotate the metamaterial by 90◦ if an asymmetric 
elastic material with η < 1 is needed. In the above discussion, we use ϕ to 
denote the rotation of the mass block, implying that the rotation of the 

mass block corresponds to the micro-rotation ϕ of its equivalent 
micropolar medium. In Fig. 3(c), we illustrate the equivalence between 
the micropolar continuum unit cell and the metamaterial unit cell. The 
volume average of the rotational inertia j of the mass block serves as the 
effective micro-rotation inertia, and the resulting inertial torque is used 
to balance the asymmetric stresses.

In the following, we derive effective micropolar continuum param
eters of the proposed metamaterial following a previous procedure [75]. 
We denote the displacement and rotation of each mass block as up,q =

{up,q, vp,q}T and ϕp,q, respectively. We assume all displacements and 
rotations to be infinitesimal, i.e., in a linear elastic range. The kinetic 
energy of the unit cell (p, q) can be expressed as 

Kp,q =
1
2

M
⃒
⃒u̇p,q

⃒
⃒2 +

1
2

jϕ̇2
p,q. (18) 

The moment of inertia of the mass block with negligible thickness is j 
= Md2/12. The displacements of the left and right end-points of the mass 
block in the unit cell (p, q) are expressed as 

uL
p,q =

{

up,q, vp,q −
ϕp,qd

2

}T

, uR
p,q =

{

up,q, vp,q +
ϕp,qd

2

}

. (19) 

The displacements of the hidden massless nodes I and II (see Fig. 3 
(a)) are assumed to be uI

p,q and uII
p,q respectively. We obtain the potential 

energy, Up,q, for the unit cell (p, q) by summing up the elastic energies of 
the 11 springs inside the unit cell. The expression is neglected here due 
to lengthy expression.

Then, we derive the Lagrangian of the system 

L =
∑

p,q

(
Kp,q − Up,q

)
. (20) 

The governing equations of the system are obtained as 

∂
∂t
(
Mu̇p,q

)
=

∂L
∂up,q

,
∂
∂t
(
Mv̇p,q

)
=

∂L
∂vp,q

,
∂
∂t
(
jϕ̇p,q

)
=

∂L
∂ϕp,q

. (21) 

For the hidden DOFs uI
p,q and uII

p,q, we have 

∂L
∂uI

p,q
= 0,

∂L
∂vI

p,q
= 0,

∂L
∂uII

p,q
= 0,

∂L
∂vII

p,q
= 0, (22) 

Substituting the displacements of the hidden nodes solved from Eq. 
(22) into Eq. (21) yields the final governing equations in terms of the 
DOFs of the mass blocks.

The above derived governing equation is a discrete version. We 
consider the following Taylor series in order to obtain a continuum 
micropolar model. Since each mass block is only coupled to its nearest 
neighbors (see Fig. 3(a)), we expand up+m,q+n with m, n = − 1, 0, +1 to a 
second order 

up+m,q+n = up,q +

(
∂u
∂x

)T

dxm,n +
1
2

dxT
m,n

∂2u
∂x2 dxm,n + O

(⃒
⃒dxm,n

⃒
⃒3
)
, (23) 

where dxm,n = ma1+na2. vp+m,q+n and ϕp+m,q+n can be expanded simi
larly. Substitution of the expansion into Eq. (21) yields in the following 
micropolar elasticity equations  

where the parameters are, 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ =
M

Scell
, I =

j
Scell

, Scell = 2lh, A11 = A12 = A21 = A22 = 0,

C11 =
l
h
(
s + kcos2γ

)
, C22 =

h
l
(
s + ksin2γ + 2K

)
,

C66 =
l
h

ksin2γ, C99 =
h
l
kcos2γ,

C12 = s + ksinγcosγ, C69 = ksinγcosγ.

(25) 

As anticipated, the effective micropolar medium indeed has a zero 
higher-order elasticity tensor A = 0 and the condition C66C99 − C2

69 = 0 
is also satisfied. In order to obtain the desired extremal micropolar pa
rameters in Eq. (14), we derive the following model parameters 

⎧
⎪⎪⎨

⎪⎪⎩

ρü = C11u,xx + C99u,yy + (C12 + C69)v,xy + (C99 − C69)ϕ,y,

ρv̈ = C66v,xx + C22v,yy + (C12 + C69)u,xy + (C69 − C66)ϕ,x,

Iϕ̈ = A11ϕ,xx + A22ϕ,yy + 2A12ϕ,xy + (C66 − C69)v,x + (C69 − C99)u,y + (2C69 − C66 − C99)ϕ,

(24) 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =
ρ0Scell

F11F22
, s = λ0 − μ, k =

μ
sinγcosγ

,

K =
(λ0 + 2μ0)cotγ − ksin2γ − (λ0 − μ)

2
,

γ = arccot

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ0 − μ)2
+ 4μ(λ0 + 2μ0)

√

− (λ0 − μ)
2μ

⎞

⎠.

(26) 

It should be mentioned that the geometry requirement of arctan(h 
/l) < γ < π/4 (see Fig. 3(a)) imposes limitation to the available extremal 
micropolar parameters. Specifically, the Poisson’s ratio of the back
ground material must be positive ν > 0, otherwise, the required 
micropolar parameters in Eq. (14) cannot be achieved with the proposed 
metamaterial.

3.3. Verification of the extremal micropolar metamaterial

Next, we demonstrate that the proposed micropolar metamaterial 
can be used for controlling elastic waves based on asymmetry trans
formation elasticity. For simplicity, we consider a compression mapping 
denoted by F11 = 2/3 and F22 = 1. Elastic parameters of the background 
Cauchy material are taken as λ0 = 2μ0 = 110GPa and ρ0 = 2.4 × 103kg/ 
m3, arbitrarily. We consider an operating frequency fext = ωext/(2π) =
6300Hz. The metamaterial cell should be sufficiently small compared to 
the shear wavelength in the background material, i.e., 2l ≪ cT/fext, 
where cT =

̅̅̅̅̅̅̅̅̅̅̅̅
μ0/ρ0

√
. Here, we choose the unit cell size l = (cT/fext)/2N 

with N = 10. The geometry and material parameters for the 

metamaterial model follows Eq. (26), 
⎧
⎪⎪⎨

⎪⎪⎩

M = 3.52 kg, s = 1.08 × 1011 N
/
m, k = 4.34 × 109 N

/
m,

K = 1.62 × 1011 N
/
m,

l = 3.80 cm, h = 1.29 cm, d = 2.53 cm.

(27) 

To illustrate the wave characteristics of this metamaterial and its 
corresponding micropolar continuum, we derive their dispersion re
lations by applying the Bloch-Floquet ansatz up+m,q+n = up,qexp(ik ⋅ 
(ma1 + na2)), with up,q = ûp,qexp( − iωt), and the harmonic wave 
assumption u = ûexp(i(k⋅x − ωt)) into Eq. (21) and Eq. (24), respec
tively [75]. There are two acoustic bands related to the two displace
ment DOFs. In addition, we obtain a micro-rotation dominated optical 
branch, with a cut-off frequency, ωr = 3.89 × 104rad/s. The three bands 
obtained from the continuum model (red lines in Fig. 4(a)) and those 
from the microstructure lattice (chain lines in Fig. 4(a)) show good 
agreement in the long-wavelength limit, i.e., around the Γ point. Since 
the Taylor expansion Eq. (23) is more accurate for small wave numbers, 
we observe a larger discrepancy between the two results for larger 
wavenumbers, especially along two principal directions of the micro
polar material, i.e., the ΓX direction and ΓY direction. Along the two 
principal directions, the shear branch for the continuum model exhibits 
zero frequency due to the above explained soft mode of the meta
material. Therefore, at low frequency range, only one bulk longitudinal 
mode can propagate along these two directions. The transverse and 
optical modes are coupled, while the longitudinal mode and the optical 
mode are decoupled (see Fig. 4(b)). At a certain wavenumber along both 

Fig. 4. (a) Dispersion bands calculated from the micropolar continuum model (red solid line) and the proposed microstructure lattice (blue chain line). The insets 
show a unit cell of the metamaterial (top-left), the first Brillouin zone (center) and an enlarged view of the lifted degeneracy (right). (b) Zoomed-in view of the band 

structure of the lattice near the operating frequency ωext along the path X − Γ – Y. The contribution of micro-rotation to each mode, characterized by Pϕ = jϕ̂
2 

/
(
Mû2

+ Mv̂2
+ jϕ̂

2)
, are encoded by color. Dark blue indicates strong participation of micro-rotation while light blue means micro-rotation is negligible in the 

mode. (c) Effective relative shear modulus Ceff
69 . (d) Iso-frequency contour of the metamaterial at the operating frequency ωext. Displacement polarization of the modes 

are represented by red double arrows.
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directions, the longitudinal and optical branches become degenerate, 
exhibiting identical frequencies. However, for wave propagating along 
directions other than the two principal directions, such as the ΓK di
rection and ΓM direction, the transverse mode, longitudinal mode and 
optical mode all couple together, leading to a non-zero-frequency 
transverse branch and a lifted degeneracy (or the degeneracy is 
broken) between the longitudinal branch and the optical branch. As 
result, the degeneracy along the two principal directions forms a Dirac 
cone [93], i.e., two frequency surfaces touch at a point, in similar to two 
cones contacting at their cone-tips. It is interesting that the micropolar 
continuum calculation perfectly reproduce the Dirac cone of the meta
material. The micropolar elasticity can potentially provide an contin
uum route to investigate Dirac physics [94].

The dashed gray line in Fig. 4(b) indicates the operating frequency 
ωext of the designed metamaterial. Here, the metamaterial supports two 
propagating modes, which are necessary to match the longitudinal and 
transverse modes of the background material. The effective shear 
modulus Ceff

69 at the operating frequency ωext matches the shear modulus 
of the background material (see Fig. 4(c)). At the operating frequency, 
ωext, the iso-frequency contour of the metamaterial are two ellipses with 
the same aspect ratio as the stretching ratio η = 2/3. This is necessary for 
perfectly matching the wave property of the background material, as 
demonstrated in a previous asymmetric elastic metamaterial [29]. A 
notable difference between our current metamaterial and the previous 
one [29] is that we here exploit an acoustical mode and an optical mode, 
while the previous design relies on two optical modes.

Next, we verify in COMSOL Multiphysics that the wave property of 
the above extremal micropolar metamaterial. Specifically, we consider a 
metamaterial slab consisting of 24 layers, with a total thickness of 48h, 
sandwiched in the background Cauchy medium (Fig. 5(a)). The back
ground Cauchy medium is modeled by using the Solid Mechanics 

module. The mass blocks and the springs in the metamaterial are 
modeled by using the Beam module in COMSOL Multiphysics, respec
tively. We couple the background Cauchy continuum and the meta
material slab at their interface by imposing pointwise displacement 
continuity to corresponding nodes of the two regions. The simulation 
frequency is set to be the operating frequency fext = 6300Hz. We show in 
Fig. 5(a) the simulated displacement fields for a Gaussian beam incident 
onto the micropolar matching layer at an angle of 45◦. The incident 
wave is perfectly transmitted through the matching layer, with negli
gible wave scattering or reflection. The wave fields inside the matching 
layer are compressed by a factor of F11 = 2/3. The energy flow direction 
and the wavevector inside the matching layer are in agreement with the 
iso-frequency curve analysis (see Fig. 5(b) and (c)). Furthermore, the 
matching layer should be valid for arbitrary incidence angles. This can 
be verified by simulating an incident cylindrical wave, which consists of 
plane waves along all propagation directions in 2D space. Nearly perfect 
transmission for the incident cylindrical wave is observed, either for the 
transverse case (Fig. 5(d)) or the longitudinal case (Fig. 5(f)).

We also simulate the micropolar matching layer by using the derived 
effective micropolar continuum parameters in Eq. (25). The micropolar 
elasticity equation is implemented in weak form in COMSOL Multi
physics [84]. In the simulation, we assume that both the surface traction 
and the surface couple stress is continuous at the interface separating the 
background Cauchy medium and the micropolar continuum. The con
tinuity equations can be derived by analyzing the balance of linear 
momentum and angular momentum for an infinitely thin strip con
taining the interface. The displacement is also supposed to be contin
uous at the interface, resulting from a perfect bonding between the two 
media, while the micro-rotation of the micropolar medium at the 
interface is not constrained. The micropolar continuum calculations 
(Fig. 5(e) and (g)) show a perfect transmission of the incident wave. The 

Fig. 5. Simulation of a micropolar matching layer with different incident waves. (a) Displacement fields for a transverse polarized Gaussian beam obliquely incident 
onto the micropolar matching layer. Colors stand for the displacement magnitude |u|. Arrows are for energy flow directions. (b) Zoomed-in view and the wave vector. 
(c) Iso-frequency contour of the background Cauchy material and the micropolar metamaterial at the operating frequency, ωext. (d), (e) Results for the metamaterial 
and an effective micropolar continuum with an incident transverse cylindrical wave. The region enclosed by the white rectangle box represents the micropolar 
continuum medium. (f) (g) Same as (d), (e) but for an incident longitudinal cylindrical wave.
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above simulations intuitively demonstrate that the proposed extremal 
micropolar metamaterial behaves as its effective micropolar continuum, 
matching the surrounding Cauchy medium and achieving compression 
of elastic wave fields.

It is important to note that the adopted homogenization method for 
the micropolar metamaterial is valid in the long-wavelength limit. 
Therefore, the metamaterial unit cell should be sufficiently small, or 
alternatively each shear wavelength should contain N ≥ 10 meta
material unit cells. To reduce the required number of unit cells per 
wavelength, one may adopt the enhanced homogenization method that 
remain valid far away from the Γ point [79]. This approach could 
potentially simplify the design of the microstructure cloak in next sec
tion, which currently contains 123 layers along the radial direction.

4. Design and verification of 2D micropolar elasticity cloak

Now, we start the design and verification of an elastic cloak based on 
the proposed extremal micropolar metamaterial. We choose a linear 
mapping (see Fig. 1(a)), g(r) = b(r − a)/(b − a) + δ(r − b)/(a − b) in a 
polar coordinate for the cloak design. The function maps a circular re
gion with a hole, with radius δ, in the virtual space onto an annular cloak 
with inner radius a and outer radius b in the physical space. Specifically, 
a position X = ReR in the virtual space is mapped onto a position x = rer 
in the physical space with R = g(r) and Θ = θ. The mapping gradient can 
then be derived as F = ∂x/∂X = 1/g′(r)er⊗er + r/g(r)eθ⊗eθ, with er and eθ 
being the unit basis vectors along the r- and θ-direction of the polar 
coordinate. We choose the same background Cauchy material as before, 
λ0 = 2μ0 = 110GPa and ρ0 = 2.4 × 103kg/m3. The geometry parameters 
are chosen as b = 2a = 1m and δ = a/5. By substituting η(r) = Frr/Fθθ = g 
(r)/(rg′(r)) into Eq. (14), the required micropolar parameters, dependent 
on the radial position, can be obtained. The corresponding microstruc
ture parameters are further derived from Eq. (26).

The resulting cloak is consisted of in total Nr = 123microstructures 
layers along the radial direction and Nθ = 84 sectors along the θ direc
tion. We illustrate in Fig. 6(a) the construction process of the meta
material cloak. The metamaterial unit cells in the cloak are arranged 
such that the long axis of the mass blocks is along the θ-direction of the 
polar coordinate since the required η < 1. The metamaterial unit cell in 
the outermost layer (or the first layer) has the largest size. We choose l1 
= (cT/fext)/2N with N = 10.16 for the first layer to ensure the long 
wavelength condition. For all unit cells in the cloak (see Fig. 6(a)), we 
have replaced the rectangular mass blocks by polyline-shaped blocks to 
maintain conformation with the polar coordinate. All springs or beams 
are coupled to mass blocks at corresponding edges. Geometric param
eters of the unit cells at the location, rn, are as indicated. The linear 

mapping results in a constant length of the mass block, d = 2πb(a −
δ)/Nθ(b − δ). We have used two angles, γo

n and γi
n, (see Fig. 6(a)) for each 

layer. The outer one is chosen as γo
n = arctan(hn− 1 /(η(rn)ln)), while the 

inner one γi
n is derived from the required micropolar properties at that 

location. The metamaterial cloak is constructed layer by layer from the 
first layer with the iteration relation rn = rn− 1 − hn− 1 and hn =

η(rn)lntan
(
γi

n
)
.

We show in Fig. 6(b) the distribution of the effective micropolar 
properties of the designed cloak along the radial direction. Due to a very 
large number of metamaterial layers along the radial direction, the 
effective parameters (dots) of the metamaterial cloak approximates the 
continuous parameters (solid lines) required by transformation theory 
very well. This leads to a good approximation of the microstructure 
cloak to the theoretical design, as demonstrated below.

We model the microstructure cloak in COMSOL Multiphysics like the 
simulations in previous Section 3.3. The background material and the 
metamaterial are modeled by using the Solid Mechanics Module and the 
Beam Module, respectively. We apply a traction free boundary condition 
to the inner surface of the cloak. We verify the cloaking performance of 
the designed elastic cloak by considering a plane wave incident from the 
left side. The entire simulation domain is surrounded by the Perfectly 
Matched Layers in COMSOL Multiphysics to avoid undesired reflections 
from boundaries. We first show the simulated displacement fields for a 
transverse plane wave (Fig. 7(a)) and a longitudinal plane wave (Fig. 7 
(e)) onto a circular void. The void induces rather pronounced scattering 
to the left side and the right side of the void. In sharp contrast, the 
incident plane wave smoothly propagates through the cloak to the for
ward region when the void is covered by the microstructure cloak (Fig. 7 
(b) and (f)). The cloak demonstrates a very satisfying cloaking perfor
mance. The displacement fields for the microstructure cloak exhibit 
quite good consistency with the simulation based on effective micro
polar medium (Fig. 6(c) and (g)). We remark that a small radius δ = a/5 
is adopted for the cloak design and weak scattering of the cloak is 
inevitable. As can be seen, the cloaking performance of the cloak is 
rather close to the theoretical target of a small hole with radius δ (Fig. 6
(d) and (h)).

We calculate the total scattering cross-section (TSCS) for the cloak 
[9] under incident plane transverse and longitudinal waves. The TSCS is 
defined as the ratio of the scattered power by an object to the incident 
power density on the object. The displacement and stress fields are 
decomposed into the incident and scattered components, u = uin + usc 

and σ = σin + σsc, respectively. In the backward region before the target, 
the scattered waves are equivalent to reflected waves. In the forward 
region after the target, the superposition of the incident waves and the 
scattered waves constitutes the transmitted waves. The incident 

Fig. 6. Microstructure elastic cloak based on extremal micropolar metamaterials. (a) Sketch of the construction process of the microstructure cloak. Geometric 
parameters of the unit cells in the nth layer are marked. We number the outermost layer as layer 1. (b) Effective micropolar parameters (dots) of each layer along the 
radial direction for the designed microstructure cloak. We only show the three shear modulus and mass the density for clarity. The designed material properties are in 
perfect agreement with the micropolar parameters (solid lines) required by cloaking theory.
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Fig. 7. Verification of the designed cloak based on extremal micropolar metamaterials.(a) Simulated displacement fields, v (vertical component of the displace
ments), for a transverse plane wave incident from the left side onto a void (inner circular white region) with radius a. (b) Same as (a) but with the void covered by the 
designed microstructure cloak, with inner radius a and outer radius b = 2a. (c) Same as (b) but with micropolar effective-medium for the cloak (enclosed by white 
circle). (d) Same as (a) but for a small void with radius δ = a/5, which is adopted for the design of the cloak. (e) – (h) Same as (a) – (d) but for displacement fields, u 
(horizontal component of the displacements), with an incident longitudinal plane wave.

Fig. 8. The TSCS and scattering displacement fields for both the lattice cloak and the continuum cloak. (a) The TSCS for each case is calculated from the scattered 
displacement fields shown in (b) - (g). The target TSCS is corresponding to the case illustrated in Fig. 7(d) and (h). (b) Simulated scattered displacement fields, vsc, for 
a transverse plane wave incident onto a void (inner circular white region) with radius a. (c) Same as (b) but with the void covered by the designed microstructure 
cloak. (d) Same as (c) but with an effective-medium micropolar cloak. (e) - (g) Same as (b) - (d) but for scattered displacement fields, usc, with an incident longitudinal 
plane wave.
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displacement fields for transverse and longitudinal waves are respec
tively, uin = û0exp(iωx /cT) and uin = û0exp(iωx /cL), where cT and cL 
are corresponding phase velocities in the background media.

By choosing an annular integral path ∂Γ enclosing the cloak region, 
the total scattered power of the cloak can be obtained by integrating 
over this boundary: 

Esc =

∮
1
2

Re
[
σsc

ij u̇
sc
j

]
nids = −

ω
2

Im
∮

niσsc
ij usc

j ds, (28) 

where n is the outward normal vector to ∂Γ, and the overbar denotes the 
complex conjugate.

The incident power density for a plane wave is given as: 

Pin =
1
2

Re
[
σin

ij u̇
in
j

]
ni = −

ω
2

Im
[
niσin

ij uin
j

]
, (29) 

with n = (1 0 )
T. From these, the dimensionless TSCS is computed as 

Esc/(2bPin), where b is the radius of the cloak region.
The scattered displacement fields under the excitation of transverse 

and longitudinal incident waves are shown in Fig. 8. The lattice cloak 
and the continuum cloak significantly reduces the scattering outside the 
cloak compared to the unloaded cases in Fig. 8(b) and (e). Quantita
tively, the TSCS of the microstructure cloak and the continuum cloak 
reduces are reduced to one-tenth of the TSCS of a bare rigid scatter, 
approaching the TSCS of a target void with radius a/5. These results 
clearly validate the efficiency of the designed elastic cloak based on 
extremal micropolar metamaterials.

We further quantitatively study the TSCS of the continuum and lat
tice cloaks over a frequency range centered at the operating frequency of 
6300 Hz (see Fig. 9). Both the lattice and continuum cloaks significantly 
suppress scattering at the operating frequency, and the resulting TSCS 
closely approximates that of the target small hole. However, the per
formance decreases rapidly beyond a narrow frequency band of nearly 6 
Hz. This limitation originates from the dispersive nature of the effective 
asymmetric elasticity tensor of the micropolar metamaterial (see Eq. 
(13)), which causes the effective properties to deviate quickly from 
those required by the transformation method. To achieve broadband 
performance, one possible strategy is to design large micro-rotation 
inertia in the metamaterial, which can result in weakly dispersive 
effective asymmetric elastic properties.

5. Conclusion

Asymmetric elasticity theory and asymmetric elastic materials were 
conceived to achieve elastic cloaks by using transformation methods 
nearly two decades ago. The theory shares the same math equations as 
Cauchy elasticity except that the elasticity tensor only has major sym
metry. As a result, the theory can lead to asymmetric stresses, such as by 
an infinitesimal rotation. However, the asymmetric elasticity theory 
does not take into account the unbalanced angular momentum caused 

by the asymmetric stresses. Therefore, the transformation theory based 
on asymmetric elastic materials still remains controversial today, 
though elastic cloaks guided by the theory have already been experi
mentally demonstrated.

Our paper has focused on micropolar elasticity theory, which allows 
asymmetric stresses and the asymmetric part is balanced by the couple 
stress and micro-rotation inertia. Specially, we are interested in extremal 
micropolar materials with zero higher-order elasticity tensor, also 
termed as reduced Cosserat media. In such media, the micro-rotation 
DOF can be eliminated from the governing equation for linear mo
mentum. The resulting dynamic equation for displacements becomes the 
same as the asymmetric elasticity theory, but with an effective disper
sive asymmetric elasticity tensor. Therefore, extremal micropolar elastic 
materials are capable of realizing elastic cloaks based on transformation 
methods. To verify our finding, we have proposed a metamaterial to 
realize the extremal micropolar parameters required for cloaking. An 
elastic cloak has been further designed based on the metamaterial and 
numerically simulated. The excellent cloaking performance has justified 
our above finding.

Our finding also indicates that micropolar elasticity theory can 
provide a rigorous theory for asymmetric elastic materials. This may 
facilitate the study of other interesting properties in asymmetric elastic 
materials. Extremal Cauchy materials, e.g., pentamode materials, have 
shown great potentials in wave control in past few years. Our work also 
shed light on unusual properties in extremal micropolar materials and 
may stimulate further exploration.
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Fig. 9. Frequency dependence of the total scattering cross-section (TSCS) for an uncloaked void, a void covered by a lattice cloak, a void covered by a continuum 
cloak, and a target small hole under (a) an incident transverse plane wave and (b) an incident longitudinal plane wave.
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Appendix A

The mapping gradient is assumed to be diagonal in the principal coordinate, i.e., F = F11e1⊗e1 + F22e2⊗e2 + F33e3⊗e3, withe1, e2, and e3 being the 
orthonormal bases of the principal coordinate. The required micropolar elastic parameters in the principal coordinate are 

ρ =
ρ0

F11F22F33
, I > 0, Aijkl = 0, Dijkl = 0, (A1) 

(A2)

Data availability

https://dx.doi.org/10.5281/zenodo.17141180 (The data that sup
port the plots within this paper are publically available on the open 
access data repository of Zenodo [17141180].)
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