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The asymmetric transformation elasticity provides a promising method for controlling elastic waves. However, it
requires elastic materials capable of supporting asymmetric stresses, which are not admissible within the line-
arized Cauchy elasticity under small deformations. In contrast, asymmetric stress tensors naturally arise in
micropolar continuum theory, yet the connection between micropolar media and the asymmetric transformation
elasticity has remained largely unexplored. In this work, we demonstrate that extremal micropolar media, which
are micropolar materials exhibiting soft modes, can be used to design elastic cloaks via asymmetric trans-
formation elasticity. Our first contribution is to establish a rigorous theoretical formulation of the asymmetric
transformation method within the micropolar continuum framework. Second, we propose a micropolar meta-
material model that exhibits required soft modes for cloaking. A two-dimensional metamaterial cloak is then
constructed and its cloaking performance is verified through full-wave numerical simulations. This study unveils
a novel strategy for controlling elastic waves through micropolar media and also sheds light on interesting

physical properties of extremal micropolar materials.

1. Introduction

Transformation theory, firstly proposed in electromagnetic wave
fields [1], has become a successful design tool for various wave fields, e.
g., acoustic waves, optics and so on [2-6]. Many interesting wave de-
vices have been designed based on this theory over the past decade, such
as omni-directional absorbers or cloaks [7-9]. However, the application
of transformation theory for elastic waves is still challenging due to the
complexity of elastic waves, which contain both longitudinal compo-
nents and transverse components. Transformation elasticity is mainly
available for a number of limited situations, e.g., flexure waves in plates
or approximation control at high frequency range [10,11].

Controlling elastic waves via transformation elasticity generally re-
quires two steps. Firstly, the Navier equation for Cauchy materials in a
virtual space is transformed to a new governing equation in a physical
space [2,4]. The second step is to realize materials or metamaterials
[12-14] that follow the transformed governing equation. For elastic
waves, two types of transformed equations exist. In one case, the
transformed equations become quite complex and involve the use of
Willis materials [2,15-16], which exhibit coupling between stress/mo-
mentum and velocity/strain fields [15]. In recent developments, a
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formulation of Willis elasticity based on microcontinuum field theory
has been proposed, which subsequently enabled the design of elastic
cloaks [17]. In another version, the transformed equation has the same
form as the Cauchy theory, while the fourth order elasticity tensor loses
its minor symmetry, likewise the stress tensor [4,18]. The theory is also
called asymmetric transformation elasticity [19]. However, the asym-
metric elasticity theory is not physical or well defined, since the theory
doesn’t not take into the account of the unbalanced angular momentum
caused by asymmetric stress. This problem caused concern on the pos-
sibility of designing cloaks following the asymmetric transformation
elasticity [20]. At first sight, it seems impossible to design an asym-
metric elastic material. Interestingly, the propagation of a small
disturbance superimposed upon a largely-deformed hyperelastic mate-
rial (i.e. the small-on-large theory) is governed by an effective asym-
metric elasticity tensor [21-23]. Therefore, hyperelastic materials, like
semi-linear materials, have been theoretically shown to be able to
cloak elastic waves [22-24]. Yet, the cloaking effect is limited due to
geometry restrictions [22]. The required hyperelastic behavior is also
challenging to achieve with artificial microstructures.

Recently, asymmetric elastic materials have been effectively realized
by metamaterials [25-31]. In the first type of design, each unit cell
contains a mass block that can freely translate but is restrained against
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Nomenclature
x, X The spatial coordinates in the physical and virtual spaces
Fj J, 7 The mapping gradient tensor, its determinant and the

stretching ratio

o', € Transformed stress and strain

Coykppo  Elasticity tensor and mass density of the background
medium

Ao, Ho, v Lamé constants and Poisson’s ratio of the background
medium

Ciya» P Transformed elasticity tensor and mass density

¢ kij, my; Micro-rotation, curvature and couple stress of micropolar
media

Ciyxy p Elasticity tensor and mass density of micropolar media

Ajjxi, Dy, I Higher-order elasticity tensor, coupling tensor and
micro-rotation inertia

Cgffl Effective asymmetric elasticity tensor of micropolar media
€%, &9, €5, ¢ Four basic deformation modes of micropolar media with
Agia =0

€,€4,€5,6a The projection of the strain onto the four basic modes
e, e, e, ey Cartesian basis vectors and polar coordinate basis

vectors
a; Lattice vectors
L h d y, Scen Size parameters of the microstructure

k, K, s  Elastic parameters of the microstructure

M, j Mass and rotational inertia of the mass block

Up g, Vp,g» p,q Discrete field variables of the discrete metamaterial
model

w, ,uy  Displacements of hidden nodes

m, n Lattice coordinates relative to (p, q)

k Wave vector

Wy, Wexy The optical cut-off angular frequency and the operating
angular frequency

cT, CL, Transverse and longitudinual wave velocities of the

background medium
N The number of unit cells per shear wavelength

N, Ny The number of layers in the cloak along the radial direction
and the 0 direction

P, The proportion of micro-rotation kinetic energy

a b, 6 Size parameters of the cloak

Eq. The total scattered power

Py, The incident power density

rotation by grounded torsional springs [25,26], or by external magnetic
fields [31]. The asymmetric stress is balanced by external torque sup-
plied by the torsional springs or the magnetic fields. By employing a
complex mechanism that restricts rotational degrees of freedom (DOFs)
while permitting translational motion, this type of metamaterial cloak
has been experimentally realized [28]. In the second type of design, a
discrete metamaterial with local rotational resonance is adopted [29].
The asymmetric shear stress expressed by a metamaterial unit cell is
compensated by its inner rotation inertia. Both strategies have been
employed to achieve the asymmetric elasticity tensors required for
asymmetric transformation. We note here that although asymmetric
elasticity theory and its corresponding materials do not naturally occur
[4], they can nevertheless be effectively approximated by appropriately
designed metamaterials. This reflects a central idea of metamaterials
[14], achieving effective-medium properties that are seemingly unat-
tainable in conventional materials, e.g., negative index [32,33]. In this
work, we pursue a different route to achieve elastic wave cloaking—-
through the use of micropolar elastic media, which inherently support
asymmetric stress. The advantage lies in the fact that micropolar elas-
ticity is a physically consistent theory with a well-established theoretical
foundation, in contrast to the asymmetric elasticity theory. Our initial
idea is inspired by the observation that pentamode materials [34-41]
can control acoustic waves through the framework of transformation
acoustics [42,43]. Pentamode materials are a typical example of
extremal Cauchy materials, which allow soft modes that, in principle,
incur no strain energy [44-49]. Therefore, we anticipate that special
extremal higher-order elastic media [50] can potentially be used to
control elastic waves in Cauchy materials. A promising candidate is the
micropolar continuum media, also called Cosserat media [51-53],
which is relatively simple in mathematics and more importantly can
capture asymmetric stresses. We remark that micropolar elasticity was
utilized to account for asymmetric stress behavior in granular mechanics
[54,55], long before the emergence of transformation theory and met-
amaterials. Later, the study of surface waves in micropolar media was
applied to seismology [56,57]. Recently, some studies have further
incorporated micropolar theory into phase-field models to investigate
fracture problems [58,59].

In our paper, we particularly focus on the micropolar media with a
vanishing higher-order elasticity tensor, also referred to as reduced
Cosserat media [60,61], in which all gradients of micro-rotations act as
soft modes. We find that a type of extremal micropolar medium, which

supports not only these soft modes but also shear—rotation coupled soft
modes, can serve as a viable foundation for realizing asymmetric
transformation elasticity. Accordingly, we develop design guidelines to
achieve the required soft modes and propose a discrete metamaterial
that realizes the corresponding extremal micropolar parameters.
Furthermore, we design a 2D elastic cloak based on the proposed met-
amaterial, and demonstrate the effectiveness of both the theory and the
metamaterial through numerical simulations.

In contrast to grounded elastic cloaks [25,26,28], the proposed
design based on extremal micropolar media eliminates complicate
rotational constraints, enabling much simpler design for applications.
Compared with our previous elastic cloak based on rotational resonance
[29], the current design is not limited to a background medium with a
Poisson’s ratio below 0.25. Other studies bypass asymmetric elasticity
altogether. One common strategy symmetrizes the elasticity tensor for
easier implementation, but at the cost of reduced cloaking efficiency
[62,63]. Another approach optimizes material parameters or topology
for static cloaking, which requires the cloak to be tailored to specific
loads [64-66].

Micropolar homogenization has been increasingly developed and
applied in recent years to describe biological materials [67], composite
materials [68,69], and both two-dimensional (2D) [70-72] and
three-dimensional (3D) [73,74] lattice materials. Classical homogeni-
zation methods generally determine effective micropolar parameters by
establishing energy equivalence between the microstructure and the
effective continuum [70,74]. In contrast, this work applies Taylor ex-
pansions of the field variables in the dynamic equations, leading to a
continuum version of Lagrangian equations. Effective micropolar pa-
rameters can then be derived by comparing the coefficients in the gov-
erning equations [75]. In recent years, enhanced homogenization
methods have been developed to account for nonlocal effects, allowing
for improved accuracy in modeling microstructure systems even when
the long-wavelength assumption does not hold [76-79]. In designing the
metamaterial cloak in this paper, the homogenized material parameters
in Cartesian coordinates are adopted. Such an approach remains valid
when the metamaterial unit cells are small enough compared to the
cloak since the curvature effect on each unit cell is negligible. Existing
methods have demonstrated that conformal mapping can be used to
directly transform periodic microstructures into quasi-periodic micro-
structures in polar coordinates, while establishing the relationship be-
tween the elasticity tensors before and after mapping [80-82].
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Extending such techniques to micropolar framework may improve the
accuracy of the cloak design.

The paper is organized as follows. We establish in detail the
connection between micropolar continuum theory and asymmetric
transformation in Section 2. The required soft modes of extremal
micropolar media for transformation are discussed in Section 3. Then, an
extremal metamaterial model with required soft modes is proposed and
its effective micropolar elastic parameters are derived analytically. We
numerically calculate its band structure and simulate its wave behavior
to verify the metamaterial design. In Section 4, we design a 2D elastic
cloak based on the proposed micropolar metamaterial. The cloaking
performance is validated numerically and compared with results from
effective-medium model. These results serve to validate our cloaking
theory based on extremal micropolar materials. Finally comes the
conclusion.

2. Micropolar continuum theory for elastic cloaking

Conventional micropolar media cannot be directly applied for elastic
cloaking in Cauchy media, since the number of hard modes in a typical
micropolar medium does not match that of a Cauchy medium. The most
intuitive manifestation of this mismatch lies in the couple stresses pre-
sent in micropolar media, which cannot exist in Cauchy elasticity.
However, by introducing soft modes and retaining only those hard
modes that are compatible with the Cauchy medium, asymmetric
transformation elasticity becomes feasible.

In this section, we first briefly review the governing equations of
asymmetric elasticity and micropolar elasticity in the 2D case. Then, by
imposing the condition Az = 0, which corresponds to the presence of
two soft modes, we eliminate the micro-rotation ¢ from the linear mo-
mentum equations of micropolar elasticity. This yields a governing
equation that is formally consistent with that of asymmetric elasticity.
By comparing the resulting effective elasticity tensor with the asym-
metric elasticity tensor, we identify the required micropolar parameters
for implementing asymmetric transformation elasticity.

2.1. Asymmetric transformation elasticity

We briefly revisit the asymmetric transformation elasticity [4]
through the example of a 2D annular cloak. A more detailed discussion
on the cloak design and material realization will be provided in Section
4. A virtual space (Fig. 1(a)) is assumed to be filled with a Cauchy ma-
terial with the mass density po and the elasticity tensor Co;xi = Cojikt =
Cokj. We limit the study in this paper to small deformations and only
consider linear elastic waves propagating inside the material. Omitting a

(@)
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time harmonic term exp(—iwt), with i being the imaginary unit, » the
angular frequency and t the time, the dynamic equation and constitutive
equation for waves propagating in the virtual space in frequency domain
write as

_ 00;i(X)

oy(X
7/)0a)2ui(X)_ e l( )
j

X’

@

, 65 = Coijki

in which, 1;(X) and 6;(X) = 06j(X) represent the displacement and the
symmetric stress tensor in the virtual space, respectively.

We consider a spatial mapping x = x(X) that maps a circular domain
Q with a small hole in the virtual space onto an annular cloak region X in
the physical space. The small hole is deliberately introduced in order to
obtain a compatible singular-free mapping between the two regions.
Otherwise, the required material parameters close to the inner boundary
of the cloak will approach zero or infinite. Eq. (1) then can be rewritten
as the following form by a change of variable [83]

doj;(x)

an

0 (x)
()xk ’

(2

—p 0’y (x) =

‘éi(x) = Cyq(x)
The displacement and stress in the physical space are u;(x) = u;(X)
and ¢j(x) = J 'Fyoy(X), respectively. In the formula, the mapping
gradient F;; = dx;/dX; and J = det (Fj) are defined. We remark that the
mapping gradient F should not be confused with the deformation
gradient in finite deformation elasticity. Here, F doesn’t represent
physical deformation but stands for spatial mapping. The mass density
and elasticity tensor in the cloak region ¥ are
P (x) =J ' pp(X), C;jkl(x) = JﬁlFikanCOMjnl(Xy 3
The transformed elasticity tensor maintains the major symmetry
Cyu = Cuyj, while violates the minor symmetry C’jq # C'jw. As a
consequence, the transformed stress tensor is not symmetric o; # 0;. In
the above process, the circular domain Q with a small hole is not
physically deformed into the annular region X. Instead, the entire pro-
cess is a purely mathematical mapping or a change of variables. If one
assigns materials to the cloak region X according to the above parame-
ters in Eq. (3), elastic waves coming from the background domain £°
cannot detect the cloaked inner region =, For clarity, we assume that
the mapping gradient can be diagonalized, i.e., F = Fjije10e; +
Fyoes0e5, where e; and e, are the orthonormal basis vectors of the
principal coordinate. The material in the virtual space has an isotropic
elasticity tensor Cojki = 4060k + Ho(6xdj1 + Sudj). The assumption is
valid for mapping for typical wave controlling function, such as cloaks.
The required mass density and the elasticity matrix in Eq. (3) for the
annular cloak can be simplified in the principal coordinate as

(b)

Fig. 1. Illustration of asymmetric transformation elasticity through the design of a 2D cloak. (a) Virtual space with a background domain Q°"* and a circular domain
Q with a small hole of 26 in diameter. (b) Physical space with a background domain =°", an annular cloak domain %, and a cloaked inner domain ™. Cartesian
coordinate systems XOY andxoy are assigned for the virtual space and physical space, respectively. The cloak region ¥ in the physical space is mapped from the

domain Q in the virtual space through a spatial mapping x = x(X).
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011 L C, 0 0 €
__ P ‘ ”Qz _ C-12 Cﬁz 0 0 852 7 )
FuFe |6, 0 0 Cg Cg €12
on 0 0 Cy Cy €21
Ciy =120 +245), Copp = %7 Ciy = o,
5)
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Here, the stretching ratio # = Fy1/F2 and the asymmetric strain 51] =
u;; are defined. For a trivial stretching ratio 7 = 1, the required material
is a conventional Cauchy material with C,q = Cyy = Cgy = 1. For this
Cauchy material, an antisymmetric strain or an infinitesimal rotation
(w11 = ug,2 = 0, u3,2 = —up 1) results in zero stresses and can be regarded
as its soft mode. However, for a nontrivial ratio # # 1, the required
material is an asymmetric elastic material, since the three shear
modulus, Cg, Cy, and Cg,, are different, which means an infinitesimal
rotation can lead to non-zero stresses in the material. It can be verified
that the asymmetric material also exhibits an soft mode [25]. This soft
mode is a combination of an infinitesimal rotation and a shear defor-
mation, as indicated by CysCyy — CZ = 0 from Eq. (5). In the following,
we will show how to achieve the asymmetric elastic properties using
extremal micropolar materials with special soft modes.

2.2. Basics of micropolar continuum theory

We provide a brief introduction to micropolar continuum theory. In
micropolar elasticity, micro-rotation DOFs, ¢;, in addition to displace-
ment DOFs, u;, are introduced for each material point. The deformation
is characterized by [51]

ou; 0p;

_9% _%

& = 5~ Cikbo Ky =500 ©)
where ¢k, €j5, and «kj; represents the Levi-Civita tensor, the micropolar
strain tensor and the micropolar curvature tensor, respectively. All
indices range from 1 to 2 for 2D space and from 1 to 3 for 3D space. The
balance law for linear momentum and angular momentum in frequency
domain read

Boﬁ

oms:
—a’pu; = e’ —a’lg; = W]l + €k, 7
j j

in which, p is the mass density, I represents the micro-rotation inertia
density (micro-rotation inertia per unit volume), o; and my; stand for the
stress tensor and the couple stress tensor, respectively. In Cauchy theory,
the stress tensor can be proved to be symmetric from the balance law for
angular momentum, owing to the absence of couple stress and micro-
rotation DOFs. Here, the micropolar stress doesn’t need to be symmet-
ric and the asymmetric part is balanced by the couple stress and the
micro-rotation inertia.

For infinitesimal deformations, a quadratic strain energy density
function in terms of the micropolar strain and the micropolar curvature
is assumed [51]

1 1
w= Eeijcijklgkl + &iDjjikia + Ekiinjlekl- (8

The constitutive law for the stress tensor and the couple stress tensor
are derived by differentiating the strain energy density w with respect to
the strain and the curvature, respectively,

0ij = Cyjuén + Dyukr, My = Dyggéra + Agrikia- ()]

The fourth-rank tensor A is denoted as the higher-order elasticity
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tensor in micropolar elasticity [74,84] since it accounts for the gradient
of micro-rotation — a higher-order deformation measure beyond strain.
The micropolar elasticity tensor Cj and the higher-order elasticity
tensor Ay exhibit major symmetry, Gy = Ciij Aijki = Aksj, but not
minor symmetry. Both Cyy and Ajx; are normal tensors, while the
coupling tensor Dy is a pseudo-tensor [75]. This tensor becomes zero
for a material or metamaterial with centrosymmetry [85,86]. In 3D
cases, a non-zero coupling tensor enables modeling interesting chiral
effects, such as push-to-twisting coupling effect, or circularly polarized
transverse elastic waves [87,88]. This paper is concerned with 2D set-
tings. The coupling tensor and higher-order tensor reduce to third-order
D3 and second-order Aj3js, respectively. The relationship between
chirality and centrosymmetry becomes subtle. In particular, a 2D ma-
terial can still be chiral even with centrosymmetry, such as tetra-chiral
or hexa-chiral metamaterials, albeit the coupling tensor becomes zero
[52,75,89]. In these cases, chiral effects, e.g., coupling between dilation
and rotation, are modeled by certain components of the tensor Cyj; [90,
91].

2.3. Micropolar continuum parameters for elasticity cloak

Now, we introduce the similarity between extremal micropolar
elastic materials and asymmetric elastic materials, following a previous
method [92]. We consider micropolar materials with a zero higher-order
elasticity tensor Ay = 0. Such materials are also called reduced Cosserat
media [61]. The zero higher-order tensor leads to soft modes related to
the micropolar curvatures. According to thermodynamic stability, the
coupling tensor also vanishes D;j; = 0. Both conditions can be met with a
proposed micropolar metamaterial later. The constitutive equations and
the dynamic equations in Eq. (7) and (9) reduce to

ou,
o = Cijle)(i — Ciji€xim@pm, My =0, 10)
06+
—otpu ==L — 0?I = ey an
j

The displacement DOFs and the micro-rotation DOFs are coupled in
the constitutive law. To achieve Eq. (2) for the asymmetric elasticity
theory, we need to decouple the displacement and the micro-rotation.
Substituting the stress tensor in Eq. (10) into the balance law of
angular momentum in Eq. (11), we obtain,

Hmn¢n = 7€mijCijk137)l;l(~, Hyn = Hyn = Iwz(smn - Emijcijklgnkl‘ (12)

We have det(H) = 0 for some frequencies, wr, which correspond to
the cut-off frequencies of optical modes of the micropolar material. For
frequencies other than the cut-off frequency w # w,, the micro-rotation
can be solved from Eq. (12). Substituting the solved micro-rotation into
Eq. (10) yields

do, ji £ 0111

2
—?pu; = =L, o5 =CE—
Pt ox;” U Tikgx

) nyf(fl = Cijkl + H;,yllcijrssrsnempqcqub (13)

One can see that the micropolar Eq. (13) exactly matches the equa-
tion of the asymmetric elasticity Eq. (2). Additionally, the effective
tensor C;ffl shares the same major symmetry as the target tensor C’j
defined in Eq. (2). As a result, one can effectively realize the required

asymmetric elastic tensor, ngl = C’jiu, by properly selecting the tensor

Cijx- The effective asymmetric elasticity tensor C;{fl is frequency depen-

dent or dispersive. We remark that Eq. (13) for balance of linear mo-
mentum is only one part of the complete dynamics equation for the
micropolar material. It is this part that shares the same form with Eq. (2)
for asymmetric transformation elasticity. A complete description of the
dynamics of the micropolar material must be supplemented by the
balance law for angular momentum Eq. (12). Otherwise, we will face the
same issue as the asymmetric elasticity theory, i.e., the unbalanced
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angular momentum caused by asymmetric stresses.

By comparing the effective elastic parameters, Cg{f,, with asymmetric
elastic parameters C’;; given in Eq. (5), we obtain the following
micropolar parameters that can mimic the asymmetric elastic parame-
ters

)
= Fl/l;.zz, I>0, Aju=0, Dy =0,
Ao+ 2
Ci1 = (4o +2y), Cr2 = M; Ci2 = Ao, 14
I polw?n
Ces =i, Coo=0, Ceo=p, p=—L0"_"1
66 = MK 99 7 69 =M, H Yol — 1)2 + 1oy

The micro-rotation inertia parameter I > 0 can be chosen arbitrarily.
The required micropolar material has an soft mode resulting from CesCo9
— C2, = 0. Mathematically, one can characterize the soft mode as

(0 0 1 —p5)7, which stands for a linear combination of pure shear
and rotation. A metamaterial example with such soft mode is presented
in next section (see Figs. 2 and 3). It is noted that the three shear pa-
rameters, Cep, Co9, andCgg, depend on the desired working frequency.
When the micro-rotation inertia I becomes very large, the effective pa-
rameters tend to become approximately frequency independent. In such
a case, a designed micropolar material can approximate an asymmetric
elastic material over a broad frequency range. Furthermore, if an
external torque is applied to constrain the micro-rotation to zero, the
micropolar material can be regarded as a nondispersive asymmetric
elastic material. This is equivalent to a previous 2D broadband elastic
cloak, in which the rotation of the inner block in each unit cell was
externally constrained to zero [25]. For realizing 3D asymmetric
transformation, the required micropolar parameters are given in Ap-
pendix A. In the following, we demonstrate how to achieve such
extremal micropolar material.

Reference

Configuration
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3. Design of the extremal micropolar material

While the micropolar parameters required for asymmetric trans-
formation elasticity have been theoretically determined, the key chal-
lenge lies in constructing an extremal micropolar material that realizes
these parameters. In this section, we begin by analyzing the deformation
modes of a 2D reduced Cosserat medium. The strain energy of the
required micropolar medium is expressed as a quadratic form of these
modes, thereby identifying the physical meaning of the third soft mode
in addition to curvatures. Based on this understanding, we design a
discrete lattice metamaterial whose deformation mechanisms accom-
modate the required soft modes. By tuning the geometric and material
properties of the unit cell, the desired effective micropolar parameters
can be achieved. To validate the wave manipulation capability of the
proposed metamaterial, we compare its band structure with that of the
target micropolar medium, and perform full-wave simulations to
confirm its ability to match elastic waves in a background Cauchy
medium.

3.1. Deformation modes of extremal micropolar materials

In this section, we discuss soft modes of the above extremal micro-
polar media. The discussion can provide a guideline for designing soft
modes. The required 2D extremal micropolar material for cloaking
exhibit two types of soft modes. The first type is related to the vanishing
higher-order elasticity tensor A;jx; = 0. From the constitutive law, Ay =
0 means that the gradient of micro-rotation should not induce couple
stress. In other words, a nonzero micro-rotation of a material particle
should not induce micro-rotation of its neighboring particles. For a
metamaterial model based on mass blocks and linear Hooke’s springs, as
shown in next subsection, it is required that all springs must be coupled
to geometry centers of those mass blocks.

As we have noted above, the second type of soft modes is represented
by micropolar strain, resulting from CgsCo9 — ng = 0in Eq. (14). Before

(i) £€°
(iii) £,&5
N Y J
F ot
D i Soft Mode

Fig. 2. Four basic deformation modes represented by the micropolar strain tensor, €. A Cartesian coordinate with two orthonormal bases, e; and ey, is defined. A
general micropolar strain € can be decomposed into four basic deformation modes: (i) the hydrostatic deformation €e°® = (ul‘l + uz‘z) (e1®e; + ex® ez) /2, (ii) the
first pure shear mode sdsd = (1,1 — Uz p)(e1®e; — exRey)/2, (iii) the second pure shear mode &:¢° = (u; 2 + up1)(€1®e; + ex®e1)/2, and (iv) the pure rotation mode
—&,8" = (¢ — w)(e1®ey — ex®eq), with y = (uz; — u1,2)/2 being the displacement-induced macro-rotation. For the extremal micropolar material in Eq. (14), the soft

mode is a combination of a shear and the pure rotation, as shown here.
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(a) (b)

<D§
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Cell (p,q)

{u' v, ¢} p+1,q

(d)

Rotational inertia j = IScey

Fig. 3. A metamaterial model for realizing extremal micropolar materials. (a) The metamaterial is consisted of rigid mass blocks (yellow rectangles) and massless
springs (blue, gray and cyan lines). In physical realizations, such spring-like elements can be approximated by thin beam structures. Geometry parameters and spring
constants are indicated. The gray springs have two massless common nodes, I and II. (b) A rectangular unit cell (highlighted by the dashed box) of the metamaterial in
(@). (c) The equivalence between the micropolar medium unit cell and the metamaterial unit cell, where ¢, ; = ¢ and j = IS¢ (d) Illustration of a soft mode of the
metamaterial within the linear approximation. The mode is composed of shear and pure rotation.

getting into the detail, we first provide a schematic of all possible
deformation modes (not necessary be soft modes) related to the strain
tensor. In general, we can decompose a micropolar strain tensor (2D
case) into the following four parts, corresponding to four basic defor-
mation modes

€= VU — e = Fe° + 46" + £,6° + £, (15)
in which,
u u
€ =e e +e®e,, E:%7
U — U
el=ene —e0e, =
Uyo+u 16
85:e1®e2+e2®e17 & = 122 21.
Uy — U
e =e Qe —e,Re;, &= 212 12—4157
1 2 2 | p= H 2
W:ESIC:I;‘:PE +Qed+Reed+2—n[(l+;7)esf(l711)83] ,

po LA +20 Py o _ (L= +20+1y o _ 07

symmetric part of the micropolar strain tensor, i.e., £€° + eqe9 + e,&5 =
(Vu 4+ uV)/2. The asymmetric part of the strain tensor is exclusively
represented by e,e®. We refer —e, as the pure rotation [75] because it
represents the difference between the micro-rotation, ¢, and the
displacement-related macro-rotation (Vu:e?)/2. We schematically
represent in Fig. 2 the four deformation modes based on an infinitesimal
square element. As expected, £ corresponds to a hydrostatic deforma-
tion, omnidirectional expansion or omnidirectional compression. Both
&4 and & represent a pure shear mode though the deformation for g4 is
quite different from that of & at first sight (compare (ii) and (iii) in
Fig. 2). The mode for ¢4 becomes the same as ¢; if one represent ¢4 in a
coordinate that is rotated by 45°. The pure rotation mode, —¢,, is also
schematically represented.

The above four modes themselves can be soft modes or their com-
binations can be soft modes. The soft mode of the extremal micropolar
material with the parameters in Eq. (14) belongs to the latter case. The
soft mode can be identified by analyzing the strain energy density

a7

— 1)(o + 2p5)

25 ’ 21 ’

with e; and ey representing two orthogonal bases of the coordinate
system. One can verify that the four tensors,e’, ele*, and €* are
orthogonal to each other. gg°, eded, and e.® in together represents the

2n

From the last term, we identify a soft mode that is a linear combi-
nation of shear and pure rotation, characterized by € = ¢4 = 0 and ¢&5/¢,
= (1 — )/ + n). This soft mode is a direct consequence of the rank-
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deficiency of the elasticity tensor Cyy discussed earlier, i.e., CesCo9 —
C2, = 0. Therefore, the following proposed metamaterial must allow
this soft mode.

3.2. An extremal micropolar metamaterial model

Here, we propose a discrete metamaterial model (Fig. 3(a)) to realize
the above extremal micropolar material. Two lattice vectors of the
metamaterial are defined as a; = {l, — h}T and ay = {l, + h}T, respec-
tively. Each unit cell contains a mass block (yellow rectangle) with mass
M and length d. The width of the mass block is assumed to be negligible.
These mass blocks are coupled to their neighbors by linear Hooke’s
springs. A zoom-in view of a single unit cell is shown in Fig. 3(c), where
the central yellow rectangular block has one rotational and two trans-
lational DOFs. The micro-rotation inertia originates from this rotational
DOF and is important for balancing the asymmetric shear stress. In later
derivation, the volume average of the rotational inertia j of the yellow
block serves as the effective micro-rotation inertia. As the width of the
mass blocks is negligible, one can image that the rotation of any mass
block doesn’t cause rotation of its neighbors. This is consistent with the
requirement by a vanishing higher-order elasticity tensor. The specific
angle y, the blue springs with spring constant k/2, and the vertical cyan
springs with spring constant K enable us to adjust the anisotropy of the
effective elasticity tensor. Furthermore, the gray springs with spring
constant 2s serve to tune Cp» independently.

We consider a rectangular unit cell (Fig. 3(b)) to illustrate the soft
mode of the metamaterial more intuitively. First, an affine displacement
represented by uy =uy =v, =0, v, > 0 is assumed for all mass blocks.
Then, all mass blocks are rotated by the same angle ¢. The total defor-
mation is indicated in Fig. 3(d). It can be checked that all springs exhibit
zero stretching if ¢d/2 = v, and we thus obtain an soft mode of the
metamaterial. According to Eq. (16), the soft mode is represented by € =
&4 = 0,65 =v,/2, andey, = vx/2 — ¢ = (1 — 4l/d)es, which is exactly a
combination of shear and pure rotation, as indicated by Eq. (17). It
should be noted that the metamaterial has a stretching ratio n = 21/(2l —
d) > 1. One can simply rotate the metamaterial by 90° if an asymmetric
elastic material with # < 1 is needed. In the above discussion, we use ¢ to
denote the rotation of the mass block, implying that the rotation of the

pli = Cr1llx + Cooltyy + (C12 + Co9)V.xy + (Coo — C69)¢\y7
pV = Ce6Vxx + C2Vyy + (Cr2 + Ceo)Ulyy + (Coo — Cos) P
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Ppgd” Ppqd
u;q - {up_mvp_q - p2q } , u;“q = {up‘va,q + p2q } (19)

The displacements of the hidden massless nodes I and II (see Fig. 3
(a)) are assumed to be u,  and u]|_ respectively. We obtain the potential
energy, Uy, 4, for the unit cell (p, ) by summing up the elastic energies of
the 11 springs inside the unit cell. The expression is neglected here due
to lengthy expression.

Then, we derive the Lagrangian of the system

L= Z(Kp-q = Upa)- (20)
pq

The governing equations of the system are obtained as

0, . oL o, . oL od ., oL

— (M = — = — =—

0t( tip.q) 6up‘q’6t( Vpa) avp_qvat(l pa) Uy (21)
For the hidden DOFs u;,_ and u;,, we have

oL oL oL oL
=0, =/—=0, —(—=0, -—(—=0, (22)
g Ppq Nyq Ppq

Substituting the displacements of the hidden nodes solved from Eq.
(22) into Eq. (21) yields the final governing equations in terms of the
DOFs of the mass blocks.

The above derived governing equation is a discrete version. We
consider the following Taylor series in order to obtain a continuum
micropolar model. Since each mass block is only coupled to its nearest
neighbors (see Fig. 3(a)), we expand uy ymq+n Withm, n=-1,0,+1toa
second order

ou\" 1 &
Upimgin = Upq + (a—l;> dXpp + de;r,maTl; dXpp + O(|dxm.n|3)s (23)

where dxm,, = maj+naz. Vpymqin and ¢pymq+n can be expanded simi-
larly. Substitution of the expansion into Eq. (21) yields in the following

micropolar elasticity equations

where the parameters are,

I¢ = A11¢.xx +A22¢.yy + 2A12¢_xy + (C66 - CGQ)V,X + (C69 - ng)uy + (2C69 — Co6 — C99)(/)’

mass block corresponds to the micro-rotation ¢ of its equivalent
micropolar medium. In Fig. 3(c), we illustrate the equivalence between
the micropolar continuum unit cell and the metamaterial unit cell. The
volume average of the rotational inertia j of the mass block serves as the
effective micro-rotation inertia, and the resulting inertial torque is used
to balance the asymmetric stresses.

In the following, we derive effective micropolar continuum param-
eters of the proposed metamaterial following a previous procedure [75].
We denote the displacement and rotation of each mass block as u, 4 =
{tp,g> Vpqt" and ¢y g, Tespectively. We assume all displacements and
rotations to be infinitesimal, i.e., in a linear elastic range. The kinetic
energy of the unit cell (p, g) can be expressed as

1 .. 2 1.2
Kpq :§M|up=q} +QJ¢p,q- (18)

The moment of inertia of the mass block with negligible thickness is j
= Md?/12. The displacements of the left and right end-points of the mass
block in the unit cell (p, q) are expressed as

24
M .
pP= ) I:L, Scen = 2lh, Ay = Ay =Ay =As =0,
Scell Scell
l 2 h 2
Cn :H(s—s—kcos ), Cax :T(s+ksm ¥+ 2K),
I, ., h 5
Ces = HkSll’l 7, Cy9 = TkCOS Y,
Ci2 = s+ ksinycosy, Ceo = ksinycosy.
(25)

As anticipated, the effective micropolar medium indeed has a zero
higher-order elasticity tensor A = 0 and the condition CsCog — C2, = 0
is also satisfied. In order to obtain the desired extremal micropolar pa-
rameters in Eq. (14), we derive the following model parameters
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u"

M= poscell k= ’
sinycosy

B 1:'111:227
(Ao + 2pq)coty — ksin®y — (Ao — p)
2 ’ (26)
\/(/10 — 1)* + 4o + 20) — (Ao — )
2u

s=2 — K,

K=

y = arccot

It should be mentioned that the geometry requirement of arctan(h
/1) <y < m/4 (see Fig. 3(a)) imposes limitation to the available extremal
micropolar parameters. Specifically, the Poisson’s ratio of the back-
ground material must be positive v > 0, otherwise, the required
micropolar parameters in Eq. (14) cannot be achieved with the proposed
metamaterial.

3.3. Verification of the extremal micropolar metamaterial

Next, we demonstrate that the proposed micropolar metamaterial
can be used for controlling elastic waves based on asymmetry trans-
formation elasticity. For simplicity, we consider a compression mapping
denoted by F1; = 2/3 and F53 = 1. Elastic parameters of the background
Cauchy material are taken as Ao = 2u¢ = 110GPa and po = 2.4 x 10°kg/
m3, arbitrarily. We consider an operating frequency fext = ®ext/(21) =
6300Hz. The metamaterial cell should be sufficiently small compared to
the shear wavelength in the background material, i.e., 21 < c1/fext,
where cr = /o/p,. Here, we choose the unit cell size | = (c1/fext)/2N
with N = 10. The geometry and material parameters for the
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metamaterial model follows Eq. (26),
M=352kg, s=1.08x10" N/m, k=4.34x10°N/m,
K=162x10" N/m,

[=380cm, h=129cm, d=253cm.
27)

To illustrate the wave characteristics of this metamaterial and its
corresponding micropolar continuum, we derive their dispersion re-
lations by applying the Bloch-Floquet ansatz Wymq+n = W ¢exp(k -
(ma; + nap)), with u,g = U,.exp(— iot), and the harmonic wave
assumption u = Uexp(i(k-x —wt)) into Eq. (21) and Eq. (24), respec-
tively [75]. There are two acoustic bands related to the two displace-
ment DOFs. In addition, we obtain a micro-rotation dominated optical
branch, with a cut-off frequency, o, = 3.89 x 10%*rad/s. The three bands
obtained from the continuum model (red lines in Fig. 4(a)) and those
from the microstructure lattice (chain lines in Fig. 4(a)) show good
agreement in the long-wavelength limit, i.e., around the I" point. Since
the Taylor expansion Eq. (23) is more accurate for small wave numbers,
we observe a larger discrepancy between the two results for larger
wavenumbers, especially along two principal directions of the micro-
polar material, i.e., the I'X direction and I'Y direction. Along the two
principal directions, the shear branch for the continuum model exhibits
zero frequency due to the above explained soft mode of the meta-
material. Therefore, at low frequency range, only one bulk longitudinal
mode can propagate along these two directions. The transverse and
optical modes are coupled, while the longitudinal mode and the optical
mode are decoupled (see Fig. 4(b)). At a certain wavenumber along both

(a)
4

w/wy

— - = Lattice .

Continuum /
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Fig. 4. (a) Dispersion bands calculated from the micropolar continuum model (red solid line) and the proposed microstructure lattice (blue chain line). The insets
show a unit cell of the metamaterial (top-left), the first Brillouin zone (center) and an enlarged view of the lifted degeneracy (right). (b) Zoomed-in view of the band

~2
structure of the lattice near the operating frequency wey along the path X — I' - Y. The contribution of micro-rotation to each mode, characterized by P, = j¢

~2
/ (M/zl2 + MV + jd ), are encoded by color. Dark blue indicates strong participation of micro-rotation while light blue means micro-rotation is negligible in the

mode. (c) Effective relative shear modulus C&. (d) Iso-frequency contour of the metamaterial at the operating frequency wex:. Displacement polarization of the modes

are represented by red double arrows.
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directions, the longitudinal and optical branches become degenerate,
exhibiting identical frequencies. However, for wave propagating along
directions other than the two principal directions, such as the I'K di-
rection and I'M direction, the transverse mode, longitudinal mode and
optical mode all couple together, leading to a non-zero-frequency
transverse branch and a lifted degeneracy (or the degeneracy is
broken) between the longitudinal branch and the optical branch. As
result, the degeneracy along the two principal directions forms a Dirac
cone [93], i.e., two frequency surfaces touch at a point, in similar to two
cones contacting at their cone-tips. It is interesting that the micropolar
continuum calculation perfectly reproduce the Dirac cone of the meta-
material. The micropolar elasticity can potentially provide an contin-
uum route to investigate Dirac physics [94].

The dashed gray line in Fig. 4(b) indicates the operating frequency
Wext Of the designed metamaterial. Here, the metamaterial supports two
propagating modes, which are necessary to match the longitudinal and
transverse modes of the background material. The effective shear
modulus C& at the operating frequency wex: matches the shear modulus
of the background material (see Fig. 4(c)). At the operating frequency,
Wext, the iso-frequency contour of the metamaterial are two ellipses with
the same aspect ratio as the stretching ratio = 2/3. This is necessary for
perfectly matching the wave property of the background material, as
demonstrated in a previous asymmetric elastic metamaterial [29]. A
notable difference between our current metamaterial and the previous
one [29] is that we here exploit an acoustical mode and an optical mode,
while the previous design relies on two optical modes.

Next, we verify in COMSOL Multiphysics that the wave property of
the above extremal micropolar metamaterial. Specifically, we consider a
metamaterial slab consisting of 24 layers, with a total thickness of 48h,
sandwiched in the background Cauchy medium (Fig. 5(a)). The back-
ground Cauchy medium is modeled by using the Solid Mechanics

1
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l/
1
I
ax 450
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module. The mass blocks and the springs in the metamaterial are
modeled by using the Beam module in COMSOL Multiphysics, respec-
tively. We couple the background Cauchy continuum and the meta-
material slab at their interface by imposing pointwise displacement
continuity to corresponding nodes of the two regions. The simulation
frequency is set to be the operating frequency fex: = 6300Hz. We show in
Fig. 5(a) the simulated displacement fields for a Gaussian beam incident
onto the micropolar matching layer at an angle of 45°. The incident
wave is perfectly transmitted through the matching layer, with negli-
gible wave scattering or reflection. The wave fields inside the matching
layer are compressed by a factor of F1; = 2/3. The energy flow direction
and the wavevector inside the matching layer are in agreement with the
iso-frequency curve analysis (see Fig. 5(b) and (c)). Furthermore, the
matching layer should be valid for arbitrary incidence angles. This can
be verified by simulating an incident cylindrical wave, which consists of
plane waves along all propagation directions in 2D space. Nearly perfect
transmission for the incident cylindrical wave is observed, either for the
transverse case (Fig. 5(d)) or the longitudinal case (Fig. 5(f)).

We also simulate the micropolar matching layer by using the derived
effective micropolar continuum parameters in Eq. (25). The micropolar
elasticity equation is implemented in weak form in COMSOL Multi-
physics [84]. In the simulation, we assume that both the surface traction
and the surface couple stress is continuous at the interface separating the
background Cauchy medium and the micropolar continuum. The con-
tinuity equations can be derived by analyzing the balance of linear
momentum and angular momentum for an infinitely thin strip con-
taining the interface. The displacement is also supposed to be contin-
uous at the interface, resulting from a perfect bonding between the two
media, while the micro-rotation of the micropolar medium at the
interface is not constrained. The micropolar continuum calculations
(Fig. 5(e) and (g)) show a perfect transmission of the incident wave. The

Transverse Wave

€9)

Fig. 5. Simulation of a micropolar matching layer with different incident waves. (a) Displacement fields for a transverse polarized Gaussian beam obliquely incident
onto the micropolar matching layer. Colors stand for the displacement magnitude |u|. Arrows are for energy flow directions. (b) Zoomed-in view and the wave vector.
(c) Iso-frequency contour of the background Cauchy material and the micropolar metamaterial at the operating frequency, @ex. (d), (e) Results for the metamaterial
and an effective micropolar continuum with an incident transverse cylindrical wave. The region enclosed by the white rectangle box represents the micropolar
continuum medium. (f) (g) Same as (d), (e) but for an incident longitudinal cylindrical wave.
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above simulations intuitively demonstrate that the proposed extremal
micropolar metamaterial behaves as its effective micropolar continuum,
matching the surrounding Cauchy medium and achieving compression
of elastic wave fields.

It is important to note that the adopted homogenization method for
the micropolar metamaterial is valid in the long-wavelength limit.
Therefore, the metamaterial unit cell should be sufficiently small, or
alternatively each shear wavelength should contain N > 10 meta-
material unit cells. To reduce the required number of unit cells per
wavelength, one may adopt the enhanced homogenization method that
remain valid far away from the I' point [79]. This approach could
potentially simplify the design of the microstructure cloak in next sec-
tion, which currently contains 123 layers along the radial direction.

4. Design and verification of 2D micropolar elasticity cloak

Now, we start the design and verification of an elastic cloak based on
the proposed extremal micropolar metamaterial. We choose a linear
mapping (see Fig. 1(a)), g(r) = b(r — a)/(b — a) + 6(r — b)/(a — b) ina
polar coordinate for the cloak design. The function maps a circular re-
gion with a hole, with radius 8, in the virtual space onto an annular cloak
with inner radius a and outer radius b in the physical space. Specifically,
a position X = Rey, in the virtual space is mapped onto a position x = re,
in the physical space with R = g(r) and ® = 0. The mapping gradient can
then be derived as F = 0x/0X = 1/¢(re,2e, + r/g(r)esRey, with e, and e,y
being the unit basis vectors along the r- and 6-direction of the polar
coordinate. We choose the same background Cauchy material as before,
Ao = 2419 = 110GPa and py = 2.4 x 10%kg/m>. The geometry parameters
are chosen as b = 2a = 1m and § = a/5. By substituting #(r) = F/Fpo = g
(r)/(rg () into Eq. (14), the required micropolar parameters, dependent
on the radial position, can be obtained. The corresponding microstruc-
ture parameters are further derived from Eq. (26).

The resulting cloak is consisted of in total N, = 123microstructures
layers along the radial direction and Ny = 84 sectors along the 0 direc-
tion. We illustrate in Fig. 6(a) the construction process of the meta-
material cloak. The metamaterial unit cells in the cloak are arranged
such that the long axis of the mass blocks is along the ¢-direction of the
polar coordinate since the required 7 < 1. The metamaterial unit cell in
the outermost layer (or the first layer) has the largest size. We choose I
= (c1/fext)/2N with N = 10.16 for the first layer to ensure the long
wavelength condition. For all unit cells in the cloak (see Fig. 6(a)), we
have replaced the rectangular mass blocks by polyline-shaped blocks to
maintain conformation with the polar coordinate. All springs or beams
are coupled to mass blocks at corresponding edges. Geometric param-
eters of the unit cells at the location, ry,, are as indicated. The linear
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mapping results in a constant length of the mass block, d = 2rnb(a —
6)/Ny(b — 5). We have used two angles, y3 and yil, (see Fig. 6(a)) for each
layer. The outer one is chosen as y = arctan(h,—1 /(17(rn)ln)), while the
inner one 7!, is derived from the required micropolar properties at that
location. The metamaterial cloak is constructed layer by layer from the
first layer with the iteration relation r, = r,—1 — hp—1 and hy,
n(ra)latan(v1).

We show in Fig. 6(b) the distribution of the effective micropolar
properties of the designed cloak along the radial direction. Due to a very
large number of metamaterial layers along the radial direction, the
effective parameters (dots) of the metamaterial cloak approximates the
continuous parameters (solid lines) required by transformation theory
very well. This leads to a good approximation of the microstructure
cloak to the theoretical design, as demonstrated below.

We model the microstructure cloak in COMSOL Multiphysics like the
simulations in previous Section 3.3. The background material and the
metamaterial are modeled by using the Solid Mechanics Module and the
Beam Module, respectively. We apply a traction free boundary condition
to the inner surface of the cloak. We verify the cloaking performance of
the designed elastic cloak by considering a plane wave incident from the
left side. The entire simulation domain is surrounded by the Perfectly
Matched Layers in COMSOL Multiphysics to avoid undesired reflections
from boundaries. We first show the simulated displacement fields for a
transverse plane wave (Fig. 7(a)) and a longitudinal plane wave (Fig. 7
(e)) onto a circular void. The void induces rather pronounced scattering
to the left side and the right side of the void. In sharp contrast, the
incident plane wave smoothly propagates through the cloak to the for-
ward region when the void is covered by the microstructure cloak (Fig. 7
(b) and (f)). The cloak demonstrates a very satisfying cloaking perfor-
mance. The displacement fields for the microstructure cloak exhibit
quite good consistency with the simulation based on effective micro-
polar medium (Fig. 6(c) and (g)). We remark that a small radius § = a/5
is adopted for the cloak design and weak scattering of the cloak is
inevitable. As can be seen, the cloaking performance of the cloak is
rather close to the theoretical target of a small hole with radius & (Fig. 6
(d) and (h)).

We calculate the total scattering cross-section (TSCS) for the cloak
[9] under incident plane transverse and longitudinal waves. The TSCS is
defined as the ratio of the scattered power by an object to the incident
power density on the object. The displacement and stress fields are
decomposed into the incident and scattered components, u = u™ + u*
and ¢ = 6 + ¢°C, respectively. In the backward region before the target,
the scattered waves are equivalent to reflected waves. In the forward
region after the target, the superposition of the incident waves and the
scattered waves constitutes the transmitted waves. The incident
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Fig. 6. Microstructure elastic cloak based on extremal micropolar metamaterials. (a) Sketch of the construction process of the microstructure cloak. Geometric
parameters of the unit cells in the nth layer are marked. We number the outermost layer as layer 1. (b) Effective micropolar parameters (dots) of each layer along the
radial direction for the designed microstructure cloak. We only show the three shear modulus and mass the density for clarity. The designed material properties are in
perfect agreement with the micropolar parameters (solid lines) required by cloaking theory.
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Uncloaked

Fig. 7. Verification of the designed cloak based on extremal micropolar metamaterials.(a) Simulated displacement fields, v (vertical component of the displace-
ments), for a transverse plane wave incident from the left side onto a void (inner circular white region) with radius a. (b) Same as (a) but with the void covered by the
designed microstructure cloak, with inner radius a and outer radius b = 2a. (c) Same as (b) but with micropolar effective-medium for the cloak (enclosed by white
circle). (d) Same as (a) but for a small void with radius § = a/5, which is adopted for the design of the cloak. (e) — (h) Same as (a) — (d) but for displacement fields, u

Lattice-cloaked
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Continuum-cloaked

(horizontal component of the displacements), with an incident longitudinal plane wave.
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Fig. 8. The TSCS and scattering displacement fields for both the lattice cloak and the continuum cloak. (a) The TSCS for each case is calculated from the scattered
displacement fields shown in (b) - (g). The target TSCS is corresponding to the case illustrated in Fig. 7(d) and (h). (b) Simulated scattered displacement fields, v*¢, for
a transverse plane wave incident onto a void (inner circular white region) with radius a. (c) Same as (b) but with the void covered by the designed microstructure
cloak. (d) Same as (c) but with an effective-medium micropolar cloak. (e) - (g) Same as (b) - (d) but for scattered displacement fields, u*°, with an incident longitudinal

plane wave.
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Fig. 9. Frequency dependence of the total scattering cross-section (TSCS) for an uncloaked void, a void covered by a lattice cloak, a void covered by a continuum
cloak, and a target small hole under (a) an incident transverse plane wave and (b) an incident longitudinal plane wave.

displacement fields for transverse and longitudinal waves are respec-
tively, u™ = tgexp(iwx /cr) and u® = Uoexp(iwx /cL), where cT and ¢y,
are corresponding phase velocities in the background media.

By choosing an annular integral path dI" enclosing the cloak region,
the total scattered power of the cloak can be obtained by integrating
over this boundary:

Ey. = ?{ Re [os ]nlds - —fIm 7{ N T ds, (28)

where n is the outward normal vector to JI', and the overbar denotes the
complex conjugate.
The incident power density for a plane wave is given as:

"=

withn = (1 0)". From these, the dimensionless TSCS is computed as
E./(2bPy,), where b is the radius of the cloak region.

The scattered displacement fields under the excitation of transverse
and longitudinal incident waves are shown in Fig. 8. The lattice cloak
and the continuum cloak significantly reduces the scattering outside the
cloak compared to the unloaded cases in Fig. 8(b) and (e). Quantita-
tively, the TSCS of the microstructure cloak and the continuum cloak
reduces are reduced to one-tenth of the TSCS of a bare rigid scatter,
approaching the TSCS of a target void with radius a/5. These results
clearly validate the efficiency of the designed elastic cloak based on
extremal micropolar metamaterials.

We further quantitatively study the TSCS of the continuum and lat-
tice cloaks over a frequency range centered at the operating frequency of
6300 Hz (see Fig. 9). Both the lattice and continuum cloaks significantly
suppress scattering at the operating frequency, and the resulting TSCS
closely approximates that of the target small hole. However, the per-
formance decreases rapidly beyond a narrow frequency band of nearly 6
Hz. This limitation originates from the dispersive nature of the effective
asymmetric elasticity tensor of the micropolar metamaterial (see Eq.
(13)), which causes the effective properties to deviate quickly from
those required by the transformation method. To achieve broadband
performance, one possible strategy is to design large micro-rotation
inertia in the metamaterial, which can result in weakly dispersive
effective asymmetric elastic properties.

*lRe[

5 (29)
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5. Conclusion

Asymmetric elasticity theory and asymmetric elastic materials were
conceived to achieve elastic cloaks by using transformation methods
nearly two decades ago. The theory shares the same math equations as
Cauchy elasticity except that the elasticity tensor only has major sym-
metry. As a result, the theory can lead to asymmetric stresses, such as by
an infinitesimal rotation. However, the asymmetric elasticity theory
does not take into account the unbalanced angular momentum caused

by the asymmetric stresses. Therefore, the transformation theory based
on asymmetric elastic materials still remains controversial today,
though elastic cloaks guided by the theory have already been experi-
mentally demonstrated.

Our paper has focused on micropolar elasticity theory, which allows
asymmetric stresses and the asymmetric part is balanced by the couple
stress and micro-rotation inertia. Specially, we are interested in extremal
micropolar materials with zero higher-order elasticity tensor, also
termed as reduced Cosserat media. In such media, the micro-rotation
DOF can be eliminated from the governing equation for linear mo-
mentum. The resulting dynamic equation for displacements becomes the
same as the asymmetric elasticity theory, but with an effective disper-
sive asymmetric elasticity tensor. Therefore, extremal micropolar elastic
materials are capable of realizing elastic cloaks based on transformation
methods. To verify our finding, we have proposed a metamaterial to
realize the extremal micropolar parameters required for cloaking. An
elastic cloak has been further designed based on the metamaterial and
numerically simulated. The excellent cloaking performance has justified
our above finding.

Our finding also indicates that micropolar elasticity theory can
provide a rigorous theory for asymmetric elastic materials. This may
facilitate the study of other interesting properties in asymmetric elastic
materials. Extremal Cauchy materials, e.g., pentamode materials, have
shown great potentials in wave control in past few years. Our work also
shed light on unusual properties in extremal micropolar materials and
may stimulate further exploration.
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The mapping gradient is assumed to be diagonal in the principal coordinate, i.e., F = F11e1®e; + Fasea®es + Fises®es, withe;, ez, and e being the
orthonormal bases of the principal coordinate. The required micropolar elastic parameters in the principal coordinate are
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