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Abstract
We consider a system of three particles with identical mass interacting via short-
range potentials, such that two of the particles are on parallel lines in a plane and
the third one is on a line perpendicular to this plane. In this geometry, we prove that
the corresponding Schrödinger operator only has a finite number of eigenvalues under
physically reasonable assumptions on the decay of the interaction potentials. Our result
disproves a recent prediction made in physics literature.
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1 Introduction

The Efimov effect can be described as follows: The three-body Schrödinger operator
of a system of three three-dimensional particles that interact via short-range potentials
has an infinite number of negative eigenvalues, if the Hamiltonians of the two-body
subsystems have no negative eigenvalues and at least two of them have a zero-energy
resonance. Moreover, the eigenvalues form a geometric sequence whose common
ratio is independent from the nature of the potentials. Such a curious phenomenon
was first predicted by the physicist Vitaly Efimov in 1970 [4]. In 1974, Yafaev gave
the first rigorous mathematical proof of it in [31]. The Efimov effect was considered
by physicists as a purely theoretical curiosity, until it was observed experimentally
in the early 2000s in an ultracold gas of caesium atoms [12]. Efimov effect has since
then be studied both by the physics and mathematics community, see for example the
review [14], the PhD thesis [2] or the lecture notes [3] for further references.

One particularly interesting question was whether a similar effect could occur in
configurations different from the classical situation of three particles in dimension
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three. It was proven in [28] that the Efimov effect does not exists for a system of three
one- or two-dimensional bosons. Advances in experiments with ultra-cold Fermi-
Fermi mixtures such as in [22] make it possible to study situations where different
species of particles are confined to distinct subspaces of R3, see for example [13].
Nishida and Tan discussed the possible existence of a so-called confinement-induced
Efimov effect in [15] and [16]. In [14, p. 44, Table 1] the existence of the confinement-
induced Efimov effect was predicted in various situations.

We consider the case where two particles can move along two parallel lines in a
plane and the third particle moves in a line perpendicular to this plane. In [14, p. 44,
Table 1], the existence of the confinement-induced Efimov effect was predicted for
this configuration.

We briefly recall the picture suggested in the physics literature that may underlie the
prediction. In [16], Nishida and Tan argued that scale-invariant behavior, characteristic
of the Efimov effect, can emerge in systems with interactions in three-dimensional
space−regardless of the specific interpretation of these spatial dimensions. When
considering two-dimensional interactions, they suggested that the Efimov effect may
still arise in systems composed of anyons. In [14, Sections 8 and 9], several geometrical
configurations with mixed dimensions that support this phenomenon were identified.
One such example, depicted in Fig. 1, corresponds to a setup listed in [14, p. 44, Table
1], where the relative distances are vectors in R3.

Although the subsystems of interacting particles are governed by forces in R
3,

the effective dimension of two of the underlying two-particle subsystems is two-
dimensional and one is one-dimensional. Since the lines in the depicted configuration
do not intersect, the particle statistics are irrelevant−whether the particles are bosons,
fermions, or anyons. According to [14, Subsection 3.3.4] and [17], the biwire structure
of the configuration is conducive to the emergence of the Efimov effect in ultra-cold
gases.

Fig. 1 Geometrically constrained particles moving on separated lines in R3
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At large interparticle distances, the presence of so-called virtual levels in the two–
particle subsystems may indeed mediate an effective long-range attraction in specific
directions, due to a "conspiracy of potential wells" as described in [11] and [20,
Chapter 1.5.2] which for three unconstrained paticles in dimension d = 3 leads to the
Efimov effect, see [23]. However, given the geometric constraints and the effective
dimensionality, this mechanism might not be strong enough to generate an infinite
discrete spectrum of the corresponding Schrödinger operator. Arguing solely on the
basis of scaling relations as done in [16, 17] seems to miss this point. In fact, we
rigorously rule out the existence of any Efimov type effect for this configuration of
particles.

Our analysis is based on [33], where Zhislin formulated a useful condition on
the finiteness of the discrete spectrum of many particle Schrödinger operators. His
approach was further developed and applied to show the absence of Efimov effect in
various situations for example in [25, 26, 29] and [30]. In [1] Barth, Bitter andVugalter
showed the absence of Efimov effect in various systems of one- and two-dimensional
particles. Since the subsystems in the particle configuration shown in Fig. 1 above are
either one- or two-dimensional, we can apply techniques similar to those used in [1]
to establish the finiteness of the discrete spectrum.

Our paper is organized as follows. In Sect. 2, we describe the model and state our
theorem. In Sect. 3, we give the proof of it in the case where the two-particle operators
have no bound states. In Appendix A, we recall some of the results of previous works
that we use and in Appendix B, we study the case where at least one of the two-particle
systems has a bound state, which is mainly a direct adaptation of [33].

Remark 1.1 It is worth noting that the simple dimensionality-based argument used in
[14] does not hold in all cases. For instance, it predicts the existence of the Efimov
effect in a system of five purely one-dimensional particles. In this case, the four-
particle subsystems−when reduced to center-of-mass coordinates−are described by
three spatial parameters. However, as shown in [1], the Efimov effect is known to be
absent in purely one-dimensional systems, regardless of the number of particles.

2 Configuration of particles

Inspired by recent predictions from physics for the confinement-induced Efimov effect
(see, [14, p. 43 f.]) we consider a system of three particles with identical masses
interacting via short-range two-body potentials in R

3. Two particles, called 2 and
3, are confined to parallel lines and the third particle called 1 is confined to a line
perpendicular to the plane spanned by the two lines on which particles 2 and 3 are
moving. Furthermore, the line on which particle 1 moves is assumed to not intersect
with the two lines for particles 2 and 3. Compare this to Fig. 1.

For simplicity we assume that the parallel lines have distance 1. The configuration
of such a system is determined by three real numbers x = (x1, x2, x3) ∈ R

3. The
particles have positions
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r1 =
⎛
⎝

x1
−1/2
0

⎞
⎠ , r2 =

⎛
⎝

x2
1/2
0

⎞
⎠ , r3 =

⎛
⎝

0
0
x3

⎞
⎠ . (2.1)

The particles interact pairwise. For i, j ∈ {1, 2, 3} with i < j , we denote by Vi j the
potential describing the interaction between particles at ri and r j .

From physics, we know that it is reasonable to assume that the potential Vi j solely
depends on the distance between the particles i and j . For three unconfined particles in
dimension d = 3, the Efimov effect can occur only if at least two subsystems possess
a so-called virtual level, see [10, 30]. This is a strong restriction on the admissible
potentials. If, in addition, all interaction potentials are short-range, the effect may
appear [31]. For purely attractive, long-range potentials, the subsystems cannot have
virtual levels, and consequently, the effect is absent. We also exclude certain artificial
long-range potentials that are attractive at short distances, repulsive at large distances,
and in addition produce virtual levels, see [7, Appendix A] for such an example. We
therefore assume that all potentials are short-range, i.e., that there exist R0 > 0 and
C, ν > 0 such that for all i, j ∈ {1, 2, 3} with i < j ,

∣∣Vi j (r)
∣∣ ≤ C

r2+ν
, when r ≥ R0. (2.2)

For one–particle Schrödinger operators the Hardy Potential is the borderline case
which distinguishes between finitely, respectively, infinitely many negative eigenval-
ues, see [19, Theorem XIII.6]. Consequently, the assumption in (2.2) is the reasonable
assumption for short–range potentials.

Note that
∣∣ri − r j

∣∣ ≥ 1/2 for i, j ∈ {1, 2, 3} with i < j . That is, all three particles
have a minimal distance from each other. Thus, it is (physically) reasonable to assume
that all potentials are bounded.

Remark 2.1 We consider the case where all particles have the same mass and the two
parallel lines are equidistant from a third, perpendicular line, with this distance fixed
to one. The in-plane distance between the parallel lines does not affect our proof, but
our approach does not cover the absence of the Efimov effect when particle masses
are arbitrary or when some line is tilted. In such cases, Lemma (A.2) is generally not
applicable and the loss of symmetries significantly complicates the analysis.
The identical-particle case in this simple geometry is a natural starting point, and we
prove here the finiteness of the discrete spectrum by combining results for purely one-
dimensional and purely two-dimensional systems (see [1]). After separating the center
of mass in the subsystems, the problem reduces to a three-particle system consisting
of two two-dimensional and one one-dimensional subsystem.
Anew result formore general configurations has since been obtained, see [8].However,
the result in [8] requires considerably stronger decay assumptions on the interaction
potentials than the short-range condition (2.2) used here. Consequently, it does not
cover the case treated in this work, which applies under the natural short–range condi-
tion. Moreover, [8] requires an extensive analysis of decay properties of zero-energy
solutions of critical Schrödinger operators that goes far beyond the purpose of this
research.
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The corresponding operator for the system described above is

H = −
3∑

i=1

∂2

∂x2i
+

∑
1≤i< j≤3

Vi j (
∣∣ri − r j

∣∣). (2.3)

Here,
∣∣ri − r j

∣∣ is to be understood as a function of the variables xi , x j using the
definition in (2.1). The operator H acts on L2(R3). Under these assumptions H is
self-adjoint on the Sobolev space H2(R3) and its form domain is H1(R3). Such a
system of three particles can be decomposed into three subsystems of two particles.
For the pair of particles (3, j) with j ∈ {1, 2} we consider the operator

h j3 := − ∂2

∂x23
− ∂2

∂x2j
+ Vj3(

∣∣r1 − r j
∣∣) (2.4)

which acts on L2(R2). While the full three-particle system is not invariant under any
translation inR3 due to the geometric constraints, the subsystem consisting of particles
1 and 2 is invariant under translations in the ê1-direction. Thus for the subsystem of
particles 1 and 2 we need to study it in the center of mass frame by introducing relative
coordinates in R

2. These are given by q, ξ ∈ R with

q := 1√
2
(x2 − x1), ξ := 1√

2
(x1 + x2). (2.5)

Up to a factor of
√
2 the coordinate ξ describes the position of the center of mass of

the two particles 2 and 3, while the coordinate q describes the relative motion of these
two particles in the e1-direction.
For any x ∈ R

3 we denote by |x | the Euclidean norm of the vector. Note that
|r1 − r2| = √2q2 + 1. The operator

[
−∂2q + V23

(√
2q2 + 1

)]
⊗ 1 + 1 ⊗ (−∂2ξ ) (2.6)

corresponds to the pair (1, 2). In the center of mass frame, we have

h12 := −∂2q + V12

(√
2q2 + 1

)
. (2.7)

which acts on L2(R). Let

� := min
i< j∈{1,2,3} inf σ(hi j ). (2.8)

Similar to the HVZ-Theorem [9, 24, 32] (see also [18][Thm. XIII.17]), one sees that
� ≤ 0. It follows from the same theorem that σess(H) = [�,∞). The goal of this
paper is to study the discrete spectrum of H . Our main result is
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Theorem 2.2 The operator H has at most a finite number of discrete eigenvalues
below �.

Remark 2.3 The theorem above allows any of the two-particle operators to have a
virtual level. In [14] it was predicted that the system described by the operator H
in Equation (2.3) shows a confinement-induced Efimov effect. Our Theorem 2.2 dis-
proves this claim, which was based on heuristic arguments from physics.

3 Proof of Theorem 2.2

According to the min-max principle, the spectrum of H below� is finite if there exists
a finite dimensional space M ⊂ L2(R3) such that, for any ψ ∈ L2(R3) orthogonal to
M ,

〈ψ, Hψ〉 ≥ � ‖ψ‖2 . (3.1)

Due to [33] (see also Appendix A.1), such a space M exists whenever there exist
b, β > 0 such that for any ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R

3| |x | > b}

L[ψ] :=
∫
R3

⎛
⎝

3∑
i=1

∣∣∂xiψ
∣∣2 +

∑
i< j

Vi j |ψ |2
⎞
⎠ dx−

∫
R3

|ψ(x)|2
|x |β dx ≥ � ‖ψ‖2 . (3.2)

In the following, we set β = 2+ ν, where ν > 0 is the exponent corresponding to the
short-range property of the potentials as stated in Equation (2.2). We first prove the
theorem in the case � = 0. With a small modification, the case � < 0 is analogous
to the one considered in [33]. For the convenience of the reader we give the proof for
� < 0 in Appendix B.

Heuristics from physics predicts that the three-particle system breaks up if (at
least) one particle is far away from the others. So following ideas of [28], we want to
define, for all i, j ∈ {1, 2, 3} with i < j , the set of geometric configurations where
the particles i and j are close to each other and the third particle is far away. Observe
that

|r1 − r2|2 = 2q2 + 1,
∣∣r3 − r j

∣∣2 = x21 + x23 + 1/4, j ∈ {1, 2}. (3.3)

Given parameters b > 0 and γ ∈ (0, 1) which will be fixed later we define the regions

Kb
12(γ ) :=

{
x = (x1, x2, x3) ∈ R

3 : |q| ≤ γ

√
ξ2 + x23 , |x | > b for q, ξ defined in (2.5)

}
,

Kb
j3(γ ) :=

{
x = (x1, x2, x3) ∈ R

3 : ∣∣(x j , x3)
∣∣ ≤ γ |xk | , for k ∈ {1, 2}, k �= j, |x | > b

}
.

(3.4)

Here, |(x j , x3)| is the Euclidean length of the vector (x j , x3) in the ( j-3)-plane. Note
that outside of the ball Bb(0) the above sets describe conical regions inR3. For example,
outside of Bb(0) the region Kb

13(γ ) is a conical region around the x2-direction, where
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Fig. 2 A sketch of the set Kb
13(γ ) defined in Equation (3.4). The other sets look similar

the particles 1 and 3 are close to each other and particle 2 is far away. Compare this
to Fig. 2.

We also define the set 
0 of configurations where all three particles are far apart:


0 := {x ∈ R
3| |x | > b}\

⎛
⎝ ⋃

1≤i< j≤3

Kb
i j (γ )

⎞
⎠ . (3.5)

For a measurable set 
 ⊂ R
3, we define the local energies

L[ψ,
] :=
∫




⎛
⎝

3∑
i=1

∣∣∂xi ψ
∣∣2 +

∑
i< j

Vi j |ψ |2
⎞
⎠ dx −

∫



|ψ(x)|2
|x |2+ν

dx . (3.6)

Then, for any ψ ∈ H1(R3)

L[ψ] =
∑
i< j

L[ψ, Ki j ] + L[ψ,
0] . (3.7)

We prove the bound (3.2), by estimating L[ψ, Kb
i j (γ )] and L[ψ,
0] from below.

Notice that for γ small enough the sets Kb
i j (γ ) and 
0 are disjoint. In the following

we shall assume that γ < 1/4 is small enough.

Remark 3.1 The prove of of Equation (3.2) for � = 0 proceeds in several steps. We
first prove that the local energies in (3.6) can be estimated in terms of integrals over
the surface ∂Kb

i j (γ ) only. This is done in Lemma 3.2 and 3.4 below. We then show
in Lemma 3.5 how this surface Integrals can be controlled by a small portion of the
kinetic on the set
0. At the end of this section, we prove how these Lemmas conclude
the main statement.

We start with L[ψ, Kb
j3(γ )] for j ∈ {1, 2}.

123



135 Page 8 of 23 M. R. Schulz, S. Zalczer

Lemma 3.2 For j ∈ {1, 2}, there exist C, b0 > 0 such that for all b ≥ b0 and for any
ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R

3| |x | > b}

L[ψ, Kb
j3(γ )] ≥ −C

∫
∂Kb

j3(γ )

|ψ |2
|x |1+ν

dσ. (3.8)

where ν > 0 is defined in equation (2.2).

Proof We prove the estimate for j = 1. The proof for j = 2 is similar. For any
x = (x1, x2, x3) ∈ R

3 let
ζ := (x1, x3) ∈ R

2. (3.9)

Then by definition of Kb
13 in (3.4) and (3.3)

Kb
13(γ ) = {(ζ, x2) ∈ R

3 : |ζ | ≤ γ |x2| , |(ζ, x2)| ≥ b} . (3.10)

Given b > 0 and ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R
3| |x | > b}, we decompose

L[ψ, Kb
13(γ )] = L3[ψ, Kb

13(γ )] + L4[ψ, Kb
13(γ )] (3.11)

where

L3[ψ, Kb
13(γ )] :=

∫
Kb
13(γ )

(∣∣∇ζ ψ
∣∣2 + V13

(√
|ζ |2 + 1

4

)
|ψ |2

)
d(ζ, x2),

L4[ψ, Kb
13(γ )] :=

∫
Kb
13(γ )

(∣∣∂x2ψ
∣∣2+(V23 + V12) |ψ |2

)
d(ζ, x2)−

∫
Kb
13(γ )

|ψ |2
|x |2+ν

dx .

(3.12)

Let t0 := b/
√
1 + γ 2, as it appears in Fig. 2. Then, for all (x2, ζ ) ∈ Kb

13(γ ), |x2| ≥ t0
and, since ψ vanishes whenever |ζ |2 + x22 ≤ b2,

L3[ψ, Kb
13(γ )] =

∫
|x2|≥t0

∫∫
|ζ |≤γ |x2|

(∣∣∇ζ ψ
∣∣2 + V13

(√
|ζ |2 + 1

4

)
|ψ |2

)
dζdx2 .

(3.13)
We remark that V13 solely depends on |ζ | and is short-range and bounded. By

assumption −� + V13 = h13 ≥ 0. Thus, by Lemma A.2 which is a restatement of
[2, Lemma 6.6], there exists some C0 > 0 such that, when b is large enough so that
γ t0 ≥ R0,

L3[ψ, Kb
13(γ )] ≥ −C0

∫
|x2|≥t0

∫ 2π
0 |ψ(x2, γ |x2| , θ)|2 dθ

(γ |x2|)ν dx2 . (3.14)
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Remark 3.3 The assumptions of equal masses and the chosen geometry are essential at
this point.Without them, the potentialV13 and thekinetic energy are not simultaneously
invariant under rotations, which prevents the application of Lemma A.2. The proof of
Lemma A.2 relies heavily on this symmetry. Consequently, one cannot directly adapt
that proof to obtain a result for potentials with different symmetries or configurations
with arbitrary mass.

By the usual abuse of notation, we use the same symbol ψ for the function in
all coordinate systems. To avoid any confusion, we will write down its argument
when necessary. We remark that by passing to polar coordinates in the (x1, x3) plane
introducing |ζ | ∈ R+,θ ∈ [0, 2π) and fixing |ζ | = γ |x2| the mapping

(−∞,−t0]∪[t0,∞)×[0, 2π) → R×R+×[0, 2π) with (x2, θ) �→ (x2, γ |x2| , θ)

(3.15)
is a parametrization of the two components of the surface ∂Kb

13(γ ) outside of Bb(0).

Since in addition ψ vanishes on Bb(0) and |x | = √
1 + γ 2 |x2| on that surface, we

can rewrite Equation (3.14) in

L3[ψ, Kb
13(γ )] ≥ −C1

∫
∂Kb

13(γ )

|ψ |2
|x |1+ν

dσ, (3.16)

for some constant C1 > 0. Here dσ = |x | d |x | dθ is the surface measure on the set
∂Kb

13(γ ), which explains the additional factor of |x | in the denominator of equation
(3.16).
Let us now bound L4[ψ, Kb

13(γ )]. Note that for any x ∈ Kb
13(γ )

|r1 − r2| ≥ |(x1, x2)| ≥ |x2| ≥ t0,

|r2 − r3| ≥ |x2 − x3| ≥ (1 − γ ) |x2| ≥ (1 − γ )t0 .
(3.17)

Since t0 = b/
√
1 + γ 2, we can use the short-range property of the potentials V23, V12

together with (3.17) to find that there exists C2 > 0 such that for b ≥ R0
√
1 + γ 2, we

have for any x ∈ Kb
13(γ )

|(V23 + V12)(x)| ≤ C2

|x2|2+ν
. (3.18)

Thus

L4[ψ, Kb
13(γ )] ≥

∫∫
R2

∫
|x2|≥max{t0,|ζ |/γ }

(∣∣∂x2ψ
∣∣2 − C2 + 1

|x2|2+ν
|ψ |2

)
dx2dζ.

(3.19)
For any fixed ζ ∈ R

2, we define a(ζ ) := max{t0, |ζ | /γ }. Note that by direct compu-
tations a(ζ ) := max{t0, |ζ | /γ } ≥ R0 for b large enough. We apply [1, Lemma 6.3]
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(see Appendix A.5) to the innermost integral. Thus, there exists C3 > 0 such that

L4[ψ, Kb
13(γ )] ≥ −C3

∫∫
R2

1

a(ζ )1+ν

[
|ψ (a(ζ ), ζ ) |2 + |ψ (−a(ζ ), ζ ) |2

]
dζ .

(3.20)

By construction ψ(±a(ζ ), ζ ) vanishes whenever |ζ | ≤ γ t0. Then

L4[ψ, Kb
13(γ )] ≥ −C3γ

1+ν

∫∫
|ζ |≥γ t0

1

|ζ |1+ν

[
|ψ (|ζ | /γ, ζ ) |2 + |ψ (− |ζ | /γ, ζ ) |2

]
dζ .

(3.21)
Note oncemore that ζ �→ (ζ1,± |ζ | /γ, ζ2) for ζ ∈ R

2 with |ζ | ≥ γ t0 is a parametriza-
tion of the two components of the surface ∂Kb

13(γ ) outside of Bb(0). Similarly to what
we did in order to get from Equation (3.14) to Equation (3.16), we can rewrite Equa-
tion (3.21) in

L4[ψ, Kb
13(γ )] ≥ −C4

∫
∂Kb

13(γ )

|ψ |2
|x |1+ν

dσ, (3.22)

for some C4 > 0. Inserting the bounds (3.16) and (3.22) into (3.11), we find

L[ψ, Kb
13(γ )] ≥ −(C4 + C1)

∫
∂Kb

13(γ )

|ψ |2
|x |1+ν

dσ . (3.23)

This proves the Lemma 3.2. ��

Next we provide a lower bound for L[ψ, Kb
12(γ )]. The techniques used are similar

to the ones in the proof of Lemma 3.2 but the proof is slightly different due to the
different geometry of Kb

12(γ ). We show

Lemma 3.4 There exist C, b0 > 0 such that, for all b ≥ b0 and for any ψ ∈ H1(R3)

with suppψ ⊂ {x ∈ R
3| |x | > b}

L[ψ, Kb
12(γ )] ≥ −C

∫
∂Kb

12(γ )

|ψ |2
|x |1+ν

dσ. (3.24)

Proof Recall the definition of the relative coordinates (q, ξ) in Equation (2.5). The set
Kb
12(γ ) is invariant under rotations in the (ξ, x3) plane. Let η := (ξ, x3) ∈ R

2. Then
the set Kb

12(γ ) is

Kb
12(γ ) =

{
(η, q) ∈ R

2 × R : |q| ≤ γ |η| ,
√

|η|2 + q2 ≥ b

}
. (3.25)
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Similar to Lemma3.2, for some b > 0, letψ ∈ H1(R3)with suppψ ⊂ {x ∈ R
3| |x | >

b} and define

L1[ψ, Kb
12(γ )] :=

∫
Kb
12(γ )

(∣∣∂qψ
∣∣2 + V12

(√
2q2 + 1

)
|ψ |2

)
d(q, η),

L2[ψ, Kb
12(γ )] :=

∫
Kb
12(γ )

⎛
⎝∣∣∇ηψ

∣∣2 +
2∑
j=1

Vj3 |ψ |2
⎞
⎠ d(q, η) −

∫
Kb
12(γ )

|ψ |2
|x |2+ν

dx .

(3.26)

We decompose

L[ψ, Kb
12(γ )] = L1[ψ, Kb

12(γ )] + L2[ψ, Kb
12(γ )]. (3.27)

Recall that t0 = b/
√
1 + γ 2, then

L1[ψ, Kb
12(γ )] =

∫∫
|η|≥t0

∫ γ |η|

−γ |η|
∣∣∂qψ

∣∣2 + V12 |ψ |2 dq dη (3.28)

since ψ vanishes whenever |η|2 + q2 ≤ b2. Recall that h12 ≥ 0 and that V12 is short-
range. Then we can apply [1, Lemma 6.2] (see Appendix A.4) to conclude that there
exists D0 > 0 such that for all b with γ t0 = γ b/

√
1 + γ 2 ≥ R0

L1[ψ, Kb
12(γ )] ≥ −D0

∫∫
|η|≥t0

|ψ(γ |η| , η)|2 + |ψ(−γ |η| , η)|2
(γ |η|)1+ν

dη . (3.29)

Similarly as in the proof of Lemma 3.2, we can rewrite this in

L1[ψ, Kb
12(γ )] ≥ −D1

∫
∂Kb

12(γ )

|ψ |2
|x |1+ν

dσ (3.30)

for some D1 > 0.
Let us now bound L2[ψ, Kb

12(γ )]. On the set Kb
12(γ )

∣∣r3 − r j
∣∣ ≥ √1 − 4γ |η| ≥ √1 − 4γ t0 (3.31)

for j ∈ {1, 2} by the construction of the set Kb
12(γ ). Recall that γ < 1/4 by assump-

tion. Thus, we can use that the potentials V13, V23 are short-range. Then, there exists
D2 > 0 such that, for b large enough with t0 ≥ R0,

L2[ψ, Kb
12(γ )] ≥

∫
R

∫∫
|η|≥max{|q|/γ,t0}

∣∣∇ηψ
∣∣2 − D2

|η|2+ν
|ψ |2 dηdq . (3.32)
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Going into spherical coordinates and applying [1, Lemma 6.7] (see Appendix A.3) to
the innermost integral above one can bound the above integral by a surface integral:
there exists D3 > 0 such that

L2[ψ, Kb
12(γ )] ≥ −D3

∫
|q|≥γ t0

∫ 2π
0 |ψ(q, |q| /γ, θ)|2 dθ

|q|ν dq . (3.33)

Using that ψ vanishes inside the ball Bb(0) we conclude

L2[ψ, Kb
12(γ )] ≥ −D3

∫
|q|≥γ t0

∫ 2π
0 |ψ(q, |q| /γ, θ)|2 dθ

|q|ν dq

≥ −D4

∫
∂Kb

12(γ )

|ψ |2
|x |1+ν

dσ

(3.34)

for some D4 > 0, where in the last bound we used that |q| = √
1 + γ −2|x | on

∂Kb
12(γ ). Recall that dσ is the surfacemeasure on ∂Kb

12(γ ) similar to Equation (3.16).
For the first to second line of (3.34) we used the fact that the integral is taken over

the part of the surface of ∂Kb
12(γ ) where ψ does not vanish. Compare this to the

previous case in the proof of Lemma 3.2. Inserting the inequalities in Equation (3.30),
(3.34) into Equation (3.27) concludes the proof of the lemma. ��

Combining Equation (3.7) and Lemmas 3.2 and 3.4 shows there exists Ĉ > 0 and
b0 > 0 such that for b ≥ b0

L[ψ] ≥ L[ψ,
0] − Ĉ
∑

1≤i< j≤3

∫
∂Kb

i j (γ )

|ψ |2
|x |1+ν

dσ . (3.35)

In the next step, we prove that we can compensate the integrals over the surface of the
sets Kb

i j (γ ) in the Equation (3.35) by a small portion of the kinetic energy on 
0. We
do so with the help of the trace theorem and Hardy’s inequality on the half line.

Lemma 3.5 For 1 ≤ i < j ≤ 3 and γ ′ ∈ (γ, 1), we define 
b
i j (γ, γ ′) :=

Kb
i j (γ

′)\Kb
i j (γ ). For all ε > 0, there exists b0 > 0 such that, for all b ≥ b0 and

for any ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R
3| |x | > b}

∫
∂Kb

i j (γ )

|ψ |2
|x |1+ν

dσ ≤ ε

∫

b
i j (γ,γ ′)

|∇ψ |2 dx . (3.36)

Proof Let us first prove the lemma for (i, j) = (1, 3). We introduce spherical coordi-
nates (r , θ, ϕ) ∈ R

+ × [−π/2, π/2] × [0, 2π):

(x1, x2, x3) = (r cos θ cosϕ, r sin θ, r cos θ sin ϕ) . (3.37)
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Defining the opening angle of the set Kb
13(γ ) as α0 := arctan(γ ), we see that the

set Kb
13(γ ) takes in those coordinates a very simple form:

{
(r , θ, ϕ) : ϕ ∈ [0, 2π), |θ | ≥ π

2
− α0, r > b

}
(3.38)

and for the measure dσ = sin(π/2 − α0)dϕdr = cos(α0)dϕdr . Hence,

∫
∂Kb

13(γ )

|ψ |2
|x |1+ν

dσ =
∫ ∞
b

∫ 2π
0

∣∣ψ(r , π
2 − α0, ϕ)

∣∣2 + ∣∣ψ(r ,−π
2 + α0, ϕ)

∣∣2 dϕ

rν
cos(α0)dr ,

(3.39)
where we did not write the part of the integral which is in Bb(0) since ψ vanishes
there. Next we want to consider a slightly enlarged conical set. For γ ′ ∈ (γ, 1), we
define α1 := arctan(γ ′) > α0. Then Kb

13(γ
′) ⊃ Kb

13(γ ). We will use the well known
trace theorem. For each r ∈ [b,∞), we apply [5, Theorem 1, p. 272] to the function

θ �→
∫ 2π

0
|ψ(r , θ, ϕ)|2 dϕ (3.40)

on the interval θ ∈ (π/2 − α1, π/2 − α0) =: I (α0, α1). We find that there exists a
constant C4(γ, γ ′) such that

∫ 2π

0

∣∣∣ψ(r ,
π

2
− α0, ϕ)

∣∣∣2 dϕ ≤ C4(γ, γ ′)
∫ π/2−α0

π/2−α1

∫ 2π

0

(
|ψ |2 + |∂θψ |2

)
dϕdθ.

(3.41)
A similar inequality holds in the interval (−π/2 + α0,−π/2 + α1). Inserting (3.41)
into (3.39), we find

∫
∂Kb

13(γ )

|ψ |2
|x |1+ν

dσ ≤ C4(γ, γ ′) cos(α0)
∫ ∞
b

∫
|θ |∈I (α0,α1)

∫ 2π

0

|ψ |2 + |∂θψ |2
rν

dϕdθdr

≤ C4(γ, γ ′) cos(α0)
bν

∫ ∞
b

∫
|θ |∈I (α0,α1)

∫ 2π

0

(
|ψ |2 + |∂θψ |2

)
dϕdθdr .

(3.42)

We remark that the domain of integration in the Equation (3.42) is exactly 
b
13(γ, γ ′)

as defined in the statement of Lemma 3.5. In order to conclude the proof, we transform
the right-hand side of Equation (3.36) to spherical coordinates:

∫

b
13(γ,γ ′)

|∇ψ |2 dx ≥
∫ ∞
b

∫
|θ |∈I (α0,α1)

∫ 2π

0

(
|∂rψ |2 + r−2 |∂θψ |2

)
r2 cos(θ)d(r , θ, ϕ).

(3.43)
For fixed (θ, ϕ) we want to apply Hardy’s inequality on the half-line to the function
ψ(·, θ, ϕ). Note that lim inf

r→∞ |ψ(r , θ, ϕ)| = 0 since ψ ∈ H1(R3). Thus, we can apply
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[6, Theorem 2.65] to find

∫

b
13(γ,γ ′)

|∇ψ |2 dx ≥ cos (α0)

4

∫ ∞

b

∫
|θ |∈I (α0,α1)

∫ 2π

0

(
|ψ |2 + |∂θψ |2

)
d(r , θ, ϕ).

(3.44)
Combining the inequalities in Equations (3.42) and (3.44), we see that, for all ε > 0,
Equation (3.36) holds for (i, j) = (1, 3) for all b large enough. The proof in the case
(i, j) = (2, 3) is similar, the only difference being that we exchange x1 and x2 in the
definition of the spherical coordinates.
Concerning the case (i, j) = (1, 2), we recall the coordinates q and ξ introduced in
Equation (2.5). We define spherical coordinates by

(q, ξ, x3) = (r sin θ, r cos θ sin ϕ, r cos θ cosϕ). (3.45)

In this set of coordinates the set Kb
12(γ ) reads

{(r , θ, ϕ) : ϕ ∈ [0, 2π), |θ | ≤ α0, r > b} (3.46)

where, α0 = arctan(γ ) is again the opening angle of the corresponding conical set,
and

∫
∂Kb

23(γ )

|ψ |2
|x |1+ν

dσ =
∫ ∞

b

∫ 2π
0 |ψ(r , α0, ϕ)|2 + |ψ(r ,−α0, ϕ)|2 dϕ

rν
cosα0dr .

(3.47)
From this point, one can follow the proof in the case (i, j) = (1, 3). In this case we
apply the trace theorem to the function

θ �→
∫ 2π

0
|ψ(r , θ, ϕ)|2 dϕ (3.48)

on the intervals (α0, α1) and (−α1,−α0) to conclude the statement of this lemma. ��
We now complete the proof of Theorem 2.2 by proving that Inequality (3.2) holds.

We fix γ ′ in (1, γ ) such that the sets 
b
i j (γ, γ ′) for 1 ≤ i < j ≤ 3 do not intersect.

Combining Lemma 3.5 together with (3.7) and the results of Lemmas 3.2, 3.4 (for
ε = 1/2), we find that there exists a b0 > 0 such that, for any b > b0 andψ ∈ H1(R3)

with suppψ ⊂ {x ∈ R
3| |x | > b},

L[ψ] ≥ L[ψ,
0] − 1

2

∑
1≤i< j≤3

∫

b
i j (γ,γ ′)

|∇ψ |2 dx . (3.49)

Let b ≥ b0 and remember the definition of r1, r2, r3 in terms of (x1, x2, x3) ∈ R
3

in (2.1). By construction of the set 
0, we have that for all x ∈ 
0 and all 1 ≤ i <

j ≤ 3 ∣∣ri − r j
∣∣ ≥ γ√

1 + γ 2
|x | ≥ γ√

1 + γ 2
b. (3.50)
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Hence, we can use that the short-range property of the potentials Vi j in 
0 and write
for some C > 0 that

L[ψ] ≥
∫


0

|∇ψ |2 − C |ψ |2
|x |2+ν

dx − 1

2

∑
i< j

‖∇ψ‖2
L2(
b

i j (γ,γ ′))

=
∫


0

1

2
|∇ψ |2 − C |ψ |2

|x |2+ν
dx + 1

2
‖∇ψ‖2L2(
0)

− 1

2

∑
i< j

‖∇ψ‖2
L2(
b

i j (γ,γ ′)) .

(3.51)

Remember that we constructed the 
b
i j (γ, γ ′) such that they are disjoint subsets of


0. As a consequence,

‖∇ψ‖2L2(
0)
−
∑
i< j

‖∇ψ‖2
L2(
b

i j (γ,γ ′)) ≥ 0. (3.52)

By construction of 
0, there exists a set M ⊂ S2 such that 
0 = (b,∞) × M . We
now finally fix b ≥ b0 large enough such that by Hardy’s inequality on the half-line
(see [6, Theorem 2.65])

∫

0

1

2
|∇ψ |2 − C

|x |2+ν
dx ≥

∫
M

∫ ∞

b

(
1

2
|∂rψ |2 − C

r2+ν

)
r2drdω ≥ 0 . (3.53)

Inserting Equation (3.53) and Equation (3.52) into Equation (3.51) gives L[ψ] ≥ 0
which proves Equation (3.2) for � = 0 and therefore concludes the statement of
Theorem 2.2.

Appendix A. Some Lemmas

For the convenience of the reader we repeat here some lemmas from other publications
without proofs.
In [33] Zhislin gave the following criterion for the finiteness of the discrete spectrum
of a Schrödinger operator. The following Lemma is a straight forward adaption of [1,
Lemma C.1]

Lemma A.1 Let H = −� + V in L2(R3) with V bounded. Let � ≤ 0 and assume
there exist β, b, ε > 0 such, that

∫
R3

(
|∇ψ |2 + V |ψ |2

)
dx − ε

∫
R3

|ψ(x)|2
|x |β ≥ � ‖ψ‖2 (A.1)

for any ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R
3| |x | > b}. Then the operator H has at

most a finite number of eigenvalues below �.
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In the proof of the main theorem we make use of some lemmas from [1]. For con-
venience we repeat these lemmas here. The following is a restatement of [2, Lemma
6.6]

Lemma A.2 Consider h = −� + V in L2(R2) with V bounded and V short-range
(see Equation (2.2) ). Assume h ≥ 0 and V radial symmetric then there exists a c0 > 0
such, that for any b0 > R0

∫
|x |≥b0

(
|∇ψ |2 + V |ψ |2

)
dx ≥ −c0b

−ν
0

∫ 2π

0
|ψ(b0, θ)|2 dθ (A.2)

where R0, ν are the constants from the short-range property of V .

The next lemma is a restatement of [1, Lemma 6.7]

Lemma A.3 Let c0 > 0. Then for any sufficiently large b > 0 and for anyψ ∈ H1(R2)

∫
|x |≥b

(
|∇ψ(x)|2 − c0 |x |−2−ν |ψ(x)|2

)
dx ≥ −c0b−ν

π

∫ 2π

0
|ψ(b, θ)|2 dθ .

(A.3)

The next lemma is a restatement of [1, Lemma 6.2]

Lemma A.4 Consider h = −�+V in L2(R)with V bounded and V short-range (see
Equation (2.2) ). Assume h ≥ 0 then there exists c > 0, such that for any b0 ≥ R0
and ψ ∈ H1(R)

∫ b0

b0
(
∣∣ψ ′(t)

∣∣2 + V (t) |ψ(t)|2)dt ≥ −cb−1−ν
0 (|ψ(b0)|2 + |ψ(−b0)|2) (A.4)

where R0, ν are the constants from the short-range property of V .

The next lemma is a restatement of [1, Lemma 6.3]

Lemma A.5 Let c0 ≥ 0. Then for any sufficiently large b > 0 and for any ψ ∈ H1(R)

∫ ∞

b

(∣∣ψ ′(t)
∣∣2 − c0t

−2−ν |ψ(t)|2
)
dt ≥ −2c0b

−1−ν |ψ(b)|2 . (A.5)

We use several times Hardy’s inequality on the half-line. Let us copy here the version
of [6, Theorem 2.65]

Theorem A.6 Let ρ ∈ R\{1}. Let u be weakly differentiable on R+ with u′ ∈
L2(R+, rρdr) and assume that

lim inf
r→0

|u(r)| = 0 if ρ < 1, lim inf
r→∞ |u(r)| = 0 if ρ > 1, (A.6)

Then ∫ ∞

0
|u(r)|2 r−2+ρ dr ≤

(
2

ρ − 1

)2 ∫ ∞

0

∣∣u′(r)
∣∣2 rρdr . (A.7)

The constant on the right side is optimal.
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The following lemma is a straight forward adaptation of [27, Lemma 5.1]. Recall
the definitions of Kb

i j (γ ) in Equation (3.4), then

Lemma A.7 Given ε, γ > 0 for all i, j ∈ {1, 2, 3}, i < j there exist γ̃ ∈ (0, γ ) and
continuous functions ui j , vi j : R3 → R with piecewiese continuous derivatives such
that

u2i j+v2i j = 1, ui j (x) =
{
1 x ∈ K 0

i j (γ̃ )

0 x /∈ K 0
i j (γ )

,
∣∣∇ui j

∣∣2+∣∣∇vi j
∣∣2 ≤ ε

(
v2i j

|x |2 + u2i j∣∣qi j
∣∣2
)

(A.8)
where q12 = q = 1√

2
(x1 − x3) ∈ R and q j3 = (x3, x j ) ∈ R

2.

Appendix B. Proof of Theorem 2.2 when 6 < 0

Wenow cover the casewhen� defined in Equation (2.8) is negative. As in the previous
case we will prove that there exists a b > 0 such that

L[ψ] :=
∫
R3

⎛
⎝

3∑
i=1

∣∣∂xi ψ
∣∣2 +

∑
i< j

Vi j |ψ |2
⎞
⎠ dx −

∫
R3

|ψ(x)|2
|x |2+ν

dx ≥ � ‖ψ‖ (B.1)

for any ψ ∈ H1(R3) with suppψ ⊂ {x ∈ R
3| |x | > b}. As in the case � =

0, we consider the sets Kb
i j (γ ) and 
0 defined in (3.4) and (3.5). Contrary to the

previous case, we cannot apply the lemmas stated in Appendix A, since we would
need to integrate a constant function on a infinite-measure domain. For this reason,
we localize the functional L with smooth cut-off functions. For fixed ε < 1/8 we
consider the family of cut-off functions ui j defined in Lemma A.7 together with

V :=
√
1 −∑i< j∈{1,2,3} u2i j . The family {V, ui j for i, j ∈ {1, 2, 3} with i < j} forms

a partition of unity by construction. According to the IMS localization formula,

L[ψ] =
∑

1≤i< j≤3

(
L[ui jψ] − 〈ψ,

∣∣∇ui j
∣∣2 ψ〉

)
+ L[Vψ] − 〈ψ, |∇V|2 ψ〉. (B.2)

Recall the definition of 
b
i j (γ̃ , γ ) in the statement of Lemma 3.5. Note that, on each


b
i j (γ̃ , γ ), V = vi j =

√
1 − u2i j . Moreover, ∇V vanishes outside of

⋃
1≤i< j≤3


b
i j (γ̃ , γ )

by construction. Similarly, ∇ui j vanishes outside of 
b
i j (γ̃ , γ ).
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Consequently by Lemma A.7,

∑
1≤i< j≤3

〈ψ,
∣∣∇ui j

∣∣2 ψ〉+〈ψ, |∇V|2 ψ〉 =
∑

1≤i< j≤3

∫

b
i j (γ̃ ,γ )

(∣∣∇ui j
∣∣2+∣∣∇vi j

∣∣2) |ψ |2 dx

≤ ε
∑

1≤i< j≤3

∫

b
i j (γ̃ ,γ )

(
v2i j

|x |2 +
u2i j∣∣qi j
∣∣2
)

|ψ |2 dx .

(B.3)

Therefore,

L[ψ] ≥
∑

1≤i< j≤3

(
L[ui jψ] − ε

∫

b
i j (γ̃ ,γ )

u2i j∣∣qi j
∣∣2 |ψ |2 dx

)

+L[Vψ] − ε
∑

1≤i< j≤3

∫

b
i j (γ̃ ,γ )

V2

|x |2 |ψ |2 dx . (B.4)

We show the following

Lemma B.1 There is a b0 > 0 such that for all b ≥ b0 and for any ψ ∈ H1(R3) with
suppψ ⊆ {x ∈ R

3| |x | > b} with i, j ∈ {1, 2, 3}, i �= j ,

L[ui jψ] − ε

∫

b
i j (γ̃ ,γ )

u2i j∣∣qi j
∣∣2 |ψ |2 dx ≥ �

∥∥ui jψ
∥∥2 (B.5)

where qi j was defined in Lemma A.7.

Proof Let

ξi j :=

⎧⎪⎨
⎪⎩

(ξ, x3) ∈ R
2, (i j) = (12)

x2 ∈ R, (i j) = (13)

x1 ∈ R, (i j) = (23)

, ψ̃ := ψui j . (B.6)

Let Wi j := [∑1≤l<m≤3 Vlm
]− Vi j and define

L̃1[ψ̃] := 〈ψ̃, (−�qi j + Vi j )ψ̃〉 ,

L̃2[ψ̃] := 〈ψ̃, (−�ξi j + Wi j )ψ̃〉 −
∫
R3

∣∣∣ψ̃(x)
∣∣∣2

|x |2+ν
dx .

(B.7)

Then,
L[ψ̃] = L̃1[ψ̃] + L̃2[ψ̃] . (B.8)

We distinguish between the cases inf σ(hi j ) > � and inf σ(hi j ) = �. We start with
the case inf σ(hi j ) > �. Let κ := inf σ(hi j ) − � > 0. Then

L̃1[ψ̃] ≥ (� + κ)

∥∥∥ψ̃
∥∥∥2 . (B.9)
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Using the short-range property of Wi j and the fact that, on 
b
i j (γ̃ , γ ),

∣∣qi j
∣∣ ≥ γ̃

∣∣ξi j
∣∣,

we find that there exists C > 0 and b0 > 0 such that for any b ≥ b0

L̃2[ψ̃] − ε

∫

b
i j (γ̃ ,γ )

u21 j∣∣qi j
∣∣2 |ψ |2 dx ≥ −〈ψ̃,�ξi j ψ̃〉 − C

∫
R3

∣∣∣ψ̃(x)
∣∣∣2

∣∣ξi j
∣∣2 dx . (B.10)

Since −�ξi j ≥ 0, and on Kb
i j (γ ),

∣∣ξi j
∣∣ ≥ |x | /√1 + γ 2 ≥ b/

√
1 + γ 2, we find

L̃2[ψ̃] − ε

∫

b
i j (γ̃ ,γ )

u21 j∣∣qi j
∣∣2 |ψ |2 dx ≥ −C

∫
R3

∣∣∣ψ̃(x)
∣∣∣2

∣∣ξi j
∣∣2 dx ≥ −C1

b2

∥∥∥ψ̃
∥∥∥2 (B.11)

for some C1 > 0 independent of b. Choose b large enough such that κ ≥ C1/b2.
Then, combining Equation (B.9) and Equation (B.11) concludes the statement in this
case.

Next we consider the case where inf σ(hi j ) = � such that � is an eigenvalue of
hi j and thus there exists a ϕ0 ∈ L2(dqi j ) with ‖ϕ0‖ = 1 such that 〈ϕ0, hi jϕ0〉 = �.
We define

f (ξi j ) := 〈ϕ0, ψ̃〉L2(dqi j ), g(qi j , ξi j ) := ψ̃(qi j , ξi j ) − f (ξi j )ϕ0(qi j ). (B.12)

Note that ϕ0 and g are orthogonal in the usual L2(dqi j )-sense by construction. Since
� is an isolated nondegenerate eigenvalue of hi j , there exists some κ ′ > 0 such that

L̃1[ψ̃] = 〈ψ̃, hi j ψ̃〉 ≥ �

∥∥∥ψ̃
∥∥∥2 + κ ′ ‖g‖2 . (B.13)

One can choose κ ′ as the distance of � and the remaining spectrum of hi j . Using the
short-range property of Wi j and Lemma A.7, there exists C > 0 such that for b > 0
large enough

L̃2[ψ̃] − ε

∫

b
i j (γ̃ ,γ )

u2i j∣∣qi j
∣∣2 |ψ |2 dx ≥ 1

2
〈ψ̃,−�ξi j ψ̃〉 − C

∫ ∣∣∣ψ̃
∣∣∣2

∣∣ξi j
∣∣2+δ

d(qi j , ξi j )

+ 1

2
〈ψ̃,−�ξi j ψ̃〉 − ε

∫

b
i j (γ,γ̃ )

∣∣∣ψ̃
∣∣∣2

∣∣qi j
∣∣2 d(qi j , ξi j ) .

(B.14)

Note that the variable ξi j is either one- or two-dimensional.Dependingon its dimension
we use Hardy’s inequality on the half line or the two-dimensional Hardy’s inequal-
ity (see [21]) to estimate the first line on the right hand side in equation (B.14). The

123



135 Page 20 of 23 M. R. Schulz, S. Zalczer

inequality is applicable since ψ̃ vanishes whenever
∣∣ξi j
∣∣ is small enough by construc-

tion. Thus

1

2
〈ψ̃,−�ξi j ψ̃〉 − C

∫ ∣∣∣ψ̃
∣∣∣2

∣∣ξi j
∣∣2+δ

d(qi j , ξi j ) ≥ 0. (B.15)

It remains to prove the non-negativity of the right-hand side of (B.14). Recall that ϕ0
and g are orthogonal in the L2(dqi j )-sense and thus

〈ψ̃,−�ξi j ψ̃〉 = 〈|ϕ0|2 f ,−�ξi j f 〉 + 〈g,−�ξi j g〉 ≥ 〈 f ,−�ξi j f 〉L2(dξi j )
. (B.16)

We use (a + b)2 ≤ 2a2 + 2b2 to find that there exists C ′ > 0 such that for b large
enough

∫

b
i j (γ̃ ,γ )

∣∣∣ψ̃
∣∣∣2

∣∣qi j
∣∣2 d(qi j , ξi j ) ≤ 2

∫

b
i j (γ̃ ,γ )

|ϕ0|2 | f |2∣∣qi j
∣∣2 d(qi j , ξi j )

+ 2
∫


b
i j (γ̃ ,γ )

|g|2∣∣qi j
∣∣2 d(qi j , ξi j )

≤ 2
∫


b
i j (γ̃ ,γ )

∣∣qi j
∣∣2 |ϕ0|2 | f |2∣∣qi j

∣∣4 d(qi j , ξi j ) + C ′

b2
‖g‖2 ,

(B.17)

where in the last line, we used that, on 
b
i j (γ̃ , γ ),

∣∣qi j
∣∣2 ≥ γ̃ 2

1 + γ̃ 2
|x |2 ≥ γ̃ 2

1 + γ̃ 2 b
2 . (B.18)

Since ϕ0 is an eigenfunction of hi j associated with a discrete eigenvalue, it decays
exponentially at infinity (cf. for example [18], TheoremXIII.39). Hence for any δ1 > 0
there exists q0 > 0 such that

∣∣qi j
∣∣2 ∣∣ϕ0(qi j )

∣∣2 ≤ δ1 for any
∣∣qi j
∣∣ ≥ q0. Thus for b

large enough

∫

b
i j (γ̃ ,γ )

∣∣qi j
∣∣2 |ϕ0|2 | f |2∣∣qi j

∣∣4 d(qi j , ξi j ) ≤ δ1

γ̃ 4

∫

b
i j (γ̃ ,γ )

| f |2∣∣ξi j
∣∣4 d(qi j , ξi j ) . (B.19)

From equations (B.19) and (B.17), we find

1

2
〈ψ̃, −�ξi j ψ̃〉 − ε

∫

b
i j (γ,γ̃ )

∣∣∣ψ̃
∣∣∣2

∣∣qi j
∣∣2 d(qi j , ξi j )

≥ 1

2
〈 f , −�ξi j f 〉L2(dξi j )

− ε
δ1

γ̃ 4

∫

b
i j (γ,γ̃ )

| f |2∣∣ξi j
∣∣4 d(qi j , ξi j ) − ε

C ′
b2

‖g‖2 .

(B.20)
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As in the proof of Equation (B.15), we can again use Hardy’s inequality depending
on the dimension of the variable ξi j to find

1

2
〈 f ,−�ξi j f 〉L2(dξi j )

− ε
δ1

γ̃ 4

∫

b
i j (γ,γ̃ )

| f |2∣∣ξi j
∣∣4 d(qi j , ξi j ) ≥ 0 (B.21)

for b > 0 large enough. Combining equations (B.14), (B.15) (B.20) and (B.21), we
find

L̃[ψ̃] − ε

∫

b
i j (γ,γ̃ )

u2i j∣∣qi j
∣∣2 |ψ |2 d(qi j , ξi j ) ≥ �

∥∥∥ψ̃
∥∥∥2 +

(
κ ′ − ε

C ′

b2

)
‖g‖2 . (B.22)

The statement in equation (B.5) follows by taking b large enough. ��

We have thus proved that

L[ψ] ≥
∑

1≤i< j≤3

∥∥ui jψ
∥∥2 � + L[Vψ] − ε

∑
1≤i< j≤3

∫

b
i j (γ̃ ,γ )

V2

|x |2 |ψ |2 dx . (B.23)

By construction V is supported in


0(γ̃ ) := R
3\

⋃
1≤i< j≤3

Kb
i j (γ̃ ) . (B.24)

Therefore, by applying the short-range property to any of the potentials we can write

L[Vψ] ≥
∫


0(γ̃ )

(
|∇Vψ |2 − C

|x |2+ν
|Vψ |2

)
dx . (B.25)

Hence, we can estimate the last terms in Equation (B.23). Combining the previous
inequalities shows that for b > 0 large enough

L[Vψ] − ε
∑

1≤i< j≤3

∫

b
i j (γ̃ ,γ )

|Vψ |2
|x |2 dx ≥

∫
R3

(
|∇Vψ |2 − 2ε

|x |2 |Vψ |2
)
dx ≥ 0

(B.26)
by Hardy’s inequality in dimension three. Thus we have shown

L[ψ] ≥
∑

1≤i< j≤3

∥∥ui jψ
∥∥2 � ≥ ‖ψ‖2 � (B.27)

since � < 0. This is precisely the statement in Equation (B.1).
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