KIT | KIT-Bibliothek | Impressum | Datenschutz

Accelerated Training on Low-Power Edge Devices

Ahmed, Mohamed Aboelenien 1; Pfeiffer, Kilian Y. ORCID iD icon 2; Abboud, Osama; Khalili, Ramin; Khdr, Heba ORCID iD icon 2; Henkel, Jörg 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

Training on edge devices poses several challenges as these devices are generally resource-constrained, especially in terms of power.
State-of-the-art techniques at the device level reduce the GPU frequency to enforce power constraints, leading to a significant increase in training time. To accelerate training, we propose to jointly adjust the system and application parameters (in our case, the GPU frequency and the batch size of the training task) while adhering to the power constraints on devices. We introduce a novel cross-layer methodology that combines predictions of batch size efficiency and device profiling to achieve the desired optimization. Our evaluation on real hardware shows that our method outperforms the current baselines that depend on state of the art techniques, reducing the training time by up to with results very close to optimal. Our measurements also indicate a substantial reduction in the overall energy used for the training process. These gains are achieved without reduction in the performance of the trained model.


Verlagsausgabe §
DOI: 10.5445/IR/1000189122
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 29.10.2025
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000189122
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Band 10
Seiten 1
Externe Relationen Abstract/Volltext
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page