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Abstract
The complexity of environmental factors experienced in active mobility presents unique challenges
for the design of sustainable urban mobility environments. Particularly, active mobility modes are
frequently associated with increased stress and unsafety. Most studies apply qualitative assessment
methods for evaluating cyclists’ stress levels and subjective cycling experiences. Quantitative
approaches are either limited in sample size, or conducted over short periods of time. This study
introduces a transferable methodology that combines physiological measurements from wearable
sensors with openly available spatial data to assess environmental stressors in urban cycling. A field
study was conducted in Osnabrück, Germany, and involved 89 participants, 1,780 cycling trips, and
2,104,109 geo-referenced data points. Stress levels were quantified through processed Electro-
dermal Activity (EDA) measurements to identify Moment of Stress (MOS) along mapped road
segments. We derived features from OpenStreetMap (OSM), Sentinel-2 Remote Sensing (RS), and
Mapillary Street View Imagery (SVI) to characterise spatial elements of the built and natural en-
vironment. Using feature importance methods on top of a Random Forest (RF) Machine Learning
(ML) model, we identified key environmental aspects associated with cyclists’ stress. Results show
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that the availability of cycling infrastructure, traffic regulations and other road users, are of higher
importance than the availability of green space, when it comes to predicting the stress potential of
individual road segments. The proposed methodology offers a multi-faceted and extensible ap-
proach to evaluate environmental characteristics related to stress, providing information for
creating safer and more comfortable cycling environments. While our approach investigated
spatiotemporal stress factors in cycling, the use and the availability of open data sources restricts the
feature set that can be derived and evaluated in a particular region. We encourage future research
to apply and extend this approach in diverse urban contexts, incorporating temporally dynamic
features to support evidence-based mobility planning.

Keywords
urban planning, environmental stress covariates, human sensing, wearable sensors, machine learning

Introduction

Urban areas are complex systems, characterised by numerous interconnected components, in-
cluding buildings, infrastructure, transportation networks, and social interactions (McPhearson
et al., 2016). These urban elements have different usage demands on the city, which can be ad-
dressed, organised, weighted, and, at best, harmonised through urban planning (Streich, 2005). One
central difficulty in the planning context is data collection, particularly how specific spatial issues
that impact safety perception in mobility can be identified and incorporated into the planning
process (Cappa et al., 2022; Downs et al., 2021; Rittel and Webber, 1973). A helpful technological
development was the emergence of Volunteered Geographic Information (VGI) (Goodchild, 2007)
and (participatory) people-centric urban sensing systems (Campbell et al., 2006). However, despite
the theoretical opportunities for active citizen participation, citizens have mainly remained passive
consumers, rather than active co-creators of the urban environment (Cardullo and Kitchin, 2019).

As cities densify, ensuring safe and health-promoting sustainable mobility options becomes in-
creasingly important (Lam andHead, 2012;Nieuwenhuijsen, 2016). Cycling poses a promisingmobility
mode which offers benefits for both individual health and environmental conservation. However, the
adoption of cycling is affected by static and dynamic components of the immediate environment, which
can trigger short-term (psycho)physiological responses, i.e., involuntary bodily reactions caused by
urban stress factors (Berto, 2014). Dynamic factors include interactions between road users (Markkula
et al., 2023), traffic, crowdedness (Engelniederhammer et al., 2019; Resch et al., 2020), meteorological
conditions, or air quality (Labib, 2024). Stationary factors relate to the natural and built environment
surrounding a person at a given point in time and space, e.g. level of greenness, building density, or
availability of dedicated (active) mobility infrastructure (Saelens et al., 2003). To promote active modes
of transportation, a better understanding of such environmental aspects and their relation to subjective,
potentially stressful experiences, is essential (Rietveld and Daniel, 2004).

Non-invasive wearable sensor technology provides a citizen science-oriented approach to
continuously measure subjective mobility experiences quantitatively. While quantitative data can be
the product of questionnaires, i.e., subjective user feedback provided on a Likert scale, physio-
logical sensor measurements enable unbiased quantitative assessment of people’s perceptions in
different urban areas through involuntary reactions elicited by the Autonomous Nervous System
(ANS). Giannakakis et al. (2022) highlight several physiological parameters and the behaviour of
the ANS under stressful conditions, involving the body’s response to natural and dynamically
changing spatio-temporal stimuli produced within or through the surrounding environment (Dritsa
and Biloria, 2021; Giannakakis et al., 2022). Among several studies linking physiological reactions
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with environmental factors, Mygind et al. (2021) and Dritsa and Biloria (2021) show that green space is
associated with lower Heart Rate (HR), while land use and traffic events, e.g., intersections without
traffic regulation, can lead to increases in Electrodermal Activity (EDA). D. T. Fitch et al. (2020)
examine Heart Rate Variability (HRV) as a quantification of psychological stress for cyclists in urban
environments, but conclude that HRV metrics lead to diverging results, questioning the applicability of
this physiological parameter under real-world and physically demanding conditions. Considering these
findings, our methodology relies on EDA measurements to quantify subjective stressful experiences,
where stress is considered the reaction to a real or imaginary threat, with a typical “stress event” being
characterised by perceiving a stressor, leading to a Stress Response (SR) of the body that is triggered after
processing in the brain and an activation of the ANS (Everly and Lating, 2019).

Following this definition, we applied a stress detection algorithm proposed byMoser et al. (2023)
to identify Moment of Stress (MOS) events from physiological, frequency-filtered EDA time-series
measurements, where deviations from a baseline, i.e., measurements at states of relaxation, are
quantified to represent stress experienced by an individual.

Previous research has evaluated environmental influences on subjective experiences through
qualitative interviews or quantitative data from wearable sensors. While studies applying use-case
dependent qualitative interviews show limitations in terms of reproducibility, generalizability, and
transferability of the applied methods and results (Research Gap 1), most quantitative, wearable
sensor approaches are limited in sample size, with a median of 18 participants (Dritsa and Biloria,
2021), or consider a subset of measurable urban characteristics (Wu et al., 2020) (Research Gap 2).

Additionally, most studies are conducted on a single day, limiting an assessment of how en-
vironmental variations across different days affect individuals’ (physiological) responses (Dritsa
and Biloria, 2021). We addressed these limitations by proposing a transferable and extensible
methodology to evaluate the environmental influence on stress in cycling activities (Research Gap
3), where environmental characteristics are derived from openly available data sources, i.e., data that
can be accessed, used, modified, and shared without restrictions. For this, we relied on data from
OpenStreetMap (OSM), Remote Sensing (RS), and Street View Imagery (SVI) from Mapillary. To
ensure objective assessment at the road segment level, we imposed a constraint requiring a larger
sample size — specifically, a minimum number of cycling trips that must pass through each in-
dividual road segment — to enforce statistical reliability. Hence, we collected a dataset containing
physiological measurements of 89 individuals, involving 1,780 cycling trips and 2,104,109 Global
Positioning System (GPS) locations, which were recorded during a field study between July 2022
and November 2023 in Osnabrück, Germany. Our methodology uses aggregated spatial patterns of
physiological responses, quantified through stress levels with a spatio-temporal reference (Kyriakou
et al., 2019; Moser et al., 2023), and offers an assessment framework to identify urban stress factors
in (active) mobility. Concretely, the following research questions were investigated:

· RQ 1: Can openly accessible data sources contribute to identifying sources of stress in
(urban) cycling?

· RQ 2: Which urban features are most influential on cyclists’ stress measurements?
· RQ 3: To what extent does a Machine Learning (ML) model capture the complex relationship

of urban characteristics and stress during cycling activities?

Related work

Assessment of urban (active) mobility experiences

Environmental conditions and urban characteristics, including the availability of mode-specific
transportation infrastructure, affect the adoption and experiences of active mobility (Badland and
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Schofield, 2005). Numerous studies have explored influences of the environment on individuals’
health and well-being, where Ki et al. (2023) differentiate between micro-level (e.g., greenery,
visual enclosure and complexity) and macro-level (e.g., street networks) urban influences that affect
subjective mobility experiences. To promote active modes of transportation, urban mobility
planning research develops suitability indicators such as walkability and bikeability indices (Werner
et al., 2024), which assess the availability and quality of mode-specific road infrastructure, and
assign a suitability score to individual road segments. However, analysing commuters’ experiences
requires high-quality data with extensive spatial coverage to identify urban factors contributing to
negative (active) mobility experiences, where Nieuwenhuijsen (2016) emphasises the importance of
taking a multi-dimensional view on stressful urban environments. Biljecki and Ito (2021) show that
SVI is a well-established data source in urban analytics, where findings of Ki et al. (2023) prove that
SVI, in combination with modern Computer Vision (CV) techniques, can be used to derive micro-
and macro-level features describing the underlying urban characteristics. Next to OSM, which
provides openly accessible information about the built environment, e.g. buildings and mode-
specific street networks, SVI provided by Google Street View and the open-source alternative
Mapillary, are frequently used to extract information about urban environments (Biljecki and Ito,
2021). Street scenes, captured from a first-person perspective, can be characterised through semantic
segmentation, where features describing the built environment, e.g. building or road view per-
centage, and the natural environment, e.g. green or sky view percentage, can be represented through
pixel-wise class assignments of the visible scene (Cordts et al., 2016; Keralis et al., 2020; Ogawa
et al., 2024). Based on these visual urban features, Han et al. (2022) propose a methodology to
predict psychological stress in individuals. Their results show that high proportions of walls and
buildings in the visual field of a person are associated with increased psychological stress, while
greater visibility of sky, trees, and roads have a calming effect on individuals. Another popular data
source used to infer environmental characteristics of urban landscapes is RS data, e.g. from satellite-
based sensors. Schaefer et al., (2021) and Helbich et al. (2021) use the Normalised Difference
Vegetation Index (NDVI) as quantification for the horizontal greenness of urban areas and assess its
effect onmental health. Results show that greenness derived from RS and SVI were only moderately
associated, highlighting that RS-based features provide a different view on urban green spaces.

Non-invasive physiological monitoring for contextualizing stress in urban environments

Participatory urban planning offers a practical approach to collect subjective experiences across
different urban environments. Qualitative data, collected through interviews and surveys, and
quantitative data, represented as time-series measurements of physiological parameters, provide
valuable information for citizen-oriented designs of urban infrastructure (Haug et al., 2023). Such
people-centric approaches require effective two-way communication between urban planners and
citizens (Jakonen, 2023), where wearable sensor technology provides an unobtrusive method to
collect quantitative and objective data on individual physiological reactions (Bigazzi et al., 2022).

Several studies investigate stress and perceived safety during cycling in a virtual setting,
i.e., through Virtual Reality (VR). Mohsen Nazemi (2020) uses a bicycle simulator, immersive VR,
and physiological sensor measurements to study subjective cycling experiences and perceived
safety. Segregated bicycle paths were rated highest for perceived level of safety, while stress
increased when participants approached intersections, or during interactions with other road users,
i.e., passing events or conflicts with pedestrians. Guo et al. (2023b) also employ a virtual bicycle
simulator setup alongside recordings of cardiovascular and eye-trackingmetrics, showing that lower
cycling speed at shared or less separated infrastructure designs are associated with higher phys-
iological stress responses. Friel et al. (2023) use qualitative interviews in a bicycle simulation study,
finding that visibility, kerbs and obstructed views are additional factors that reduce perceived safety
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in cycling activities. While virtual settings provide a controlled and safe environment for studying
stress in active mobility, limited environmental and traffic variability, adaption effects, and the lack
of unpredictability in a laboratory setting are common limitations that are mentioned (M. Nazemi
et al., 2021; Guo et al., 2023b; Guo et al., 2023a).

Additional considerations go into the selection of physiological parameters to quantify stress in
individuals (Giannakakis et al., 2022). Mygind et al. (2021) show inconsistencies of physiological
stress markers depending on the study setting. Findings of a field experiment conducted with
20 cyclists reveal an inverse relationship between self-reported stress and HRV-based stress
measurements (D. Fitch, 2021). The author notes several confounding variables that affect car-
diovascular stress assessment based on HRVand HR. Among these, physical activity (Brockmann
and Hunt, 2023), socio-demographic factors, and exposure to external factors are the most
prominent (Sammito et al., 2024). Similar to cardiovascular metrics, other physiological parameters
such as Blood Pressure (BP), EDA and Skin Temperature (ST) are affected by confounding
variables. For EDA and ST, external factors such as ambient temperature, speed of movement with
associated cooling effects, and physical activity show the most influence (Beermann and Sieben,
2023; Mohsen Nazemi et al., 2025). However, due to established frequency filtering techniques for
EDA measurements, the Skin Conductance Response (SCR) component of the EDA signal is a
commonly used physiological parameter in urban stress research (Haug et al., 2023; Kyriakou and
Resch, 2019; Resch et al., 2020; Werner et al., 2019). Artefacts introduced through motion and
physical activity can be reduced through a bandpass frequency filter (Boucsein, 2012). Individual
baseline calculations alleviate inter-subjective differences and further reduce intra-individual
variations (Moser et al., 2023), which may be caused by the time of the day when measure-
ments are taken, or whether the test subject performs any physical activity (Dogan et al., 2022; Kim
et al., 2018).

Bigazzi et al. (2022) review studies that apply physiological biomarkers to study traffic-related
stress in real-world active mobility conditions, finding that physically separated cycling paths
reduce stress, while intersections and dynamic factors such as traffic and noise increase stress. The
authors emphasise challenges related to small and homogeneous sample sizes, the integration of
different sensor modalities, and addressing intra-subjective differences among individuals. Teixeira
et al. (2020) perform field experiments with 70 participants in 5 cities, showing that physiological
stress during cycling is elevated at intersections, primary roads, rough surfaces and during elevated
noise levels. Millar et al. (2021) conduct a study in the Netherlands with 12 study participants,
where physiological EDA measurements are used to measure emotional arousal across different
urban areas that are characterised by land use. Contrary to the findings of Tran et al. (2020) and
Marquart et al. (2022), results of the study show that natural areas elicit higher emotional arousal
than more developed urban areas. The authors mention the small sample size, limited route diversity,
and confounding variables that affect EDA measurements as limiting factors. Additionally, they
note that “arousal” may not directly map to stress and perception of safety. Similarly, Lim et al.
(2022) study stress in cycling by combining physiological monitoring with subjective, self-reported
stress, finding only moderate agreement between physiological stress responses and subjective user
feedback. The authors claim that physiological parameters capture unconscious responses while
subjectively reported stress events are characterised by conscious perceptions, potentially adding
subjective recall biases related to previous experiences. To add additional context to urban stress
measurements, Resch et al. (2020) propose a mixed-methods approach to analyse urban spaces by
integrating multiple data modalities, i.e., physiological sensor measurements, first-person videos,
and qualitative user feedback, gathered through geo-referenced interviews and post-hoc surveys.
The authors show that a mixed-methods approach overcomes the limitations of individual, uni-
modal approaches, providing an objective, multi-faceted method for evaluating the stress potential
of urban spaces. However, a remaining challenge is the investigation of the relation between such
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situation-dependent, transient stress triggers and the surrounding environment. Dritsa and Biloria
(2021) point out additional theoretical, methodological and practical issues with studies that use
physiological sensor measurements for location-aware stress detection. Even though most studies
deal with limited samples size and narrow time frames (ibid.), these approaches mark an important
shift toward urban planning processes that are both empirically informed and citizen-centred,
highlighting the need for scalable methods that strike a balance between methodological soundness
and real-world applicability.

To promote active mobility, it is necessary to evaluate influences of the built and natural en-
vironment on individuals’ mobility experience and well-being (Annequin et al., 2015; Buttazzoni
et al., 2021). Identifying and understanding factors that negatively affect a person’s emotional state,
i.e., stressors, is crucial for assessing environmentally related risks, and promoting the adoption of
active modes of transport (Becker et al., 2024). Table 1 summarises the findings of relevant studies
investigating the influence of environmental factors on perceived well-being. The table organises
environmental studies into distinct sections. Each section examines specific features of different
environments: natural, built, and social, along with external factors like weather conditions. Studies
of natural and built environments have yielded contrary findings about their influence on well-being,
particularly when examining features such as green spaces (Marquart et al., 2022;Millar et al., 2021;
Titze et al., 2008; Tran et al., 2020) and infrastructure for active transportation (Jenna Rachel Panter
and A. Jones, 2010). Jenna Rachel Panter and A. Jones (ibid.) show that contradictory findings
occur due to measurement inconsistencies of environmental attributes, the spatial coverage of
measurements and study design. Hence, more comprehensive research on environmental factors
contributing to stress in active mobility is needed.

This paper addresses the identified research gaps by proposing and evaluating a scalable,
transferable methodology for assessing environmental stressors in urban cycling. Specifically, we:

· Develop a multi-modal approach combining wearable physiological sensing (EDA) with
open urban data to capture subjective experiences in cycling (Research Gap 1).

· Leverage a comparatively large and diverse sample (89 participants, 1,780 trips) collected
over multiple months under real-world cycling conditions (Research Gap 2).

· Integrate features from open datasets including SVI and OSM, to quantify environmental
factors (Research Gap 3).

· Train and evaluate a machine learning model (Random Forest) to identify key covariates
influencing cyclists’ stress, supported by global and local feature importance analysis.

Methodology

Figure 1 illustrates the workflow for collecting and integrating wearable sensor data with open data
sources, which can be used to derive features describing environmental characteristics and may
cause stress during cycling activities. In the proposed methodology, we focused on stress covariates
that can be derived within a 50 m radius of a street segment, which is defined as the road segment
that connects two adjacent intersections, i.e., nodes from OSM. These covariates are features
showing exhaustive coverage of different urban areas and describe the immediate surroundings.

Sensor data collection

The dataset used in this work was collected in a field study conducted in Osnabrück, Germany, a
large city located in a flat region in Lower Saxony in north-western Germany. The data collection
was performed between July 2022 and November 2023 (cf. Figure 2), where 89 European White
study participants - 38 female, 47 male, 1 diverse, and 3 who did not provide information on their
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gender - volunteered to wear the Empatica E4 sensor (Empatica 2024) and an Android smartphone
during their daily cycling activities. The smartphone ran an eDiary app (Petutschnig et al., 2022),
which connected to the sensor via Bluetooth and served as an interface between the sensor device
and the smartphone. The age of the participants varied between 20 and 75, with a mean age of
47 years. Timestamps of measurements were utilised for temporal alignment and the smartphone’s
GPS to add a geographical reference to physiological reactions. A sensor recording describing a
cycling trajectory produced by one participant is referred to as a run. The average distance of a run
was 3.8 km, with an average speed of 11.52 km per hour. Additionally, speed, bearing and position
were recorded. The Empatica E4 is equipped with several sensors that measure physiological
parameters of the human body. In particular, the bracelet measures Electrodermal Activity (EDA),
Photoplethysmography (PPG), ST and Accelerometery (ACC). EDA, the physiological parameter
used for deriving stress, is recorded at a sampling frequency of 4 Hz. All voluntary study par-
ticipants were recruited by the city of Osnabrück through online advertisement, email campaigns
and in situ on the street, where signed consent forms approving the collection of their data for
research purposes were required.

Filtering and stress level analysis

Based on a methodology proposed by Moser et al. (2023) we preprocessed the Electrodermal
Activity (EDA) signal with a bandpass frequency filter. Following a first-order low-pass butterworth
filter with a cut-off frequency of 1 Hz to remove noise caused by motion artefacts, we applied a
first-order high-pass filter with a cut-off frequency of 0.05 Hz to extract the individual EDA signal
components, i.e., Skin Conductance Level (SCL) and SCR. The SCL reflects the gradual increase in
EDA, also caused by physical activity, while the SCR component reveals acute reactions of
emotional arousal, which correspond to sudden spikes in the filtered EDA signal (Boucsein 2012;
Moser et al. 2023). We then implemented the algorithm proposed by Moser et al. (2023) to detect
acute stress based on local windows of SCR. The algorithm considers differences in physiological

Figure 1. Workflow for integrating wearable sensor data and open environmental data to derive stress
covariates.
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reactions inherent in individuals, where a baseline is used in the subsequent identification of MOS
events to account for intra-subjective differences. The resultingMOS score, quantified by deviations
from the baseline, is unitless, with higher values indicating more evidence of stress. As recom-
mended in Cacioppo et al. (2016) we used the first 5 minutes of the recording of a cycling trip as a
baseline. This ensured physiological baselines which are created based on realistic active mobility
study conditions. Overall, the resulting dataset contained 1,780 cycling trajectories.

Map-matching

Recorded GPS trajectories with stress scores were mapped to the OSM cycling network of Os-
nabrück using Valhalla Meili, an open-source framework (Saki and Hagen 2022). The framework
applies a Hidden Markov Model (HMM) to align noisy GPS traces with the most likely paths
available on the underlying road network. Since direction of movement influences the perceived
environment, we added directional information based on bearing measurements from the smart-
phone. The map-matched trajectories were joined with the OSM road network data, where join
partners with a distance greater than 15 m were excluded.

Deriving environmental features from open data

Individual road segments - OSM linestring features defined by two adjacent OSM nodes - were
additionally enriched with openly available, contextual data. The average road segment length was
70.95 m (median: 43.36 m).

Figure 2. Map of city of Osnabrück - field study area showing cyclists’ stress scores and road usage density.
Streets with at least 3 runs and their average MOS scores are shown. Labels refer to the city districts of
Osnabrück.
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Spatially aggregated stress points and characteristics of the environment surrounding the re-
spective road segment were used to objectively evaluate environmental covariates. A summary of
grouped features, i.e., output classes of the semantic classification, is shown in Table 2.

OSM features. Map-matched stress levels were spatially joined with OSM data to explicitly add
attributes that characterise the built environment. Features describing the road infrastructure, e.g.,
street length, road width, speed limits, and the surrounding buildings, e.g., building height, were
checked for completeness. OSM data was extracted using the osmnx python package (Boeing 2020),
where the boundaries of the polygon encompassing all cycled trajectories defined the area of interest
(AOI).

Mapillary street view imagery features. Mapillary provides crowd-sourced high-resolution SVI data
on a global scale. Using Mapillary’s Version 4.0 Application Programming Interface (API) and a
semantic segmentation model, trained on the Cityscapes dataset (Cordts et al., 2016), we extracted
isovist environmental features for each available road segment, including greenness, road view, and
visual complexity. The latter quantifies road segment complexity through an entropy measure based
on detected scene elements from a first-person perspective.

Geo-referenced sensor measurements were matched to images based on proximity, bearing, and
capture direction of the SVI. Join partners were selected from candidate sets, which were generated
hierarchically, advancing to the next level only if no matches were found in the current level:

1. distance ≤5 m, angular deviation ≤ ±120°
2. distance ≤10 m, angular deviation ≤ ±90°
3. distance ≤15 m, angular deviation ≤ ±60°

The maximum allowable deviation of ±60° for points within 15 m was chosen to align with
established visibility standards, which require a minimum 120° horizontal field of view for drivers.
This ensured that retrieved images remained relevant to the forward-facing perspective of road users
(Liu and Sevtsuk, 2024). For closer matches (≤5 m), the threshold was expanded to ±120° to
increase the likelihood of retrieving SVIs that capture the immediate surroundings. This priori-
tisation balanced spatial proximity and viewpoint similarity, ensuring that nearby images were
included even when their orientation deviated more significantly.

To characterise a person’s perception of the natural environment, we built a semantic seg-
mentation pipeline based on the extracted SVI. A pixel-wise classification was performed using the
SegFormer-B5 semantic segmentation model proposed by Xie et al. (2021). The model was

Table 2. Semantic feature groups and classes in Cityscapes (SVI).

Group Classes

Human Person, rider
Vehicle Car, truck, bus, on rails, motorcycle, bicycle
Construction Building, wall, fence
Traffic object Pole, traffic sign, traffic light
Greenness Vegetation, terrain
Sky Sky
Road Road
Sidewalk Pavement
Visual complexity Measure of complexity w.r.t. classes
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pretrained for image classification on the ImageNet-1k dataset (Deng et al., 2009), and fine-tuned on
the Cityscapes data (Cordts et al., 2016), encompassing 2,975 finely annotated images. Overall, the
model had over 84 million parameters, making it suitable for high-resolution semantic segmentation
of urban scenes (Xie et al., 2021).

Remote Sensing features. Satellite-based RS data was used to calculate the average NDVI, a measure
for vegetation health, frequently featured in urban studies (Li et al., 2015). Using Google Earth
Engine (GEE), we averaged all available values for periods of 3 months, which were in line with the
respective field study time frames. Average NDVI values were calculated based on Sentinel-2
imagery and the following equation:

NDVI ¼ NIR� R

NIRþ R
(1)

where NIR is the near infrared band and R is the red band of the input imagery, which both have a
spatial resolution of 10 m (D’Odorico et al., 2013).

Additionally, we accessed data on tree cover density with a spatial resolution of 10 m for
2018 from the European Environment Agency (2020), and land cover data from the Copernicus
Global Land Service with a spatial resolution of 100 m for 2019 (Buchhorn et al., 2020). To reduce
complexity, the 23 original classes were grouped into 8 classes (agriculture, bare, forest, grassland,
ice, urban, water, wetland, see Table 3).

Feature aggregation. To objectively assess how the natural and built environment affect individual
stress levels of cyclists, we spatially aggregated previously defined features based on the underlying
road network. For each road segment, we sampled 10 random points and calculated the average
neighbouring feature values within a radius of 50 m, characterizing the surrounding environment of
a road segment.

Considering the metadata of SVI, e.g., capture time and location, we performed a spatial join of
the segmentation results describing the natural environment and the existing node- and edge-level
attributes of a road segment. To remove outliers caused by a single run of a person, we introduced
the requirement that a road segment needed to be traversed by at least 3 runs to be included in the
final dataset. This reduced the dataset from 34,734 to 26,035 road segments, which were used for
training a Random Forest (RF) model to classify the stress potential of a street segment.

Table 3. Feature groups and land cover classes (RS). The numbers correspond to the original CGLS-LC100
collection 3 classes.

Group Classes

NDVI NDVI
Tree cover Tree cover
LC agriculture Cultivated and managed vegetation/agriculture (40)
LC bare Bare/sparse vegetation (60)
LC forest Closed forest (111 - 116), open forest (121 - 126)
LC grassland Shrubs (20), herbaceous vegetation (30), moss and lichen (100)
LC ice Snow and ice (70)
LC urban Urban/built up (50)
LC water Permanent water bodies (80, 200)
LC wetland Herbaceous wetland (90)
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Analysis & modelling

To identify environmental factors associated with stress responses, we leveraged exploratory data
analysis and a modelling approach combined with feature selection and feature attribution methods.

The effect of dynamically changing environments and resulting road conditions on people’s
measured stress was assessed based on run-wise aggregations of individual trajectories, containing
the mean of contextual feature values, the total number of detected MOS, and the averageMOSScore.

A RF ML model, trained on the subset of relevant covariates, was used to classify the stress
potential of road segments. We chose a RF model for the binary classification task of predicting the
stress potential of road segments, since they allow for the calculation of permutation importance
scores. The model, consisting of an ensemble of 50 trees, was evaluated in terms of accuracy, recall,
precision, and F1-score on a random subset, sampled from all road segments in the dataset. Due to
the unbalanced sample of aggregated stress and non-stress segments, we performed undersampling
to draw a random subset of non-stress segments and balance the class distributions. This sampling
procedure was repeated 40 times, and performance was evaluated based on a 80:20 train-test split.

Identifying environmental stress covariates. Environmental characteristics related to stress were
identified based on permutation importance (Hapfelmeier et al., 2023) applied to the RF model, and
SHAP (Lundberg and Lee, 2017) applied as a feature attribution layer. Permutation scores provide a
global view on the importance of features, by shuffling the values of an attribute and observing the
effect on the model error. The calculated importance scores are ranked to reflect the model’s
dependence on a particular feature, expressed in terms of decreases in classification performance
(Saarela and Jauhiainen, 2021).

Additionally, we introduced a random variable with normal distribution as a baseline reference,
where features showing less predictive power than this random variable can be considered in-
significant for the predictions of the RF model (Stoppiglia et al., 2003).

Contrary to the importance of a variable derived from permutations, SHAP provides a global and
a local perspective on the importance of a feature by linking feature values with individual pre-
dictions. SHAP values are calculated by comparing the marginal contributions of adding a feature to
a baseline, which is the average prediction if none of the features is used. In doing so, each feature
has an equal chance of contributing to a prediction, where the resulting SHAP values are ranked
according to their importance scores (Lundberg and Lee, 2017).

Results

Exploratory data analysis investigating the effect of environmental conditions such as inclement
weather and poor air quality on measured stress levels revealed no significant differences between
measured stress. The majority of runs took place during pleasant weather conditions and the
granularity of environmental conditions was too low to investigate differences on the level of road
segments.

As two-sample t-tests comparing aggregate statistics of detected MOS revealed insignificant
differences, meteorological conditions, air quality measurements and road segments with in-
complete OSM attribute information were excluded as variables. A correlation matrix presenting the
investigated features and their linear relationship is shown in Figure 3.

In line with the findings of Helbich et al. (2021), we observed that greenness, NDVI, and tree
cover features provide different perspectives on the horizontal and vertical green view of an area.
There was a negative association between construction, visual complexity, and greenness per-
spectives. Visual complexity was positively associated with detected pavements and vehicles, but
had a negative linear relationship with greenness.
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After evaluating a number of ML models with regard to their predictive capabilities to dif-
ferentiate between road segments labelled as stressful and non-stressful, we selected a RF model
with an ensemble consisting of 50 decision tress. Results evaluated on 40 iterations of randomly
picking an undersampled set of data, encompassing 340 road segments classified as stressful and
340 segments classified as non-stressful, showed average accuracy of 86.07%. By repeating this
sampling procedure 40 times, each of the 26,035 road samples in the dataset had an equal chance of
being selected to be part of the non-stress samples of the dataset. For each iteration, the resulting
datasets were further split into 80% training and 20% test sets, where the evaluation metrics
displayed in Table 4 were computed on the 20%. In addition to the evaluation metrics for the best
and worst iteration, average accuracy, recall, precision and F1-score values are reported. A baseline
value of 50%, achieved by randomly classifying a road segment, was outperformed by 41% points,
demonstrating that our model, trained on features describing the surrounding environment, learned
to successfully differentiate between stressful and non-stressful urban areas.

Figure 4 displays the averaged feature importance values expressed in terms of decreases in the
RF model’s predictive performance. Values were averaged over 40 random train-test splits. While
such importance scores should not be interpreted in absolute terms, they provide a global view on
the model’s decision-making capabilities and the features that contribute to it. By introducing a
normally distributed random variable in the training set, we identified and highlighted the most
important variables to differentiate between stressful and non-stressful road segments. We

Figure 3. Pearson correlation of environmental features.
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additionally calculated the SHAP values of each feature to address local interpretability and to
understand how a feature’s value impacts individual predictions of the model.

With respect to feature importance at the global model level, we observed that satellite-based
land cover features with a resolution of 100 m did not help the model in discriminating between
stressful and non-stressful environments, i.e., on average they performed worse than the normally
distributed random variable. Comparing RS-based features with a spatial resolution of 10 m,
i.e., NDVI and tree cover density, we observed that only NDVI contributes to a better discrimination
of stressful and non-stressful areas. Isovist attributes from SVI, describing dynamically changing

Table 4. Performance metrics of the random forest model for predicting stressful versus non-stressful road
segments. Results of the RF ensemble consisting of 50 trees, evaluated on 40 iterations of random draws and
20% test sets. (0) refers to non-stress samples, while (1) refers to stress samples.

Accuracy Recall (0) Recall (1) Precision (0) Precision (1) F1-score (0) F1-score (1)

Maximum 0.919 0.875 0.958 0.949 0.896 0.911 0.926
Minimum 0.809 0.695 0.896 0.837 0.793 0.759 0.842
Average 0.861 0.800 0.919 0.907 0.827 0.849 0.870

Figure 4. RF permutation importance scores averaged over 40 independent draws of balanced training
datasets.
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elements of the natural and built environment, played an important role in the model’s decision-
making process.

Elements related to infrastructure and urban design, such as traffic objects, pavement, or road
view, and the visual complexity of a scene also contributed to a better differentiation between
stressful and non-stressful road segments.

After identifying relevant environmental covariates based on permutation scores, we computed
SHAP values for the subset of relevant variables to understand individual model predictions. By
combining these two approaches, we were able to eliminate non-informative features on the model
level, and gain a better understanding of how feature values are pushing the model’s decision into
one direction. SHAP values for the subset of relevant covariates are displayed in Figure 5.

Increased road view, the availability of active mobility infrastructure, e.g., sidewalks and bicycle
lanes, and a higher number of traffic objects, e.g., signage, pushed the model’s decision towards
non-stressful road segments. Confirming the findings of Teixeira et al. (2020), traffic regulations in
form of signs and cycle lanes or pavements that are physically separated from car lanes were
associated with reduced stress levels, as they provide clear boundaries and designated spaces for
different road users (Sharma and Gedeon, 2012). Higher visual complexity of a scene emerged as a
stress-inducing factor, suggesting that cluttered or chaotic environments may require more cognitive
processing from cyclists. Contributing to the diverging literature on green areas and their influence
on well-being (Marquart et al., 2022; Titze et al., 2008; Tran et al., 2020), we observed that higher
values of NDVI, capturing the horizontal green aspect of an area, and higher values of greenness,
capturing green view from an isovist perspective, increased the chance of a road segment being
classified as stressful.

Figure 5. SHAP value distribution illustrating feature contributions to road segment stress classification.
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Discussion

Considering the complexity of urban environments and the interplay between static and dynamic
stress factors experienced in urban cycling activities, several aspects and potential limitations of the
proposed methodology and the consequent results are discussed in the following.

Discussion of methodology

While combining wearable sensor measurements with an algorithmic approach to detect stress
based on involuntary physiological reactions of the human body provides an unbiased way of
quantitatively assessing stress in urban cycling activities, study design, duration, geographic scope,
and sample size have major implications on (environmental) covariates that can be derived and
related to spatially aggregated stress measurements (Bigazzi et al., 2022). In addition to factors
concerning the study protocol, the availability, granularity, and completeness of data sources used
for data enrichment affect the suitability and applicability of the proposed methodology.

Furthermore, it is essential to ensure the study period aligns temporally with external data
availability.

The availability of OSM road network attributes varies by location, as it depends on community
contributions (Barron et al., 2014). In Osnabrück, only 10 to 15% of road segments that were
travelled by participants in the study had street-level attributes such as lane count or road width. Due
to this limited coverage, we excluded OSM attribute features and only used the basic road network
for spatial analysis. The Overture Maps Foundation offers an alternative schema with additional
road attributes (Ballantyne and Berragan, 2024). However, future studies are needed to compare
OSM attribute data with Overture, which uses ML to add descriptive features.

In addition to OSM features, we used RS data from aggregated satellite imagery or pre-existing,
open-access products. The data’s limited spatio-temporal resolution was assumed sufficient for our
analysis, which may have resulted in uncertainties. Future studies could consider images taken on
the days of the field data collection to reduce imprecisions. Additionally, a more dynamic sampling
approach that explicitly considers segment length to join the RS data with road segments could be
considered. In topographically more complex regions, the incorporation of a Digital Elevation
Model (DEM) should also be investigated.

The proposed methodology required dense Mapillary SVI data for the traversed routes. Seasonal
changes and inconsistent street-level coverage can affect SVI-based greenness estimates, partic-
ularly for foliage. While coverage and seasonality effects were not an issue in the city of Osnabrück
and the time frame of our study, being a crowd-sourced initiative, street characterisation based on
Mapillary SVI can be impacted by the activity of the community. Although we focused on
contributing a replicable methodology based on openly available datasets, many road segments
were excluded due to missing data from both OSM and Mapillary. Commercial products such as
Google Street View may have better image quality and spatio-temporal coverage (Juhász and
Hochmair, 2016). To address limitations in capturing dynamic features, future studies could use
first-person videos to assess real-time environmental changes. A comparison between first-person
video segmentation and SVI-based segmentation could clarify how moving objects like other road
users influence physiological responses.

We used a RFmodel to predict the stress potential of road segments and applied SHAP values for
local interpretability. While other graph-based ML models could better capture the topological
structure of urban networks (e.g. Graph Neural Networks (GNNs)), we chose a RF due to the limited
and imbalanced sample, as it reduces overfitting by training decision trees on subsets of data and
features. While SHAP offers model-agnostic explanations at the sample level, it does not capture
feature interactions (Lundberg and Lee, 2017).
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While our study involved a comparatively large sample size consisting of 89 voluntary par-
ticipants and a study area covering the city of Osnabrück, the limited geographic scope and timing of
the data collection restricted the evaluation of different meteorological conditions and differences in
air quality. The filtering constraint added for objective assessment of a road segment, which ex-
cluded OSM street segments traversed by less than 3 runs, added limitations in terms of measurable
environmental diversity. Rural, less frequently cycled areas, exhibiting distinct environmental
characteristics, were excluded due to this. Considering that different cities have inherent and di-
verging environmental stress conditions (Teixeira et al., 2020), the data collection should therefore
be replicated at other cities.

Additional considerations should go into the selection of an algorithm to detect stress from
physiological parameters. Although stress was measured based on individual baselines and de-
viations of filtered skin conductivity reactions (SCR) to alleviate the effect of physical activity on
skin conductivity measurements, the methodology proposed by Moser et al. (2023) is based on
laboratory test data, where study participants did not perform any physical activity. Hence, the
algorithm should be evaluated at different, topographically more diverse cities, to measure the effect
of elevation, humidity, speed of movement, and physical exertion on measured stress (Beermann
and Sieben, 2023; Mohsen Nazemi et al., 2025). In general, cities where field studies are conducted
should be selected based on size, geographical location and the availability of open data sources to
provide environmental context for subjective active mobility experiences and potential confounding
factors.

(Ballantyne and Berragan, 2024). However, future studies are needed to evaluate how much this
data differs from OSM for the described purpose, and the quality of the information that is added
based on ML techniques.

Discussion of results

Previously mentioned methodological choices and limitations concerning the availability, gran-
ularity and quality of external (open) data sources also affected the results of our study on different
levels. The stress assessment under varying meteorological conditions yielded insignificant results,
likely due to the imbalanced sample of runs, where most cycling trips took place during pleasant
weather conditions. While Meteostat provides historical data, limited granularity — especially for
air quality measurements — prevented segment-level analysis. Future studies should include
onboard environmental sensors to address this gap.

A RF model trained on features derived from open data yielded promising results (accuracy:
86.07%, recall: 91.89%, precision: 82.69%, F1-score: 86.98%), indicating that environmental
covariates influence cyclists’ stress. Considering that MOS are rare events, handling class im-
balances is an important preprocessing step before modelling, which we addressed by randomly
undersampling non-stress road segments, and splitting the resulting data into independent train- and
test sets for evaluation. Resulting subsets, each consisting of 680 randomly drawn road segments
with evenly balanced stress labels, may have pushed the model towards learning to predict the
positive class, which is shown by the high recall value for correct stress classifications (class (1) in
Table 4). The relatively small sample size could have also introduced some overfitting, which we
tried to mitigate by the selection of a RF, consisting of 50 independent Decision Tree (DT) models,
each trained on a different subset of samples and features, essentially coping with potential
overfitting.

However, with an overall F1-score of 86.98% across 40 iterations of random subset selection, the
model learned to capture the underlying associations between spatial context and perceived stress in
cycling.
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The resulting model, combined with global and local feature importance methods, showed that
urban and traffic design elements, including mode-specific infrastructure such as sidewalks and
bicycle paths, were important factors that led to more comfortable experiences in cycling activities.
The variable ’sidewalk’, which is per labelling policy of the Cityscapes dataset (Cordts et al., 2016)
differentiated from the ’road’ class by the presence of a (raised) kerb, also encompasses cycling
lanes, and showed a positive relationship between mode-specific mobility infrastructure and in-
creased cycling comfort. This is reflected by the importance values of features in Figures 4 and 5 and
in line with previous findings of other studies conducted by Panter et al. (2008), Titze et al. (2008),
and Panter and Jones (2010). Higher feature values in the covariates ’traffic object’ and ’sidewalk’,
displayed in Figure 5, corresponded to a higher chance of the model predicting a road segment as
non-stressful. Additionally, street segments with higher percentage of visible road view had a higher
chance of being classified as non-stressful.

Increased values in the covariate ’Visual Complexity’ tended to push the model’s decision
towards stress predictions. Benita and Tunçer (2019) show that a high diversity of visible elements
in a scene leads to an overwhelming amount of visual stimuli, which can distract cyclists and lead to
stress causing sensory overload. This is supported by our analysis, where streets with high values of
visual complexity, are more likely to be classified as stressful. Contrary to previous findings
(Marquart et al., 2022; Tran et al., 2020), our analysis showed that areas with higher percentage of
green space (measured by NDVI and greenness values) coincided with road segments that were
classified as stressful. Light-shadow effects from trees or dense vegetation can reduce visibility
along cycling routes, potentially raising stress due to safety concerns. This explanation would be
supported by the elevated NDVI values in Figure 5, where NDVI is essentially a quantification of
horizontal greenness, and pushes the model’s decision towards classifying a road segment as
stressful.

Dynamic covariates, specifically ’human’ and ’vehicle’, summarised as pixel counts of persons,
riders, cars, motorcycles, and bicycles visible in scenes, ranked among the most important features
in the model’s classification of stressful versus non-stressful areas. However, SHAP values of these
variables showed that the model relates increased values in ’human’ and ’vehicle’ to non-stressful
streets, which raises some questions concerning the applicability of using SVI as data source for
capturing dynamic road user interactions. Restricting the analysis to open data sources with feature
selection based on importance scores introduces some additional bias through data availability
constraints. Documented data gaps and incomplete attribute coverage within the study area sys-
tematically excluded relevant environmental variables, resulting in a restricted feature space that
may overemphasize stationary attributes while limiting the representation of dynamic, visibility-
related factors which are approximated through SVI.

Since road user interactions can create unpredictable traffic conditions (Markkula et al., 2023),
future research should explore their impact on stress. In a follow-up study, SVI-based results could
be compared with those from first-person video to better assess the role of dynamic elements
information from both OSM and Mapillary.

Conclusion

In this paper, we presented a multi-modal methodology that leverages openly available datasets,
combined with individual environmental perceptions captured quantitatively through wearable
sensor technologies, to better understand stress factors in urban cycling activities. By analysing
open data-based static and dynamic environmental features through feature importance methods at
global and local scales, we identified key environmental covariates that influence cyclists’ stress
levels (RQ1).
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Addressing RQ2, we showed that the availability of cycling infrastructure, traffic signs, and the
percentage of visible road had a positive effect on stress in cycling. In contrast, visually complex
environments were linked to higher stress. Although green spaces are often seen as calming, our
findings suggest that infrastructure and traffic control, along with the presence of other road users,
had a stronger impact on perceived stress. This highlights the importance of thoughtful design and
traffic management to promote cycling as mode of transportation.

Within the proposed methodology, we trained a RF on the subset of relevant environmental
features to categorize road segments as stressful or non-stressful. High average performance metrics
(accuracy: 86.07%, precision: 86.67%, recall: 85.92%, F1-score: 85.92%) showed that our model
captures the relationship between the stress potential of road segments and the influence of the
surrounding environmental characteristics (RQ3). Next to being extensible through other (open)
data layers, feature importance methods reveal important characteristics of the natural and built
environment to improve cycling infrastructure and inform evidence-based decision-making in urban
planning.

However, the availability, quality and granularity of the data plays an important role and may
leave out some relevant confounding factors, which cannot be accounted for. Future research should
address the effects of dynamically changing attributes such as the behaviour of other road users
through first-person video footage.

While our dataset was collected through an extensive field study that spanned several months,
with a sample size of 89 study participants, who volunteered to wear the Empatica E4 wrist band on
their daily cycling trips and covered a large proportion of the city Osnabrück, the study design,
duration and geographic scope had major implications on identifiable (environmental) stress co-
variates. Results of this work should be investigated at other cities, ideally with a larger sample size
and topographically more diverse study area. Considering that our use case was exclusively related
to cyclists’ stress responses, we also encourage future research to adapt the proposed approach by
extending it with other data sources (e.g. air quality, meteorological, or first-person view video data)
and other modes of mobility (e.g. walking, jogging, driving).
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Appendix

ACC Accelerometery
ANS Autonomous nervous system
AOI Area of interest
API Application programming interface
BP Blood pressure
CV Computer vision

DEM Digital elevation model
DT Decision tree

EDA Electrodermal activity
GEE Google Earth engine
GNN Graph neural network
GPS Global positioning system

HMM Hidden Markov model
HR Heart rate

HRV Heart rate variability
ML Machine learning

MOS Moment of stress
NDVI Normalised difference vegetation index
OSM OpenStreetMap
PPG Photoplethysmography
RF Random forest
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RS Remote sensing
SCL Skin conductance level
SCR Skin conductance response
SR Stress response
ST Skin temperature
SVI Street view imagery
VGI Volunteered geographic information.
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