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Recent advances in artificial intelligence (Al) have rapidly changed
the lab automation landscape, promoting self-driving laboratories
(SDLs) that enable autonomous scientific discovery. These trends
are increasingly applied in bioprocess development, yet
bioprocessing faces unique challenges — biological complexity,
regulatory and safety requirements, and multiscale
experimentation — that distinguish it from other automation
domains. Rather than pursuing full autonomy, we foresee that hybrid
SDLs, combining Al-driven decision-making with sustained human
oversight, represent the most practical near-term trajectory. This
review examines three interconnected perspectives: (i) hybrid
human-machine decision-making for bioprocessing; (ii) laboratory
design considerations in the era of Al; and (i) scale-up challenges
when transitioning from screening to manufacturing. We highlight
critical gaps in data standardization and the required community
efforts necessary to realize autonomous bioprocess innovation.
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The race toward an artificial intelligence
scientist? — the role of artificial intelligence
for self-driving labs

Research on artificial intelligence (Al) is increasingly
perceived as a key enabler of scientific discovery [1],
transitioning from offline modeling toward systems
steering experimental effort in real time. In chemistry and
materials science, autonomous experimentation has ac-
celerated closed-loop discovery [2,3]. Within the life sci-
ences, landmark studies such as AlphaFold for protein
structure prediction [4] or the discovery of the novel an-
tibiotic halicin via deep learning [5] highlight the trans-
formative power of Al. However, bioprocess engineering
faces unique challenges regarding Al, including biological
complexity, legal and regulatory requirements, and high
variability and uncertainty in experimental setups.

Complementing Al advances, laboratory automation has
matured from stand-alone unit operations (e.g. sample
preparation) to whole ecosystems of interconnected de-
vices in biofoundries. These industrial and academic
facilities combine robotics, high-throughput analytics,
and integrated data systems to implement the design-
build-test-learn (DBTL) cycle [6]. Coordinated through
initiatives like the Global Biofoundries Alliance [7], such
laboratories demonstrate the potential of standardized,
automated experimentation to accelerate bioprocess
development.

The combination of Al and laboratory automation ulti-
mately results in the concept of the self-driving lab
(SDL): a system that combines robotics for automated
experiments and data collection with Al systems that use
these data to design, execute, and interpret experiments
in closed loops [8]. An important stepping stone to-
ward functional SDLs is the fusion of lab automation
with large language models (LLMs) and other tools in
agentic frameworks (e.g. Coscientist (9] and ChemCrow
[10] in chemistry), which are able to translate high-level
goals into executable plans, navigate documentation,
and orchestrate whole experimental workflows.

In light of such advances, it is timely to raise the ques-
tion: how much autonomy do we actually want in bio-
process automation? Following established autonomy
levels for SDLs [8,11], complexity spans from Level 0
(no autonomy) through Level 1 (research assistance),
Level 2 (partial autonomy), Level 3 (conditional au-
tonomy), Level 4 (highly-autonomous research), to

www.sciencedirect.com

Current Opinion in Biotechnology 2026, 97:103392


http://www.sciencedirect.com/science/journal/09581669
mailto:l.helleckes@imperial.ac.uk
https://doi.org/10.1016/j.copbio.2025.103392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2025.103392&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2025.103392&domain=pdf

2 Chemical Biotechnology

Level 5 (Al scientist). Currently, most bioprocess auto-
mation operates at Levels 1-2 with significant human
oversight, as bioprocesses involve complex multiscale
experimentation, high experimental uncertainty, safety
considerations, and regulatory requirements. The op-
timal balance between autonomy and human decision-
making, therefore, needs to be discussed for future
bioprocess applications.

This review examines three interconnected perspectives:
(1) hybrid human-machine decision-making for safe,
regulated bioprocessing; (ii) laboratory design considera-
tions as Al transforms infrastructure requirements; and
(111) scale-up challenges that distinguish bioprocess SDLs
from their chemistry counterparts when transitioning
from laboratory screening to manufacturing.

Hybrid lab: human and machine decision-
making for automated experimentation

While SDLs promise throughput and reproducibility that
are unattainable by humans, full autonomy is not always
feasible or practical for a range of reasons. First, a scien-
tific process may not be automatable, the cost may be
prohibitive [12], or the demand for the process may be too
infrequent to justify the cost. Even if these requirements
are met, the automation and robotics skills required may

Figure 1

not be available in a standard biological lab. Finally, safety
concerns may not advocate full autonomy: for example, an
unattended SDL increasing virus pathogenicity [13—15]
or producing a controlled substance drug [16] are sce-
narios that, while still unlikely, need to be avoided.

Hence, we anticipate that future SDLs will mostly take a
hybrid form, in which human and Al/robotics components
will intertwine not only for physical (e.g. experiments)
and computational (e.g. data analysis) tasks, but also in
the conception and design of studies. We expect these
hybrid systems to be focused around one or more core
processes that exhibit a full (or high) degree of automation
(autonomy Levels 3-5), where benefits outweigh costs
(see an example in Figure 1). Around these core pro-
cesses, auxiliary processes with varying degrees of auto-
mation (including totally manual ones, autonomy Levels
1-2) would be flexibly coupled in a modular fashion.
These processes are sparingly needed and can be elimi-
nated, added, or modified (e.g. by upgrading to a core
process) as required, without affecting the performance of
the core processes. This approach permits the testing of
modules before fully coupling them to core processes, as
well as a flexible configuration that can be easily adapted
to new requirements. The hybrid system also aligns with
current developments in modular manufacturing [17,18].
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lllustrative example of a possible hybrid automated lab in metabolic engineering. This hybrid lab example is composed of three fully automated core
processes (in blue) and five auxiliary processes (in green, orange, and red). The core processes involve the generation of strains harboring different
combinatorial pathways through the use of the fully automated AutoBioTech strain construction platform [31], the culturing of those strains, sample
acquisition, and the measuring of the final production through absorbance. Data are then stored in a database for an Al to decide how to proceed next.
Attached to these three core fully automated processes, we can see several auxiliary processes (green, orange, and red) displaying different levels of
automation: from highly automated (green) to some automation (orange) or purely manual (red). A second and third alternative to build strains involves
producing strains with downregulated genes through CRISPRI (e.g. as in Carruthers et al. [32]), or manually knocking genes out. Alternative ways to
phenotype the strain involve transcriptomics, proteomics or metabolomics. These data need not be collected in every single DBTL cycle, but could,
through multifidelity approaches, improve the quality of the active learning processes to design new strains. An alternative example of a hybrid lab, where
humans and robots work together, can be seen in Dai et al. [36]. CRISPRI, clustered regularly interspaced short palindromic repeats interference. Created

in BioRender. Garcia Martin, H. (2025) https://BioRender.com/b3x4qtc.
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A variety of recent technological developments facilitate
a hybrid-lab approach as well as fully automated scien-
tific experimentation. These developments involve both
software, for which widespread use of Al is enabling
completely novel capabilities, and hardware, for which
new automated experimental processes are becoming
available at an accelerated pace, and potentially dis-
ruptive technologies are available.

Novel Al approaches for experimental design, protocol
creation and checking, as well as troubleshooting of au-
tomated processes have recently emerged [9,19-23].
These Al tools hold the promise of freeing researchers
from the need to generate low-level instructions for
operating robotic equipment. This facilitates the use of
automated processes by nonexperts and allows re-
searchers to focus on high-level scientific questions [9].
However, failure rates and the required level of human
oversight for these approaches in a production system
remain unclear. Furthermore, auxiliary processes, which
use a human-in-the-loop approach, would require up-
grades in robotic control and data analysis strategies for
these tools. The LLLLMs used for robotic control should
be able to draft instructions for both robots and humans,
making the avoidance of collisions and general safety a
critical consideration. In terms of data analysis, new ap-
proaches such as multifidelity optimization [24,25] are
needed, which combine robotic- and human-generated
data and take into account their differences in quantity,
quality, and type. Moreover, the integration of regulatory
considerations (e.g. robust data traceability, good man-
ufacturing practice compliance, or cybersecurity safe-
guards [26,27]) at this level might be advantageous.

In terms of hardware, automated solutions based on
well-established liquid handling platforms have been
recently proposed, including DNA library preparation
[28], pH adjustment [29], DNA assembly [30], or strain
construction [31]. Currently, processes such as plasmid
transformation and colony picking are automated
through commercial machines that mimic human beha-
vior (e.g. an Echo Acoustic Liquid Handler, a Hamilton
Vantage, a QPix 460 [32]). Alternative technological
approaches show the potential to free science from the
constraints imposed by mimicking human behavior [33],
such as microfluidic droplet systems that reduce de-
mands in space and reagents [34]. Finally, it is worth
mentioning the advent of affordable humanoid robots
[35], which could, in principle, substitute humans in
diverse lab tasks.

Designing the future lab: human vs machine-
centric laboratories

Designing laboratories around automation often gives
rise to a false dichotomy: spaces need not be built either
for people or for machines. Evidence from SDLs in
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chemistry and bioscience points to a pragmatic hybrid
approach, as described above: automated execution in
modular robotic work cells combined with human access
points for oversight, anomaly triage, and sample entry
[8,37-40]. Standardized unit operations, reconfigurable
flow paths, and software-addressable hardware enable
uninterrupted, high-throughput experimentation while
preserving a human accountability layer [41].

A mid-term trajectory for ergonomics could be percep-
tion-driven autonomy. Rather than ‘teaching’ fixed po-
sitions for robotic devices and step-by-step procedures in
an abstract computer language, SDLs will interpret
natural language and maintain a space-resolved real-time
model of the laboratory derived from multi-camera vi-
sion. From this local model of the laboratory, the or-
chestrator, which manages the workflows, continuously
infers object locations, free paths, and safety envelopes
[42]. In a biotech context, this perception layer could
track liquid levels and turbidity during extractions or
fermentations, read barcodes/labels to confirm identities
and containment, and verify lid/door states before
moves. The same local map supports live inventory of
consumables, on-the-fly collision avoidance, and faster,
safer error recovery. Crucially, it lifts programming to a
meta-level: scientists or higher-level LLLMs specify aims,
and the orchestrator compiles these high-level tasks to
scheduled low-level robot instructions. The outcome is
not a strict machine-first design, but a genuinely hybrid
environment whose devices and floor plan are co-opti-
mized for robots and people (Figure 2). The perception-
driven lab design would allow the controlling agent to
supervise and instruct both robots for fully automated
core processes and humans for partially automated or
manual auxiliary process steps while getting real-time
feedback for increased safety and faster error recovery.

Early precursors of cooperative chemical and biolabs using
agentic Al already exist: Coscientist maps natural-language
goals to lab application programming interfaces [9]; Chem-
Crow augments LI.Ms with domain tools [10]; and A/
phakvolve illustrates evaluator-in-the-loop improvement of
code and controllers, an approach that can evolve bioprocess
control stacks under human governance [43]. Computer
vision has already been successfully employed for auto-
mating and supervising laboratory procedures such as liquid-
level detection [44], titration [45], phase-behavior char-
acterization [46], reaction monitoring [47-49], and even cell
cultivation [50]. Multiple studies have investigated com-
puter-vision-based object detection [51,52], robot control
[53], and 3D-model generation [54] for life science labora-
tories. Further development and consolidation of these
different aspects of agentic laboratory controllers, image
analysis, and model generation are required to enable true
perception-based autonomous control of complex multi-
device SDLs. Recent advances independent of life sciences
in world-model agents (Genze) and generalist control
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Concept of perception-aware autonomous hybrid-labs. The user is in interaction with a superordinate agent for giving instructions and making

decisions while receiving requests and status reports. The superordinate agent translates high-level user goals into tasks for control agents, which
compile them into low-level robot code for SDL hardware; bidirectional links return device and sensor feedback. Concurrently, a perception module
(dashed box) aggregates multicamera feeds, performs object detection/tracking, and maintains a spatial digital twin of the lab. This situational model
keeps inventory current, maps safe motion corridors, and defines exclusion zones. With that context, the superordinate agent can orchestrate both
people and robots, anticipate collisions, and recover from faults rapidly. Programming shifts from hand-coded coordinates to goal-level instructions,
and the workspace is intentionally co-designed for shared use — modular cells deliver throughput while humans remain in the loop for oversight, non-

automatable steps, exceptions, and handoffs.

(DreamerV3) strengthen this trajectory toward percep-
tion-grounded, instruction-level orchestration in labs
[55-57].

User experience is shifting accordingly with the adop-
tion of Al agents. Low-/no-code and natural-language
interfaces reduce the barrier to automation while pre-
serving expert intent, with canonical abstractions for unit
operations, for example, by separating a process into
high-level instructions such as ‘dilute’, ‘grab’, ‘place’,
and ‘measure absorbance’ [9]. Dashboards should sur-
face situational evidence (live process data, model un-
certainty, and out-of-distribution alerts) so human
operators can intervene decisively [8,38,40]. To keep the
hybrid lab safe and accountable, especially in highly
regulated environments such as biopharmaceutical pro-
duction, guardrails must be built into the design: (i) clear
decision tiers (i.e. when the system only suggests
vs when it may act autonomously), (ii) enforced human

checkpoints whenever measurements fall outside ex-
pected ranges, and (iii) auditable activity logs that ex-
plain what was measured, what the system proposed,
and what was executed — written compatibly with
regulatory requirements [8,38-40].

Autonomous labs for bioprocess engineering:
challenges from scale-up to manufacturing
While the promise of SDLs is most apparent at small
experimental scales (ca. 1-250 mL), it is the transition to
larger scales (ca. 50-200,000 L) that represents the most
important challenge to realizing automation’s full im-
pact. At small scales (i.e. screening), high-throughput
strain engineering and parallelized workflows dominate.
However, the transition to pilot-scale and manufacturing
environments is nontrivial because it is characterized by
nonlinear process behavior, changing bioreactor dy-
namics, and differences in monitoring and control in-
frastructure [58].
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To bridge this divide, digital twins have emerged as a
powerful concept. By creating virtual representations of
bioreactors and downstream operations, digital twins
allow researchers to test process modifications i sifico
before implementation at scale [59,60]. In this context,
uncertainty-aware modeling and process optimization
are important to achieve reliable scale-up when acting
with complex systems such as living catalysts. Frame-
works such as Bayesian optimization, a data-driven,
probabilistic approach, recently gained traction for bio-
process development and are frequently combined with
lab automation to drive tasks from strain selection to
process optimization [61-63]. When combined with
multifidelity approaches — linking insights from bench-
scale experiments with pilot-plant data — these models
enable more reliable predictions of process performance
across scales [25].

While multifidelity approaches have been applied in
adjacent tasks such as reactor design or chemical dis-
covery [64,65], applications in bioprocess engineering
are scarce [25,61]. To successfully employ multiscale
models for bioprocess development and benchmark al-
gorithms across institutions, defining open ‘scale-transfer
benchmarks’ would be transformational. Such standar-
dized cases would compare strain and condition out-
comes between laboratory and pilot settings in defined
test cases, thus further supporting reproducibility and
benchmarking.

Recent discussions also address the scale limits of SDL
concepts in bioprocessing: while fully autonomous cycles
excel at micro- to laboratory scale, their direct application
diminishes as processes approach pilot and production
volumes, where safety, regulatory oversight, and complex
fluid dynamics may impose stricter boundaries. For lar-
ge-scale operations, automation ecfforts are best im-
plemented as hybrid systems, combining digital twins,
advanced control, and human oversight rather than un-
restricted autonomy [66]. In this context, human-in-the-
loop optimization [67] is a promising direction to combine
human expertise with automated and data-driven dis-
covery. Recent advances in collaborative or preferential
Bayesian optimization demonstrate how algorithmically
derived proposals for experiments can be complemented
by human preferences and knowledge [68,69].

Gaps and demands to realize self-driving labs
and autonomous discovery

Al and machine learning are becoming ubiquitous in our
lives, both in the personal and the professional context.
More recently, LI.LMs have created a surge in their visi-
bility by tapping into the ‘non-expert’ user market
through colloquial language (e.g. ChatGPT). SDLs
should strive to do the same for the biotechnology com-
munity: open it to a larger audience and explore broader
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research possibilities. However, there are several gaps
that need to be bridged to realize those futuristic la-
boratories where humans and robots work together
seamlessly.

Language barriers present major obstacles when soft-
ware developers, biologists, and automation engineers
have to communicate across disciplinary jargon. LLM-
based application programming interfaces can eliminate
these field-specific complexities. However, safeguards
must be constructed against hallucinations, security
vulnerabilities, misrepresentations, and other limitations
of LLLMs before end-users can use vibe-coding (i.e. in-
tuitively code new applications through conversations in
natural language [70]). We expect that professional de-
velopers and scientists, however, will remain essential
for debugging and validating the resulting data.

Cost, accessibility, and large footprints of SDLs can
prevent widespread adaptation. Current financial strug-
gles of the synthetic biology industry present a sobering
economic reality [71]. Million-dollar biofoundries,
without common standards for protocols, metadata, and
data exchange, may create isolated silos of biased and
incomplete datasets, which is squarely at odds with what
Al models require for effective training. Recent com-
munity initiatives [59,72—74] illustrate how standardiza-
tion and Al-assisted planning can elevate automation
beyond the device layer. The Intent Parser and Open
Protocol Interface Language translate human-authored
objectives into structured instructions, enabling auton-
omous agents to assemble and execute experimental
protocols consistently [73]. The protocol activity mod-
eling language complements this by providing a formal
representation for complex, branching workflows, sup-
porting verification and reuse across laboratories [74].
Lessons from DARPA’s SD2 program show that shared
vocabularies and metadata services are crucial for or-
chestrating discovery across distributed SDL sites [75].
These examples demonstrate how rigorous data and
metadata standardization and tracking can facilitate sci-
entific discovery and address regulatory requirements.
More broadly, the Bioprocessing 4.0 vision necessitates
enterprise-scale architectures where digital twins, sche-
duling engines, and literature-mining agents cooperate
to align experiments with higher-level research goals and
regulatory expectations [59].

Finally, Al will not only support smart data utilization
but also advance intelligent lab-automation hardware
that drives future labs [29,76,77]. Condensing modern
bio-research capabilities into modular, reusable setups
will transform the enormous laboratory footprint into
manageable ‘assembly lines’. This will require minia-
turizing some processes into chip-based microfluidic
devices [78,79] and integrating other capabilities through
conveyor belts or mobile robots. The focus must be set
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on making each module independently verifiable and
serviceable, which will render the whole platform easily
re-configurable.

Conclusions

Al and machine learning are quickly becoming essential
pillars of automated experimentation. The vision of fully
autonomous bioprocess development from strain en-
gineering to manufacturing scale remains compelling;
yet the current reality points toward a more nuanced
trajectory. While SDLs have demonstrated remarkable
success in chemistry and materials science, bioproces-
sing faces distinct challenges that, at least initially, point
toward an era of hybrid labs. The primary bottleneck is
no longer hardware maturity: liquid handlers, robotics,
and analytical instruments have reached sophisticated
levels. Instead, we are limited by the orchestration of
complex, multiscale workflows under regulatory and
safety constraints that demand human oversight.

The next three to five years are likely to see the emer-
gence of modular hybrid systems where Al agents and
LLM-based tools take on routine decision-making,
protocol translation, and troubleshooting, while humans
remain central for anomaly detection, strategic planning,
and safety-critical judgment. This balance is not a
compromise but a necessity, reflecting the unique chal-
lenges of scaling from high-throughput strain en-
gineering to pilot plants and manufacturing. Alongside
automation hardware, digital twins, multifidelity opti-
mization, and standardized data frameworks provide
promising scaffolds to bridge this gap. However, pro-
gress will most likely depend less on isolated break-
throughs than on coordinated community action.

Realizing SDLs for bioprocess engineering will there-
fore require universal standards for protocols and meta-
data, benchmarks for scale transfer, and sustainable
economic models that extend automation beyond elite
biofoundries. The next frontier is not the replacement of
scientists but the careful design of hybrid systems,
where human expertise and Al-driven automation
complement one another to enable reliable, scalable, and
responsible bioprocess innovation.
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