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Perspectives for artificial intelligence in bioprocess 
automation
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Matthias Franzreb3 and Hector Garcia Martin5,6,7

Recent advances in artificial intelligence (AI) have rapidly changed 
the lab automation landscape, promoting self-driving laboratories 
(SDLs) that enable autonomous scientific discovery. These trends 
are increasingly applied in bioprocess development, yet 
bioprocessing faces unique challenges — biological complexity, 
regulatory and safety requirements, and multiscale 
experimentation — that distinguish it from other automation 
domains. Rather than pursuing full autonomy, we foresee that hybrid 
SDLs, combining AI-driven decision-making with sustained human 
oversight, represent the most practical near-term trajectory. This 
review examines three interconnected perspectives: (i) hybrid 
human–machine decision-making for bioprocessing; (ii) laboratory 
design considerations in the era of AI; and (iii) scale-up challenges 
when transitioning from screening to manufacturing. We highlight 
critical gaps in data standardization and the required community 
efforts necessary to realize autonomous bioprocess innovation.
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The race toward an artificial intelligence 
scientist? — the role of artificial intelligence 
for self-driving labs
Research on artificial intelligence (AI) is increasingly 
perceived as a key enabler of scientific discovery [1], 
transitioning from offline modeling toward systems 
steering experimental effort in real time. In chemistry and 
materials science, autonomous experimentation has ac
celerated closed-loop discovery [2,3]. Within the life sci
ences, landmark studies such as AlphaFold for protein 
structure prediction [4] or the discovery of the novel an
tibiotic halicin via deep learning [5] highlight the trans
formative power of AI. However, bioprocess engineering 
faces unique challenges regarding AI, including biological 
complexity, legal and regulatory requirements, and high 
variability and uncertainty in experimental setups.

Complementing AI advances, laboratory automation has 
matured from stand-alone unit operations (e.g. sample 
preparation) to whole ecosystems of interconnected de
vices in biofoundries. These industrial and academic 
facilities combine robotics, high-throughput analytics, 
and integrated data systems to implement the design- 
build-test-learn (DBTL) cycle [6]. Coordinated through 
initiatives like the Global Biofoundries Alliance [7], such 
laboratories demonstrate the potential of standardized, 
automated experimentation to accelerate bioprocess 
development.

The combination of AI and laboratory automation ulti
mately results in the concept of the self-driving lab 
(SDL): a system that combines robotics for automated 
experiments and data collection with AI systems that use 
these data to design, execute, and interpret experiments 
in closed loops [8]. An important stepping stone to
ward functional SDLs is the fusion of lab automation 
with large language models (LLMs) and other tools in 
agentic frameworks (e.g. Coscientist [9] and ChemCrow 
[10] in chemistry), which are able to translate high-level 
goals into executable plans, navigate documentation, 
and orchestrate whole experimental workflows.

In light of such advances, it is timely to raise the ques
tion: how much autonomy do we actually want in bio
process automation? Following established autonomy 
levels for SDLs [8,11], complexity spans from Level 0 
(no autonomy) through Level 1 (research assistance), 
Level 2 (partial autonomy), Level 3 (conditional au
tonomy), Level 4 (highly-autonomous research), to 
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Level 5 (AI scientist). Currently, most bioprocess auto
mation operates at Levels 1–2 with significant human 
oversight, as bioprocesses involve complex multiscale 
experimentation, high experimental uncertainty, safety 
considerations, and regulatory requirements. The op
timal balance between autonomy and human decision- 
making, therefore, needs to be discussed for future 
bioprocess applications.

This review examines three interconnected perspectives: 
(i) hybrid human–machine decision-making for safe, 
regulated bioprocessing; (ii) laboratory design considera
tions as AI transforms infrastructure requirements; and 
(iii) scale-up challenges that distinguish bioprocess SDLs 
from their chemistry counterparts when transitioning 
from laboratory screening to manufacturing.

Hybrid lab: human and machine decision- 
making for automated experimentation
While SDLs promise throughput and reproducibility that 
are unattainable by humans, full autonomy is not always 
feasible or practical for a range of reasons. First, a scien
tific process may not be automatable, the cost may be 
prohibitive [12], or the demand for the process may be too 
infrequent to justify the cost. Even if these requirements 
are met, the automation and robotics skills required may 

not be available in a standard biological lab. Finally, safety 
concerns may not advocate full autonomy: for example, an 
unattended SDL increasing virus pathogenicity [13–15]
or producing a controlled substance drug [16] are sce
narios that, while still unlikely, need to be avoided.

Hence, we anticipate that future SDLs will mostly take a 
hybrid form, in which human and AI/robotics components 
will intertwine not only for physical (e.g. experiments) 
and computational (e.g. data analysis) tasks, but also in 
the conception and design of studies. We expect these 
hybrid systems to be focused around one or more core 
processes that exhibit a full (or high) degree of automation 
(autonomy Levels 3–5), where benefits outweigh costs 
(see an example in Figure 1). Around these core pro
cesses, auxiliary processes with varying degrees of auto
mation (including totally manual ones, autonomy Levels 
1–2) would be flexibly coupled in a modular fashion. 
These processes are sparingly needed and can be elimi
nated, added, or modified (e.g. by upgrading to a core 
process) as required, without affecting the performance of 
the core processes. This approach permits the testing of 
modules before fully coupling them to core processes, as 
well as a flexible configuration that can be easily adapted 
to new requirements. The hybrid system also aligns with 
current developments in modular manufacturing [17,18].

Figure 1  

Current Opinion in Biotechnology

Illustrative example of a possible hybrid automated lab in metabolic engineering. This hybrid lab example is composed of three fully automated core 
processes (in blue) and five auxiliary processes (in green, orange, and red). The core processes involve the generation of strains harboring different 
combinatorial pathways through the use of the fully automated AutoBioTech strain construction platform [31], the culturing of those strains, sample 
acquisition, and the measuring of the final production through absorbance. Data are then stored in a database for an AI to decide how to proceed next. 
Attached to these three core fully automated processes, we can see several auxiliary processes (green, orange, and red) displaying different levels of 
automation: from highly automated (green) to some automation (orange) or purely manual (red). A second and third alternative to build strains involves 
producing strains with downregulated genes through CRISPRi (e.g. as in Carruthers et al. [32]), or manually knocking genes out. Alternative ways to 
phenotype the strain involve transcriptomics, proteomics or metabolomics. These data need not be collected in every single DBTL cycle, but could, 
through multifidelity approaches, improve the quality of the active learning processes to design new strains. An alternative example of a hybrid lab, where 
humans and robots work together, can be seen in Dai et al. [36]. CRISPRi, clustered regularly interspaced short palindromic repeats interference. Created 
in BioRender. Garcia Martin, H. (2025) https://BioRender.com/b3×4qtc.
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A variety of recent technological developments facilitate 
a hybrid-lab approach as well as fully automated scien
tific experimentation. These developments involve both 
software, for which widespread use of AI is enabling 
completely novel capabilities, and hardware, for which 
new automated experimental processes are becoming 
available at an accelerated pace, and potentially dis
ruptive technologies are available.

Novel AI approaches for experimental design, protocol 
creation and checking, as well as troubleshooting of au
tomated processes have recently emerged [9,19–23]. 
These AI tools hold the promise of freeing researchers 
from the need to generate low-level instructions for 
operating robotic equipment. This facilitates the use of 
automated processes by nonexperts and allows re
searchers to focus on high-level scientific questions [9]. 
However, failure rates and the required level of human 
oversight for these approaches in a production system 
remain unclear. Furthermore, auxiliary processes, which 
use a human-in-the-loop approach, would require up
grades in robotic control and data analysis strategies for 
these tools. The LLMs used for robotic control should 
be able to draft instructions for both robots and humans, 
making the avoidance of collisions and general safety a 
critical consideration. In terms of data analysis, new ap
proaches such as multifidelity optimization [24,25] are 
needed, which combine robotic- and human-generated 
data and take into account their differences in quantity, 
quality, and type. Moreover, the integration of regulatory 
considerations (e.g. robust data traceability, good man
ufacturing practice compliance, or cybersecurity safe
guards [26,27]) at this level might be advantageous.

In terms of hardware, automated solutions based on 
well-established liquid handling platforms have been 
recently proposed, including DNA library preparation 
[28], pH adjustment [29], DNA assembly [30], or strain 
construction [31]. Currently, processes such as plasmid 
transformation and colony picking are automated 
through commercial machines that mimic human beha
vior (e.g. an Echo Acoustic Liquid Handler, a Hamilton 
Vantage, a QPix 460 [32]). Alternative technological 
approaches show the potential to free science from the 
constraints imposed by mimicking human behavior [33], 
such as microfluidic droplet systems that reduce de
mands in space and reagents [34]. Finally, it is worth 
mentioning the advent of affordable humanoid robots 
[35], which could, in principle, substitute humans in 
diverse lab tasks.

Designing the future lab: human vs machine- 
centric laboratories
Designing laboratories around automation often gives 
rise to a false dichotomy: spaces need not be built either 
for people or for machines. Evidence from SDLs in 

chemistry and bioscience points to a pragmatic hybrid 
approach, as described above: automated execution in 
modular robotic work cells combined with human access 
points for oversight, anomaly triage, and sample entry 
[8,37–40]. Standardized unit operations, reconfigurable 
flow paths, and software‑addressable hardware enable 
uninterrupted, high‑throughput experimentation while 
preserving a human accountability layer [41].

A mid‑term trajectory for ergonomics could be percep
tion‑driven autonomy. Rather than ‘teaching’ fixed po
sitions for robotic devices and step-by-step procedures in 
an abstract computer language, SDLs will interpret 
natural language and maintain a space-resolved real-time 
model of the laboratory derived from multi‑camera vi
sion. From this local model of the laboratory, the or
chestrator, which manages the workflows, continuously 
infers object locations, free paths, and safety envelopes 
[42]. In a biotech context, this perception layer could 
track liquid levels and turbidity during extractions or 
fermentations, read barcodes/labels to confirm identities 
and containment, and verify lid/door states before 
moves. The same local map supports live inventory of 
consumables, on-the-fly collision avoidance, and faster, 
safer error recovery. Crucially, it lifts programming to a 
meta‑level: scientists or higher-level LLMs specify aims, 
and the orchestrator compiles these high-level tasks to 
scheduled low-level robot instructions. The outcome is 
not a strict machine‑first design, but a genuinely hybrid 
environment whose devices and floor plan are co‑opti
mized for robots and people (Figure 2). The perception- 
driven lab design would allow the controlling agent to 
supervise and instruct both robots for fully automated 
core processes and humans for partially automated or 
manual auxiliary process steps while getting real-time 
feedback for increased safety and faster error recovery.

Early precursors of cooperative chemical and biolabs using 
agentic AI already exist: Coscientist maps natural‑language 
goals to lab application programming interfaces [9]; Chem
Crow augments LLMs with domain tools [10]; and Al
phaEvolve illustrates evaluator‑in‑the‑loop improvement of 
code and controllers, an approach that can evolve bioprocess 
control stacks under human governance [43]. Computer 
vision has already been successfully employed for auto
mating and supervising laboratory procedures such as liquid- 
level detection [44], titration [45], phase-behavior char
acterization [46], reaction monitoring [47–49], and even cell 
cultivation [50]. Multiple studies have investigated com
puter-vision-based object detection [51,52], robot control 
[53], and 3D-model generation [54] for life science labora
tories. Further development and consolidation of these 
different aspects of agentic laboratory controllers, image 
analysis, and model generation are required to enable true 
perception-based autonomous control of complex multi
device SDLs. Recent advances independent of life sciences 
in world‑model agents (Genie) and generalist control 
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(DreamerV3) strengthen this trajectory toward percep
tion‑grounded, instruction‑level orchestration in labs 
[55–57].

User experience is shifting accordingly with the adop
tion of AI agents. Low‑/no‑code and natural‑language 
interfaces reduce the barrier to automation while pre
serving expert intent, with canonical abstractions for unit 
operations, for example, by separating a process into 
high-level instructions such as ‘dilute’, ‘grab’, ‘place’, 
and ‘measure absorbance’ [9]. Dashboards should sur
face situational evidence (live process data, model un
certainty, and out‑of‑distribution alerts) so human 
operators can intervene decisively [8,38,40]. To keep the 
hybrid lab safe and accountable, especially in highly 
regulated environments such as biopharmaceutical pro
duction, guardrails must be built into the design: (i) clear 
decision tiers (i.e. when the system only suggests 
vs when it may act autonomously), (ii) enforced human 

checkpoints whenever measurements fall outside ex
pected ranges, and (iii) auditable activity logs that ex
plain what was measured, what the system proposed, 
and what was executed — written compatibly with 
regulatory requirements [8,38–40].

Autonomous labs for bioprocess engineering: 
challenges from scale-up to manufacturing
While the promise of SDLs is most apparent at small 
experimental scales (ca. 1–250 mL), it is the transition to 
larger scales (ca. 50–200,000 L) that represents the most 
important challenge to realizing automation’s full im
pact. At small scales (i.e. screening), high-throughput 
strain engineering and parallelized workflows dominate. 
However, the transition to pilot-scale and manufacturing 
environments is nontrivial because it is characterized by 
nonlinear process behavior, changing bioreactor dy
namics, and differences in monitoring and control in
frastructure [58].

Figure 2  
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Concept of perception-aware autonomous hybrid-labs. The user is in interaction with a superordinate agent for giving instructions and making 
decisions while receiving requests and status reports. The superordinate agent translates high-level user goals into tasks for control agents, which 
compile them into low-level robot code for SDL hardware; bidirectional links return device and sensor feedback. Concurrently, a perception module 
(dashed box) aggregates multicamera feeds, performs object detection/tracking, and maintains a spatial digital twin of the lab. This situational model 
keeps inventory current, maps safe motion corridors, and defines exclusion zones. With that context, the superordinate agent can orchestrate both 
people and robots, anticipate collisions, and recover from faults rapidly. Programming shifts from hand-coded coordinates to goal-level instructions, 
and the workspace is intentionally co-designed for shared use — modular cells deliver throughput while humans remain in the loop for oversight, non- 
automatable steps, exceptions, and handoffs.  
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To bridge this divide, digital twins have emerged as a 
powerful concept. By creating virtual representations of 
bioreactors and downstream operations, digital twins 
allow researchers to test process modifications in silico 
before implementation at scale [59,60]. In this context, 
uncertainty-aware modeling and process optimization 
are important to achieve reliable scale-up when acting 
with complex systems such as living catalysts. Frame
works such as Bayesian optimization, a data-driven, 
probabilistic approach, recently gained traction for bio
process development and are frequently combined with 
lab automation to drive tasks from strain selection to 
process optimization [61–63]. When combined with 
multifidelity approaches — linking insights from bench- 
scale experiments with pilot-plant data — these models 
enable more reliable predictions of process performance 
across scales [25].

While multifidelity approaches have been applied in 
adjacent tasks such as reactor design or chemical dis
covery [64,65], applications in bioprocess engineering 
are scarce [25,61]. To successfully employ multiscale 
models for bioprocess development and benchmark al
gorithms across institutions, defining open ‘scale-transfer 
benchmarks’ would be transformational. Such standar
dized cases would compare strain and condition out
comes between laboratory and pilot settings in defined 
test cases, thus further supporting reproducibility and 
benchmarking.

Recent discussions also address the scale limits of SDL 
concepts in bioprocessing: while fully autonomous cycles 
excel at micro‑ to laboratory scale, their direct application 
diminishes as processes approach pilot and production 
volumes, where safety, regulatory oversight, and complex 
fluid dynamics may impose stricter boundaries. For lar
ge‑scale operations, automation efforts are best im
plemented as hybrid systems, combining digital twins, 
advanced control, and human oversight rather than un
restricted autonomy [66]. In this context, human-in-the- 
loop optimization [67] is a promising direction to combine 
human expertise with automated and data-driven dis
covery. Recent advances in collaborative or preferential 
Bayesian optimization demonstrate how algorithmically 
derived proposals for experiments can be complemented 
by human preferences and knowledge [68,69].

Gaps and demands to realize self-driving labs 
and autonomous discovery
AI and machine learning are becoming ubiquitous in our 
lives, both in the personal and the professional context. 
More recently, LLMs have created a surge in their visi
bility by tapping into the ‘non-expert’ user market 
through colloquial language (e.g. ChatGPT). SDLs 
should strive to do the same for the biotechnology com
munity: open it to a larger audience and explore broader 

research possibilities. However, there are several gaps 
that need to be bridged to realize those futuristic la
boratories where humans and robots work together 
seamlessly.

Language barriers present major obstacles when soft
ware developers, biologists, and automation engineers 
have to communicate across disciplinary jargon. LLM- 
based application programming interfaces can eliminate 
these field-specific complexities. However, safeguards 
must be constructed against hallucinations, security 
vulnerabilities, misrepresentations, and other limitations 
of LLMs before end-users can use vibe-coding (i.e. in
tuitively code new applications through conversations in 
natural language [70]). We expect that professional de
velopers and scientists, however, will remain essential 
for debugging and validating the resulting data.

Cost, accessibility, and large footprints of SDLs can 
prevent widespread adaptation. Current financial strug
gles of the synthetic biology industry present a sobering 
economic reality [71]. Million-dollar biofoundries, 
without common standards for protocols, metadata, and 
data exchange, may create isolated silos of biased and 
incomplete datasets, which is squarely at odds with what 
AI models require for effective training. Recent com
munity initiatives [59,72–74] illustrate how standardiza
tion and AI-assisted planning can elevate automation 
beyond the device layer. The Intent Parser and Open 
Protocol Interface Language translate human‑authored 
objectives into structured instructions, enabling auton
omous agents to assemble and execute experimental 
protocols consistently [73]. The protocol activity mod
eling language complements this by providing a formal 
representation for complex, branching workflows, sup
porting verification and reuse across laboratories [74]. 
Lessons from DARPA’s SD2 program show that shared 
vocabularies and metadata services are crucial for or
chestrating discovery across distributed SDL sites [75]. 
These examples demonstrate how rigorous data and 
metadata standardization and tracking can facilitate sci
entific discovery and address regulatory requirements. 
More broadly, the Bioprocessing 4.0 vision necessitates 
enterprise‑scale architectures where digital twins, sche
duling engines, and literature‑mining agents cooperate 
to align experiments with higher‑level research goals and 
regulatory expectations [59].

Finally, AI will not only support smart data utilization 
but also advance intelligent lab-automation hardware 
that drives future labs [29,76,77]. Condensing modern 
bio-research capabilities into modular, reusable setups 
will transform the enormous laboratory footprint into 
manageable ‘assembly lines’. This will require minia
turizing some processes into chip-based microfluidic 
devices [78,79] and integrating other capabilities through 
conveyor belts or mobile robots. The focus must be set 
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on making each module independently verifiable and 
serviceable, which will render the whole platform easily 
re-configurable.

Conclusions
AI and machine learning are quickly becoming essential 
pillars of automated experimentation. The vision of fully 
autonomous bioprocess development from strain en
gineering to manufacturing scale remains compelling; 
yet the current reality points toward a more nuanced 
trajectory. While SDLs have demonstrated remarkable 
success in chemistry and materials science, bioproces
sing faces distinct challenges that, at least initially, point 
toward an era of hybrid labs. The primary bottleneck is 
no longer hardware maturity: liquid handlers, robotics, 
and analytical instruments have reached sophisticated 
levels. Instead, we are limited by the orchestration of 
complex, multiscale workflows under regulatory and 
safety constraints that demand human oversight.

The next three to five years are likely to see the emer
gence of modular hybrid systems where AI agents and 
LLM-based tools take on routine decision-making, 
protocol translation, and troubleshooting, while humans 
remain central for anomaly detection, strategic planning, 
and safety-critical judgment. This balance is not a 
compromise but a necessity, reflecting the unique chal
lenges of scaling from high-throughput strain en
gineering to pilot plants and manufacturing. Alongside 
automation hardware, digital twins, multifidelity opti
mization, and standardized data frameworks provide 
promising scaffolds to bridge this gap. However, pro
gress will most likely depend less on isolated break
throughs than on coordinated community action.

Realizing SDLs for bioprocess engineering will there
fore require universal standards for protocols and meta
data, benchmarks for scale transfer, and sustainable 
economic models that extend automation beyond elite 
biofoundries. The next frontier is not the replacement of 
scientists but the careful design of hybrid systems, 
where human expertise and AI-driven automation 
complement one another to enable reliable, scalable, and 
responsible bioprocess innovation.
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