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ABSTRACT: Polymethylcyclopentenyl cations are frequently
observed experimentally in zeolite catalysis but are investigated to
a lesser extent than aromatics or acyclic olefins. Here, the reactivity
of the pentamethylcyclopentenyl cation (pentaMCP+) for the
formation of olefins in H-SSZ-13 is investigated by using density
functional theory (DFT). We find that pentaMCP+ can react
similarly to aromatics in the side-chain mechanism with a selectivity
for ethylene. The selectivity is due to a specific transition state that
favors the elimination of ethylene over the further methylation
steps. Generally, our calculations indicate that methylation of the
unsaturated side chain is rate-limiting, as also observed for the
aromatic cycle. This is because the formation of the neutral species
with an unsaturated side chain from the more stable cationic resting state of the hydrocarbon is already unfavorable and adds to the
intrinsic barrier for methylation. To estimate the catalytic activity, microkinetic modeling is performed based on the computed Gibbs
free energies. Analogous to the aromatic cycle, we find that a second accessible acid site can lower the overall barriers by making
stepwise methylation more favorable. Based on our findings, we suggest that there is a third catalytic cycle operating during MTO
conversion that is located between the olefin and aromatic cycle and produces primarily ethylene with overall free energy barriers
comparable to those of the olefin and aromatic cycle.

■ INTRODUCTION
The methanol-to-olefin (MTO) reaction is a widely studied
process that can provide a resourceful technology for the
energy transition, allowing for the production of a wide range
of hydrocarbons (from olefins to gasolines or aromatics) from
methanol under mild conditions and by means of acidic
zeolites.1−6 Provided that methanol is produced in a
sustainable way by CO or CO2 hydrogenation, it can be a
suitable tool to lower current emissions and in the future
decouple the petrochemical industry from oil dependence.7−9

The MTO process is governed by fast autocatalytic reactions
between the methanol feed and the hydrocarbons in the
reaction medium that build up the hydrocarbon pool,10−12

where hydrocarbons act as cocatalysts6,13,14 Several mecha-
nisms have been developed to describe these reactions, the
most accepted being the dual-cycle mechanism. This
mechanism comprises two interconnected cycles: (1) the
olefin cycle that describes olefin growth through methylation
and olefin cracking reactions, and (2) the aromatic cycle,
which describes the methylation of aromatic molecules into
highly methylated aromatics and the elimination of olefins
thereof.15−17 The two cycles are connected by hydrogen
transfer reactions of olefins,18−20 which yield polyenes that can
then form cyclic hydrocarbons and ultimately aromatics.21

Understanding how these cycles behave and which products
they yield is essential to control aspects such as product

selectivity or catalyst lifetime, which is mostly affected by the
formation of coke from overmethylation of aromatic
molecules.22−25 Atomistic simulations are increasingly used
to gain insight into the reactivity of zeolites.26−29

Investigations have so far focused on the olefin or aromatic
cycles and their respective contributions to olefin forma-
tion.5,26,27,30,31 The general consensus is that this is greatly
affected by the catalyst used as the zeolite topology limits the
size of the aromatic intermediates that can be formed. With
this consideration, different proposals of several mechanisms
detail olefin formation within the aromatic cycle.32−38

Polymethylbenzenes are considered the main intermediates
present in the most commonly used zeolites.39−43 The
reactivity of cyclic cations related to polymethylbenzenes was
also discussed in the frustrated Lewis pair concept.44,45 For the
aromatic cycle, two types of reactivity are discussed, as
described by the paring and the side-chain mechanisms.5 The
paring mechanism produces mainly propylene, and the side-
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chain mechanism mainly ethylene. This means that regulating
the activity of these cycles would allow tuning of product
selectivity toward one olefin over the other. Ultimately, this
can be achieved with the choice of the zeolite, which has
already been proven to have an impact on the ethylene to
propylene ratio.46 For example, the CHA zeolite, which
possesses a structure with narrow pores (3.8 × 3.8 Å) with
large interior cavities (12.7 × 9.7 Å), can have between 0.8 and
1.0 ethylene to propylene ratio.47 Meanwhile, MFI zeolites,
which have wider pores (of 5.3 × 5.6 Å and 5.1 × 5.5 Å)
without cavities, can have ethylene to propylene ratios of less
than 0.5.48

Early proposals for the paring mechanism involve the
antiaromatic pentamethylcyclopentadiene cation, and DFT
calculations on this mechanism predicted high overall Gibbs
free energy barriers >200 kJ mol−1.49−51 More recently, a
revised paring mechanism was identified through extensive
calculations by us17,52 as well as Wang and co-workers.53 This
mechanism avoids the antiaromatic intermediate, leading to
much lower overall Gibbs free barriers on the order of 150 kJ
mol−1. Similarly, for the aromatic side-chain mechanism, high
barriers have been computed, owing to the instability of the
intermediate that needs to be methylated, which is
hexamethylmethylenecyclohexadiene (HMMC), when starting
from the heptamethylbenzylium cation (heptaMB+).37,54−57

Here we have shown recently for H-SSZ-13 that an accessible
second site makes the side-chain mechanism more favorable by
lowering the barrier for stepwise methylation.58

Aside from acyclic olefins and aromatics, polymethylcyclo-
pentenyl cations (MCP+) have been detected with different
techniques, such as nuclear magnetic resonance (NMR)59−62

or ultraviolet or infrared spectroscopy,63−66 and in several
zeolites typically used for the MTO reaction like H-ZSM-5 or
H-ZSM-22,61,67−69 H-SSZ-13,60,70 or SAPO catalysts.71,72 A
side-chain mechanism analogous to the aromatic cycle was
investigated for the pentamethylcyclopentenyl cation (pen-
taMCP+), where methylation itself was found to be the rate-
limiting step with an energetic span73 (Gibbs free energy) of
180 kJ mol−1 at 300 °C for H-RUB-5074 and 218 kJ mol−1 at
400 °C for H-SAPO-34.75 This translates into rather low
turnover frequency (TOF) values of 5 × 10−4 s−1 and 1.7 ×
10−4 s−1, respectively.
In this work, we investigate the reactivity of the pentaMCP+

intermediate by using density functional theory calculations
and microkinetic modeling. A mechanism analogous to the
side-chain mechanism of the aromatic cycle is studied for both
ethylene and propylene formation. In addition to concerted
methylation on a single acid site, stepwise methylation on two
acid sites is considered. By doing so, we shed light on the
existence of a third catalytic cycle based on MCP+ operating
alongside the olefin and aromatic cycle.

■ METHODS
The mechanism was investigated for the H-SSZ-13 zeolite,
which crystallizes in the chabazite (CHA) structure and
contains a single T-site. We used a model with one acid site per
36T-unit cell for the single-site CHA calculations and two acid
sites per two unit cells for the second-site-assisted calculations
with a Si/Al ratio of 35 in both cases. The lattice constants
were a = b = 13.625 Å and c = 15.067 Å17 for the CHA
structure, and a (2 × 1 × 1) CHA supercell was used for the
dual site structure. The two sites are separated by three SiO
units with a distance of about 9 Å, as in a previous work,58

which allows protonation/deprotonation of the adsorbed
molecule without significant rotation and reorientation inside
the cavity. All structures were optimized using periodic density
functional theory (DFT) with the dispersion corrected PBE-
D3 functional,76,77 with the projector-augmented wave (PAW)
method as implemented in the Vienna Ab Initio Simulation
Package (VASP), in version 6.4.3.78,79 For every calculation,
standard PAW potentials80 and a plane-wave basis set with an
energy cutoff of 400 eV for the wave function were used with a
convergence criterion of 0.001 eV Å−1, Gaussian smearing with
a width of 0.1 eV, and k-point sampling only at the Γ-point.
For the most important intermediates and transition states,
different starting points for the optimizations were created
manually, starting from those previously studied for the side-
chain mechanism with heptaMB+ and other similar sys-
tems.57,58,81−85 Transition states were calculated using the
automated relaxed potential surface scans (ARPESS) meth-
od,86 and we verified the existence of a single imaginary
frequency. Vibrational analysis was performed by calculating a
partial Hessian of the adsorbate atoms and the acid site,
consisting of the aluminum atom and all adjacent oxygen and
silicon atoms (four oxygen and silicon atoms for each active
site), with an atomic displacement of 0.01 Å. Distortion along
the transition mode, followed by optimization toward the end
points, led to the corresponding reactants and products.
DFT calculations with PBE-D3 can underestimate energy

barriers by up to 50 kJ mol−1,87−89 and we therefore performed
additional single-point calculations with the ωB97M func-
tional90 with D4-corrections91,92 (ωB97M-D4), as imple-
mented in a local VASP version. In a recent study, we
benchmarked this functional alongside many others88 and we
concluded that, when evaluating hydrocarbon reactions in
zeolites, it provided an accurate approximation to other high-
level ab initio methods, with mean absolute errors below 8 kJ
mol−1 and at a much lower computational cost.
Steady-state mean-field microkinetic modeling was carried

out using the surfprobe program of the DETCHEM software
package,93 at a partial pressure of methanol of 1 bar, and an
initial active site coverage of 1 mol cm−2. Steady-state rates
were extracted after a simulation time of 105 s and were then
used to compute the turnover frequency (TOF). The input
files used for the surfprobe program of the DETCHEM
software are provided as Supporting Information. The
coverage of every intermediate state for both models is
presented in Table S9.

■ RESULTS AND DISCUSSION
Several MCP+ have been observed experimentally, depending
on the zeolite framework used.67,69,74 For this study, we chose
the H-SSZ-13 zeolite due to the simplicity of the CHA
framework, with only one T-site, and for comparison with
other mechanisms previously computed for this system. The
chabazite framework is known to accommodate large
adsorbates, up to heptaMB+, in the aromatic cycle. For H-
SSZ-13, pentaMCP+ was found as the main polymethylcyclo-
pentenyl cation species present during MTO.60,69 For H-
SAPO-34, which also crystallizes in the chabazite framework,
pentaMCP+ was also identified, alongside the heptamethylcy-
clopentenyl cation (heptaMCP+).72 We chose to investigate
pentaMCP+ also because of its high symmetry, which leads to
fewer possible isomers.
Similar to the study in ref 74, we investigated a mechanism

resembling the side-chain mechanism of the aromatic cycle. As
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shown in Figure 1a, we start from the neutral tetramethylcy-
clopentadiene (01′), which is easily protonated to the more
stable pentaMCP+ with a moderate barrier of 129 kJ mol−1.
We find pentaMCP+ to be more stable than neutral
pentaMCP by 62 kJ mol−1. Deprotonation of a methyl group
yields a methylene group (02), which can subsequently be
methylated to an ethyl side chain. This is analogous to the side-
chain mechanism, where, starting from hexamethylbenzene
(hexaMB), methylation gives heptaMB+ and subsequent
deprotonation gives hexamethylmethylenecyclohexadiene
(HMMC). In the aromatic cycle, creation of a cation such as
heptaMB+ from the neutral aromatic species is less favorable
due to the loss of aromaticity. For example, we found a
formation free energy of ΔG = −14 kJ mol−1 of heptaMB+
from hexaMB in ref 55.
The central and most problematic step is the methylation of

the methylene side chain, which requires a barrier of 195 kJ
mol−1. This relatively high barrier is mainly due to the fact that
the reactant (02) is relatively unstable, being 67 kJ mol−1 less
stable than pentaMCP+. The methylation barrier (02−03)
relative to species 02 is 128 kJ mol−1. For the aromatic cycle,
we found the neutral intermediate HMMC to be less stable
than heptaMB+ by 84 kJ mol −1,55 with a similar intrinsic
barrier (121 kJ mol−1 relative to HMMC), while the apparent
barrier relative to heptaMB+ was 206 kJ mol−1. We thus find
that side-chain methylation is similar to the aromatic cycle but

requires slightly lower barriers since the neutral species with
the methylene group (02) is more stable than the
corresponding species (HMMC) in the aromatic cycle.
In the hexaMB-based aromatic cycle, elimination of ethylene

occurs after several methyl shifts that bring a methyl group into
a geminal position to the ethyl side chain. The eliminated ethyl
cation is immediately deprotonated by the zeolite to produce
the neutral acid site, ethylene, and hexaMB. This mechanism
benefits from producing a neutral, stable aromatic molecule
and proceeds with a low barrier, on the order of 100 kJ
mol−1.55

For the pentaMCP+ based cycle, elimination of ethylene
occurs after several protonation/deprotonation steps that bring
a proton into a geminal position to the ethyl group. In this
case, as opposed to the hexaMB cycle, formation of a neutral
pentaMCP is less favorable (barrier 190 kJ mol−1), and
elimination of ethylene thus proceeds in a different manner,
with TS07b−08b, see Figure 1b. After elimination of the
intermediate ethyl cation, it is instead directly deprotonated
by intermediate tetraMCP to form tetraMCP+ and neutral
ethylene. The barrier for ethylene elimination is still relatively
high compared to propene elimination, with 165 kJ mol−1.
Propylene formation requires a second methylation step,

which comes after deprotonation of the ethyl side chain. The
Gibbs free energy diagram in Figure 1c seems to imply that the
formation of species 04 and its methylation could proceed with

Figure 1. (a) Overview of the proposed pentaMCP+ cycle for propylene and ethylene formation, (b) methylation (TS02−03) and ethylene
formation (TS07b−08b) steps, and (c) Gibbs free energy diagram of the pentaMCP+ cycle mechanism proposed for propylene and ethylene
formation at 400 °C and 1 bar with the ωB97M-D4 functional. All shown free energy values are given relative to structure 01. Color code for the
atomic structures of the key transition states in (b): blue = Al, yellow = Si, red = O, brown = C, black = H, and gray = remaining framework.
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a low barrier. However, species 03 will quickly react to form
the more stable isomer 07b. Relative to 07b, the second side-
chain methylation barrier 04−05, which generates the
isopropyl side chain, is 204 kJ mol−1. Same as for the aromatic
side-chain mechanism, the second methylation step is thus
unfavorable, giving a preference to ethylene formation.
As opposed to ethylene formation, propylene formation

occurs in a similar manner as in the aromatic cycle; i.e., the
proton is transferred from the intermediate isopropyl cation to
the zeolite, not to the hydrocarbon. The main difference is that
here it is more favorable to have a hydrogen in the geminal
position than to have the isopropyl group, in contrast to a
methyl group in the aromatic cycle. We also tested the
intramolecular proton transfer proposed for ethylene elimi-
nation for the corresponding elimination of propylene,
obtaining a barrier 10 kJ mol−1 higher. For propylene, both
types of elimination thus proceed with low barriers.
The methylation of neutral tetraMCP via TS10−01 yields

pentaMCP+ with a relatively low intrinsic barrier of 130 kJ
mol−1. However, as depicted in Figure 1a, the neutral
tetraMCP can easily be protonated to form the more stable
tetraMCP+ isomer (10′). The barrier for the methylation of
neutral tetraMCP to pentaMCP+ relative to tetraMCP+ is 194
kJ mol−1, which is almost identical to the first methylation step.
With relatively high barriers of about 195 kJ mol−1, the

resulting TOFs are ≤0.01 s−1, as we will discuss in more detail
later. In our previous work,58 we have shown that the presence
of a second acid site in the cavity of H-SSZ-13 can lower the
methylation barrier for the aromatic side-chain mechanism, if it
proceeds via a surface methoxy species (SMS). Usually, direct
methylation is more favorable for HMMC in the aromatic
cycle. Stepwise or dissociative methylation proceeds via the
creation of an SMS from methanol in the first step, while the
SMS is then transferred to the substrate (HMMC) in a second
step. The first step also suffers from the trivial issue that
HMMC is rather unstable, and SMS formation would be much
more favorable if it could occur in the presence of the more
stable heptaMB+. This, however, is not possible since in the
presence of the cationic adsorbate, the acid site is anionic. A
second acid site in the same cavity allows for resolving this, as
one site can form the stable zwitterion (cationic adsorbate and
anionic site), while the other site forms an SMS. In principle,
this introduces no specific constraints on the location of the
second site other than that it has to be in the same cavity. For
computational convenience, the location of the second site was
chosen such that it can interact with the adsorbate without the
need for excessive rotations and rearrangements of the
adsorbate in the cavity.58 For the side-chain mechanism of
the aromatic cycle within the dual-site model, involvement of
the second acid site was previously found to lower the barrier
from 205 kJ mol−1 (concerted methylation) to 168 kJ mol−1
(stepwise methylation).58

We have investigated the effect of a second acid site in the
pentaMCP+ cycle discussed above, using the same model as in
ref 58. The model is shown in Figure 2 and employs a supercell
with 72 T atoms, thus maintaining the Si/Al ratio of 35. Figure
3 shows both the mechanism and the corresponding Gibbs free
energy diagram. The states of the two acid sites (ZOH, ZOMe,
and ZO−) are indicated below the adsorbate. As in the single-
site mechanism, all Gibbs free energies are referenced to the
starting point pentaMCP+ (01). With the first acid site in an
anionic state, SMS can be created at the second site with a
moderate barrier of 153 kJ mol−1. From that SMS, side-chain

methylation proceeds (coincidentally) also with a barrier of
153 kJ mol−1 (referred to the more stable 01S intermediate),
followed by deprotonation/protonation up to 07b, which is the
most stable intermediate observed also in the single-site
mechanism. Then, the second SMS formation occurs with a
barrier slightly lower than that of the first one (141 kJ mol−1).
After the second SMS formation, ethylene is eliminated with

a barrier of 134 kJ mol−1, which is 31 kJ mol−1 lower than that
with a single site. Subsequently, the second SMS methylates
tetraMCP to pentaMCP+ (TS10−01) with a barrier lower than
that for the first methylation (148 kJ mol−1). Again, this barrier
is referenced to the highly stable tetraMCP+ formed by
protonation of the neutral tetraMCP. For ethylene formation,
the highest barriers are thus those for methylation (153 kJ
mol−1), while elimination requires lower barriers (134 kJ
mol−1).
The second SMS can also methylate the ethylene group,

forming the isopropyl side chain. This step has a barrier of 156
kJ mol−1, relative to 07b. Propylene elimination occurs
analogously to the single-site mechanism, with a barrier of
147 kJ mol−1 relative to 07S. For propylene formation, the
barriers for methylation (153 kJ mol−1) and elimination (156
kJ mol−1) are thus similar.
Overall, the second site reduces the highest barrier from

about 195 to around ≤156 kJ mol−1. For the single site, the
selectivity is determined by the barriers of the methylation of
the ethylene side chain (TS04−05) relative to 07b (204 kJ
mol−1) versus ethylene elimination (TS07b−08b) relative to 07b
(165 kJ mol−1). For the dual site case, the selectivity is
determined by the barriers of TS04−05 relative to 07b (156 kJ
mol−1) versus TS07bdS−08b relative to 07b (134 kJ mol

−1). The
selectivity for ethylene thus remains but is less pronounced for
the dual site case when analyzing only the barriers.
It is obvious from Figure 3c that there are multiple barriers

in a similar range. Given that the reaction path furthermore
splits into two branches, we performed microkinetic modeling
to determine the activity as given by the turnover frequency
(TOF) and also the selectivity for ethylene and propylene. The
main results for the microkinetic analysis are shown in Table 1.

Figure 2. Structural model of the double-site CHA supercell with (a)
the cavity including the two Al atoms and (b) top view of the
supercell.
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For ethylene formation at the single site, the microkinetic
model predicts a TOF of 5.9 × 10−3 s−1 and a selectivity of

98% for ethylene. This agrees reasonably well with a simpler
analysis as described by the energetic span model,73 according
to

=r
k T

h
e

G
k TB

B
(1)

which also predicts a high selectivity (100%) and an activity
about two times larger. The main barrier that hinders the
reaction in the single site configuration is S02−03, being 195 kJ
mol−1 above the most stable state before that, which is
structure 01. This high barrier prevents the reaction from
progressing forward, as shown by the high steady state
coverage of 54% for θ01. Afterward, the reaction quickly
progresses to intermediate 10′, with θ10′ = 46%, from which
the second large barrier for the methylation of structure 10 to
regain 01 needs to be overcome. In addition, the propylene
formation in the single site has another high barrier
(G(TS04−05) − G(07b) = 204 kJ mol−1), higher than that of
TS02−03, which explains the higher selectivity obtained for
ethylene.
As expected, given the overall lower barriers, the micro-

kinetic model with two sites gives higher TOF values for both
olefins. Despite the TOF increase, selectivity remains the same,
with an ethylene selectivity value of 98%. Two of the largest
free energy barriers correspond to the formation of the first
SMS (TS01−01dS

) and methylation via this SMS (TS02−03).

Figure 3. (a) Overview of the proposed pentaMCP+ cycle for propylene and ethylene formation assisted by a second acid site, (b) SMS formation
(TS01−01dS

) and second methylation (TS04−05) steps, and (c) Gibbs free energy diagram of the pentaMCP+ cycle mechanism assisted by a second
acid site proposed for propylene and ethylene formation at 400 °C and 1 bar with ωB97M-D4. All shown free energy values are given relative to
structure 01.

Table 1. Free Energy Barriers and Coverages for the Rate-
Determining Steps in the Two Variants of the PentaMCP+
Mechanism (Propylene and Ethylene Formation) for the
Single Site and the Second Site-Assisted System and TOFs
for the Complete Mechanisma

single site second site-assisted

Microkinetic Model
coverage 01: 54% 01: 39%

10′: 46% 01S: 42%
07b: 3%
10′: 15%

TOF C3H6 (s−1) 5.8 × 10−6 1.4 × 10−1

TOF C2H4 (s−1) 5.9 × 10−3 6.9 × 100
bselectivity C2H4 98% 98%

Energetic Span Model
TOF C2H4 (s−1)

c1.1 × 10−2 d1.8 × 101
bselectivity C2H4

e100% f98%
aValues calculated using microkinetic modelling at 400 °C and at a
reference pressure of 1 bar. bSelectivity calculated as TOFCd2Hd4

/
(TOFCd2Hd4

+ TOFCd3Hd6
). cG(TS02−03) − G(01) = 195 kJ mol−1.

dG(TS04−05) − G(01S) = 156 kJ mol−1.
eDifference in barriers 39 kJ

mol−1. fDifference in barriers 22 kJ mol−1.
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Therefore, the steady-state coverage corresponds mostly to
structures 01 and 01S, with values of θ01 = 39% and θ01dS

= 42%,
respectively. After these steps, the mechanism for ethylene
formation presents barriers 20 kJ mol−1 lower until ethylene
formation. Then structure 10′ is reached without any
significant barrier, with a coverage of 15%, and has to
overcome a moderate barrier of 148 kJ mol−1 for reaching
structure 01 again. Once again, the propylene pathway is less
selective due to the second methylation barrier (TS04−05),
which has the highest barrier of the mechanism with 156 kJ
mol−1 relative to the most stable previous intermediate 01S.
This is 22 kJ mol−1 higher than the ethylene formation barrier
(134 kJ mol−1), resulting in a lower propylene TOF compared
to that for ethylene.
We will now compare the activity of the pentaMCP+ based

cycle to the aromatic and olefin cycles for H-SSZ-13. This
comparison is based on an analysis of rate-limiting steps
according to the energetic span model,73 and we note that this
approach only describes the intrinsic reactivity of the
corresponding mechanisms per active site. Other effects, such
as diffusion limitations, actual coverages, and partial pressures,
are not included. Besides the barriers of a cycle (olefin,
aromatic, or MCP+), it is of course also important to what
extent these species are present. This includes not only the
aspect of formation but also that both aromatics and MCP+
are trapped in the cavities of chabazite. Due to the limited
space in a cavity, the presence of an aromatic molecule or
MCP+ can then be expected to block the corresponding sites
and effectively suppress the other cycles.
Again, we stress that the methylbenzenes (6 π-electrons)

and their associated cations (4 π-electrons) have one more
unsaturated bond than methylcyclopentadienes (4 π-electrons)
and methylcyclopentenyl cations (2 π-electrons). These
species can therefore not be expected to be in a rapid
equilibrium. To allow direct comparison, barriers previously
computed with ab initio methods on cluster models58 were for
this work recomputed with ωB97M-D4 single points on the
already existing optimized periodic structures. The comparison
of the rate-determining barriers with ωB97M-D4 and ab initio
calculations is summarized in Table 2, showing that ωB97M-

D4 generally gives somewhat higher barriers for the aromatic
cycle than those obtained previously with ab initio methods.
For the side-chain mechanism, we have previously reported
barriers of 167 and 168 kJ mol−1 (relative to heptaMB+) for
the first and second steps of the stepwise methylation of
HMMC, when assisted by a second site. The barrier for the
first step agrees well (166 kJ mol−1 with ωB97M-D4) and is
not listed in Table 2. The barrier for the second step, however,
is higher, with 192 kJ mol−1. This overestimation by 24 kJ

mol−1 is to a large extent due to the fact that HMMC relative
to heptaMB+ is too high in free energy by 12 kJ mol−1 with
ωB97M-D4. For the paring mechanism, we have previously
recomputed the highest barriers from our initial study on a
single site,17 in our subsequent study on two sites.58 The
highest barriers obtained for the two alternative pathways in
those studies, labeled TS5−6r and TS6−7, were reported to be
both 157 kJ mol−1 for the two-site-assisted case.58 The barriers
for TS5−6r and TS6−7 recomputed with ωB97M-D4 are 179
and 165 kJ mol−1, respectively. While one of the barriers is 22
kJ mol−1 higher, the other is similar, overall agreeing with the
analysis that the paring mechanism is expected to be active.
For the olefin cycle, cracking becomes more favorable when
stable intermediate cations can be formed,94 meaning cracking
becomes facile for heavy olefins.95 Methylation of light olefins,
which multiple investigations have found to occur via the
stepwise (dissociative) mechanism at high temperatures,
presents higher barriers.96,97 The rate-limiting step is then
the formation of the SMS intermediate in this dissociative
methylation, which we recomputed in the dual-site model for
consistency with a barrier of 154 kJ mol−1. While the accuracy
of ωB97M-D4 is in these cases somewhat less than anticipated
based on ref 88, we still believe that the accuracy is sufficient
for most cases, without extreme outliers, and is justified by the
savings in computational time and the benefit of using only
periodic models.
Overall, we find the barriers for the pentaMCP+ based side-

chain mechanism to be around 160 kJ mol−1 and thus similar
or even lower than results obtained for the paring and side-
chain mechanism. This indicates that, if MCP+ species are
present in the catalytic pool of species, the MCP+ cycle could
be faster than the aromatic cycle for the case of H-SSZ-13.
Based on the degree of oxidation of the olefins, we would
expect MCP+ species as a likely intermediate between olefins
and aromatics, such that they are eventually oxidized to
aromatics through hydrogen transfer reactions.

■ SUMMARY AND CONCLUSION
The reactivity of the pentamethylcyclopentenyl cation
(pentaMCP+) for the production of olefins has been
investigated by using density functional theory and micro-
kinetic modeling using H-SSZ-13 as the catalyst. Our
investigations identified pentamethylcyclopentadiene and its
protonated form pentaMCP+ as key intermediates that are
structurally similar to both olefins as well as to aromatics and
their protonated forms, such as hexaMB and heptaMB+. The
most favorable reactivity of pentaMCP+ resembles the side-
chain mechanism of the aromatic cycle. After an unsaturated
methylene side chain is formed, it can be methylated to form
an ethyl side chain, which can be subsequently eliminated as
ethylene. Importantly, this elimination is more favorable than
further methylation, resulting in a high selectivity for ethylene.
As in other studies on the side-chain mechanism of the
aromatic cycle, we find a high barrier for concerted
methylation of the methylene side chain, here 194 kJ mol−1.
This is because, starting from the most stable cationic species
(here, pentaMCP+, for aromatics, for example, heptaMB+),
creation of the neutral species to be methylated is uphill in free
energy by >50 kJ mol−1, which adds to the intrinsic barrier for
methylation. As in a previous investigation, we find that the
(otherwise unfavorable) stepwise methylation mechanism in
combination with a second accessible acid site allows us to
circumvent this problem. This is because the first step of

Table 2. Comparison of the Different Cycles of the
Hydrocarbon Pool Based on Rate-Determining Gibbs Free
Energy Barriers According to the Energetic Span Modela

cycle barrier ωB97M-D4 ab initiob

olefin SMS formation 154 -
aromatic, paring TS(6−7) 165 157
aromatic, side chain TS(3s−4s) 192 168
MCP+, side chain TS(02−03) 153 -

aAll data are for H-SSZ-13 at 400 °C and 1 bar reference pressure and
use the dual-site model for consistency. For transition states from
previous work, we use the same labels defined therein.58 bRef 58.
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stepwise methylation, turning the first site into an SMS, can
occur with the hydrocarbon in the more stable cationic state if
the negative charge is on the second site. In our investigation,
this lowers the highest barrier from 195 kJ mol−1 to 153 kJ
mol−1, making this mechanism thus much more facile. These
low barriers suggest high catalytic activity of the MCP cycle for
ethylene formation, which is corroborated by microkinetic
modeling, which predicts a TOF of 6.9 s−1. This is in contrast
to high DFT barriers reported previously for the reactivity of
MCP+.74,75

Importantly, the overall barrier of the MCP+ cycle is
therefore 153 kJ mol−1 for the production of ethylene. Our
investigations therefore shed light on this third catalytic cycle,
which we term the MCP cycle, and which runs alongside the
well-known olefin and aromatic cycles (see Figure 4), with
barriers that are similar or lower than either of them (see Table
2).
However, the extent to which the MCP cycle contributes to

overall production rates of olefins greatly depends on the
existence of MCP+ species during the reaction and, thus, the
formation rates of these cationic species from olefins and
depletion rates through further reaction toward aromatics.
Nevertheless, our results show a clear predominance of the
MCP cycle toward ethylene formation over propylene.
Suppressing the formation and catalytic activity of MCP+
species is therefore expected to reduce ethylene formation via
the investigated side-chain mechanism. Additionally, low free
energy barriers were obtained only with the presence of two
accessible sites, which suggests that another way of avoiding
this reactivity would be to control the distribution of the acid
sites. These questions need extensive experimental and
theoretical studies to answer but might hold the key to
improve not only activity and selectivity but also the lifetime of
zeotype catalysts.
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