KIT | KIT-Bibliothek | Impressum | Datenschutz

High-Resolution Integrated Water Vapor Estimation Using the Gaussian Mixed Long Short-Term Memory Network: A Satellite-Based Inter-Comparison and Data-Fusion

Wang, Lingke 1; Wang, Duo ORCID iD icon 1; Awange, Joseph; Kutterer, Hansjörg 1
1 Geodätisches Institut (GIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Water vapor, the most influential greenhouse gas, is central to Earth’s climate system, affecting the hydrological cycle, energy balance, and atmospheric dynamics. Integrated water vapor (IWV) is a key variable for understanding these processes. However, conventional IWV retrieval methods—such as ground-based sensors, satellite observations, and numerical weather models (NWMs)—are often limited by spatial resolution, temporal continuity, and retrieval accuracy. To address these challenges, this study introduces a novel deep learning method, Gaussian mixture long short-term memory (GMLSTM)-high-resolution IWV estimation model (HIM), an HIM based on a GMLSTM framework. By integrating global navigation satellite system (GNSS) and NWM inputs, including weighted mean temperature, GMLSTM-HIM utilizes a bidirectional LSTM (Bi-LSTM) structure and probabilistic output sequences to improve IWV estimation accuracy while quantifying uncertainty arising from spatial heterogeneity. Compared to ERA5 and Vienna Mapping Functions 3 (VMF3), the model achieves average root mean square error (RMSE) reductions of 68.44% and 36.15%, respectively. The model’s performance is further evaluated through intercomparisons with moderate-resolution imaging spectroradiometer (MODIS) and Fengyun satellite-derived IWV products, highlighting both the accuracy of GMLSTM-HIM and the complementary strengths of satellite observations. ... mehr


Zugehörige Institution(en) am KIT Geodätisches Institut (GIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0196-2892, 1558-0644
KITopen-ID: 1000189142
Erschienen in IEEE Transactions on Geoscience and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 63
Seiten 1–20
Vorab online veröffentlicht am 28.11.2025
Schlagwörter Data fusion, Fengyun series, Gaussian mixture long short-term memory (GMLSTM), global navigation satellite system (GNSS), integrated water vapor (IWV) estimation, intercomparison, MODIS
Nachgewiesen in OpenAlex
Scopus
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page