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Abstract

Recently, a nonlinear stability theory has been developed for wave trains in reaction-diffusion systems 
relying on pure L∞-estimates. In the absence of localization of perturbations, it exploits diffusive decay 
caused by smoothing together with spatio-temporal phase modulation. In this paper, we advance this theory 
beyond the parabolic setting and propose a scheme designed for general dissipative semilinear problems. We 
present our method in the context of the FitzHugh-Nagumo system. The lack of parabolicity and localiza
tion complicates mode filtration in L∞-spaces using the Floquet-Bloch transform. Instead, we employ the 
inverse Laplace representation of the semigroup generated by the linearization to uncover high-frequency 
damping, while leveraging a link to the Floquet-Bloch representation for the smoothing low-frequency part. 
Another challenge arises in controlling regularity in the quasilinear iteration scheme for the modulated 
perturbation. We address this by extending the method of nonlinear damping estimates to nonlocalized per
turbations using uniformly local Sobolev norms.
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1. Introduction

We study the nonlinear stability of traveling periodic waves against bounded, fully nonlocal
ized perturbations in the FitzHugh-Nagumo (FHN) system

∂tu= uxx + u(1 − u)(u−μ)− v,

∂tv = ε(u− γ v −μ),
(1.1)

with x ∈ R, t ≥ 0 and parameters μ ∈ R and γ, ε > 0. The FHN system was originally pro
posed as a simplification of the Hodgkin-Huxley model describing signal propagation in nerve 
fibers [16,40,41]. Mathematically, system (1.1) is a coupling between a scalar bistable reaction
diffusion equation and a linear ordinary differential equation and is thereby one of the simplest1

models, which can, and does, exhibit stable spatio-temporal patterns. In fact, exploiting the slow
fast structure of system (1.1) arising for 0 < ε ≪ 1, a large variety of (spectrally) stable patterns 
and nonlinear waves have been rigorously constructed using tools from geometric singular per
turbation theory, such as fast traveling pulses [22,29,30,50], pulses with oscillatory tails [8,9], 
periodic wave trains [10,15,48] and pattern-forming fronts [10] connecting such pulse trains to 
the homogeneous rest state (μ,0).

Due to its remarkably rich dynamics, yet simple structure, the FHN system is widely rec
ognized as a paradigmatic model for far-from-equilibrium patterns in excitable and oscillatory 
media. It has, in small variations, been employed across various scientific disciplines to explain 
phenomena such as the onset of turbulence in fluids [5], oxidation processes on platinum sur
faces [4,39], and heart arrhythmias [38].

The simplest and most fundamental spatio-temporal patterns exhibited by (1.1) are periodic 
traveling waves, or wave trains. Writing (1.1) as a degenerate reaction-diffusion system

∂tu =Duxx + F(u), D =
(︃

1 0
0 0

)︃
, F(u)=

(︃
u(1 − u)(u−μ)− v

ε(u− γ v −μ)

)︃
, (1.2)

in u = (u, v)⊤, wave trains are solutions to (1.2) of the form u0(x, t)= ϕ0(x − c0t) with smooth 
periodic profile function ϕ0 : R → R2 and propagation speed c0 ∈ R. Upon switching to the 
co-moving frame ζ = x − c0t , in which system (1.2) reads

∂tu =Duζ ζ + c0uζ + F(u), (1.3)

we find that ϕ0 is a stationary solution to (1.3).
Wave-train solutions to (1.2) have been constructed in the oscillatory regime with 0<μ< 1

2
and 0 < ε ≪ γ ≪ 1, as well as in the excitable regime with μ < 0 and 0 < ε ≪ γ ≪ 1, using 
geometric singular perturbation theory and blow-up techniques, see [10,48] and Remark 1.1. The 
associated profile functions consist of steep jumps interspersed with long transient states, where 
the profile varies slowly. Accordingly, these wave trains correspond to highly nonlinear far-from
equilibrium patterns. It has recently been argued theoretically and demonstrated numerically [10] 
that some of these wave trains are selected by compactly supported perturbations of the unstable 

1 We note that Sturm-Liouville theory implies that all periodic traveling waves in real scalar reaction-diffusion equa
tions are unstable.
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rest state (μ,0) in the oscillatory regime and, thus, play a pivotal role in pattern formation away 
from onset.

In this paper, we focus on the dynamical, or nonlinear, stability of wave trains as solutions 
to (1.2). The nonlinear stability theory for wave trains in spatially extended dissipative problems 
such as (1.2) has been rapidly developing over the past decades. The general approach is to 
first linearize the system about the wave train, obtain bounds on the C0-semigroup generated 
by the linearization and then close a nonlinear argument by iterative estimates on the associated 
Duhamel formulation. A standard issue is that the linearization is a periodic differential operator 
acting on an unbounded domain, which possesses continuous spectrum touching the imaginary 
axis at the origin due to translational invariance. The lack of a spectral gap prevents, in contrast 
to the case of a finite domain with periodic boundary conditions, exponential convergence of the 
perturbed solution towards a translate of the original profile.

To overcome this issue a common strategy is to decompose the semigroup generated by the 
linearization in a diffusively decaying low-frequency part and an exponentially damped high
frequency part, cf. [27]. The critical diffusive behavior caused by translational invariance can 
then be captured by introducing a spatio-temporal phase modulation, whose leading-order be
havior is given by a viscous Hamilton-Jacobi equation [13]. The modulated perturbation obeys 
a quasilinear equation depending only on derivatives of the phase modulation, which thus sat
isfy a perturbed Burgers’ equation. Observing that small, sufficiently localized initial data in a 
(perturbed) viscous Burgers’ equation decay diffusively, cf. [49, Theorem 1] or [7, Theorem 4], 
suggests that the critical dynamics in a nonlinear iteration scheme, tracking the modulated per
turbation variable and derivatives of the phase, can be controlled. This observation has led to 
a series of nonlinear stability results of wave trains against localized perturbations in general 
(nondegenerate) reaction-diffusion systems [24,27,31,32,45] relying on renormalization group 
theory [45], pointwise estimates [31,32] or L1-Hk-estimates [24,27] to close the nonlinear iter
ation. We note that, since only derivatives of the phase enter in the nonlinear iteration and thus 
need to be localized, one could allow for a nonlocalized phase modulation, cf. [24,32,45]. With 
the aid of periodic-coe�icient damping estimates to obtain high-frequency resolvent bounds and 
control regularity in the quasilinear iteration scheme, the method employing L1-Hk-estimates 
could be extended beyond the parabolic setting to general dissipative semilinear problems (and 
some quasilinear problems) such as the St. Venant equations [28,44], the Lugiato-Lefever equa
tion [21,51] and the FHN system [3].

Recently, a novel approach was developed [11,23] to establish nonlinear stability of wave 
trains in (nondegenerate) reaction-diffusion systems, which employs pure L∞-estimates to close 
the nonlinear iteration, thereby lifting all localization assumptions on perturbations. In contrast 
to previous methods, diffusive decay cannot be realized by giving up localization, but emanates 
from smoothing action of the analytic semigroup generated by the linearization about the wave 
train. The Cole-Hopf transform is then applied to the equation for the phase to eliminate the 
critical Burgers’-type nonlinearity, which cannot be readily controlled by diffusive smoothing.

In this paper, we extend the approach developed in [11,23] beyond the parabolic framework 
by proving nonlinear stability of wave trains in the FHN system (1.2) against Cub-perturbations. 
The incomplete parabolicity of (1.2) in combination with lack of localization of perturbations 
presents novel challenges in our analysis. These challenges involve the decomposition of the 
C0-semigroup and the control of regularity. We explain the main ideas on how to address these 
challenges in §1.3 after we have stated our main result in §1.2.
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Remark 1.1. Let μ< 0, γ ≥ 0 and ε > 0, so that we are in the excitable regime. Upon rescaling 
time, space, the variables u and v, and the system parameters ε, μ and γ by setting

x̃ = (1 −μ)x, t̃ = (1 −μ)2t, ũ= u−μ

1 −μ 
, ṽ = v

(1 −μ)3
,

ε̃ = ε

(1 −μ)4
, γ̃ = (1 −μ)2γ, μ̃= − μ 

1 −μ
, 

we arrive at the equivalent formulation

∂t̃ ũ= ũx̃x̃ + ũ(1 − ũ)(ũ− μ̃)− ṽ,

∂t̃ ṽ = ε̃(ũ− γ̃ ṽ),
(1.4)

of the FHN system (1.1). Here, we have μ̃ ∈ (0,1), γ̃ ≥ 0 and ε̃ > 0. We note that the formu
lation (1.4) of the FHN system has been used in the existence and spectral stability analysis of 
wave trains and traveling pulses in the excitable regime, cf. [8,15,29,30,48,50].

1.1. Assumptions on the wave train and its spectrum

Here, we formulate the hypotheses for our main result. The first hypothesis concerns the 
existence of the wave train.

(H1) There exist a speed c0 ∈R and a period T > 0 such that (1.2) admits a wave-train solution 
u0(x, t)= ϕ0(x − c0t), where the profile function ϕ0 : R → R2 is nonconstant, smooth and 
T -periodic.

We note that wave-train solutions have been shown to exist, i.e., (H1) has been verified, in the 
excitable regime with μ< 0 ≤ γ ≪ 1 and 0 < ε ≪ 1, cf. [48], and in the oscillatory regime with 
0 <μ< 1

2 and 0 < ε ≪ γ ≪ 1, cf. [10].
Next, we specify our spectral assumptions on the wave train u0. Linearizing (1.3) about its 

stationary solution ϕ0 yields the T -periodic differential operator

ℒ0w =Dwζ ζ + c0wζ + F ′(ϕ0)w (1.5)

acting on Cub(R)×Cub(R), with domain D(ℒ0)= C2
ub(R)×C1

ub(R).
The spectrum of ℒ0 is determined by the family of Bloch operators

ℒ(ξ)w =D
(︁
∂ζ + iξ

)︁2 w + c0
(︁
∂ζ + iξ

)︁
w + F ′(ϕ0)w, ξ ∈ C

posed on L2
per(0, T )×L2

per(0, T ), with domain D(ℒ(ξ))=H 2
per(0, T )×H 1

per(0, T ). Since ℒ(ξ)
has compact resolvent, its spectrum consists of isolated eigenvalues of finite multiplicity. The 
spectrum of ℒ0 is then obtained as the union of the spectra of ℒ(ξ) for ξ in the real interval 
[−π

T
, π
T
):

σ(ℒ0)=
⋃︂

ξ∈
[︂
−π
T
, π
T

)︂σ(ℒ(ξ)), (1.6)
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cf. [18]. Yet, we will also consider ℒ(ξ) for complex values of the Floquet-Bloch frequency 
parameter ξ , which allows us to access results from analytic perturbation theory and complex 
analysis, cf. Propositions 1.3, 2.2, and 3.8.

We require that the following standard diffusive spectral stability assumptions, cf. [11,27,45, 
46], are satisfied.

(D1) We have σ(ℒ0)⊂ {λ ∈C : Re(λ) < 0} ∪ {0};
(D2) There exists a constant θ > 0 such that for any ξ ∈ [−π

T
, π
T
) we have Reσ(ℒ(ξ))≤ −θξ2;

(D3) 0 is a simple eigenvalue of ℒ(0).

The main result of [2] establishes diffusive spectral stability of wave trains in (1.1) in the oscilla
tory regime (3 − √

5)/6 < μ< 1
2 and 0 < ε ≪ γ ≪ 1. On the other hand, a spectral analysis of 

wave trains in the excitable regime with μ< 0, γ = 0 and 0 < ε ≪ 1 can be found in [15].2

It is a consequence of translational invariance that 0 is an eigenvalue of the Bloch operator 
ℒ(0) with associated eigenfunction ϕ′

0. Assumption (D3) then states that the kernel of ℒ(0) is 
spanned by ϕ′

0. In this case 0 is also a simple eigenvalue of the adjoint operator ℒ(0)∗. We denote 
by ˜︁Φ0 the corresponding eigenfunction satisfying⟨︁˜︁Φ0, ϕ

′
0

⟩︁
L2(0,T ) = 1.

An application of the implicit function theorem in combination with Assumption (D3) readily 
yields that the wave train can be continued with respect to the wavenumber, cf. [13, Section 4.2].

Proposition 1.2. Assume (H1) and (D3). Then, there exists a constant r0 ∈ (0,1) and smooth 
functions ϕ : R × [1 − r0,1 + r0] → R2 and ω : [1 − r0,1 + r0] → R with ϕ(·;1) = ϕ0 and 
ω(1)= c0 such that ϕ(·; k) is T -periodic and

uk(x, t)= ϕ(kx −ω(k)t; k)

is a solution to (1.2) for each wavenumber k ∈ [1 − r0,1 + r0]. By shifting the wave train if 
necessary, we can arrange for ⟨︁˜︁Φ0, ∂kϕ(·;1)

⟩︁
L2(0,T ) = 0.

The curve ω : [1 − r0,1 + r0] → R from Proposition 1.2 describes the relationship between 
the temporal frequency ω(k) and the wavenumber k of the T/k-periodic wave train uk and is 
called the nonlinear dispersion relation.

Because the Bloch operators ℒ(ξ) depend analytically on the Floquet exponent ξ and 0 is 
a simple eigenvalue of ℒ(0) by Hypothesis (D3), it follows by standard analytic perturbation 
theory, see e.g. [34], that the 0-eigenvalue can be continued to a simple eigenvalue λc(ξ) of 
ℒ(ξ) for ξ ∈ C close to 0. The spectrum of ℒ0 near the origin, which arises by restricting the 

2 Although the spectral assumptions (D1) and (D3) are verified in [15], we emphasize that the fact that γ = 0 yields 
a lack of damping in the second component of (1.1), causing the spectrum of the linearization to asymptote to iR at 
infinity. In particular, the spectrum is not bounded away from the imaginary axis away from 0 and the assumption (D2)
does not hold, prohibiting diffusive spectral stability.

5 
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analytic function λc(ξ) to real values of ξ , necessarily touches the imaginary axis in a quadratic 
tangency by Hypothesis (D2). Using Lyapunov-Schmidt reduction, the eigenvalue λc(ξ), as well 
as the associated eigenfunction, can be expanded in ξ about ξ = 0, cf. [13, Section 4.2] or [25, 
Section 2].3 We record these facts in the following result.

Proposition 1.3. Assume (H1) and (D1)-(D3). There exist a constant C > 0, open balls V1,V2 ⊂
C centered at 0 and an analytic function λc : V1 → C such that the following assertions hold.

(i) λc(ξ) is a simple eigenvalue of ℒ(ξ) for each ξ ∈ V1. An associated eigenfunction Φξ of 
ℒ(ξ) lies in Hm

per(0, T ) for any m ∈N0, is analytic in ξ , satisfies Φ0 = ϕ′
0 and fulfills⟨︁˜︁Φ0,Φξ

⟩︁
L2(0,T ) = 1

for ξ ∈ V1.
(ii) It holds σ(ℒ0)∩ V2 = {λc(ξ) : ξ ∈ V1 ∩R} ∩ V2.
(iii) The complex conjugate λc(ξ) is a simple eigenvalue of the adjoint ℒ(ξ)∗ for any ξ ∈ V1. An 

associated eigenfunction ˜︁Φξ lies in Hm
per(0, T ) for any m ∈N0, is smooth in ξ and satisfies⟨︁˜︁Φξ,Φξ

⟩︁
L2(0,T ) = 1

for ξ ∈ V1.
(iv) We have

λ′
c(ξ)= 2i

⟨︁˜︁Φξ,D
(︁
∂ζ + iξ

)︁
Φξ

⟩︁
L2(0,T ) + ic0

and the expansions⃓⃓⃓
λc(ξ)+ icgξ + dξ2

⃓⃓⃓
≤ C|ξ |3, ⃦⃦

Φξ − ϕ′
0 − iξ∂kϕ(·;1)

⃦⃦
Hm(0,T ) ≤ C|ξ |2, (1.7)

hold for ξ ∈ V1 with coefficients

cg = −2
⟨︁˜︁Φ0,Dϕ

′′
0

⟩︁
L2(0,T ) − c0 = ω′(1)− c0 ∈ R,

d = ⟨︁˜︁Φ0,Dϕ
′
0 + 2D∂ζkϕ(·;1)

⟩︁
L2(0,T ) > 0.

(1.8)

The function λc in Proposition 1.3 is called the linear dispersion relation. The coefficient cg
in (1.7) is the group velocity of the wave train and provides the speed at which perturbations are 
transported along the wave train (in the frame moving with the speed c0), cf. [13]. We make the 
generic assumption that the wave train has nonzero group velocity. By reversing space x → −x
in (1.2) we may then without loss of generality assume that the group velocity is negative.

(H2) Assuming, in accordance with Hypothesis (D3), that 0 is a simple eigenvalue of ℒ(0), the 
group velocity cg , defined in (1.8), is negative.

3 For the purpose of our current analysis, it suffices to expand the eigenvalue λc(ξ) up to second order and the associ
ated eigenvector up to first order. We refer to Remark 1.5 for further details.
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On the linear level, the interpretation of Assumptions (D1)-(D3) and (H2) is that perturbations 
decay diffusively and are transported to the left along the wave train, i.e., there is an outgoing 
diffusive mode at the origin, cf. [3, Section 2.1]. In [10], it was shown that the group velocity of 
the wave trains is negative in the oscillatory regime with 0<μ< 1

2 and 0 < ε ≪ γ ≪ 1.
Another important consequence of Assumption (H2) is that the linear dispersion relation λc

is invertible in the point ξ = 0. Hence, for |λ| sufficiently small, the periodic eigenvalue problem 
(ℒ0 − λ)w = 0 has a single Floquet exponent converging to 0 as λ→ 0. In our stability analysis 
we exploit this fact to relate the inverse Laplace representation of the low-frequency part of the 
semigroup generated by ℒ0 with the Floquet-Bloch representation, see §3.4.

1.2. Main result

We are now ready to present our main result, which establishes Lyapunov stability of diffu
sively spectrally stable wave trains in the FHN system against Cub-perturbations. Furthermore, 
it yields convergence of the perturbed solution towards a modulated wave train, where the phase 
modulation can be approximated by a solution of a viscous Hamilton-Jacobi equation.

Theorem 1.4. Assume (H1), (H2) and (D1)-(D3). Fix a constant K > 0. Then, there exist con
stants α, ϵ0,M > 0 such that, whenever w0 ∈ C3

ub(R)×C2
ub(R) satisfies

E0 := ∥w0∥L∞ < ϵ0, ∥w0∥C3
ub×C2

ub
<K,

there exist a smooth function ψ ∈ C∞(︁[0,∞) × R,R
)︁

with ψ(0) = 0 and ψ(t) ∈ Cm
ub(R) for 

each m ∈N0 and t ≥ 0 and a unique classical global solution

u ∈ C
(︁[0,∞),C3

ub(R)×C2
ub(R)

)︁∩C1(︁[0,∞),C1
ub(R)×C1

ub(R)
)︁

(1.9)

to (1.3) with initial condition u(0)= ϕ0 + w0, which obey the estimates

∥u(t)− ϕ0∥L∞ ≤ME0, (1.10)

∥u(t)− ϕ0(· +ψ(·, t))∥L∞ ≤ ME0√
1 + t

, (1.11)

⃦⃦
u(t)− ϕ0

(︁· +ψ(·, t) (︁1 +ψζ (·, t)
)︁ ;1 +ψζ (·, t)

)︁⃦⃦
L∞ ≤ME0

log(2 + t)

1 + t 
(1.12)

and

∥ψ(t)∥L∞ ≤ME0, 
⃦⃦
ψζ (t)

⃦⃦
L∞ ,∥∂tψ(t)∥L∞ ≤ ME0√

1 + t
,

∥ψζζ (t)∥C4
ub
,∥∂tψζ (t)∥C3

ub
≤ME0

log(2 + t)

1 + t 

(1.13)

for all t ≥ 0. Moreover, there exists a unique classical global solution ψ̆ ∈ C
(︁[0,∞),C2

ub(R)
)︁∩

C1
(︁[0,∞),Cub(R)

)︁
with initial condition ψ̆(0) = ˜︁Φ∗

0w0 of the viscous Hamilton-Jacobi equa
tion

7 
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∂t ψ̆ = dψ̆ζζ − cgψ̆ζ + νψ̆2
ζ (1.14)

with coefficients (1.8) and

ν = − 1
2ω

′′(1)= ⟨︁˜︁Φ0,D
(︁
ϕ′′

0 + 2∂ζkkϕ(·;1)
)︁+ 1

2F
′′(ϕ0)

(︁
∂kϕ(·;1), ∂kϕ(·;1)

)︁⟩︁
L2(0,T )

− 2
⟨︁˜︁Φ0,Dϕ

′′
0

⟩︁
L2(0,T )

⟨︁˜︁Φ0, ∂ζkϕ(·;1)
⟩︁
L2(0,T ),

(1.15)

satisfying

t
j
2 
⃦⃦⃦
∂
j
ζ

(︂
ψ(t)− ψ̆(t)

)︂⃦⃦⃦
L∞ ≤ME0

(︃
Eα

0 + log(2 + t)√
1 + t

)︃
(1.16)

for j = 0,1 and t ≥ 0.

We compare Theorem 1.4 with earlier nonlinear stability results [11,23] of wave trains in 
nondegenerate reaction-diffusion systems against Cub-perturbations. First of all, we retrieve the 
same diffusive decay rates as in the reaction-diffusion case. It is argued in [11, Section 6.1] that 
these decay rates are sharp (up to possibly a logarithm). Second, we do require more regular 
initial data than in [11], where initial conditions w0 in Cub(R) are considered. The reason is as 
follows. The lack of parabolic smoothing naturally leads one to consider initial data w0 from the 
domain C2

ub(R)×C1
ub(R) of the diffusion-advection operator ℒ0, so that the perturbed solution 

u(t) of the semilinear evolution problem (1.3) with initial condition u(0)= ϕ0 + w0 is classical. 
Moreover, we lose one additional degree of regularity due to the embedding of uniformly local 
Sobolev spaces in Cub-spaces, cf. [47, Section 8.3.1], which are used to obtain a nonlinear damp
ing estimate to control regularity in the scheme, see §1.3 below for more details. We emphasize 
that we only require our initial data to be bounded in (C3

ub × C2
ub)-norm and, similar as in [11], 

to be small in L∞-norm. This contrasts with earlier nonlinear stability results [21,28,44] of wave 
trains in semilinear (nonparabolic) problems and is due to the use of Gagliardo-Nirenberg inter
polation in the nonlinear damping estimate, see Remark 4.10 for more details.

The approximation of the phase modulation ψ(t) by a solution to the viscous Hamilton-Jacobi 
equation (1.14) was also found in the reaction-diffusion case in [11]. Thus, independent of the 
precise structure and smoothing properties of the underlying system, the viscous Hamilton-Jacobi 
equation arises as governing equation for the phase modulation, whose coefficients are fully 
determined by the first and second-order terms in the expansion of the linear and nonlinear dis
persion relations. We refer to [13] for further details. Important to note is that once the diffusive 
spectral stability assumptions are violated, e.g. due to the presence of additional conservation 
laws, the governing equation of the phase modulation can change, cf. [26].

1.3. Strategy of proof and main challenges

We prove Theorem 1.4 by extending the L∞-theory, which was recently developed in [11,23] 
and applied to establish nonlinear stability of wave trains in reaction-diffusion systems against 
Cub-perturbations, beyond the parabolic setting. Here, we outline the strategy of proof and ex
plain how we address the novel challenges arising due to incomplete parabolicity.

To prove Theorem 1.4, we wish to control the perturbation ˜︁w(t)= u(t)−ϕ0 over time, which 
obeys the semilinear equation

8 
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(∂t −ℒ0)˜︁w = ˜︁𝒩 (˜︁w), (1.17)

where ℒ0 is the linearization of (1.3) about ϕ0 given by (1.5) and ˜︁𝒩 (˜︁w) is the nonlinear residual 
given by

˜︁𝒩 (˜︁w)= F(ϕ0 +˜︁w)− F(ϕ0)− F ′(ϕ0)˜︁w.
We will establish that ℒ0 generates a C0-semigroup eℒ0t , which, due to the fact that ℒ0 has 
spectrum up to the imaginary axis iR, does not exhibit decay as an operator on Cub(R), thus 
obstructing a standard nonlinear stability argument.

In earlier works [27,31,45], considering the nonlinear stability of wave trains in reaction
diffusion systems against localized perturbations, this issue was addressed by employing its 
Floquet-Bloch representation to decompose the semigroup generated by the linearization and 
introducing a spatio-temporal phase modulation to capture the critical diffusive behavior. More 
precisely, one considers the inverse-modulated perturbation

w(ζ, t)= u(ζ −ψ(ζ, t), t)− ϕ0(ζ ), (1.18)

where the spatio-temporal phase modulation ψ(ζ, t) is determined a posteriori. The inverse
modulated perturbation satisfies a quasilinear equation of the form

(∂t −ℒ0)
(︁
w + ϕ′

0ψ −ψζw
)︁=N

(︁
w,wζ ,wζ ζ ,ψζ , ∂tψ,ψζζ ,ψζζζ

)︁
, (1.19)

where N is nonlinear in its variables. One decomposes the semigroup eℒ0t into a principal part 
of the form ϕ′

0Sp(t), where Sp(t) decays diffusively, and a residual part exhibiting higher order 
temporal decay. Finally, one chooses the phase modulation ψ(t) in (1.18) in such a way that it 
captures the most critical contributions in the Duhamel formulation of (1.19), allowing one to 
close a nonlinear iteration argument in ψζ ,ψt and w. The leading-order dynamics of the phase 
modulation ψ is then given by a viscous Hamilton-Jacobi equation, cf. [13] and Remark 1.5.

The above approach has successfully been extended to the nonlinear stability analysis of pe
riodic traveling waves against L2-localized perturbations in nonparabolic dissipative problems 
such as the St. Venant equations [28,44] and the Lugiato-Lefever equation [21] using resolvent 
estimates and the Gearhart-Prüss theorem to render exponential decay of the high-frequency part 
of the C0-semigroup.

In the nonlinear stability analysis of wave trains in reaction-diffusion systems against Cub
perturbations in [11], the decomposition was carried out on the level of the temporal Green’s 
function, which is C2 and exponentially localized, thus circumventing an application of the 
Floquet-Bloch transform to nonlocalized functions, which is only defined in the sense of tem
pered distributions. This leads to an explicit representation of the low-frequency part of the 
semigroup as in [27] and control on the high-frequency part by pointwise Green’s function esti
mates established in [31].

For nonelliptic operators, such as ℒ0, the temporal Green’s function is typically a distribution, 
complicating a potential decomposition via the Floquet-Bloch transform. We address this chal
lenge by taking inspiration from [3] and employing its inverse Laplace representation, given by 
the complex inversion formula

9 
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eℒ0tw = lim 
R→∞

1 
2π i

η+iR∫︂
η−iR

eλt (λ−ℒ0)
−1w dλ (1.20)

with η, t > 0 and w ∈ D(ℒ0), to decompose the semigroup. By partitioning and deforming the 
integration contour in (1.20), we write the semigroup as the sum of a high- and low-frequency 
part. Here, we associate the high-frequency part of the semigroup with pieces of the deformed 
contour integral where |Im(λ)| ≫ 1, i.e., where eλt rapidly oscillates, and the low-frequency part 
of the semigroup with pieces of the deformed contour integral where |λ| ≪ 1.

As the space of perturbations Cub(R) does not admit any Hilbert-space structure, we cannot 
rely on the Gearhart-Prüss theorem (or leverage the sectoriality of the linearization) to estab
lish a spectral mapping property. Therefore, we instead use the expansion of the resolvent as a 
Neumann series for λ ∈ C with |Im(λ)| ≫ 1, which was established in [3], to control the high
frequency part of the semigroup. The leading-order terms in the Neumann series expansion of 
resolvent are not absolutely integrable over the high-frequency parts of the contour in (1.20) and, 
thus, the question of how to control these terms is not straightforward. Here, we cannot resort to 
the arguments in [3] which rely on test functions, since these are not dense in Cub(R). Instead, 
we identify the critical terms in the Neumann series expansion of (λ − ℒ0)

−1 as products of 
resolvents of simple diffusion and advection operators. The corresponding terms in the inverse 
Laplace formula then correspond to convolutions of the C0-semigroups generated by these dif
fusion and advection operators. As far as the authors are aware, the observation that the complex 
inversion formula holds for convolutions of C0-semigroups is novel and is therefore of its own 
interest, cf. [20]. All in all, we obtain that the high-frequency part of the semigroup is exponen
tially decaying on Cub(R).

To render decay of the low-frequency part of the semigroup one must rely on diffusive smooth
ing in the case of nonlocalized perturbations. The diffusive decay rates of the low-frequency part 
are not strong enough to control the critical nonlinear term ν(ψζ )

2 in the perturbed viscous 
Hamilton-Jacobi equation satisfied by ψ . In [11], this difficulty has been addressed by further 
decomposing the low-frequency part of the semigroup via its Floquet-Bloch representation and 
relating its principal part to the convective heat semigroup e(d∂

2
ζ−cg∂ζ )t , which allows to apply the 

Cole-Hopf transform to eliminate the critical (ψζ )
2-term.

Here, we link the inverse Laplace representation of the low-frequency part with the Floquet
Bloch representation from [11] modulo exponentially decaying terms, while exploiting the 
nonzero group velocity of the wave train, cf. Assumption (H2). This allows us to harness the 
decomposition of and estimates on the low-frequency part of the semigroup from [11]. A similar 
relationship between low-frequency Floquet-Bloch and inverse Laplace representations has been 
established by different methods for Green’s functions associated with the linearized dynamics 
of viscous conservation laws about periodic waves; see [42].

After applying the Cole-Hopf transform to the equation of the phase modulation ψ to elim
inate the critical nonlinear term, the decay of all remaining linear and nonlinear terms is strong 
enough to close a nonlinear iteration argument in ψζ ,ψt and w. Yet, the equation for the inverse
modulated perturbation is quasilinear and an apparent loss of derivatives must be addressed to 
control regularity in the nonlinear argument. This is a standard issue in the nonlinear stability 
of wave trains and it has been recognized that, as long as the underlying equation is semilinear, 
such a loss of derivatives can be addressed by considering the unmodulated perturbation or to the 
so-called forward-modulated perturbation

10 
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ẘ(ζ, t)= u(ζ, t)− ϕ0(ζ +ψ(ζ, t)), (1.21)

which measures the deviation from the modulated wave train, cf. [51]. Both the unmodulated 
perturbation ˜︁w(t) and the forward-modulated perturbation ẘ(t) obey a semilinear equation in 
which no derivatives are lost, yet where decay is too slow to close an independent iteration 
scheme. However, by relating ˜︁w(t) (or ẘ(t)) to the inverse-modulated perturbation w(t) regular
ity can be controlled in the nonlinear iteration scheme. Regularity control can then be obtained 
by showing that ˜︁w(t) (or ẘ(t)) obeys a so-called nonlinear damping estimate [26,51], which 
is an energy estimate bounding the Hm-norm of the solution for some m ∈ N in terms of the 
Hm-norm of its initial condition and the L2-norm of the solution. A nonlinear damping estimate 
for the forward-modulated perturbation has been derived in the setting of the FHN system in [3, 
Proposition 8.6].

A second option is to control regularity by deriving tame estimates on derivatives of ˜︁w(t) (or 
ẘ(t)) via its Duhamel formulation [11,12,21]. In the absence of parabolic smoothing, the ad
vantage of using nonlinear damping estimates is that they yield sharp bounds on derivatives and 
typically require less regular initial data, as can for instance be seen by comparing [51, Theo
rem 6.2] with [21, Theorem 1.3]. In the case of nonlocalized perturbations, one has so far been 
compelled to the second approach using tame estimates, cf. [11,12], since the lack of localization 
prohibits the use of L2-energy estimates. Motivated by the possibility to accommodate less regu
lar initial data, we control regularity in this work by extending the method of nonlinear damping 
estimates to uniformly local Sobolev norms, see [47, Section 8.3.1], which allow for nonlocalized 
perturbations. On top of that, we work with a slightly modified version of the forward-modulated 
perturbation given by

z̊(ζ, t) := u(ζ, t)− ϕ(ζ +ψ(ζ, t)(1 +ψζ (ζ, t));1 +ψζ (ζ, t))

= ẘ(ζ, t)+ ϕ0(ζ +ψ(ζ, t))− ϕ(ζ +ψ(ζ, t)(1 +ψζ (ζ, t));1 +ψζ (ζ, t))

=˜︁w(ζ, t)+ ϕ0(ζ )− ϕ(ζ +ψ(ζ, t)(1 +ψζ (ζ, t));1 +ψζ (ζ, t)),

(1.22)

which again satisfies a semilinear equation in which no derivatives are lost and is well-defined 
as long as ∥ψζ (t)∥L∞ is sufficiently small, cf. Proposition 1.2. The reason is that z̊(t) and its 
derivatives exhibit stronger decay than ẘ(t), cf. [11, Corollary 1.4]. Having sharper bounds 
on derivatives, it is no longer necessary to move derivatives in the Duhamel formulation from 
the nonlinearity to the slowly decaying principal low-frequency part Sp(t) of the semigroup as 
in [11]. This provides a significant simplification with respect to [11] as the computation and 
estimation of commutators between the operators Sp(t) and ∂mζ ,m ∈N , is no longer necessary.

Thus, using uniformly local Sobolev norms,4 we obtain a nonlinear damping estimate for the 
modified forward-modulated perturbation z̊(t) and our nonlinear iteration scheme can also be 
closed from the perspective of regularity. This then leads to the proof of Theorem 1.4.

Remark 1.5. It was already observed in [13] that the coefficients of the viscous Hamilton-Jacobi 
equation (1.14), governing the leading-order phase dynamics, can be expressed in terms of the 
coefficients of the second-order expansion of the linear and nonlinear dispersion relations λc(ξ)

4 We note that uniformly local Sobolev norms have also been used in other works, e.g. [17], to make energy estimate 
methods available in L∞-spaces.
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and ω(k), cf. Propositions 1.2 and 1.3 and identity (1.15). In the current setting of fully nonlocal
ized perturbations [11], it is important to identify the leading-order Hamilton-Jacobi dynamics 
of the phase modulation as this allows for an application of the Cole-Hopf transform to eliminate 
the most critical nonlinear term. In contrast, in the nonlinear stability analyses [21,27,28,31,44] 
of wave trains against localized perturbations, it is not necessary to determine the leading-order 
phase dynamics explicitly. The derivation of the viscous Hamilton-Jacobi equation in the current 
setting can be found in §4.3 and exploits the characterization of the first-order term in the expan
sion of the eigenfunction Φξ as the derivative of the family of wave trains ϕ(·; k), established in 
Proposition 1.2, with respect to the wavenumber k, cf. Proposition 1.3.

Remark 1.6. The nonlinear damping estimate, used in the proof of Theorem 1.4, leads to esti
mates on derivatives of the (modulated) perturbation. Specifically, we can replace the L∞-norms 
in estimates (1.10)-(1.12) by (C2

ub × C1
ub)-norms upon substituting E0 by its fractional power 

E
1
5
0 .5

Here, the occurrence of the fractional power is a consequence of the use of Gagliardo
Nirenberg interpolation in the nonlinear damping estimate, see Remark 4.10. In addition, we note 
that, although our initial perturbation w0 lies in C3

ub(R)×C2
ub(R), we do not control the associ

ated norm in our nonlinear stability analysis, since we lose one degree of regularity by embedding 
of uniformly local Sobolev spaces in Cub-spaces. Nevertheless, by considering more regular ini
tial data in Theorem 1.4, it is possible to track higher-order derivatives in the nonlinear argument. 
More precisely, taking m ∈ N and w0 ∈ Cm+3

ub (R)×Cm+2
ub (R) with ∥w0∥Cm+3

ub ×Cm+2
ub

<K in The

orem 1.4, we find

u ∈ C
(︁[0,∞),Cm+3

ub (R)×Cm+2
ub (R)

)︁∩C1(︁[0,∞),Cm+1
ub (R)×Cm+1

ub (R)
)︁
,

and the estimates (1.10)-(1.13) can be upgraded to

∥u(t)− ϕ0∥Cm+2
ub ×Cm+1

ub
≤ME

αm
0 ,

∥u(t)− ϕ0(· +ψ(·, t))∥
Cm+2

ub ×Cm+1
ub

≤ ME
αm
0√

1 + t
,

⃦⃦
u(t)− ϕ0

(︁· +ψ(·, t) (︁1 +ψζ (·, t)
)︁ ;1 +ψζ (·, t)

)︁⃦⃦
Cm+2

ub ×Cm+1
ub

≤ME
αm
0

log(2 + t)

1 + t 
,

where αm > 0 depends on m only, and

∥∂tψζ (t)∥C3+m
ub

≤ ME0√
1 + t

, 
⃦⃦
ψζζ (t)

⃦⃦
C4+m

ub
≤ME0

log(2 + t)

1 + t 

for all t ≥ 0. For the sake of clarity of exposition and in order to reduce the amount of techni
calities, we have chosen to only consider (C3

ub × C2
ub)-regular initial data only in our nonlinear 

stability analysis.

5 In fact, we can also take α = 1
5 in (1.16).
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1.4. Outline

This paper is organized as follows. In §2, we analyze the resolvent associated with the lin
earization ℒ0 of (1.3) about the wave train. In §3 we decompose the C0-semigroup eℒ0t and 
derive associated estimates with the aid of the inverse Laplace representation and establish a 
Floquet-Bloch representation for its critical low-frequency part. In §4, we set up our nonlinear 
iteration scheme and derive a nonlinear damping estimate. We close the nonlinear argument and 
prove our main result, Theorem 1.4, in §5. We conclude in §6 by discussing the wider appli
cability of our method to achieve nonlinear stability of wave trains against fully nonlocalized 
perturbations in semilinear dissipative problems. Appendix A is devoted to background material 
on the vector-valued Laplace transform. In particular, we prove that its complex inversion for
mula holds for convolutions of C0-semigroups. Finally, we relegate the derivation of the equation 
for the modified forward-modulated perturbation to Appendix B.

Notation. Let S be a set, and let A,B : S → R. Throughout the paper, the expression ``A(x)≲
B(x) for x ∈ S'', means that there exists a constant C > 0, independent of x, such that A(x) ≤
CB(x) holds for all x ∈ S.

For ℓ ∈ N , m ∈ N0, and F ∈ {R,C}, we define Cm
ub(R,F

ℓ) as the space of bounded and 
uniformly continuous functions from R to Fℓ, which are m times differentiable and whose m
derivatives are also bounded and uniformly continuous. We endow Cm

ub(R,F
ℓ) with the stan

dard Wm,∞-norm, so that it is a Banach space. Moreover, we define Hm
per

(︁
(0, T ),Fℓ

)︁
as the 

closure in Hm
(︁
(0, T ),Fℓ

)︁
of the subspace {u|(0,T ) : u ∈ C∞(R,Fℓ) is T -periodic}. The space 

Hm
per

(︁
(0, T ),Fℓ

)︁
is a Hilbert space with the inner product inherited from Hm

(︁
(0, T ),Fℓ

)︁
. When 

the codomain is clear from context or not essential, we simply write Cm
ub(R) or Hm

per(0, T ) instead 
of Cm

ub(R,F
ℓ) and Hm

per

(︁
(0, T ),Fℓ

)︁
, respectively. Finally, we set L2

per(0, T )=H 0
per(0, T ).

Acknowledgments. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger
man Research Foundation) -- Project-ID 491897824. We thank the referees for their valuable 
feedback and for bringing the reference [42] to our attention.

2. Resolvent analysis

This section is devoted to the study of the resolvent and serves as preparation to derive pure 
L∞-estimates on the high- and low-frequency components of the semigroup given by (1.20). 
That is, we collect and prove properties of (λ−ℒ0)

−1 in the regimes |Im(λ)| ≫ 1 and |λ| ≪ 1. 
Our refined low-frequency analysis of the resolvent is the starting point to link the inverse 
Laplace representation to the Floquet-Bloch representation of the low-frequency part of the semi
group.

2.1. Low-frequency resolvent analysis and decomposition

We consider the resolvent problem

(ℒ0 − λ)w = g (2.1)

with w = (u, v)⊤ and g ∈ Cub(R) for λ in a small ball B(0, δ) ⊂ C of radius δ > 0 centered at 
the origin. We proceed as in [3] and write (2.1) as a first-order system
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ψ ′ =A(ζ ;λ)ψ +G (2.2)

in ψ = (u,uζ , v)
⊤ with inhomogeneity G= (0,g)⊤ and coefficient matrix

A(ζ ;λ)=
⎛⎝ 0 1 0
λ− f ′(u0) −c0 1

− ε
c0

0 εγ+λ
c0

⎞⎠ ,

where u0 is the first-component of the wave train ϕ0 = (u0, v0)
⊤ and f (u)= u(1 − u)(u−μ) is 

the cubic nonlinearity in the FHN system (1.1).
The coefficient matrix A(·;λ) is T -periodic for each λ ∈ C. Thus, we can apply Floquet 

theory, cf. [33, Section 2.1.3], to establish a T -periodic change of coordinates, which is locally 
analytic in λ, converting the homogeneous problem

ψ ′ =A(ζ ;λ)ψ (2.3)

into a constant-coe�icient system.

Proposition 2.1. Assume (H1). For δ > 0 sufficiently small, there exist maps Q : R×B(0, δ)→
C3×3 and M : B(0, δ)→ C3×3 such that the evolution T (ζ, ζ̄ ;λ) of (2.3) can be expressed as

T (ζ, ζ̄ ;λ)=Q(ζ ;λ)−1eM(λ)(ζ−ζ̄ )Q(ζ̄ ;λ).

Here, Q(·;λ) is smooth and T -periodic for each λ ∈ B(0, δ). Moreover, M and Q(ζ ; ·) are 
analytic for each ζ ∈R.

An eigenvalue ν(λ) of the monodromy matrix M(λ) is called a spatial Floquet exponent. 
It gives rise to a solution ψ(ζ ;λ) = eν(λ)ζ p(ζ ;λ) of (2.3), where p(·;λ) is T -periodic. Thus, 
translating back to the eigenvalue problem (ℒ0 − λ)w = 0, one readily observes that for each 
ξ ∈ C a point λ ∈ B(0, δ) is a (temporal) eigenvalue of the Bloch operator ℒ(ξ) if and only if iξ
is an eigenvalue of M(λ). The spectral decomposition (1.6) then implies that a point λ ∈ B(0, δ)
lies in σ(ℒ0) if and only if M(λ) has a purely imaginary eigenvalue.

Proposition 1.3 yields balls V1,V2 ⊂ C centered at 0 and a holomorphic map λc : V1 → C
such that ℒ(ξ) has a simple eigenvalue λc(ξ) for each ξ ∈ V1 and it holds σ(ℒ0)∩V2 = {λc(ξ) :
ξ ∈ R ∩ V1} ∩ V2. Since we have λ′

c(0) = −icg ≠ 0 by Assumption (H2), the implicit function 
theorem implies, provided δ > 0 is sufficiently small, that for each λ ∈ B(0, δ) the matrix M(λ)

possesses precisely one simple eigenvalue νc(λ) in V1. These observations readily lead to the 
following proposition.

Proposition 2.2. Assume (H1), (H2) and (D1)-(D3). There exist constants C,δ > 0 and a holo
morphic map νc : B(0, δ)→C satisfying the following assertions.

(i) νc(λ) is a simple spatial Floquet exponent associated with the T -periodic first-order prob
lem (2.3) for each λ ∈ B(0, δ).

(ii) A point λ ∈ B(0, δ) lies in σ(ℒ0) if and only if νc(λ) is purely imaginary.
(iii) We have νc(λc(ξ))= iξ for each ξ ∈ V1 such that λc(ξ) ∈ B(0, δ).

14 
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(iv) The expansion ⃓⃓⃓⃓
νc(λ)+ 1 

cg
λ

⃓⃓⃓⃓
≤ C|λ|2

holds for all λ ∈ B(0, δ).
(v) For λ ∈ B(0, δ) to the right of σ(ℒ0) we have Re(νc(λ)) > 0.

Propositions 2.1 and 2.2 imply that for λ ∈ B(0, δ) system (2.3) has an exponential dichotomy 
on R if and only if there are no purely imaginary Floquet exponents, which is the case precisely if 
λ lies in the resolvent set ρ(ℒ0). Hence, taking λ ∈ B(0, δ)∩ρ(ℒ0) and letting P s(λ) and Pu(λ)

be the spectral projections onto the stable and unstable subspaces of M(λ), we can express the 
spatial Green’s function associated with (2.3) as

𝒢(ζ, ζ̄ ;λ)=Q(ζ ;λ)−1eM(λ)(ζ−ζ̄ ) (︁P s(λ)1(−∞,ζ ](ζ̄ )− Pu(λ)1[ζ,∞)(ζ̄ )
)︁
Q(ζ̄ ;λ)

where 1(−∞,ζ ] and 1[ζ,∞) are indicator functions. Introducing the matrices

Π2 =
(︃

1 0 0
0 0 1

)︃
, Π3 =

⎛⎝0 0
1 0
0 c−1

0

⎞⎠ ,

to translate between the original formulation (2.1) and the first-order formulation (2.2) of the 
resolvent problem, we find that the unique solution of (2.1) is now given by(︂

(ℒ0 − λ)−1g
)︂
(ζ )= w(ζ ;λ)=

∫︂
R 

Π2𝒢(ζ, ζ̄ ;λ)Π3g(ζ̄ ) dζ̄ .

By Proposition 2.2 the spatial Floquet exponent νc(λ) is a simple eigenvalue of M(λ) and all 
other spatial Floquet exponents are bounded away from iR for λ ∈ B(0, δ). Therefore, the spec
tral projection P cu(λ) of M(λ) onto the eigenspace associated with νc(λ) is defined for all 
λ ∈ B(0, δ). For λ ∈ B(0, δ) to the right of σ(ℒ0) it holds Re(νc(λ)) > 0 and we can decompose 
Pu(λ)= Puu(λ)+ P cu(λ). This then leads to the desired resolvent decomposition for small λ.

Proposition 2.3. Assume (H1), (H2) and (D1)-(D3). There exist constants C,δ > 0 and a holo
morphic map S0

e : B(0, δ) → ℬ
(︁
Cub(R)

)︁
such that for λ ∈ B(0, δ), g ∈ Cub(R) and ζ ∈ R we 

have(︂
(ℒ0 − λ)−1g

)︂
(ζ )= −

∫︂
R 

Π2Q(ζ ;λ)−1eνc(λ)(ζ−ζ̄ )1[ζ,∞)(ζ̄ )P
cu(λ)Q(ζ̄ ;λ)Π3g(ζ̄ ) dζ̄

+ 
(︂
S0
e (λ)g

)︂
(ζ )

(2.4)

and it holds ⃦⃦⃦
S0
e (λ)g

⃦⃦⃦
L∞ ≤ C∥g∥L∞ .
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In order to later relate the inverse Laplace representation of the low-frequency part of the 
semigroup eℒ0t to its Floquet-Bloch representation, we prove the following technical lemma 
showing that the expression Π2Q(ζ ;λ)−1P cu(λ)Q(ζ̄ ;λ)Π3 in (2.4) can be written as a product 
of solutions of the eigenvalue problem (ℒ0 − λ)w = 0 and its adjoint (ℒ0 − λ)∗w = 0.

Lemma 2.4. Assume (H1), (H2) and (D1)-(D3). There exist a constant δ > 0 and functions 
Ψ,Ψ̃ : R×B(0, δ)→ C2 satisfying

Π2Q(ζ ;λ)−1P cu(λ)Q(ζ̄ ;λ)Π3 =Ψ(ζ ;λ)Ψ̃(ζ̄ ;λ)∗ (2.5)

for ζ, ζ̄ ∈R and λ ∈ B(0, δ). Moreover, Ψ(·;λ) and Ψ̃(·;λ) are smooth and T -periodic for each 
λ ∈ B(0, δ) and Ψ(ζ ; ·)Ψ̃(ζ̄ ; ·)∗ is analytic for each ζ, ζ̄ ∈ R. Finally, we have

Ψ(·;λc(ξ))=Φξ , λ′
c(ξ)Ψ̃(·;λc(ξ))= i˜︁Φξ (2.6)

for ξ ∈ V1 such that λc(ξ) ∈ B(0, δ), where Φξ and ˜︁Φξ are defined in Proposition 1.3.

Proof. Let λ ∈ B(0, δ). By Propositions 2.1 and 2.2 the monodromy matrix M(λ) has a simple 
eigenvalue νc(λ), provided δ > 0 is sufficiently small. Let w1(λ) be an associated eigenvector. 
Moreover, let ˜︁w1(λ) be an eigenvector associated with the simple eigenvalue νc(λ) of the adjoint 
matrix M(λ)∗. The spectral projection P cu(λ) onto the eigenspace of M(λ) associated with νc(λ)
is now given by

P cu(λ)= w1(λ)˜︁w1(λ)
∗

⟨˜︁w1(λ),w1(λ)⟩ .

Since νc(λ) is simple for each λ ∈ B(0, δ), the map P cu : B(0, δ) → C3×3 is holomorphic by 
standard analytic perturbation theory [34, Section II.1.4].

We define Ψ,Ψ̃ : R×B(0, δ)→ C2 by

Ψ(ζ ;λ)=Π2v1(ζ ;λ), v1(ζ ;λ) := Q(ζ ;λ)−1w1(λ) 

⟨˜︁Φ−iνc(λ),Π2Q(·;λ)−1w1(λ)⟩L2(0,T )

and

Ψ̃(ζ ;λ)=Π∗
3v2(ζ ;λ), v2(ζ ;λ) := Q(ζ ;λ)∗˜︁w1(λ) 

⟨w1(λ),˜︁w1(λ)⟩ ⟨Π2Q(·;λ)−1w1(λ),˜︁Φ−iνc(λ)⟩L2(0,T ).

Then, Ψ(·;λ) and Ψ̃(·;λ) are smooth and T -periodic for each λ ∈ B(0, δ) by Proposition 2.1. 
One readily observes that (2.5) holds for ζ, ζ̄ ∈ R and λ ∈ B(0, δ). Moreover, since Q(ζ ; ·), 
Q(ζ̄ ; ·) and P cu are analytic by Proposition 2.1, so is Ψ(ζ ; ·)Ψ̃(ζ̄ ; ·)∗ for each ζ, ζ̄ ∈R.

Next, we observe that the evolution Tad(ζ, ζ̄ ;λ) of the adjoint problem

ϑ ′ = −A(ζ ;λ)∗ϑ, (2.7)

of (2.3) is given by Tad(ζ, ζ̄ ;λ) = T (ζ̄ , ζ ;λ)∗, where T (ζ, ζ̄ ;λ) is the evolution of (2.3). 
So, since νc(λ) is an eigenvalue of M(λ) with associated eigenvector w1(λ) and −νc(λ)
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is an eigenvalue of −M(λ)∗ with associated eigenvector ˜︁w1(λ), we obtain, by Proposi
tion 2.1, that ψ(ζ ;λ) = eνc(λ)ζ v1(ζ ;λ) and ϑ(ζ ;λ) = e−νc(λ)ζ v2(ζ ;λ) are solutions of (2.3)
and (2.7), respectively. Consequently, w(ζ ;λ) = eνc(λ)ζΨ(ζ ;λ) and ˜︁w(ζ ;λ) = e−νc(λ)ζ Ψ̃(ζ ;λ)
solve the eigenvalue problems (ℒ0 − λ)w = 0 and (ℒ0 − λ)∗˜︁w = 0, respectively. Therefore, 
Ψ(·;λ), Ψ̃(·;λ) ∈H 2

per(0, T ) are nontrivial solutions of the eigenvalue problems (ℒ(−iνc(λ))−
λ)w = 0 and (ℒ(−iνc(λ)) − λ)∗˜︁w = 0, respectively. Now, let ξ ∈ V1 be such that λc(ξ) ∈
B(0, δ). Then, we find with the aid of Proposition 2.2 that Ψ(ζ ;λc(ξ)) and Ψ̃(ζ ;λc(ξ))
lie in ker(ℒ(ξ) − λc(ξ)) and ker((ℒ(ξ) − λc(ξ))

∗), respectively, which are spanned by Φξ

and ˜︁Φξ , respectively, by Proposition 1.3. Hence, on the one hand, the gauge condition 
⟨˜︁Φξ,Ψ(ζ ;λc(ξ))⟩L2(0,T ) = 1 = ⟨˜︁Φξ,Φξ ⟩L2(0,T ), cf. Proposition 1.3, implies Φξ = Ψ(·;λc(ξ)). 
On the other hand, there exists κξ ∈C \ {0} such that Ψ̃(·;λc(ξ))= κξ˜︁Φξ . So, all that remains to 
show is that κξ = i/λ′

c(ξ).
First, using that ψ(ζ ;λ) = eνc(λ)ζ v1(ζ ;λ) and ϑ(ζ ;λ) = e−νc(λ)ζ v2(ζ ;λ) are solutions 

of (2.3) and (2.7), respectively, and we have νc(λc(ξ))= iξ by Proposition 2.2, we obtain

v1(ζ ;λc(ξ))=
⎛⎝ Φ1,ξ

iξΦ1,ξ +Φ′
1,ξ

Φ2,ξ

⎞⎠ , v2(ζ ;λc(ξ))= κξ

⎛⎝(c0 − iξ)˜︁Φ1,ξ −˜︁Φ′
1,ξ˜︁Φ1,ξ

c0˜︁Φ2,ξ

⎞⎠ .

Finally, evoking Proposition 1.3, integrating by parts and using 1 = ⟨˜︁Φξ ,Φξ ⟩L2(0,T ), we arrive at

κ−1
ξ = κ−1

ξ

⟨︁
v2(·;λ), v1(·;λ)

⟩︁
L2(0,T )

= ⟨︁
(c0 − iξ)˜︁Φ1,ξ −˜︁Φ′

1,ξ ,Φ1,ξ
⟩︁
L2(0,T ) + ⟨︁˜︁Φ1,ξ , iξΦ1,ξ +Φ′

1,ξ

⟩︁
L2(0,T )

+ ⟨︁
c0˜︁Φ2,ξ ,Φ2,ξ

⟩︁
L2(0,T )

= c0 + 2
⟨︁˜︁Φξ ,D

(︁
∂ζ + iξ

)︁
Φξ

⟩︁
L2(0,T ) = −iλ′

c(ξ),

which concludes the proof. □
2.2. High-frequency resolvent analysis

We consider the resolvent (λ−ℒ0)
−1 in the high-frequency regime. The spectrum of ℒ0 away 

from the origin is by Proposition 1.3 confined to the left-half plane with uniform distance from 
the imaginary axis, which allows us to deform the high-frequency parts of the integration contour 
in (1.20) into the left-half plane away from the imaginary axis and the spectrum. Specifically, this 
leads us to consider the contours connecting b± iϖ0 with b± iR for some b < 0 and R >ϖ0 > 0. 
Since these contours are unbounded as R → ∞, we require a more refined understanding of the 
resolvent to secure exponential decay on the high-frequency contributions of the corresponding 
contour integrals.6 The idea from [3] is to expand the resolvent (λ−ℒ0)

−1 as a Neumann series 
in |Im(λ)|− 1

2 for |Im(λ)| ≫ 1. It turns out that it suffices to explicitly identify the first three terms 
in this expansion, since a remainder of order 𝒪(|Im(λ)|− 3

2 ) is integrable. These three leading
order terms can be expressed as products of the resolvents of the simpler operators ℒ1 : Cub(R)⊂
C2

ub(R)→ Cub(R) and ℒ2 : Cub(R)⊂ C1
ub(R)→ Cub(R) given by

6 Indeed, the naive bound ∥(λ−ℒ0)
−1∥≲ 1 

Reλ , given by the Hille-Yosida theorem, is not strong enough.
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ℒ1 = ∂ζζ , ℒ2 = c0∂ζ − εγ.

Before stating the outcome of the expansion procedure in [3], we provide the following stan
dard result showing that ℒ1 and ℒ2 generate C0-semigroups and providing bounds on their 
resolvents.

Lemma 2.5. The operators ℒ1 and ℒ2 are closed, densely defined and generate C0-semigroups 
on Cub(R). Morover, there exists a constant M > 0 such that for each t ≥ 0, g ∈ Cub(R) and 
λ ∈ C \ {0} with | arg(λ)| ≤ 3π

4 we have λ ∈ ρ(ℒ1) and

∥(λ−ℒ1)
−1g∥L∞ ≤ M

|λ| ∥g∥L∞, ∥eℒ1tg∥L∞ ≤M∥g∥L∞ .

Finally, for each t ≥ 0, g ∈ Cub(R) and λ ∈C with Re(λ) >−εγ it holds λ ∈ ρ(ℒ2) and

∥(λ−ℒ2)
−1g∥L∞ ≤ ∥g∥L∞

Re(λ)+ εγ
, ∥eℒ2tg∥L∞ ≤ e−εγ t∥g∥L∞ .

Proof. The operator ∂ζ generates the strongly continuous translational group on Cub(R) by [14, 
Proposition II.2.10.1]. Since translation preserves the L∞-norm, e∂ζ t is a group of isome
tries. Therefore, each λ ∈ C with Re(λ) > 0 lies in ρ(∂ζ ) and it holds ∥(λ − ∂ζ )

−1g∥L∞ ≤
Re(λ)−1∥g∥L∞ for g ∈ Cub(R) by [14, Corollary 3.7]. The bounds on (λ − ℒ2)

−1 and eℒ2t

now readily follow by rescaling space. Moreover, ℒ1 generates a bounded analytic semigroup 
eℒ1t by [14, Corollary II.4.9] being the square of the operator ∂ζ . The resolvent estimate on 
(λ−ℒ1)

−1 is stated in the proof of [14, Corollary II.4.9]. □
Now, we state the high-frequency expansion of the resolvent (λ−ℒ0)

−1 obtained in [3].

Proposition 2.6. Assume (H1), (H2) and (D1)-(D3). Let b0 > 0. Then, there exist constants 
C,ϖ0 > 0 such that we have b+ iϖ ∈ ρ(ℒ0) with

(b+ iϖ −ℒ0)
−1g = I 1

b,ϖ g + I 2
b,ϖ g + I 3

b,ϖ g + I 4
b,ϖ g,

for all g = (g1, g2)
⊤ ∈ Cub(R) and b,ϖ ∈ R with − 3

4εγ ≤ b ≤ b0 and |ϖ | ≥ ϖ0, where we 
denote

I 1
b,ϖ g =

(︃
(iϖ −ℒ1)

−1g1

(b+ iϖ −ℒ2)
−1g2

)︃
, I 2

b,ϖ g =
(︃

(iϖ −ℒ1)
−1(b+ iϖ −ℒ2)

−1g2

−ε(b+ iϖ −ℒ2)
−1(iϖ −ℒ1)

−1g1

)︃
and

I 3
b,ϖ g =

(︃
0

−ε(b+ iϖ −ℒ2)
−1(iϖ −ℒ1)

−1(b+ iϖ −ℒ2)
−1g2

)︃
,

and the residual operator I 4
b,ϖ : Cub(R)→ Cub(R) obeys the estimate⃦⃦⃦

I 4
b,ϖ g

⃦⃦⃦
L∞ ≤ C|ϖ |− 3

2 ∥g∥L∞ .
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Proof. This result was proved in [3, Lemma B.4] for g ∈ C∞(R), which immediately yields the 
statement by density of C∞(R) in Cub(R). □
3. Semigroup decomposition and linear estimates

In this section, we decompose the C0-semigroup generated by the linearization ℒ0 of (1.3)
about the wave train ϕ0 and establish corresponding estimates. To this end, we employ the com
plex inversion formula (1.20) of the C0-semigroup. We first deform and partition the integration 
contour in (1.20). The high-frequency contribution of the deformed integration contour lies fully 
in the open left-half plane. Thus, exponential decay of the associated part of the C0-semigroup 
can be obtained with the aid of the high-frequency resolvent expansion established in Proposi
tion 2.6.

For low frequencies, we employ the resolvent decomposition obtained in Proposition 2.3 lead
ing to a critical and residual low-frequency contribution of the contour integral. On the one hand, 
we shift the contour fully into the open left-half plane to render exponential decay of the residual 
low-frequency contribution. On the other hand, we relate the critical low-frequency contribution 
to its Floquet-Bloch representation by shifting the integration contour onto the critical spec
tral curve. This allows us to gather the relevant estimates on this critical part of the semigroup 
from [11].

3.1. Inverse Laplace representation

We start by showing that ℒ0 generates a C0-semigroup on Cub(R) and represent its action by 
the complex inversion formula.

Proposition 3.1. Assume (H1). Let k ∈N0. The operator ℒ0 acting on Ck
ub(R,C

2)×Ck
ub(R,C

2)

with domain D(ℒ0) = Ck+2
ub (R,C) × Ck+1

ub (R,C) generates a strongly continuous semigroup 
eℒ0t on Ck

ub(R,C
2). Moreover, there exists η > 0 such that the integration contour ΓR0 , which is 

depicted in Fig. 1 and connects η− iR to η+ iR, lies in the resolvent set ρ(ℒ0) and the inverse 
Laplace representation

eℒ0tg = lim 
R→∞

1 
2π i

∫︂
ΓR0

eλt (λ−ℒ0)
−1g dλ (3.1)

holds for any g ∈D(ℒ0) and t > 0, where the limit in (3.1) is taken with respect to the Ck
ub-norm.

Proof. The operator ℒ0 is a bounded perturbation of the diagonal diffusion-advection operator 
L0 = D∂ζζ + c0∂ζ on Ck

ub(R,C
2) × Ck

ub(R,C
2) with dense domain D(L0) = Ck+2

ub (R,C) ×
Ck+1

ub (R,C). The first component of L0 is sectorial by [37, Corollary 3.1.9] and thus gener
ates an analytic semigroup, which is strongly continuous by [37, p. 34]. On the other hand, the 
second component of L0 generates the strongly continuous translational semigroup on Ck

ub(R)
by [14, Proposition II.2.10.1]. Since ℒ0 is a bounded perturbation of L0, ℒ0 also generates a C0
semigroup by [14, Theorem III.1.3]. The inverse Laplace representation, given by the complex 
inversion formula (3.1), follows from [1, Proposition 3.12.1]. □
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We note that standard semigroup theory provides sufficient control on the short-time behavior 
of the semigroup eℒ0t . To distinguish between short- and long-time behavior, we introduce a 
smooth temporal cut-off function χ : [0,∞)→R satisfying χ(t)= 0 for t ∈ [0,1] and χ(t)= 1
for t ∈ [2,∞) and obtain the following short-time bound.

Lemma 3.2. Assume (H1). Consider ℒ0 as an operator on Cub(R). There exist constants C,α >
0 such that

∥(1 − χ(t))eℒ0tg∥ ≤ Ce−αt

holds for g ∈ Cub(R) and t ≥ 0.

Proof. This follows immediately from [14, Proposition I.5.5], Proposition 3.1 and the fact that 
1 − χ vanishes on [2,∞). □

Next, we deform the integration contour ΓR0 in (3.1) using Cauchy’s integral theorem and 
analyticity of the resolvent λ ↦→ (λ−ℒ0)

−1 on ρ(ℒ0).

Proposition 3.3. Assume (H1) and (D1)-(D2). Consider ℒ0 as an operator on Cub(R) and let 
η > 0 be as in Proposition 3.1. For each ϖ0 > 0 sufficiently large the integration contours ΓR1
and ΓR3 , which are depicted in Fig. 1 and connect iϖ0 − 3

4εγ to iR − 3
4εγ and −iR − 3

4εγ to 
−iϖ0 − 3

4εγ , respectively, as well as the rectangular integration contour Γ2, which connects 
−iϖ0 − 3

4εγ via −iϖ0 + η
2 and iϖ0 + η

2 to iϖ0 − 3
4εγ , lie in the resolvent set ρ(ℒ0). Moreover, 

we have

eℒ0tg = χ(t)

2π i 

∫︂
Γ2

eλt (λ−ℒ0)
−1g dλ+ lim 

R→∞
χ(t)

2π i 

∫︂
ΓR1 ∪ΓR3

eλt (λ−ℒ0)
−1g dλ

+ (1 − χ(t))eℒ0tg

(3.2)

for g ∈D(ℒ0) and t ≥ 0.

Proof. Let g ∈D(ℒ0) and t > 0. Let R >ϖ0. Let ΓR0 be as in Proposition 3.1. Let ΓR4 and ΓR5
be the integration contours depicted in Fig. 1 connecting −iR+η to −iR− 3

4εγ and iR− 3
4εγ to 

iR+η, respectively. Let ΓR be the closed contour consisting of −ΓR0 , ΓR1 , Γ2, ΓR3 , ΓR4 and ΓR5 , so 
that ΓR is oriented clockwise, cf. Fig. 1. By Assumption (D1) and Proposition 2.6 ΓR , as well as 
its interior, lies in ρ(ℒ0), provided ϖ0 > 0 is large enough. Moreover, the map ρ(ℒ0)→ Cub(R)
given by λ ↦→ eλt (λ−ℒ0)

−1g is analytic. Hence, Cauchy’s integral theorem yields

0 =
∫︂
ΓR

eλt (λ−ℒ0)
−1g dλ. (3.3)
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Fig. 1. The spectrum of the linearization ℒ0 of system (1.3) about the wave train ϕ0 (depicted in blue and red) touches 
the origin in a quadratic tangency. It asymptotes to the line Re(λ) = −εγ . The red part of the spectrum is the critical 
curve {λc(ξ) : ξ ∈R∩V1} established in Proposition 1.3. Left panel: the original contour ΓR0 used in the inverse Laplace 
representation (3.1) of the C0-semigroup eℒ0t , together with the deformed contour ΓR4 ∪ ΓR3 ∪ Γ2 ∪ ΓR1 ∪ ΓR5 . The 
contributions of the inverse Laplace integral over ΓR4 and ΓR5 vanish as R → ∞, cf. Proposition 3.3. Right panel: a 
zoom-in on the contour Γ2, as well as its deformation ˜︁Γ− ∪ Γδ ∪˜︁Γ+ used in the proof of Proposition 3.6. The rectangular 
contour Γδ lies in the ball B(0, δ), is reflection symmetric in the real axis and connects points −iη2 − η1 to iη2 − η1
with η1,2 > 0.

We express the contribution of the complex line integral over ΓR4 ∪ ΓR5 as

∫︂
ΓR4 ∪ΓR5

eλt (λ−ℒ0)
−1g dλ=

∫︂
ΓR4 ∪ΓR5

eλt

λ 

(︂
(λ−ℒ0)

−1ℒ0g + g
)︂

dλ. (3.4)

Lemma 2.5 and Proposition 2.6 yield an R-independent constant C > 0 such that we have the 
bound ∥(λ−ℒ0)

−1∥ℬ(Cub(R)) ≤ C for λ ∈ ΓR4 ∪ΓR5 . Since the length of ΓR4 ∪ΓR5 can be bounded 
by an R-independent constant M > 0, we find that (3.4) implies

⃦⃦⃦⃦
⃦⃦⃦⃦ lim 
R→∞

∫︂
ΓR4 ∪ΓR5

eλt (λ−ℒ0)
−1g dλ

⃦⃦⃦⃦
⃦⃦⃦⃦
L∞

≤ lim 
R→∞ eηtM

C∥ℒ0g∥L∞ + ∥g∥L∞

R
= 0.

Combining the latter with Proposition 3.1 and identity (3.3), we arrive at (3.2), which concludes 
the proof. □
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3.2. Estimates on the high-frequency part

We utilize the resolvent expansion obtained in Proposition 2.6 to establish exponential decay 
of the high-frequency part of the semigroup eℒ0t , which corresponds to the complex line integrals 
over the contours ΓR1 and ΓR3 in the inverse Laplace representation (3.2) of the semigroup.

Proposition 3.4. Assume (H1) and (D1)-(D2). Consider ℒ0 as an operator on Cub(R). For each 
ϖ0 > 0 sufficiently large there exist constants C,α > 0 such that the operator S1

e (t) : Cub(R)→
Cub(R) given by

S1
e (t)g = χ(t) lim 

R→∞
1 

2π i

∫︂
ΓR1 ∪ΓR3

eλt (λ−ℒ0)
−1g dλ

for g ∈D(ℒ0) and t ≥ 0 obeys the estimate

∥S1
e (t)g∥L∞ ≤ Ce−αt∥g∥L∞ (3.5)

for g ∈ Cub(R) and t ≥ 0.

Proof. Let g = (g1, g2)
⊤ ∈ D(ℒ0) and t ≥ 0. We abbreviate b1 = − 3

4εγ . Employing the high
frequency resolvent expansion from Proposition 2.6, we arrive, provided ϖ0 > 0 is sufficiently 
large, at the decomposition

S1
e (t)g = χ(t) lim 

R→∞
1 

2π

⎛⎝ −ϖ0∫︂
−R 

+
R∫︂

ϖ0

⎞⎠ eiϖt+b1t (b1 + iϖ −ℒ0)
−1 g dϖ

= eb1t (S1(t)g + S2(t)g + S3(t)g + S4(t)g) ,

(3.6)

where we denote

Sj (t)g = χ(t) lim 
R→∞

1 
2π

⎛⎝ −ϖ0∫︂
−R 

+
R∫︂

ϖ0

⎞⎠ eiϖtI
j
b1,ϖ

g dϖ, j = 1, . . . ,4.

The estimate on I 4
b1,ϖ

g in Proposition 2.6 readily provides g- and t-independent constants C1,2 >

0 such that

∥S4(t)g∥L∞ ≤ C1

∞ ∫︂
ϖ0

ϖ− 3
2 ∥g∥L∞ dϖ ≤ C2∥g∥L∞ . (3.7)

We relate the leading-order contributions S1(t), S2(t), S3(t) to (convolutions of) the C0-semi-
groups T1(t) := eℒ1t and T2(t) := e(ℒ2−b1)t using [1, Proposition 3.12.1] and Corollary A.2. 
To this end, we define an R-independent contour Γ̌2, which connects −iϖ0 to iϖ0 and lies in 
Σ := {λ ∈ C \ {0} : − 1

4εγ < Re(λ) < 1
8εγ, | arg(λ)|< 3π

4 }. Moreover, let Γ̌R4 and Γ̌R5 be the lines 
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connecting −iR+ 1
4εγ with −iR and connecting iR with iR+ 1

4εγ , respectively. Using that the 
maps Σ → Cub(R) given by λ ↦→ (λ− ℒ1)

−1g and λ ↦→ (λ+ b1 − ℒ2)
−1 are holomorphic by 

Lemma 2.5, Cauchy’s integral theorem yields

χ(t)

2π 

⎛⎝ −ϖ0∫︂
−R 

+
R∫︂

ϖ0

⎞⎠ eiϖtI
j
b1,ϖ

g dϖ = χ(t)

2π i 

1
4 εγ+iR∫︂

1
4 εγ−iR

eλt I jb1,λ
g dλ

− 
χ(t)

2π i 

∫︂
Γ̌2∪Γ̌R4 ∪Γ̌R5

eλt I jb1,λ
g dλ.

(3.8)

We note that the length of the contours Γ̌2, Γ̌
R
4 , Γ̌

R
5 ⊂Σ⊂ ρ(ℒ1)∩ρ(ℒ2 −b1) can be bounded 

by an R-independent constant. So, using the resolvent estimates from Lemma 2.5, we establish 
a t-, R- and g-independent constant C3 > 0 such that⃦⃦⃦⃦

⃦⃦⃦⃦χ(t) ∫︂
Γ̌2∪Γ̌R4 ∪Γ̌R5

eλt I jb1,λ
g dλ

⃦⃦⃦⃦
⃦⃦⃦⃦
L∞

≤ C3e
1
4 εγ t∥g∥L∞ (3.9)

for j = 1,2,3.
Lemma 2.5 implies that g1 ∈D(ℒ1), g2 ∈D(ℒ2 −b1) and the semigroups T1(t) and T2(t) are 

strongly continuous and exponentially bounded with growth bounds ϖ0(T1) ≤ 0 and ϖ0(T2) ≤
− 1

4εγ . Hence, an application of [1, Proposition 3.12.1] and Corollary A.2 yields

χ(t)

2π i 
lim 
R→∞

1
4 εγ+iR∫︂

1
4 εγ−iR

eλt I 1
b1,λ

g dλ= χ(t)

(︃
T1(t)g1
T2(t)g2

)︃
,

χ(t)

2π i 
lim 
R→∞

1
4 εγ+iR∫︂

1
4 εγ−iR

eλt I 2
b1,λ

g dλ= χ(t)

(︃
(T1 ∗ T2) (t)g2

−ε (T2 ∗ T1) (t)g1

)︃
,

and

χ(t)

2π i 
lim 
R→∞

1
4 εγ+iR∫︂

1
4 εγ−iR

eλt I 3
b1,λ

g dλ= χ(t)

(︃
0

−ε (T2 ∗ T1 ∗ T2) (t)g2

)︃
.

By [14, Theorem C.17], the convolutions T1 ∗ T2, T2 ∗ T1 and T2 ∗ T1 ∗ T2 are strongly contin
uous and exponentially bounded with growth bounds being at most max{ϖ0(T1),ϖ0(T2)} ≤ 0. 
Therefore, we find a t- and g-independent constant C4 > 0 such that
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⃦⃦⃦⃦χ(t)

2π i 
lim 
R→∞

1
4 εγ+iR∫︂

1
4 εγ−iR

eλt I jb1,λ
g dλ

⃦⃦⃦⃦
⃦⃦⃦⃦≤ C4∥g∥L∞

for j = 1,2,3. Combining the latter with the decompositions (3.6) and (3.8) and the esti
mates (3.7) and (3.9), we arrive at (3.5) with α = 1

2εγ > 0 by density of D(ℒ0) in Cub(R). □
Remark 3.5. Comparing the proof of Proposition 3.4 with the high-frequency analysis of the 
semigroup in [3, Appendix B.2], we find that the identification of the critical high-frequency part 
of the semigroup as convolutions of the heat and translation semigroups simplifies the analysis 
significantly. In particular, it is no longer necessary to compute the inverse Laplace transform 
of the leading-order terms of the Neumann-series expansion of the resolvent explicitly for a test 
function g.

3.3. Isolating the critical low-frequency part

We wish to employ the decomposition of the resolvent (λ− ℒ0)
−1 for |λ| sufficiently small 

established in Proposition 2.3 to isolate the critical low-frequency part of the semigroup. To this 
end, we deform the contour Γ2 in the inverse Laplace representation (3.2) of the semigroup eℒ0t , 
so that its part in the right-half plane is contained in the ball B(0, δ), where Proposition 2.3 ap
plies, cf. Fig. 1. The remainder of the deformed contour lies in the open left-half plane, away from 
the spectrum of ℒ0 and, thus, the associated complex line integrals are exponentially decaying.

Proposition 3.6. Assume (H1) and (D1)-(D3). Consider ℒ0 as an operator on Cub(R). Let 
ϖ0 > 0. For each δ > 0 sufficiently small there exist constants C,α > 0, a linear operator 
S2
e (t) : Cub(R) → Cub(R) and a rectangular contour Γδ , which is reflection symmetric in the 

real axis, lies in B(0, δ) strictly to the right of σ(ℒ0) and connects points −iη2 −η1 and iη2 −η1
with η1,2 > 0, such that we have the decomposition

χ(t)

2π i 

∫︂
Γ2

eλt (λ−ℒ0)
−1g dλ= χ(t)

2π i 

∫︂
Γδ

eλt (λ−ℒ0)
−1g dλ+ S2

e (t)g, (3.10)

for each g ∈D(ℒ0) and t ≥ 0 and the estimate

∥S2
e (t)g∥L∞ ≤ Ce−αt∥g∥L∞ (3.11)

holds for g ∈ Cub(R) and t ≥ 0.

Proof. Let g ∈ D(ℒ0) and t ≥ 0. By Proposition 1.3, there exist constants a ∈ R and b, δ0 > 0
such that the spectrum of ℒ0 in the ball B(0, δ0) lies on or to the left of the parabola {iaξ −
bξ2 : ξ ∈ R}. Take δ ∈ (0, δ0). By Assumption (D1), there exists a constant ϱ > 0 such that the 
spectrum of ℒ0 in the compact set K0 = {λ ∈ C : |Im(λ)| ≤ 2ϖ0, |Re(λ)| ≤ γ } \ B(0, δ) lies 
to the left of the line Re(λ) = −ϱ. Furthermore, the contour Γ2 lies in the resolvent set of ℒ0
by Proposition 3.3. We conclude that there exist points −η1 ± iη2 with η1,2 > 0 lying in B(0, δ)
strictly to the right of σ(ℒ0), as well as contours ˜︁Γ−, connecting the lower end point −iϖ0 − 3

4εγ

of Γ2 to the point −iη2 − η1, and ˜︁Γ+, connecting iη2 − η1 to the upper end point iϖ0 − 3
4εγ
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of Γ2, such that ˜︁Γ− and ˜︁Γ+ are both contained in the resolvent set ρ(ℒ0) and in the open left
half plane. Hence, there exists a rectangular contour Γδ, which connects −iη2 − η1 to iη2 − η1, 
is reflection symmetric in the real axis and lies in B(0, δ), strictly to the right of σ(ℒ0). Since 
the map ρ(ℒ0)→ Cub(R) given by λ ↦→ eλt (λ−ℒ0)

−1g is analytic, Cauchy’s integral theorem 
yields (3.10) with

S2
e (t)g = χ(t)

2π i 

⎛⎜⎝∫︂
˜︁Γ−

+
∫︂
˜︁Γ+

⎞⎟⎠ eλt (λ−ℒ0)
−1g dλ.

The analytic map ρ(ℒ0) → Cub(R), λ ↦→ (λ − ℒ0)
−1 is bounded on the compact sets ˜︁Γ± ⊂

ρ(ℒ0), which lie in the open left-half plane. Thus, the estimate (3.11) follows by density of 
D(ℒ0) in Cub(R). □

We can now identify the critical part of the remaining complex line integral in (3.10) by 
employing the low-frequency decomposition of the resolvent obtained in Proposition 2.3 and 
using the identity (2.5) derived in Lemma 2.4.

Proposition 3.7. Assume (H1), (H2) and (D1)-(D3). Consider ℒ0 as an operator on Cub(R). 
For each δ > 0 sufficiently small there exist constants C,α > 0 and a linear operator 
S3
e (t) : Cub(R) → Cub(R) such that for each g ∈ D(ℒ0), ζ ∈ R and t ≥ 0 we have the de

composition

χ(t)

2π i 

∫︂
Γδ

eλt (λ−ℒ0)
−1g dλ [ζ ] = χ(t)

2π i 

∞ ∫︂
ζ

∫︂
Γδ

eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ g(ζ̄ ) dζ̄

+ 
(︂
S3
e (t)g

)︂
[ζ ].

(3.12)

Moreover, the estimate

∥S3
e (t)g∥L∞ ≤ Ce−αt∥g∥L∞ (3.13)

holds for g ∈ Cub(R) and t ≥ 0.

Proof. Provided δ > 0 is sufficiently small, identity (3.12) follows readily from Fubini’s theo
rem, Proposition 2.3 and Lemma 2.4 by setting

S3
e (t)g = χ(t)

2π i 

∫︂
Γδ

eλtS0
e (λ)g dλ

for t ≥ 0 and g ∈ D(ℒ0), where S0
e : B(0, δ) → ℬ(Cub(R)) is the analytic map from Proposi

tion 2.3, obeying the estimate

∥S0
e (λ)g∥L∞ ≤ C0∥g∥L∞ (3.14)
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for some g- and λ-independent constant C0 > 0. Now let ˜︁Γδ be the straight line connecting the 
end points ±iη2 − η1 of Γδ . Then, ˜︁Γδ lies both in B(0, δ) and in the open left-half plane. By 
Cauchy’s integral theorem and analyticity of S0

e , we infer

S3
e (t)g = χ(t)

2π i 

∫︂
˜︁Γδ

eλtS0
e (λ)g dλ

for g ∈D(ℒ0) and t ≥ 0. Taking norms in the latter, using that the compact contour ˜︁Γδ lies in the 
open left-half plane and applying the bound (3.14) readily yields the estimate (3.13) by density 
of D(ℒ0) in Cub(R). □
3.4. Floquet-Bloch representation of the critical low-frequency part

Except for the integral appearing on the right-hand side of (3.12) representing its critical 
low-frequency part, the semigroup eℒ0t is exponentially decaying by Propositions 3.3, 3.4, 3.6
and 3.7 and Lemma 3.2. The following result recovers, up to some exponentially decaying terms, 
the same Floquet-Bloch representation for the critical low-frequency part of the semigroup as 
in [11].

The main idea is to exploit that the integral

∫︂
Γδ

eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ

possesses an integrand, which is analytic in λ on B(0, δ) for each ζ, ζ̄ ∈ R and t ≥ 0, cf. Propo
sition 1.3 and Lemma 2.4. This pointwise analyticity7 allows us to shift (part of) the integration 
contour Γδ onto the critical spectral curve λc(ξ), see Fig. 2. Via the identities νc(λc(ξ)) = iξ
and (2.6), obtained in Proposition 2.2 and Lemma 2.4, respectively, we then arrive at the desired 
Floquet-Bloch representation from [11]. We show that the remainder terms are exponentially de
caying by using pointwise estimates obtained through integration by parts, essentially following 
the same strategy as in [23, Lemma A.1].

Proposition 3.8. Assume (H1), (H2) and (D1)-(D3). For each δ > 0 sufficiently small there exist 
constants ξ0,C,α > 0, a linear operator S4

e (t) : Cub(R)→ Cub(R) and a smooth cut-off function 
ρ : R→ R such that for each g ∈ Cub(R), ζ ∈ R and t ≥ 0 we have

χ(t)

2π i 

∞ ∫︂
ζ

∫︂
Γδ

eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ g(ζ̄ ) dζ̄

= χ(t)

2π 

∫︂
R 

∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ g(ζ̄ ) dζ̄ +

(︂
S4
e (t)g

)︂
[ζ ].

7 See [3, Section 5.1] for further discussion on pointwise and Lp -analyticity.
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Moreover, ρ is supported on the interval (−ξ0, ξ0) ⊂ V1 ∩ R and satisfies ρ(ξ) = 1 for ξ ∈
[− 1

2ξ0,
1
2ξ0]. Finally, for each g ∈ Cub(R) and t ≥ 0 it holds

∥S4
e (t)g∥L∞ ≤ Ce−αt∥g∥L∞ .

Proof. First, we note that Propositions 1.3 and 2.2 imply ν′
c(0)= −c−1

g ≠ 0 and λ′
c(0)= −icg ≠

0. So, using Proposition 1.3, we can take δ > 0 so small that Proposition 2.2 and Lemma 2.4
apply, it holds ν′

c(λ) ≠ 0 for all λ ∈ B(0, δ), and each point in σ(ℒ0) ∩B(0, δ) lies on the curve 
{λc(ξ) : ξ ∈ V1 ∩R}. In addition, there exists, again by Proposition 1.3, ξ0 > 0 such that we have 
[−ξ0, ξ0] ⊂ V1 ∩R, it holds sgn(Im(λc(±ξ0)))= ±1, each point on the curve λc([−ξ0, ξ0]) lies 
in the ball B(0, δ) and on the rightmost boundary {z ∈ σ(ℒ0) : z+w ∈ ρ(ℒ0) for all w > 0} of 
the spectrum of ℒ0, and λ′

c(ξ) is nonzero for each ξ ∈ [−ξ0, ξ0]. We let ρ : R → R be a smooth 
cut-off function, which is supported on (−ξ0, ξ0) and satisfies ρ(ξ)= 1 for ξ ∈ [− 1

2ξ0,
1
2ξ0].

Our approach is to deform the contour Γδ into a new contour consisting of a smooth curve 
Γ− ⊂ B(0, δ) ∩ {z ∈ C : Re(λ) < 0} which connects the lower endpoint −η1 − iη2 of Γδ to 
λc(−ξ0) and satisfies Γ− \ {λc(−ξ0)} ⊂ ρ(ℒ0), the smooth curve Γc ⊂ B(0, δ) which con
nects λc(−ξ0) to λc(ξ0) and is parameterized by λc, and a smooth curve Γ+ ⊂ B(0, δ) ∩ {z ∈
C : Re(λ) < 0} which connects the point λc(ξ0) to the upper endpoint −η1 + iη2 of Γδ and 
satisfies Γ+ \ {λc(ξ0)} ⊂ ρ(ℒ0), see Fig. 2. We note that the contours Γ± exist, because the 
points −η1 ± iη2 lie in the open left-half plane strictly to the right of σ0(ℒ0) ∩ B(0, δ), it holds 
sgn(Im(λc(±ξ0)))= ±1, and each point on the curve λc([−ξ0, ξ0]) lies in the ball B(0, δ) and on 
the rightmost boundary {z ∈ σ(ℒ0) : z+w ∈ ρ(ℒ0) for all w > 0} of the spectrum of ℒ0, which 
lies in {z ∈ C : Re(z) < 0} ∪ {0} by assumption (D1).

We choose parameterizations λ± : [0,1] → C of the curves Γ± satisfying λ′±(ξ) ≠ 0 for ξ ∈
[0,1]. Since νc and Ψ(ζ, ·)Ψ̃(ζ̄ , ·)∗ are analytic and it holds iΦξ(ζ )˜︁Φξ(ζ̄ )

∗ = Ψ(ζ,λc(ξ))Ψ̃(ζ̄ , 
λc(ξ))

∗λ′
c(ξ) for each ζ, ζ̄ ∈ R and ξ ∈ (−ξ0, ξ0) by Proposition 2.2 and Lemma 2.4, Cauchy’s 

integral theorem implies

∫︂
Γδ

eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ=
⎛⎜⎝∫︂
Γ−

+
∫︂
Γc

+
∫︂
Γ+

⎞⎟⎠ eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ

= i
∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ + I+ + I− + Ic

(3.15)

where we denote

I± =
∫︂
Γ±

eλt+νc(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ, 

Ic = i

ξ0∫︂
−ξ0

(1 − ρ(ξ))eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ
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for ζ, ζ̄ ∈ R and t ≥ 0. On the other hand, using again iΦξ(ζ )˜︁Φξ(ζ̄ )
∗ = Ψ(ζ,λc(ξ))Ψ̃(ζ̄ , 

λc(ξ))
∗λ′

c(ξ), we infer

i
∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ = I0 − Ic, (3.16)

where we denote

I0 =
∫︂
Γc

eλt+ν(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ

for ζ, ζ̄ ∈R and t ≥ 0. All in all, (3.15) and (3.16) yield the decomposition

i
∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ = 1[ζ,∞)(ζ̄ )

∫︂
Γδ

eλt+ν(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ

− 1[ζ,∞)(ζ̄ ) (I+ + I− + Ic)+ 1(−∞,ζ ](ζ̄ ) (I0 − Ic)

(3.17)

for ζ, ζ̄ ∈ R and t ≥ 0. We will use integration by parts to establish pointwise approxima
tions of I±, I0 and Ic, which yield integrability in space and exponential decay in time of 
1[ζ,∞)(ζ̄ ) (I+ + I− + Ic) and of 1(−∞,ζ ](ζ̄ ) (I0 − Ic). This then readily leads to the desired re
sult.

Pointwise approximations of I± for ζ ≤ ζ̄ . We wish to factor out the space-integrable quotient 
(1 + (ζ − ζ̄ )2)−1 by establishing pointwise approximations of I+ and (ζ − ζ̄ )2I+. Recalling 
ν′
c(λ) ≠ 0 for all λ ∈ B(0, δ), abbreviating Ψ1(ζ, ζ̄ , λ)=Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗/ν′

c(λ) and using inte
gration by parts and Proposition 2.2, we rewrite

(ζ − ζ̄ )2I+ =
1 ∫︂

0 

(ζ − ζ̄ )eλ+(ξ)tΨ1(ζ, ζ̄ , λ+(ξ))∂ξ
(︂

eν(λ+(ξ))(ζ−ζ̄ ))︂ dξ

=
[︂
(ζ − ζ̄ )eλ+(ξ)t+ν(λ+(ξ))(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λ+(ξ))

]︂1

ξ=0

− 

1 ∫︂
0 

∂ξ

(︂
(ζ − ζ̄ )eλ+(ξ)tΨ1(ζ, ζ̄ , λ+(ξ))

)︂
eν(λ+(ξ))(ζ−ζ̄ ) dξ

= (ζ − ζ̄ )e(−η1+iη2)t+ν(−η1+iη2)(ζ−ζ̄ )Ψ1(ζ, ζ̄ ,−η1 + iη2)

− 

1 ∫︂
0 

∂ξ

(︂
(ζ − ζ̄ )eλ+(ξ)tΨ1(ζ, ζ̄ , λ+(ξ))

)︂
eν(λ+(ξ))(ζ−ζ̄ ) dξ

− (ζ − ζ̄ )eλc(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(ξ0))

=: II+ + III+ − (ζ − ζ̄ )eλc(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(ξ0)).

28 



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013 

Abbreviating Ψ2(ζ, ζ̄ , λ) = Ψ1(ζ, ζ̄ , λ)/ν
′
c(λ) and Ψ3(ζ, ζ̄ , λ) = ∂λΨ1(ζ, ζ̄ , λ)/ν

′
c(λ) and inte

grating by parts once again, we arrive at

III+ = −
1 ∫︂

0 

eλ+(ξ)t (︁tΨ2(ζ, ζ̄ , λ+(ξ))+Ψ3(ζ, ζ̄ , λ+(ξ))
)︁
∂ξ

(︂
eν(λ+(ξ))(ζ−ζ̄ ))︂ dξ

=
1 ∫︂

0 

∂ξ

(︂
eλ+(ξ)t (︁tΨ2(ζ, ζ̄ , λ+(ξ))+Ψ3(ζ, ζ̄ , λ+(ξ))

)︁)︂
eν(λ+(ξ))(ζ−ζ̄ ) dξ

− 
[︂
eλ+(ξ)t+ν(λ+(ξ))(ζ−ζ̄ ) (︁tΨ2(ζ, ζ̄ , λ+(ξ))+Ψ3(ζ, ζ̄ , λ+(ξ))

)︁]︂1

ξ=0

=
∫︂
Γ+

eλt+ν(λ)(ζ−ζ̄ ) (︂t2Ψ2(ζ, ζ̄ , λ)+ t
(︁
∂λΨ2(ζ, ζ̄ , λ)+Ψ3(ζ, ζ̄ , λ)

)︁+ ∂λΨ3(ζ, ζ̄ , λ)
)︂

dλ

− 
[︂
eλ+(ξ)t+ν(λ+(ξ))(ζ−ζ̄ ) (︁tΨ2(ζ, ζ̄ , λ+(ξ))+Ψ3(ζ, ζ̄ , λ+(ξ))

)︁]︂1

ξ=0
.

We establish pointwise estimates on the contributions I+, I I+ and III+. Here, we use the fol
lowing facts which follow with the aid of Proposition 2.2 and Lemma 2.4. First, since the curves 
λ± lie in the open left-half plane and the points −η1 ± iη2 lie strictly to the right of σ(ℒ0), 
there exists a constant η0 > 0 such that Re(ν(−η1 ± iη2)) ≥ η0 and Re(λ±(ξ)) ≤ −η0 for all 
ξ ∈ [0,1]. Second, since the curves λ± lie to the right of σ(ℒ0), it holds Re(ν(λ±(ξ))) ≥ 0 for 
all ξ ∈ [0,1]. Third, the functions Ψi(ζ, ζ̄ , λ) as well as their derivatives with respect to λ are 
bounded on R×R×B(0, δ) for i = 1,2,3. Thus, we establish the following pointwise bounds

|II+|≲ |ζ − ζ̄ |e−η1t+η0(ζ−ζ̄ ), |I+|, |III+| ≲ (1 + t + t2)e−η0t

for t ≥ 0 and ζ, ζ̄ ∈ R with ζ − ζ̄ ≤ 0. All in all, we conclude⃓⃓⃓⃓
⃓I+ + (ζ − ζ̄ )eλc(ξ0)t+iξ0(ζ−ζ̄ )

1 + (ζ − ζ̄ )2
Ψ1(ζ, ζ̄ , λc(ξ0))

⃓⃓⃓⃓
⃓≲ (1 + t + t2)e−η0t + |ζ − ζ̄ |e−η1t+η0(ζ−ζ̄ )

1 + (︁
ζ − ζ̄

)︁2

(3.18)

for t ≥ 0 and ζ, ζ̄ ∈ R with ζ − ζ̄ ≤ 0
Analogously, one finds⃓⃓⃓⃓

⃓I− − (ζ − ζ̄ )eλc(−ξ0)t−iξ0(ζ−ζ̄ )

1 + (ζ − ζ̄ )2
Ψ1(ζ, ζ̄ , λc(−ξ0))

⃓⃓⃓⃓
⃓≲ (1 + t + t2)e−η0t + |ζ − ζ̄ |e−η1t+η0(ζ−ζ̄ )

1 + (︁
ζ − ζ̄

)︁2 ,

(3.19)

for t ≥ 0 and ζ, ζ̄ ∈ R with ζ − ζ̄ ≤ 0.

Pointwise approximation of I0 for ζ ≥ ζ̄ . Recalling that the integrand of I0 is analytic in λ on 
B(0, δ), we can apply Cauchy’s integral theorem to deform the contour Γc to a line ˜︁Γc connect
ing the point λc(−ξ0) to λc(ξ0). We parameterize the line by a curve λ0 : [0,1] → C satisfying 
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λ′
0(ξ) ≠ 0 for all ξ ∈ [0,1], see Fig. 2. We proceed similarly as before and factor out the quotient 
(1 + (ζ − ζ̄ )2)−1, which is integrable in space. Thus, using integration by parts and Proposi
tion 2.2, we rewrite

(ζ − ζ̄ )2I0 =
1 ∫︂

0 

(ζ − ζ̄ )eλ0(ξ)tΨ1(ζ, ζ̄ , λ0(ξ))∂ξ

(︂
eν(λ0(ξ))(ζ−ζ̄ ))︂ dξ

= (ζ − ζ̄ )eλc(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(ξ0))− (ζ − ζ̄ )

× eλc(−ξ0)t−iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(−ξ0))

− 

1 ∫︂
0 

∂ξ

(︂
(ζ − ζ̄ )eλ0(ξ)tΨ1(ζ, ζ̄ , λ0(ξ))

)︂
eν(λ0(ξ))(ζ−ζ̄ ) dξ.

Using integration by parts once again, we establish

II0 := −
1 ∫︂

0 

∂ξ

(︂
(ζ − ζ̄ )eλ0(ξ)tΨ1(ζ, ζ̄ , λ0(ξ))

)︂
eν(λ0(ξ))(ζ−ζ̄ ) dξ

= −
1 ∫︂

0 

eλ0(ξ)t
(︁
tΨ2(ζ, ζ̄ , λ0(ξ))+Ψ3(ζ, ζ̄ , λ0(ξ))

)︁
∂ξ

(︂
eν(λ0(ξ))(ζ−ζ̄ ))︂ dξ

=
∫︂
˜︁Γc

eλt+ν(λ)(ζ−ζ̄ ) (︂t2Ψ2(ζ, ζ̄ , λ)+ t
(︁
∂λΨ2(ζ, ζ̄ , λ)+Ψ3(ζ, ζ̄ , λ)

)︁+ ∂λΨ3(ζ, ζ̄ , λ)
)︂

dλ

− 
[︂
eλ0(ξ)t+ν(λ0(ξ))(ζ−ζ̄ ) (︁tΨ2(ζ, ζ̄ , λ0(ξ))+Ψ3(ζ, ζ̄ , λ0(ξ))

)︁]︂1

ξ=0
.

Since ˜︁Γc is a straight line in B(0, δ) lying to the left of σ(ℒ0), it holds Re(λ0(ξ)) ≤
Re(λc(±ξ0))≤ −η0 and Re(ν(λ0(ξ)))≤ 0 for all ξ ∈ [0,1] by Proposition 2.2. Hence, we obtain 
the following pointwise bounds

|I0|, |II0|≲ (1 + t + t2)e−η0t ,

for t ≥ 0 and ζ, ζ̄ ∈ R with ζ − ζ̄ ≥ 0. We conclude that⃓⃓⃓⃓
I0 − ζ − ζ̄

1 + (ζ − ζ̄ )2

(︂
eλc(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(ξ0))− eλc(−ξ0)t−iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(−ξ0))

)︂⃓⃓⃓⃓
≲ (1 + t + t2)e−η0t

1 + (︁
ζ − ζ̄

)︁2 ,

(3.20)

for t ≥ 0 and ζ, ζ̄ ∈ R with ζ − ζ̄ ≥ 0.
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Pointwise approximation of Ic. Again our approach is to factor out the quotient (1 + (ζ −
ζ̄ )2)−1. Recalling iΦξ(ζ )˜︁Φξ(ζ̄ )

∗ =Ψ(ζ,λc(ξ))Ψ̃(ζ̄ , λc(ξ))
∗λ′

c(ξ) for ξ ∈ [−ξ0, ξ0], using inte
gration by parts and applying Proposition 2.2, we rewrite

(ζ − ζ̄ )2Ic =
ξ0∫︂

−ξ0

(1 − ρ(ξ)) (ζ − ζ̄ )eλc(ξ)tΨ1(ζ, ζ̄ , λc(ξ))∂ξ

(︂
eν(λc(ξ))(ζ−ζ̄ ))︂ dξ

= (ζ − ζ̄ )eλc(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(ξ0))− (ζ − ζ̄ )

× eλc(−ξ0)t−iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λc(−ξ0))

− 

ξ0∫︂
−ξ0

∂ξ

(︂
(1 − ρ(ξ)) (ζ − ζ̄ )eλc(ξ)tΨ1(ζ, ζ̄ , λc(ξ))

)︂
eiξ(ζ−ζ̄ ) dξ.

Abbreviating Ψ̃2(ζ, ζ̄ , ξ) = (1 − ρ(ξ))Ψ1(ζ, ζ̄ , λc(ξ)) and integrating by parts once again, we 
establish

IIc := −
ξ0∫︂

−ξ0

∂ξ

(︂
(ζ − ζ̄ )eλc(ξ)t Ψ̃2(ζ, ζ̄ , ξ)

)︂
eiξ(ζ−ζ̄ ) dξ

= i

ξ0∫︂
−ξ0

eλc(ξ)t
(︂
λ′
c(ξ)tΨ̃2(ζ, ζ̄ , ξ)+ ∂ξ Ψ̃2(ζ, ζ̄ , ξ)

)︂
∂ξ

(︂
eiξ(ζ−ζ̄ ))︂ dξ

=
ξ0∫︂

−ξ0

eλc(ξ)t+iξ(ζ−ζ̄ )

i 

(︂(︂(︁
λ′
c(ξ)t

)︁2+ λ′′
c (ξ)t

)︂
Ψ̃2(ζ, ζ̄ , ξ)+ 2λ′

c(ξ)t∂ξ

× Ψ̃2(ζ, ζ̄ , ξ)+ ∂2
ξ Ψ̃2(ζ, ζ̄ , ξ)

)︂
dξ

+ i
[︂
eλc(ξ)t+iξ(ζ−ζ̄ ) (︂λ′

c(ξ)tΨ̃2(ζ, ζ̄ , ξ)+ ∂ξ Ψ̃2(ζ, ζ̄ , ξ)
)︂]︂ξ0

ξ=−ξ0
.

In order to obtain pointwise estimates on Ic and IIc, we note that there exists ηc > 0 such that 
Re(λc(±ξ)) ≤ −ηc for all ξ ∈ [ 1

2ξ0, ξ0] by Proposition 1.3. Therefore, recalling that 1 − ρ(ξ)

vanishes on [− 1
2ξ0,

1
2ξ0], we obtain

|Ic|, |IIc| ≲ (1 + t + t2)e−ηct ,

for t ≥ 0 and ζ, ζ̄ ∈ R. We conclude

⃓⃓⃓⃓
Ic − ζ − ζ̄

1 + (ζ − ζ̄ )2

(︂
eλ0(ξ0)t+iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λ0(ξ0))− eλ0(−ξ0)t−iξ0(ζ−ζ̄ )Ψ1(ζ, ζ̄ , λ0(−ξ0))

)︂⃓⃓⃓⃓
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Fig. 2. In the proof of Proposition 3.8 we relate the Floquet-Bloch representation of the critical part of the semigroup, 
corresponding to an inverse Laplace integral over Γc , with the aid of Cauchy’s integral theorem to complex line integrals 
over Γδ,Γ− and Γ+ for ζ ≤ ζ̄ (left panel) and over ˜︁Γc for ζ ≥ ζ̄ (right panel). Here, Γc lies on the critical spectral curve 
{λc(ξ) : ξ ∈R∩ V1} established in Proposition 1.3.

≲ (1 + t + t2)e−ηct

1 + (︁
ζ − ζ̄

)︁2 , (3.21)

for t ≥ 0 and ζ, ζ̄ ∈ R.

Conclusion. Denote ˜︁η := min{η0/2, ηc/2, η1} > 0. Recalling the decomposition (3.17) and ap
plying the estimates (3.18), (3.19), (3.20) and (3.21), we find the desired bound⃓⃓⃓⃓

⃓⃓i∫︂
R 

∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ g(ζ̄ ) dζ̄

−
∞ ∫︂
ζ

∫︂
Γδ

eλt+ν(λ)(ζ−ζ̄ )Ψ(ζ,λ)Ψ̃(ζ̄ , λ)∗ dλ g(ζ̄ ) dζ̄

⃓⃓⃓⃓
⃓⃓⃓

≲ ∥g∥L∞

⎛⎝∫︂
R 

(1 + t + t2)e−2˜︁ηt
1 + ζ̄ 2

dζ̄ +
0 ∫︂

−∞

|ζ̄ |eη0 ζ̄−η1t

1 + ζ̄ 2
dζ̄

⎞⎠≲ ∥g∥L∞e−˜︁ηt ,

for g ∈ Cub(R), ζ ∈R and t ≥ 0. □

3.5. Linear estimates

By Propositions 3.3, 3.4, 3.6, 3.7 and 3.8, the semigroup eℒ0t decomposes for t ≥ 0 as

eℒ0t = Sc(t)+ Se(t),

where the operator Sc(t) : Cub(R)→ Cub(R) given by
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(Sc(t)g) [ζ ] = χ(t)

2π 

∫︂
R 

∫︂
R 

ρ(ξ)eλc(ξ)t+iξ(ζ−ζ̄ )Φξ (ζ )˜︁Φξ(ζ̄ )
∗ dξ g(ζ̄ ) dζ̄ (3.22)

corresponds to the critical low-frequency part of the semigroup and

Se(t)= (1 − χ(t))eℒ0t + S1
e (t)+ S2

e (t)+ S3
e (t)+ S4

e (t) (3.23)

is the exponentially decaying residual. The Floquet-Bloch representation (3.22) of the critical 
part of the semigroup is identical to the one obtained in the stability analysis [11] of wave trains in 
reaction-diffusion systems against Cub-perturbations. Thus, the further decomposition of Sc(t), 
as well as the proofs of the associated L∞-estimates, can be taken verbatim from [11]. On the 
other hand, estimates on the terms comprising Se(t) were obtained in Lemma 3.2 and Proposi
tions 3.4, 3.6, 3.7 and 3.8. In the final result of this section, we collect these results and state 
the decomposition of the semigroup and associated estimates needed for our nonlinear stability 
analysis.

Theorem 3.9. Assume (H1), (H2) and (D1)-(D3). Let j, l ∈ N0. There exist constants C,α > 0
such that the semigroup eℒ0t decomposes as

eℒ0t = (︁
ϕ′

0 + ∂kϕ(·,1)∂ζ
)︁
Sp(t)+ Sr(t)+ Se(t), (3.24)

where the operators Se(t), Sr(t) : Cub(R)→ Cub(R) obey the estimates

∥Se(t)g∥L∞ ≤ Ce−αt∥g∥L∞, ∥Sr(t)g∥L∞ ≤ C
∥g∥L∞

1 + t 
(3.25)

for t ≥ 0 and g ∈ Cub(R). In addition, Sp(t) : Cub(R)→ Cub(R) satisfies Sp(t)= 0 for t ∈ [0,1]
and the map t ↦→ Sp(t)g lies in Ci

(︁[0,∞),Ck
ub(R)

)︁
for any i, k ∈N0 with

⃦⃦
(∂t + cg∂ζ )

j ∂lζ Sp(t)g
⃦⃦
L∞ ≤ C

∥g∥L∞

(1 + t)j+ l
2

(3.26)

for t ≥ 0 and g ∈ Cub(R). We have the further decomposition

∂mζ Sp(t)g = ∂mζ e

(︂
d∂2

ζ −cg∂ζ
)︂
t (︁˜︁Φ∗

0g
)︁+ ∂mζ

˜︁Sr(t)g, (3.27)

where the operator ∂mζ ˜︁Sr(t) : Cub(R)→ Cub(R) obeys the estimate

⃦⃦
∂mζ
˜︁Sr(t)g⃦⃦L∞ ≤ C(1 + t)−

1
2 t−

m
2 ∥g∥L∞ (3.28)

for m= 0,1, t > 0 and g ∈ Cub(R). Finally, there exist a bounded operator Ah : L2
per

(︁
(0, T ),R2

)︁
→ C(R,R) such that it holds

e

(︂
d∂2

ζ −cg∂ζ
)︂
t (︁
v˜︁Φ∗

0g
)︁= e

(︂
d∂2

ζ −cg∂ζ
)︂
t (︁⟨˜︁Φ0,g⟩L2(0,T )v −Ah(g)∂ζ v

)︁+ ∂ζ e

(︂
d∂2

ζ −cg∂ζ
)︂
t
(Ah(g)v) ,

(3.29)
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for g ∈ L2
per((0, T ),R

2), v ∈ C1
ub(R,R) and t > 0.

Proof. The decomposition eℒ0t = Sc(t)+Se(t), where Se(t) is given by (3.23) and Sc(t) is given 
by (3.22), follows from Propositions 3.3, 3.4, 3.6, 3.7 and 3.8. The desired bound (3.25) on Se(t)
can be derived by combining Lemma 3.2 and Propositions 3.4, 3.6, 3.7 and 3.8. Moreover, it has 
been shown in [11, Section 3.3] that Sc(t) decomposes as Sc(t) = (︁

ϕ′
0 + ∂kϕ(·,1)∂ζ

)︁
Sp(t) +

Sr(t), where Sp(t), Sr(t) : Cub(R) → Cub(R) are operators obeying the estimates (3.25)
and (3.26). Moreover, Sp(t) satisfies Sp(t) = 0 for t ∈ [0,1] and the map t ↦→ Sp(t)g lies in 
Ci
(︁[0,∞),Ck

ub(R)
)︁

for any i, k ∈ N0. Finally, the decomposition (3.27), the estimates (3.28)
and the identity (3.29) can be found in [11, Section 3.5]. □
4. Nonlinear iteration scheme and nonlinear estimates

In this section, we set up the nonlinear iteration scheme and state associated nonlinear es
timates, which will be employed in the upcoming section to prove our nonlinear stability re
sult, Theorem 1.4. To this end, we consider a diffusively spectrally stable wave-train solution 
u0(x, t) = ϕ0(x − c0t) to (1.2), i.e., we assume that Hypotheses (H1), (H2) and (D1)-(D3)
are satisfied, and an initial perturbation w0 ∈ C3

ub(R) × C2
ub(R). We wish to control the per

turbation ˜︁w(t) = u(t) − ϕ0 over time, where u(t) is the solution to (1.3) with initial condition 
u(0) = ϕ0 + w0. The perturbation ˜︁w(t) satisfies equation (1.17). Theorem 3.9 shows that the 
bounds on full semigroup eℒ0t are too weak to close a nonlinear iteration argument using the 
Duhamel formulation of (1.17).

As explained in §1.3, this leads us to consider the inverse-modulated perturbation w(t) given 
by (1.18). We derive a quasilinear equation for w(t), establish L∞-bounds on the nonlinearity and 
define a suitable phase modulation ψ(t) compensating for the most critical terms in the Duhamel 
formulation of w(t). We then infer, as in [11], that ψ(t) satisfies a perturbed viscous Hamilton
Jacobi equation, whose most critical nonlinear term cannot be controled through L∞-estimates, 
but can be eliminated with the aid of the Cole-Hopf transform. We formulate an equation for the 
Cole-Hopf variable and state L∞-bounds on the nonlinearity.

Lastly, we control regularity in the quasilinear iteration scheme by relying on forward
modulated damping estimates. We obtain an equation for the modified forward-modulated per
turbation z̊(t) given by (1.22), establish norm equivalences between z̊(t) and the residual

z(t)= w(t)− ∂kϕ(·;1)ψζ (t), (4.1)

and we derive a nonlinear damping estimate for z̊(t) using uniformly local Sobolev norms.

4.1. The unmodulated perturbation

The unmodulated perturbation ˜︁w(t) satisfies the semilinear equation (1.17), whose nonlinear
ity ˜︁𝒩 : C1

ub(R)→ C1
ub(R) is readily seen to be continuously Fréchet differentiable. On the other 

hand, regarding ℒ0 as an operator on C1
ub(R)× C1

ub(R) with dense domain C3
ub(R)× C2

ub(R), 
Proposition 3.1 yields that ℒ0 generates a C0-semigroup on C1

ub(R). Hence, local existence and 
uniqueness of a classical solution to (1.17) follows by standard results, e.g. [43, Theorem 6.1.5], 
from semigroup theory.
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Proposition 4.1. Assume (H1). Let w0 ∈ C3
ub(R) × C2

ub(R). Then, there exists a maximal time 
Tmax ∈ (0,∞] such that (1.17) admits a unique classical solution

˜︁w ∈ C
(︁[0, Tmax),C

3
ub(R)×C2

ub(R)
)︁∩C1(︁[0, Tmax),C

1
ub(R)×C1

ub(R)
)︁
,

with initial condition ˜︁w(0)= w0. Moreover, if Tmax <∞, then we have

lim sup
t↑Tmax

∥˜︁w(t)∥C1
ub×C1

ub
= ∞.

4.2. The inverse-modulated perturbation

Using that u(t) and ϕ0 solve (1.3), one finds that the inverse-modulated perturbation w(t), 
given by (1.18), obeys the quasilinear equation

(∂t −ℒ0)
[︁
w + ϕ′

0ψ
]︁= 𝒩 (w,ψ, ∂tψ)+ (∂t −ℒ0)

[︁
ψζw

]︁
(4.2)

with nonlinearity

𝒩 (w,ψ,ψt )= 𝒬(w,ψ)+ ∂ζℛ(w,ψ,ψt ),

where

𝒬(w,ψ)= (︁
F(ϕ0 + w)− F(ϕ0)− F ′(ϕ0)w

)︁ (︁
1 −ψζ

)︁
is quadratic in w and

ℛ(w,ψ,ψt )= (c0ψζ −ψt)w +D

(︃
(wζ + ϕ′

0ψζ )ψζ

1 −ψζ

+ (wψζ )ζ

)︃
,

contains all linear terms in w. We refer to [3, Appendix E] for a detailed derivation of (4.2).
It is relatively straightforward to verify the relevant nonlinear bound.

Lemma 4.2. Assume (H1). Then, we have

∥𝒩 (w,ψ,ψt )∥L∞ ≲ ∥w∥2
L∞ + ∥(ψζ ,ψt )∥C2

ub×C1
ub

(︂
∥w∥C2

ub×C1
ub

+ ∥ψζ∥L∞
)︂

for w = (u, v) ∈ C2
ub(R)×C1

ub(R) and (ψ,ψt ) ∈ C3
ub(R)×C1

ub(R) satisfying ∥u∥L∞,∥ψζ∥L∞ ≤
1
2 .

Inspired by earlier works [24,27], we implicitly define the phase modulation by the integral 
equation

ψ(t)= Sp(t)w0 +
t∫︂

0 

Sp(t − s)𝒩 (w(s),ψ(s), ∂tψ(s)) ds. (4.3)
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Recalling from Theorem 3.9 that Sp(0)= 0, we find that ψ(t) vanishes at t = 0. Thus, integrat
ing (4.2) yields the Duhamel formulation

w(t)+ ϕ′
0ψ(t)= eℒ0tw0 +

t∫︂
0 

eℒ0(t−s)𝒩 (w(s),ψ(s), ∂tψ(s)) ds +ψζ (t)w(t). (4.4)

Writing the left-hand side of (4.4) as w(t)+ϕ′
0ψ(t)= z(t)+ (︁

ϕ′
0 + ∂kϕ(·;1)∂ζ

)︁
ψ(t), where z(t)

is given by (4.1), and recalling the semigroup decomposition (3.24), we observe that by defining 
the phase modulation by (4.3), the term 

(︁
ϕ′

0 + ∂kϕ(·;1)∂ζ
)︁
ψ(t) compensates for the critical, 

slowest decaying, contributions on the right-hand side of (4.4). Indeed, we arrive at the Duhamel 
formulation

z(t)= (Sr(t)+ Se(t))w0 +
t∫︂

0 

(Sr(t − s)+ Se(t − s))𝒩 (w(s),ψ(s), ∂tψ(s)) ds

+ ψζ (t)w(t),

(4.5)

for the residual z(t), where Sr(t)+ Se(t) exhibits stronger decay than eℒ0t , cf. Theorem 3.9.
Local existence of the phase modulation ψ(t) can be obtained by applying a standard con

traction mapping argument to the integral equation (4.3), where one employs Proposition 4.1 and 
expresses the inverse-modulated perturbation as

w(ζ, t)=˜︁w(ζ −ψ(ζ, t), t)+ ϕ0(ζ −ψ(ζ, t))− ϕ0(ζ ), (4.6)

to obtain a fixed point problem in ψ(t) and its derivatives. This leads to the following result, 
whose proof is identical to [11, Proposition 4.4].

Proposition 4.3. Assume (H1). Let w0 ∈ C3
ub(R)×C2

ub(R). Fix j, l,m ∈ N0. For ˜︁w and Tmax as 
in Proposition 4.1, there exists a maximal time τmax ∈ (0, Tmax] such that equation (4.3), with w
given by (4.6), possesses a solution

ψ ∈ C
(︁[0, τmax),C

2+m
ub (R)

)︁∩C1+j (︁[0, τmax),C
l
ub(R)

)︁
,

satisfying ψ(t)= 0 for all t ∈ [0, τmax) with t ≤ 1. Moreover, we have ∥(ψ(t), ∂tψ(t))∥C2
ub×Cub

<

1
2 for all t ∈ [0, τmax). Finally, if τmax < Tmax, then

lim sup
t↑τmax

∥(ψ(t), ∂tψ(t))∥C2
ub×Cub

= 1

2
.

The existence and regularity of the inverse-modulated perturbation w(t) and the residual z(t)
now follow immediately from (4.6) and (4.1), respectively, upon applying Propositions 1.2, 4.1
and 4.3 and using the uniform continuity of functions in Cub(R).
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Corollary 4.4. Assume (H1) and (D3). Let w0 ∈ C3
ub(R)×C2

ub(R). For ˜︁w as in Proposition 4.1
and ψ and τmax as in Proposition 4.3, the inverse-modulated perturbation w, defined by (1.18), 
and the residual z, defined by (4.1), obey

w, z ∈ C
(︁[0, τmax),C

3
ub(R)×C2

ub(R)
)︁
.

Moreover, their Duhamel formulations (4.4) and (4.5) hold for t ∈ [0, τmax).

4.3. Derivation of the perturbed viscous Hamilton-Jacobi equation

The estimates in Theorem 3.9, in combination with (4.3) and (4.5), show that, at least on 
the linear level, the derivative ∂jζ ∂

l
t ψ(t) of the phase modulation decays at rate t−(j+l)/2 for 

j, l ∈N0, whereas the residual z(t) and

ψ̃(t)= ∂tψ(t)+ cgψζ (t),

decay at rate t−1. Therefore, after substituting

w(t)= z(t)+ ∂kϕ(·;1)ψζ (t), ∂tψ(t)= ψ̃(t)− cgψζ (t), (4.7)

in the nonlinearity 𝒩 (w,ψ,ψt) one finds that the nonlinear terms exhibiting the slowest decay 
are of Burgers’-type, i.e. of the form fψζ (t)

2 with coefficient f ∈ L2
per(0, T ).

The decay rates of the principal part Sp(t) of the semigroup eℒ0t are not strong enough to 
control these most critical nonlinear terms through iterative estimates on the equation (4.3) for 
the phase modulation. As outlined in §1.3, we address this issue by proceeding as in [11]. That is, 
we show that ψ(t) obeys a perturbed viscous Hamilton-Jacobi equation and subsequently apply 
the Cole-Hopf transform to this equation to eliminate the critical ψ2

ζ -contributions.

To derive a viscous Hamilton-Jacobi equation for ψ(t), we first isolate the ψ2
ζ -contributions 

in the nonlinearity 𝒩 (w,ψ,ψt) of (4.3). We do so by reexpressing w(t) and ∂tψ(t) through (4.7)
wherever necessary. Thus, recalling c0 + cg = ω′(1) from Proposition 1.3, we arrive at

𝒩 (w(s),ψ(s), ∂tψ(s))= fpψζ (s)
2 +𝒩p(z(s),w(s),ψ(s), ψ̃(s)), (4.8)

with T -periodic coefficient

fp = 1

2
F ′′(ϕ0) (∂kϕ(·;1), ∂kϕ(·;1))+ω′(1)∂ζkϕ(·;1)+D

(︁
ϕ′′

0 + 2∂ζζkϕ(·;1)
)︁

and residual nonlinearity

𝒩p(z,w,ψ, ψ̃)= 𝒬p(z,w,ψ)+ ∂ζℛp(z,w,ψ, ψ̃),

where we denote
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𝒬p(z,w,ψ)= (︁
F(ϕ0 + w)− F(ϕ0)− F ′(ϕ0)w

)︁
ψζ + F(ϕ0 + w)− F(ϕ0)− F ′(ϕ0)w

− 
1

2
F ′′(ϕ0)(w,w)+ 1

2
F ′′(ϕ0)(z,w)+ 1

2
ψζF

′′(ϕ0)(z, ∂kϕ(·;1))

+ 2ψζψζζ

(︁
ω′(1)∂kϕ(·;1)+D

(︁
ϕ′

0 + 2∂ζkϕ(·;1)
)︁)︁
,

ℛp(z,w,ψ, ψ̃)= −ψ̃w +ω′(1)ψζ z

+D

(︄(︁
wζ + ϕ′

0ψζ

)︁
ψ2
ζ

1 −ψζ

+ 2zζψζ + wψζζ + 2∂kϕ(·;1)ψζψζζ

)︄
.

We establish an L∞-estimate on the residual nonlinearity.

Lemma 4.5. Assume (H1) and (D3). Then, we have

∥𝒩p(z,w,ψ, ψ̃)∥L∞ ≲
(︂
∥w∥L∞ + ∥ψζ∥C1

ub

)︂(︂
∥w∥2

L∞ + ∥z∥C2
ub

)︂
+
(︂
∥ψ̃∥C1

ub
+ ∥ψζζ∥C1

ub

)︂
∥w∥C1

ub

+ 
(︂
∥ψζζ∥C1

ub
+ ∥w∥C2

ub
∥ψζ∥L∞ + ∥ψζ∥2

L∞
)︂

∥ψζ∥C1
ub

for z,w ∈ C2
ub(R) and (ψ, ψ̃) ∈ C3

ub(R)×C1
ub(R) satisfying ∥w∥L∞,∥ψζ∥L∞ ≤ 1

2 .

Next, we substitute the decompositions (3.27) of the propagtor Sp(t) and (4.8) of the nonlin
earity 𝒩 (w(s),ψ(s), ∂tψ(s)) into (4.3) and use (3.29) to reexpress e

(︂
d∂2

ζ −cg∂ζ
)︂
t
(︂˜︁Φ∗

0fpψ2
ζ

)︂
. All 

in all, we arrive at

ψ(t)= r(t)+ e

(︂
d∂2

ζ −cg∂ζ
)︂
t (︁˜︁Φ∗

0w0
)︁+

t∫︂
0 

e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s) (︂

νψζ (s)
2 −Ah(fp)∂ζ

(︂
ψζ (s)

2
)︂)︂

ds

+ 

t∫︂
0 

e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s) (︂˜︁Φ∗

0𝒩p(z(s),w(s),ψ(s), ψ̃(s))
)︂

ds, (4.9)

where we denote

ν = ⟨˜︁Φ0, fp⟩L2(0,T )

and

r(t)=˜︁Sr(t)w0 +
t∫︂

0 

˜︁Sr(t − s)
(︂

fpψζ (s)
2
)︂

ds + ∂ζ

t∫︂
0 

e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s) (︂

Ah(fp)ψζ (s)
2
)︂

ds

+ 

t∫︂
0 

˜︁Sr(t − s)𝒩p(z(s),w(s),ψ(s), ψ̃(s)) ds. (4.10)
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Since ψ(0) vanishes identically by Proposition 4.3, setting t = 0 in (4.9) yields

r(0)= −˜︁Φ∗
0w0. (4.11)

Moreover, following the computations in [13, Section 4.2], one finds that the coefficient ν in (4.9)
equals − 1

2ω
′′(1). Thus, with the aid of Proposition 1.3, we arrive at the expression (1.15) for 

ν. Since ˜︁Sr(t) and ∂ζ e

(︂
d∂2

ζ −cg∂ζ
)︂
t

decay at rate t− 1
2 as operators on Cub(R), we find that r(t)

captures, at least on the linear level, the decaying contributions in (4.9), cf. Theorem 3.9.
Finally, applying the convective heat operator ∂t − d∂2

ζ + cg∂ζ to (4.9), we arrive at the per
turbed viscous Hamilton-Jacobi equation(︂

∂t − d∂2
ζ + cg∂ζ

)︂
(ψ − r)= νψ2

ζ +G(z,w,ψ, ψ̃) (4.12)

with nonlinear residual

G(z,w,ψ, ψ̃)= ˜︁Φ∗
0𝒩p(z,w,ψ, ψ̃)−Ah(fp)∂ζ

(︂
ψ2
ζ

)︂
.

Indeed, modulo the higher-order terms r and G(w, z,ψ, ψ̃) equation (4.12) coincides with the 
Hamilton-Jacobi equation (1.14). Regarding (4.12) as an inhomogeneous parabolic equation, 
regularity properties of ψ(t) − r(t), and thus of r(t), can be readily deduced from standard 
analytic semigroup theory.

Corollary 4.6. Assume (H1) and (D3). Let w0 ∈ C3
ub(R)×C2

ub(R). For ψ and τmax as in Propo
sition 4.3 and for w and z as in Corollary 4.4, the residual r , given by (4.10), obeys

r ∈ C
(︁[0, τmax),C

2
ub(R)

)︁∩C1(︁[0, τmax),Cub(R)
)︁
.

Proof. Moving r(t) to the left-hand side, we can regard (4.9) as the mild formulation of 
the inhomogeneous problem (4.12) for ψ(t) − r(t) with inhomogeneity t ↦→ νψζ (t)

2 +
G(z(t),w(t),ψ(t), ψ̃(t)), which lies in C

(︁[0, τmax),C
1
ub(R)

)︁
by Proposition 4.3 and Corol

lary 4.4. It is well-known that d∂2
ζ − cg∂ζ is a sectorial operator on Cub(R) with domain C2

ub(R), 
cf. [37, Corollary 3.1.9]. Therefore, since the initial condition ψ(0)− r(0) = ˜︁Φ∗

0w0 lies in the 
domain C2

ub(R) and C1
ub(R) is an intermediate space between Cub(R) and the domain C2

ub(R), 
it follows from [37, Propositions 2.1.1 and 2.1.4 and Theorem 4.3.8] that t ↦→ ψ(t)− r(t) lies 
in C

(︁[0, τmax),C
2
ub(R)

)︁ ∩ C1
(︁[0, τmax),Cub(R)

)︁
. Invoking Proposition 4.3 then yields the re

sult. □
4.4. Application of the Cole-Hopf transform

We apply the Cole-Hopf transform to remove the critical nonlinear term νψ2
ζ in (4.12). That 

is, we introduce the new variable

y(t)= e
ν
d (ψ(t)−r(t)) − 1, (4.13)

which satisfies
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y ∈ C
(︁[0, τmax),C

2
ub(R)

)︁∩C1(︁[0, τmax),Cub(R)
)︁

(4.14)

by Proposition 4.3 and Corollary 4.6. It is readily seen that y(t) is a solution of the convective 
heat equation (︂

∂t − d∂2
ζ + cg∂ζ

)︂
y = 2νrζ yζ + ν

d

(︂
νr2

ζ +G(z,w,ψ, ψ̃)
)︂
(y + 1) (4.15)

with initial condition

y(0)= e
ν
d
˜︁Φ∗

0(ψ(0)−r(0)) − 1 = e
ν
d
˜︁Φ∗

0w0 − 1, (4.16)

cf. Proposition 4.3 and (4.11).
Recalling that ψ(t) vanishes identically for t ∈ [0,1] by Proposition 4.3, the Cole-Hopf vari

able y(t) can be expressed in terms of the residual r(t) through

y(t)= e− ν
d
r(t) − 1 (4.17)

for t ∈ [0, τmax) with t ≤ 1. On the other hand, the Duhamel formulation of (4.15) reads

y(t)= e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−1)

(︂
e
ν
d
˜︁Φ∗

0w0 − 1
)︂

+ 

t∫︂
1 

e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s)𝒩c(r(s), y(s), z(s),w(s),ψ(s), ψ̃(s)) ds

(4.18)

for t ∈ [0, τmax) with t ≥ 1, where the nonlinearity is given by

𝒩c(r, y, z,w,ψ, ψ̃)= 2νrζ yζ + ν

d

(︂
νr2

ζ +G(z,w,ψ, ψ̃)
)︂
(y + 1) .

We use (4.17) for short-time control on y(t) (rather than its Duhamel formulation) in the upcom
ing nonlinear argument. The reason is that we use a temporal weight 

√
s
√

1 + s on rζ (s), so that 
the obtained bound on rζ (s)2 is nonintegrable and blows up as 1/s as s ↓ 0. We refer to the proof 
of Theorem 1.4 and Remark 5.2 for further details.

With the aid of Lemma 4.5, we obtain the following nonlinear estimate.

Lemma 4.7. Assume (H1) and (D3). It holds

∥𝒩c(r, y,w, z,ψ, ψ̃)∥L∞ ≲
(︁∥rζ∥L∞ + ∥yζ∥L∞

)︁∥rζ∥L∞

+ 
(︂
∥w∥L∞ + ∥ψζ∥C1

ub

)︂(︂
∥w∥2

L∞ + ∥z∥C2
ub

)︂
+ 
(︂
∥ψ̃∥C1

ub
+ ∥ψζζ∥C1

ub

)︂
∥w∥C1

ub

+ 
(︂
∥ψζζ∥C1

ub
+ ∥w∥C2

ub
∥ψζ∥L∞ + ∥ψζ∥2

L∞
)︂

∥ψζ∥C1
ub

for each r, y ∈ C1
ub(R), z,w ∈ C2

ub(R) and (ψ, ψ̃) ∈ C3
ub(R) × C1

ub(R) with ∥y∥L∞,∥w∥L∞, 
∥ψζ∥L∞ ≤ 1

2 .
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4.5. Forward-modulated damping

The modified forward-modulated perturbation z̊(t) is given by (1.22), where the T -periodic 
continuation ϕ(·; k) of the wave train ϕ0 with respect to the wavenumber k is defined for k
in the neighborhood [1 − r0,1 + r0] by Proposition 1.2. Combining the latter with Proposi
tions 4.1 and 4.3, we find that the forward-modulated perturbation z̊(t) is well-defined as long 
as t ∈ [0, τmax) is such that ∥ψζ (t)∥L∞ < r0. Its regularity then follows readily from Proposi
tions 1.2, 4.1 and 4.3.

Corollary 4.8. Assume (H1) and (D3). Let w0 ∈ C3
ub(R) × C2

ub(R). For r0 > 0 as in Proposi
tion 1.2, ˜︁w as in Proposition 4.1, and ψ and τmax as in Proposition 4.3, we have

˜︁τmax = sup
{︁
t ∈ [0, τmax) : ∥ψζ (s)∥L∞ < r0 for all s ∈ [0, t]}︁> 0

and the modified forward-modulated perturbation z̊(t), given by (1.22), is well-defined for t ∈
[0,˜︁τmax) and satisfies

z̊ ∈ C
(︁[0,˜︁τmax),C

3
ub(R)×C2

ub(R)
)︁∩C1(︁[0,˜︁τmax),C

1
ub(R)×C1

ub(R)
)︁
.

Using that the wave train uk(x, t) = ϕ(kx − ω(k)t; k) is a solution to (1.1) and u(t)
solves (1.3), one obtains the equation

∂t z̊ =Dz̊ζ ζ + c0z̊ζ + F ′(0)z̊ + 𝒬̊(z̊,ψ)+ ℛ̊(ψ, ψ̃, ∂tψ) (4.19)

for the modified forward-modulated perturbation, where

𝒬̊(z̊,ψ)= F(z̊ + ϕ(β(ψ)))− F(ϕ(β(ψ)))− F ′(0)z̊

=
(︃(︁

ϕ1(β(ψ)) (2 + 2μ− 3z̊1)− 3ϕ1(β(ψ))
2 + (1 +μ− z̊1)z̊1

)︁
z̊1

0

)︃
is the nonlinearity in z̊ = (z̊1, z̊2),

ℛ̊(ψ, ψ̃,ψt )=D
[︂
ϕyy(β(ψ))

(︂(︁
1 +ψζ (1 +ψζ )+ψψζζ

)︁2 − (1 +ψζ )
2
)︂

+ ϕkk(β(ψ))ψ
2
ζ ζ

+ 2ϕyk(β(ψ))ψζζ

(︁
1 +ψζ (1 +ψζ )+ψψζζ

)︁
+ ϕy(β(ψ))

(︁
ψζζ (1 + 3ψζ )+ψψζζζ

)︁
+ ϕk(β(ψ))ψζζζ

]︂
+ ϕk(β(ψ))

(︁
c0ψζζ −ψζt

)︁
+ ϕy(β(ψ))

(︂
c0 +ω′(1)ψζ −ω(1 +ψζ )− ψ̃ + c0

(︂
ψ2
ζ +ψψζζ

)︂
−ψtψζ −ψψζt

)︂
is the z̊-independent residual and we used

β(ψ)(ζ, t)= (︁
ζ +ψ(ζ, t)(1 +ψζ (ζ, t));1 +ψζ (ζ, t)

)︁
41 
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to abbreviate the argument of the profile function ϕ(y; k)= (ϕ1(y; k),ϕ2(y; k)) and its deriva
tives. We refer to Appendix B for further details on the derivation of (4.19).

We proceed with deriving a nonlinear damping estimate for the modified forward-modulated 
perturbation z̊(t), which will be employed in the nonlinear stability argument to control regu
larity. A nonlinear damping estimate in H 3(R)×H 2(R) for the ``classical'' forward-modulated 
perturbation ẘ(t), given by (1.21), was established in [3, Proposition 8.6]. Here, we extend the 
method in [3] to nonlocalized perturbations by relying on the embedding of the uniformly local 
Sobolev space H 1

ul(R) in Cub(R), see [47, Lemma 8.3.11].
The equation (4.19) for z̊(t) has a similar structure as the one for ẘ(t) derived in [3]. That is, 

the second derivative ∂ζζ z̊1 yields damping in the first component of (4.19) and the term −εγ z̊2
yields damping in the second component. Since (4.19) is semilinear, all other linear and nonlinear 
terms can be controlled by these damping terms.

All in all, we arrive at the following result.

Proposition 4.9. Assume (H1) and (D3). Fix R > 0. Let w0 ∈ C3
ub(R)×C2

ub(R). Let ψ(t) be as 
in Proposition 4.3 and let z̊(t) and ˜︁τmax be as in Corollary 4.8. There exist w0- and t-independent 
constants C,α > 0 such that the nonlinear damping estimate

⃦⃦
z̊(t)

⃦⃦
C2

ub×C1
ub

≤ C

(︄⃦⃦⃦
z̊(t)

⃦⃦
L∞ + ⃦⃦

z̊(t)
⃦⃦ 1

5
L∞

[︃
e−αt∥w0∥2

C3
ub×C2

ub
+

t∫︂
0 

e−α(t−s)(︂⃦⃦z̊1(s)
⃦⃦2
L∞

+ ∥ψζζ (s)∥2
C4

ub
+ ∥∂sψζ (s)∥2

C3
ub

+ ⃦⃦
ψ̃(s)

⃦⃦2
C3

ub

+ ∥ψζ (s)∥2
L∞

(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂)︂
ds

]︃ 2
5
)︄ (4.20)

holds for all t ∈ [0,˜︁τmax) with

sup 
0≤s≤t

(︂⃦⃦
z̊1(s)

⃦⃦
C1

ub
+ ∥ψ(s)∥C3

ub

)︂
≤R. (4.21)

Proof. Fix a constant R > 0 and set

ϑ = 1

2
min

{︃
1,

εγ 
2|c0| + 1

}︃
.

We start by relating the (C2
ub × C1

ub)-norm of z̊(t) to a uniformly local Sobolev norm. First, we 
define the window function ϱ : R→R given by

ϱ(ζ )= 2 
2 + ζ 2 ,

which is positive, smooth and L1-integrable, and satisfies

|ϱ′(ζ )| ≤ ϱ(ζ )≤ 1 (4.22)
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for all ζ ∈ R. Next, we apply the Gagliaro-Nirenberg interpolation inequality, while noting that 
ϱ ∈Wk+1,1(R)∩Wk+1,∞(R) and ϱ(0)= 1, to infer⃦⃦

∂kζ z
⃦⃦
L∞ = sup 

y∈R

⃦⃦
ϱ(ϑ(· + y))∂kζ z

⃦⃦
L∞ ≲ ∥z∥

Ck−1
ub

+ sup 
y∈R

⃦⃦
∂kζ
(︁
ϱ(ϑ(· + y))z

)︁⃦⃦
L∞

≲ ∥z∥
Ck−1

ub
+ sup 

y∈R

⃦⃦
∂k+1
ζ

(︁
ϱ(ϑ(· + y))z

)︁⃦⃦ 4
5
L2

⃦⃦
ϱ(ϑ(· + y))z

⃦⃦ 1
5

L
1 

2−k

≲ ∥z∥
Ck−1

ub
+ ∥z∥

1
5
L∞ sup 

y∈R

⃦⃦
∂k+1
ζ

(︁
ϱ(ϑ(· + y))z

)︁⃦⃦ 4
5
L2

≲ ∥z∥
Ck−1

ub
+ ∥z∥

4
5

Ck
ub

∥z∥
1
5
L∞ + ∥z∥

1
5
L∞ sup 

y∈R

⃦⃦
ϱ(ϑ(· + y))∂k+1

ζ z
⃦⃦ 4

5
L2

for z ∈ Ck+1
ub (R) and k = 1,2. Hence, interpolating between Ck

ub(R) and Cub(R), applying 
Young’s inequality and rearranging terms, we arrive at

∥z∥Ck
ub
≲ ∥z∥L∞ + ∥z∥

1
5
L∞ sup 

y∈R

⃦⃦
ϱ(ϑ(· + y))∂k+1

ζ z
⃦⃦ 4

5
L2

for z ∈ Ck+1
ub (R) and k = 1,2. Combining the latter with (4.22) and recalling Corollary 4.8, 

yields

⃦⃦
z̊(t)

⃦⃦
C2

ub×C1
ub
≲
⃦⃦

z̊(t)
⃦⃦
L∞ + ⃦⃦

z̊(t)
⃦⃦ 1

5
L∞ sup 

y∈R
Ey(t)

2
5 (4.23)

for t ∈ [0,˜︁τmax), where we denote

Ey(t)=
∫︂
R 

ϱ(ϑ(ζ + y))

(︃
υ

⃓⃓⃓
∂3
ζ z̊1(ζ, t)

⃓⃓⃓2 +
⃓⃓⃓
∂2
ζ z̊2(ζ, t)

⃓⃓⃓2)︃
dζ, υ := εγ

4 
> 0

for y ∈ R. The estimate (4.23) provides the desired relationship between the (C2
ub × C1

ub)-norm 
of z̊(t) and the family of energies Ey(t), which are associated with the norm on the uniformly 
local Sobolev space H 3

ul(R)×H 2
ul(R) with dilation parameter ϑ , cf. [47, Section 8.3.1].

Our next step is to derive an inequality for the energies Ey(t). In order to be able to differ
entiate Ey(t) with respect to t , we restrict ourselves for the moment to initial conditions w0 ∈
C5

ub(R) × C4
ub(R). With these two additional degrees of regularity one derives, analogously as 

in Proposition 4.1, that ˜︁w ∈ C
(︁[0, Tmax),C

5
ub(R)×C4

ub(R)
)︁∩C1

(︁[0, Tmax),C
3
ub(R)×C3

ub(R)
)︁
. 

Combining the latter with Propositions 1.2 and 4.3 yields z̊ ∈ C
(︁[0,˜︁τmax),C

5
ub(R)×C4

ub(R)
)︁ ∩

C1
(︁[0,˜︁τmax),C

3
ub(R)×C3

ub(R)
)︁
.

Let y ∈R and let t ∈ [0,˜︁τmax) be such that (4.21) holds. Using (4.19) and

F ′(0)=
(︃−μ −1

ε −εγ
)︃
,

while noting that the second component of 𝒬̊(z̊,ψ) vanishes, we compute
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1

2
∂sEy(s)= I + II + III + IV, (4.24)

where

I = υ

∫︂
R 

ϱ(ϑ(ζ + y))
⟨︂
∂3
ζ z̊1(ζ, s), ∂

5
ζ z̊1(ζ, s)+ c0∂

4
ζ z̊1(ζ, s)− ∂3

ζ z̊2(ζ, s)−μ∂3
ζ z̊1(ζ, s)

⟩︂
dζ,

II = c0

2 

∫︂
R 

ϱ(ϑ(ζ + y))∂ζ

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ

+ ε
∫︂
R 

ϱ(ϑ(ζ + y))
⟨︂
∂2
ζ z̊2(ζ, s), ∂

2
ζ z̊1(ζ, s)− γ ∂2

ζ z̊2(ζ, s)
⟩︂

dζ,

are the contributions from the linear terms, and

III = υ

∫︂
R 

ϱ(ϑ(ζ + y))

×
⟨︃(︃

∂3
ζ z̊1(ζ, s)

0

)︃
, ∂3

ζ

(︂
𝒬̊(z̊(ζ, s),ψ(ζ, s))+ ℛ̊(ψ(ζ, s), ψ̃(ζ, s), ∂sψ(ζ, s))

)︂⟩︃
dζ,

IV =
∫︂
R 

ϱ(ϑ(ζ + y))

⟨︃(︃
0

∂2
ζ z̊2(ζ, s)

)︃
, ∂2

ζ ℛ̊(ψ(ζ, s), ψ̃(ζ, s), ∂sψ(ζ, s))

⟩︃
dζ

are the nonlinear contributions for s ∈ [0, t]. Integrating by parts, we rewrite

I = −υ
∫︂
R 

ϱ(ϑ(ζ + y))

(︃⃓⃓⃓
∂4
ζ z̊1(ζ, s)

⃓⃓⃓2 +μ

⃓⃓⃓
∂3
ζ z̊1(ζ, s)

⃓⃓⃓2 −
⟨︂
∂4
ζ z̊1(ζ, s), ∂

2
ζ z̊2(ζ, s)

⟩︂)︃
dζ

− υϑ
∫︂
R 

ϱ′(ϑ(ζ + y))
⟨︂
∂3
ζ z̊1(ζ, s), ∂

4
ζ z̊1(ζ, s)− ∂2

ζ z̊2(ζ, s)
⟩︂

dζ

+ c0υ

∫︂
R 

ϱ(ϑ(ζ + y))
⟨︂
∂3
ζ z̊1(ζ, s), ∂

4
ζ z̊1(ζ, s)

⟩︂
dζ

and

II = −εγ
∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ − c0ϑ

2 

∫︂
R 

ϱ′(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ

+ ε
∫︂
R 

ϱ(ϑ(ζ + y))
⟨︂
∂2
ζ z̊2(ζ, s), ∂

2
ζ z̊1(ζ, s)

⟩︂
dζ

for s ∈ [0, t]. Applying Young’s inequality to the latter, while using (4.22) and 4|c0|ϑ ≤ εγ , 
yields a t- and w0-independent constant C1 > 0 such that
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I ≤ −υ

4 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂4
ζ z̊1(ζ, s)

⃓⃓⃓2
dζ + υ

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ

+ C1

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂3
ζ z̊1(ζ, s)

⃓⃓⃓2
dζ

(4.25)

and

II ≤ −3εγ

4 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ +C1

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊1(ζ, s)

⃓⃓⃓2
dζ (4.26)

for s ∈ [0, t]. Similarly, employing Young’s inequality, while using that (4.21) holds and ρ is 
L1-integrable, we establish a t- and w0-independent constant C2 > 0 such that

III ≤ C2

⎛⎝∫︂
R 

ϱ(ϑ(ζ + y))

(︃⃓⃓⃓
∂3
ζ z̊1(ζ, s)

⃓⃓⃓2 +
⃓⃓⃓
∂2
ζ z̊1(ζ, s)

⃓⃓⃓2 + ⃓⃓
∂ζ z̊1(ζ, s)

⃓⃓2)︃ dζ

+ ∥z̊1(s)∥2
L∞ + ∥ψζζ (s)∥2

C4
ub

+ ∥∂sψζ (s)∥2
C3

ub
+ ⃦⃦

ψ̃(s)
⃦⃦2
C3

ub

+ ∥ψζ (s)∥2
L∞

(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂⎞⎠
(4.27)

and

IV ≤ εγ

4 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂2
ζ z̊2(ζ, s)

⃓⃓⃓2
dζ +C2

(︂
∥ψζζ (s)∥2

C3
ub

+ ∥∂sψζ (s)∥2
C2

ub
+ ⃦⃦

ψ̃(s)
⃦⃦2
C2

ub

+ ∥ψζ (s)∥2
L∞

(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂⎞⎠
(4.28)

for s ∈ [0, t]. Applying the estimates (4.25), (4.26), (4.27) and (4.28) to (4.24) and using that 
υ = εγ /4, we obtain a t- and w0-independent constant C3 > 0 such that

1

2
∂sEy(s)≤ −εγ

4 
Ey(s)− υ

4 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂4
ζ z̊1(ζ, s)

⃓⃓⃓2
dζ +C3

(︂
∥z̊1(s)∥2

L∞ + ∥ψζζ (s)∥2
C4

ub

+ ∥∂sψζ (s)∥2
C3

ub
+ ⃦⃦

ψ̃(s)
⃦⃦2
C3

ub
+ ∥ψζ (s)∥2

L∞
(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂

+
∫︂
R 

ϱ(ϑ(ζ + y))

(︃⃓⃓⃓
∂3
ζ z̊1(ζ, s)

⃓⃓⃓2 +
⃓⃓⃓
∂2
ζ z̊1(ζ, s)

⃓⃓⃓2 + ⃓⃓
∂ζ z̊1(ζ, s)

⃓⃓2)︃ dζ

⎞⎠
(4.29)
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for s ∈ [0, t].
We control the term on the last line of (4.29) by deriving an interpolation inequality. To this 

end, we take k ∈ N , η ∈ (0, 1
4 ) and a1, . . . , ak > 0. Integration by parts, Young’s inequality, and 

the estimate (4.22) yield

k∑︂
j=1 

aj

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂
j
ζ z(ζ )

⃓⃓⃓2
dζ

= −
k∑︂

j=1 
aj

∫︂
R 

(︃
ϱ(ϑ(ζ + y))

⟨︂
∂
j+1
ζ z(ζ ), ∂

j−1
ζ z(ζ )

⟩︂
dζ

+ ϑϱ′(ϑ(ζ + y))
⟨︂
∂
j
ζ z(ζ ), ∂

j−1
ζ z(ζ )

⟩︂)︃
dζ

≤
k∑︂

j=1 

aj

2 

∫︂
R 

ϱ(ϑ(ζ + y))

(︃
η

⃓⃓⃓
∂
j+1
ζ z(ζ )

⃓⃓⃓2 + ϑ

⃓⃓⃓
∂
j
ζ z(ζ )

⃓⃓⃓2 +
(︃

1 
η

+ ϑ

)︃ ⃓⃓⃓
∂
j−1
ζ z(ζ )

⃓⃓⃓2)︃
dζ

for z ∈ Ck+1
ub (R). Setting a0 = 0 = ak+1, using ϑ ≤ 1

2 and rearranging terms in the latter, we 
arrive at the interpolation inequality

k∑︂
j=1 

(︃
3

4
aj − η

2 
aj−1 − 1

2
aj+1

(︃
1 
η

+ 1

2

)︃)︃∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂
j
ζ z(ζ )

⃓⃓⃓2
dζ

≤ η

2 
ak

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂k+1
ζ z(ζ )

⃓⃓⃓2
dζ + 1

2
a1

(︃
1 
η

+ 1

2

)︃∫︂
R 

ϱ(ϑ(ζ + y)) |z(ζ )|2 dζ

(4.30)

for z ∈ Ck+1
ub (R). Next, we fix k = 3 and solve the linear system

3

4
aj − η

2 
aj−1 − 1

2
aj+1

(︃
1 
η

+ 1

2

)︃
= 1, j = 1,2,3,

yielding the solution

a1 = 4
(︁
4 − 2η3 + 9η2 + 10η

)︁
3η2(1 − 4η) 

, a2 = 4
(︁
2 + 2η2 + 4η

)︁
η(1 − 4η) 

, a3 = 4
(︁
5 + 4η2 + 4η

)︁
3(1 − 4η) 

,

where we have a1, a2, a3 > 0 since η < 1
4 . Thus, taking these values for a1, a2, a3 in (4.30), we 

find

3 ∑︂
j=1 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂
j
ζ z(ζ )

⃓⃓⃓2
dζ ≤ 2η

(︁
5 + 4η2 + 4η

)︁
3(1 − 4η) 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂4
ζ z(ζ )

⃓⃓⃓2
dζ

46 



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013 

+ 
(η+ 2)

(︁
4 − 2η3 + 9η2 + 10η

)︁
3η3(1 − 4η) 

∫︂
R 

ϱ(ϑ(ζ + y)) |z(ζ )|2 dζ

for z ∈ C4
ub(R). So, taking η ∈ (0, 1

4 ) so small that

2η
(︁
5 + 4η2 + 4η

)︁
3(1 − 4η) 

≤ υ

4C3
,

we establish a constant C4 > 0 such that

3 ∑︂
j=1 

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂
j
ζ z(ζ )

⃓⃓⃓2
dζ ≤ υ

4C3

∫︂
R 

ϱ(ϑ(ζ + y))

⃓⃓⃓
∂4
ζ z(ζ )

⃓⃓⃓2
dζ +C4∥z∥2

L∞ (4.31)

for z ∈ C4
ub(R).

We apply the interpolation identity (4.31) to (4.29) and deduce

∂sEy(s)≤ −εγ

2 
Ey(s)+C5

(︂⃦⃦
z̊1(s)

⃦⃦2
L∞ + ∥ψζζ (s)∥2

C4
ub

+ ∥∂sψζ (s)∥2
C3

ub
+ ⃦⃦

ψ̃(s)
⃦⃦2
C3

ub

+ ∥ψζ (s)∥2
L∞

(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂)︂
for s ∈ [0, t], where C5 > 0 is a t- and w0-independent constant. Multiplying the latter inequality 
with e

εγ
2 s and integrating, we acquire

Ey(t)≤ e− εγ
2 tEy(0)+C5

t∫︂
0 

e− εγ
2 (t−s)

(︂⃦⃦
z̊1(s)

⃦⃦2
L∞ + ∥ψζζ (s)∥2

C4
ub

+ ∥∂sψζ (s)∥2
C3

ub

+ ⃦⃦
ψ̃(s)

⃦⃦2
C3

ub
+ ∥ψζ (s)∥2

L∞
(︂
∥ψζ (s)∥2

L∞ + ∥∂sψ(s)∥2
L∞

)︂)︂
ds.

Lastly, using that there exists a w0-independent constant C6 > 0 such that Ey(0)≤ C6∥w0∥2
C3

ub×C2
ub

and plugging the latter estimate into (4.23), we arrive at (4.20).
In order to extend our result to the general case w0 ∈ C3

ub(R) × C2
ub(R) we argue as in the 

proof of [3, Proposition 8.6]. That is, we approximate the initial condition w0 in C3
ub(R)×C2

ub(R)

by a sequence 
(︁
w0,n

)︁
n∈N in C5

ub(R)×C4
ub(R). By continuity of solutions with respect to initial 

data and the fact that (4.20) only depends on the (C3
ub × C2

ub)-norm of z̊(t), the desired result 
follows by approximation. We refer to [3] for further details. □
Remark 4.10. In addition to the fact that we extend the proof of the nonlinear damping estimate 
in [3, Proposition 8.6] to nonlocalized perturbations by employing an energy associated with 
uniformly local Sobolev norms, our analysis deviates from the one in [3] in another important 
way: rather than using the bound ∥∂kζ w∥L∞ ≤ ∥∂kζ w∥H 1 , we employ the Gagliardo-Nirenberg 
interpolation inequality

⃦⃦
∂kζ w

⃦⃦
L∞ ≤ ⃦⃦

∂k+1
ζ w

⃦⃦ 4
5
L2∥w∥

1
5

L
1 

2−k
,
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for w ∈ Hk+1(R) ∩ L1(R) and k = 1,2. This leads to the additional factor ∥z̊(t)∥1/5
L∞ in the 

nonlinear damping estimate (4.20), enabling us to only require that the L∞-norm of the initial 
perturbation w0 is small (and its (C3

ub ×C2
ub)-norm is bounded) in our nonlinear stability result, 

Theorem 1.4. We expect that a similar approach can be adopted to relax the smallness condition 
on initial data in [3].

It has been argued in [51, Corollary 5.3] that, as long as ∥ψζ (t)∥L∞ stays sufficiently small, 
the Sobolev norms of the forward- and inverse-modulated perturbation ẘ(t) and w(t) are equiv
alent modulo Sobolev norms of ψζ (t) and its derivatives. We extend this result by proving norm 
equivalence of the modified forward-modulated perturbation z̊(t) and the residual z(t) (up to 
controllable errors in ψζ (t) and its derivatives).

Lemma 4.11. Let ψ(t) be as in Proposition 4.3, let z(t) be as in Corollary 4.4 and let z̊(t) and ˜︁τmax be as in Corollary 4.8. Then, there exists a constant C > 0 such that

∥z(t)∥C2
ub×C1

ub
≤ C

(︂⃦⃦
z̊(t)

⃦⃦
C2

ub×C1
ub

+ ∥ψζζ (t)∥C1
ub

+ ∥ψζ (t)∥2
L∞

)︂
, (4.32)

and

⃦⃦
z̊(t)

⃦⃦
L∞ ≤ C

(︂
∥z(t)∥L∞ + ∥ψζζ (t)∥L∞ + ∥ψζ (t)∥2

L∞
)︂

(4.33)

for any t ∈ [0,˜︁τmax).

Proof. Inserting w(ζ, t) = u(ζ − ψ(ζ, t), t) − ϕ0(ζ ) into (4.1) and using (1.22) to reexpress 
u(ζ −ψ(ζ, t), t), we arrive at

z(ζ, t)= z̊(a(ζ, t), t)− ϕ0(ζ )− ϕk(ζ ;1)ψζ (ζ, t)+ ϕ (b(ζ, t); c(ζ, t)) (4.34)

for ζ ∈ R and t ∈ [0,˜︁τmax), where we abbreviate

a(ζ, t)= ζ −ψ(ζ, t), b(ζ, t)= ζ +ψ(ζ −ψ(ζ, t), t)
(︁
1 +ψζ (ζ −ψ(ζ, t), t)

)︁−ψ(ζ, t)

and

c(ζ, t)= 1 +ψζ (ζ −ψ(ζ, t), t).

Differentiating the latter with respect to ζ yields

zζ (ζ, t)= z̊ζ (a(ζ, t), t)aζ (ζ, t)− ϕ′
0(ζ )− ϕkζ (ζ ;1)ψζ (ζ, t)− ϕk(ζ ;1)ψζζ (ζ, t)

+ ϕζ (b(ζ, t); c(ζ, t)) bζ (ζ, t)+ ϕk (b(ζ, t); c(ζ, t)) cζ (ζ, t)
(4.35)

and
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zζ ζ (ζ, t)= z̊ζ ζ (a(ζ, t), t)aζ (ζ, t)2 + z̊ζ (a(ζ, t), t)aζζ (ζ, t)− ϕ′′
0 (ζ )− ϕkζζ (ζ ;1)ψζ (ζ, t)

− 2ϕkζ (ζ ;1)ψζζ (ζ, t)− ϕk(ζ ;1)ψζζζ (ζ, t)+ ϕζζ (b(ζ, t); c(ζ, t)) bζ (ζ, t)2
+ 2ϕkζ (b(ζ, t); c(ζ, t)) bζ (ζ, t)cζ (ζ, t)+ ϕkk (b(ζ, t); c(ζ, t)) cζ (ζ, t)2
+ ϕζ (b(ζ, t); c(ζ, t)) bζζ (ζ, t)+ ϕk (b(ζ, t); c(ζ, t)) cζζ (ζ, t)

(4.36)

for ζ ∈ R and t ∈ [0,˜︁τmax).
Next, we use Taylor’s theorem to bound

|b(ζ, t)− ζ | ≤ ⃓⃓
ψ(ζ −ψ(ζ, t), t)−ψ(ζ, t)+ψζ (ζ, t)ψ(ζ, t)

⃓⃓
+ 
⃓⃓
ψζ (ζ −ψ(ζ, t), t)ψ(ζ −ψ(ζ, t), t)−ψζ (ζ, t)ψ(ζ, t)

⃓⃓
≲ ∥ψ(t)∥L∞

(︂
∥ψζζ (t)∥L∞∥ψ(t)∥L∞ + ∥ψζ (t)∥2

L∞
)︂
,⃓⃓

c(ζ, t)− 1 −ψζ (ζ, t)
⃓⃓≤ ∥ψ(t)∥L∞∥ψζζ (t)∥L∞ ,

(4.37)

and⃓⃓
bζ (ζ, t)− 1

⃓⃓≤ ⃓⃓
ψζ (ζ −ψ(ζ, t), t)(1 −ψζ (ζ, t))−ψζ (ζ, t)

⃓⃓
+ 
⃓⃓⃓
ψζζ (ζ −ψ(ζ, t), t)ψ(ζ −ψ(ζ, t), t)+ψζ (ζ −ψ(ζ, t), t)2

⃓⃓⃓ ⃓⃓
1 −ψζ (ζ, t)

⃓⃓
≲
(︂
∥ψ(t)∥L∞∥ψζζ (t)∥L∞ + ∥ψζ (t)∥2

L∞
)︂(︁

1 + ∥ψζ (t)∥L∞
)︁

(4.38)

for ζ ∈ R and t ∈ [0,˜︁τmax). Recall from Proposition 1.2 that ϕ : R × [1 − r0,1 + r0] → R2 is 
smooth. So, applying Taylor’s theorem and estimate (4.37), while recalling from Proposition 4.3
and Corollary 4.8 that ∥ψ(t)∥C2

ub
< 1

2 and ∥ψζ (t)∥L∞ < r0, we infer the bounds

⃓⃓⃓
(∂

j
ζ ϕ) (b(ζ, t); c(ζ, t))− (∂

j
ζ ϕ) (ζ ; c(ζ, t))

⃓⃓⃓
≤ |b(ζ, t)− ζ | sup 

|k−1|≤r0

⃦⃦⃦
∂
j+1
ζ ϕ(·; k)

⃦⃦⃦
L∞

≲ ∥ψζζ (t)∥L∞ + ∥ψζ (t)∥2
L∞ ,⃓⃓⃓

(∂
j
ζ ϕ) (ζ ; c(ζ, t))− (∂

j
ζ ϕ)

(︁
ζ ;1 +ψζ (ζ, t)

)︁⃓⃓⃓≤ |c(ζ, t)− 1 −ψζ (ζ, t)|

· sup 
|k−1|≤r0

⃦⃦⃦
∂
j
ζ ϕk(·; k)

⃦⃦⃦
L∞ ≲ ∥ψζζ (t)∥L∞

(4.39)

and⃓⃓⃓
(∂

j
ζ ϕ)

(︁
ζ ;1 +ψζ (ζ, t)

)︁− ∂
j
ζ ϕ0(ζ )− (∂

j
ζ ϕk)(ζ ;1)ψζ (ζ, t)

⃓⃓⃓
≲ |ψζ (ζ, t)|2

⃦⃦⃦
∂
j
ζ ϕkk(·;1)

⃦⃦⃦
L∞

≲ ∥ψζ (t)∥2
L∞ (4.40)

for ζ ∈ R, t ∈ [0,˜︁τmax) and j = 0,1,2. Using again ∥ψ(t)∥C2
ub
< 1

2 , we obtain
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∥a(·, t)∥C2
ub
≲ 1, ∥cζ (·, t)∥C1

ub
,∥bζζ (·, t)∥L∞ ≲ ∥ψζζ (t)∥C1

ub
(4.41)

for ζ ∈ R and t ∈ [0,˜︁τmax).
Finally, applying the bounds (4.38), (4.39), (4.40) and (4.41) to (4.34), (4.35) and (4.36), 

while recalling that ϕ is smooth, one readily infers (4.32). Similarly, applying (4.39) and (4.40)
to (4.34), we establish⃦⃦

z̊(a(·, t), t)⃦⃦
L∞ ≲ ∥z(t)∥L∞ + ∥ψζζ (t)∥L∞ + ∥ψζ (t)∥2

L∞ (4.42)

for t ∈ [0,˜︁τmax). Since we have ∥ψζ (t)∥L∞ < 1
2 , it holds aζ (ζ, t)≥ 1

2 for all ζ ∈R and the func
tion a(·, t) : R→ R is bijective for each t ∈ [0,˜︁τmax). Consequently, we have ⃦⃦ z̊(a(·, t), t)⃦⃦

L∞ =⃦⃦
z̊(·, t)⃦⃦

L∞ for each t ∈ [0,˜︁τmax), which yields (4.33) upon invoking (4.42). □
5. Nonlinear stability argument

We prove our nonlinear stability result, Theorem 1.4, by applying the linear bounds, obtained 
in Theorem 3.9, and the nonlinear bounds, established in Lemmas 4.2, 4.5 and 4.7, to iteratively 
estimate the phase modulation ψ(t), the residuals z(t) and r(t), and the Cole-Hopf variable 
y(t) through their respective Duhamel formulations (4.3), (4.5), (4.10) and (4.18). We control 
regularity in the scheme via the nonlinear damping estimate in Proposition 4.9.

Proof of Theorem 1.4. Take w0 ∈ C3
ub(R) × C2

ub(R) with ∥w0∥C3
ub×C2

ub
< K . Propositions 4.1

and 4.3, Corollaries 4.4 and 4.6, and identity (4.14) yield that the template function η : [0, τmax) 
→R given by

η(t)= η1(t)+ η2(t)
5,

with

η1(t)= sup 
0≤s≤t

[︃
∥ψ(s)∥L∞ + ∥y(s)∥L∞ + √

s ∥yζ (s)∥L∞ + √
1 + s

(︃∥r(s)∥L∞ + √
s ∥rζ (s)∥L∞

log(2 + s) 

+ ∥ψζ (s)∥L∞
)︃

+ 1 + s 
log(2 + s)

(︂
∥z(s)∥L∞ + ⃦⃦

ψζζ (s)
⃦⃦
C4

ub
+ ⃦⃦

ψ̃(s)
⃦⃦
C4

ub

)︂]︃
,

and

η2(t)= sup 
0≤s≤t

⃦⃦˜︁w(t)⃦⃦
C1

ub

is well-defined, positive, monotonically increasing and continuous, where we recall ψ̃(t) =
∂tψ(t)+ cgψζ (t). In addition, if τmax <∞, then we have

lim 
t↑τmax

η(t)≥ 1

2
. (5.1)

We refer to Remarks 5.1 and 5.2 for motivation for the choice of template function.
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Approach. Let r0 > 0 be the constant from Proposition 1.2. As usual in nonlinear iteration argu
ments, our goal is to prove a nonlinear inequality for the template function η(t). Specifically, we 
show that there exists a constant C > 1 such that for all t ∈ [0, τmax) with η(t)≤ 1

2 min{1, r0} we 
have the key inequality

η(t)≤ C
(︂
E0 + η(t)

6
5

)︂
, (5.2)

where we denote E0 := ∥w0∥L∞ . We note that by interpolation there exists an E0-independent 
constant C0 > 0 such that it holds ∥w0∥C1

ub
≤ C0

√
E0 as long as E0 ≤ 1. So, recalling that ψ(0)

vanishes identically by Proposition 4.3 and using (4.11) and (4.16), we find an E0-independent 
constant C∗ > 0 such that η(0)≤ C∗E0 as long as E0 ≤ 1. Subsequently, we set

M0 = 2 max{C,C∗}> 2, ϵ0 = min

{︄
1 

M6
0

,
min{1, r0}

2M0

}︄
< 1.

Assuming that (5.2) holds, we claim that, provided E0 ∈ (0, ϵ0), we have η(t) ≤ M0E0 for all 
t ∈ [0, τmax). To prove the claim we, argue by contradiction and assume that there exists a t ∈
[0, τmax) with η(t) > M0E0. Since η is continuous and η(0)≤ C∗E0 <M0E0, there must exist 
t0 ∈ (0, τmax) with η(t0) = M0E0 ≤ 1

2 min{1, r0}. Thus, applying (5.2) and using E0 < ϵ0, we 
arrive at

η(t0)≤ CE0

(︃
1 +M

6
5

0 E
1
5
0

)︃
< 2CE0 ≤M0E0,

which contradicts η(t0)=M0E0. Therefore, it must hold η(t)≤M0E0 for all t ∈ [0, τmax). Since 
M0 > 2, we have M0E0 <

1
2 , which implies τmax = ∞ by (5.1), i.e., u(t)=˜︁w(t)+ ϕ0 is a global 

solution to (1.3) satisfying (1.9) by Proposition 4.1.
Our next step is thus to establish the key inequality (5.2). The estimates (1.10)-(1.13)

and (1.16) then follow readily by employing applying Lemma 4.11 and using that η(t)≤M0E0
holds for all t ≥ 0.

Bounds on w(t) and ∂tψ(t). Let t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}. We bound w(s)= z(s)+

∂kϕ(·;1)ψζ (s) and ∂tψ(s)= ψ̃(s)− cgψζ (s) as

∥w(s)∥L∞ ≲ ∥z(s)∥L∞ + ∥ψζ (s)∥L∞ ≲ η1(t) √
1 + s

,

∥∂tψ(s)∥L∞ ≲ ∥ψ̃(s)∥L∞ + ∥ψζ (s)∥L∞ ≲ η1(t) √
1 + s

(5.3)

for s ∈ [0, t].
Application of nonlinear damping estimate. Take t ∈ [0, τmax) such that η(t) ≤ 1

2 min{1, r0}. 
Then, we have t <˜︁τmax by Corollary 4.8. Moreover, using identity (1.22), η(t) ≤ 1

2 min{1, r0}
and the fact that ϕ : [1 − r0,1 + r0] × R → R2 is smooth by Proposition 1.2, we find a t- and 
E0-independent constant R0 > 0 such that ∥z̊(τ )∥C1

ub
≤ R0 for τ ∈ [0, t]. On the other hand, 

Lemma 4.11 implies
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⃦⃦
z̊(τ )

⃦⃦
L∞ ≲ η1(t)

log(2 + τ)

1 + τ 

for τ ∈ [0, t], where we use that η1(t)≤ 1
2 . Hence, employing the nonlinear damping estimate in 

Proposition 4.9, while using η1(t)≤ 1
2 and ∥z̊(τ )∥C1

ub
≤R0 for τ ∈ [0, t], we arrive at

⃦⃦
z̊(s)

⃦⃦
C2

ub×C1
ub
≲ η1(t)

log(2 + s)

1 + s 
+
(︃
η1(t)

log(2 + s)

1 + s 

)︃ 1
5

⎛⎝e−αs +
s∫︂

0 

log(2 + τ)2

eα(s−τ)(1 + τ)2
dτ

⎞⎠
2
5

≲ η1(t)
1
5

log(2 + s)

1 + s 
(5.4)

for s ∈ [0, t]. We combine the latter with Lemma 4.11 and use η1(t)≤ 1
2 to obtain

⃦⃦
z(s)

⃦⃦
C2

ub×C1
ub
≲ η1(t)

1
5

log(2 + s)

1 + s 
(5.5)

for s ∈ [0, t]. Therefore, recalling w(s) = z(s)+ ∂kϕ(·;1)ψζ (s) and using η1(t) ≤ 1
2 , the latter 

estimate yields

∥w(s)∥C2
ub×C1

ub
≲ ∥z(s)∥C2

ub×C1
ub

+ ∥ψζ (s)∥C2
ub
≲ η1(t)

1
5√

1 + s
(5.6)

for s ∈ [0, t].
Bounds on z(t), ψζζ (t) and ψ̃(t). Let t ∈ [0, τmax) be such that η(t)≤ 1

2 min{1, r0}. We invoke 
the nonlinear bound in Lemma 4.2, employ the estimates (5.3) and (5.6), and use η1(t) ≤ 1

2 to 
obtain

∥𝒩 (w(s),ψ(s), ∂tψ(s))∥L∞ ≲ η1(t)
6
5

1 + s 
(5.7)

for s ∈ [0, t].
Subsequently, we apply the linear estimates in Theorem 3.9 and the nonlinear estimate (5.7)

to the Duhamel formulas (4.3) and (4.5) and establish

∥z(t)∥L∞ ≲
(︃

1 
1 + t

+ e−αt
)︃
E0 +

t∫︂
0 

(︃
1 

1 + t − s
+ e−α(t−s)

)︃
η1(t)

6
5

1 + s 
ds + η1(t)

2

1 + t 

≲
(︂
E0 + η1(t)

6
5

)︂ log(2 + t)

1 + t 

(5.8)

and
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⃦⃦⃦
(∂t + cg∂ζ )

j ∂lζψ(t)

⃦⃦⃦
L∞ ≲ E0

1 + t
+

t∫︂
0 

η1(t)
6
5

(1 + t − s)(1 + s)
ds ≲

(︂
E0 + η1(t)

6
5

)︂ log(2 + t)

1 + t 
,

(5.9)

for all t ∈ [0, τmax) with η(t) ≤ 1
2 min{1, r0} and j, l ∈ N0 with 2 ≤ l + 2j ≤ 6, where we used 

Sp(0)= 0 when taking the temporal derivative of (4.3).

Bounds on r(t) and rζ (t). Let t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}. We employ the nonlinear 

bound in Lemma 4.5 and estimates (5.3), (5.5) and (5.6) to establish

∥𝒩p(z(s),w(s),ψ(s), ψ̃)∥L∞ ≲ log(2 + s)

(1 + s)
3
2

η1(t)
6
5 , (5.10)

for s ∈ [0, t], where we used η1(t)≤ 1
2 .

We recall the well-known L∞-estimates on the convective heat semigroup:

⃦⃦⃦
∂mζ e(d∂

2
ζ −cg∂ζ )τ z

⃦⃦⃦
L∞ ≲ τ−m

2 ∥z∥L∞ , 
⃦⃦⃦
∂ζ e(d∂

2
ζ −cg∂ζ )τw

⃦⃦⃦
L∞ ≲

∥w∥C1
ub√

1 + τ
(5.11)

for m = 0,1, τ > 0, z ∈ Cub(R) and w ∈ C1
ub(R), cf. [11, Proposition 3.6]. So, using that ∂ζ

commutes with e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s)

, we estimate⃦⃦⃦⃦
⃦⃦∂2

ζ

t∫︂
0 

e

(︂
d∂2

ζ −cg∂ζ
)︂
(t−s) (︂

Ah(fp)ψζ (s)
2
)︂

ds

⃦⃦⃦⃦
⃦⃦
L∞

≲
max{0,t−1}∫︂

0 

η1(t)
2

(t − s)(1 + s)
ds +

t∫︂
max{0,t−1}

η1(t)
2

√
t − s(1 + s)

ds ≲ η1(t)
2 log(2 + t)

1 + t 
,

(5.12)

for all t ∈ [0, τmax). Thus, applying the linear estimates in (5.11) and in Theorem 3.9 and the 
nonlinear estimates (5.10) to (4.10), we obtain the bounds

∥r(t)∥L∞ ≲ E0√
1 + t

+
t∫︂

0 

η1(t)
6
5√

t − s(1 + s)
ds ≲

(︂
E0 + η1(t)

6
5

)︂ log(2 + t)√
1 + t

(5.13)

and, using (5.12),

∥rζ (t)∥L∞ ≲ E0√
t
√

1 + t
+

t∫︂
0 

η1(t)
6
5√

t − s
√

1 + t − s(1 + s)
ds + η1(t)

2 log(2 + t)

1 + t 

≲
(︂
E0 + η1(t)

6
5

)︂ log(2 + t) √
t
√

1 + t

(5.14)

for all t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}.
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Bounds on y(t) and yζ (t). Applying the estimates (5.13) and (5.14) to (4.17), we derive the 
short-time bound

t
m
2 ∥∂mζ y(t)∥∞ ≲ t

m
2 ∥∂mζ r(t)∥∞ ≲E0 + η1(t)

6
5 , (5.15)

for m= 0,1 and all t ∈ [0, τmax) with t ≤ 1 and η(t)≤ 1
2 min{1, r0}.

Next, take t ∈ [0, τmax) with t ≥ 1 and η(t) ≤ 1
2 min{1, r0}. Using the nonlinear bound in 

Lemma 4.7 and the estimates (5.3), (5.5) and (5.6), we infer

∥𝒩c(r(s), y(s), z(s),w(s),ψ(s), ψ̃(s))∥L∞ ≲ η1(t)
6
5 log(2 + s)

(1 + s)
3
2

(5.16)

for s ∈ [1, t], where we use η1(t)≤ 1
2 .

We apply the linear estimates (5.11) and the nonlinear bound (5.16) to the Duhamel for
mula (4.18) and use (5.15) to establish

⃦⃦⃦
∂mζ y(t)

⃦⃦⃦
L∞ ≤ ∥y(1)∥Cm

ub

(1 + t)
m
2 

+
t∫︂

1 

η1(t)
6
5 log(2 + s) 

(t − s)
m
2 (1 + s)

3
2

ds ≲ E0 + η1(t)
6
5

(1 + t)
m
2 

,

for m = 0,1 and all t ∈ [0, τmax) with t ≥ 1 and η(t) ≤ 1
2 min{1, r0}. Combining the latter with 

the short-time bound (5.15), we arrive at

t
m
2 ∥∂mζ y(t)∥L∞ ≲E0 + η1(t)

6
5 , (5.17)

for m= 0,1 and all t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}.

Bounds on ψ(t) and ψζ (t). We start by considering the case ν ≠ 0. Through (4.13) we can 
express ψ(t) in terms of the residual r(t) and the Cole-Hopf variable y(t) as

ψ(t)= r(t)+ d

ν
log(y(t)+ 1),

with derivative

ψζ (t)= rζ (t)+ dyζ (t) 
ν(1 + y(t))

,

for t ∈ (0, τmax). We emphasize that, as long as η1(t) ≤ 1
2 and ν ≠ 0, the above expres

sions are well-defined. So, using ∥∂mζ ψ(t)∥L∞ ≲ ∥∂mζ r(t)∥L∞ + ∥∂mζ y(t)∥L∞ , employing the 
estimates (5.13), (5.14) and (5.17) and recalling the fact that ψ(s) vanishes identically for 
s ∈ [0, τmax) with s ≤ 1 by Proposition 4.3, we establish

∥∂mζ ψ(t)∥L∞ ≲ E0 + η1(t)
6
5

(1 + t)
m
2 

, (5.18)

54 



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013 

for m= 0,1 and t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}.

Next, we consider the case ν = 0. Recalling that ψ(s) vanishes for s ∈ [0,1] by Proposi
tion 4.3, we apply the linear estimates in (5.11) and the nonlinear bounds (5.10), (5.13) and (5.14)
to (4.9), and deduce

∥ψ(t)∥L∞ ≲
(︂
E0 + η1(t)

6
5

)︂ log(2 + t)√
1 + t

+E0 +
t∫︂

0 

η1(t)
6
5

log(2 + s)

(1 + s)
3
2

ds ≲E0 + η1(t)
6
5

and

∥ψζ (t)∥L∞ ≲
(︂
E0 + η1(t)

6
5

)︂ log(2 + t) √
t
√

1 + t
+ E0√

t
+

t∫︂
0 

η1(t)
6
5 log(2 + s)

√
t − s(1 + s)

3
2

ds ≲ E0 + η1(t)
6
5√

1 + t

for t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}. That is, (5.18) also holds for ν = 0.

Bounds on ˜︁w(t) and ẘ(t). Using (1.22), applying the mean value theorem and recalling that ϕ
is smooth, we bound the forward-modulated perturbation ẘ(t), defined by (1.21), as⃦⃦

ẘ(t)
⃦⃦
L∞ ≲

⃦⃦
z̊(t)

⃦⃦
L∞ + sup 

ζ∈R

⃦⃦
ϕ(a(ζ, t);aζ (ζ, t))− ϕ0(a(ζ, t))

⃦⃦
+ sup 

ζ∈R

⃦⃦
ϕ(a(ζ, t)+ψ(ζ, t)ψζ (ζ, t);aζ (ζ, t))− ϕ(a(ζ, t);aζ (ζ, t))

⃦⃦
≲
⃦⃦

z̊(t)
⃦⃦
L∞ + ∥ψζ (t)∥L∞ sup 

|k−1|≤r0

∥ϕk(·; k)∥L∞

+ ∥ψ(t)∥L∞∥ψζ (t)∥L∞ sup 
|k−1|≤r0

∥ϕζ (·; k)∥L∞ ≲ η1(t) √
1 + t

(5.19)

for all t ∈ [0, τmax) with η(t) ≤ 1
2 min{1, r0}, where we abbreviate a(ζ, t) = ζ + ψ(ζ, t). Simi

larly, we establish⃦⃦
∂
j
ζ˜︁w(t)⃦⃦L∞ ≲

⃦⃦
∂
j
ζ z̊(t)

⃦⃦
L∞ + ∥ψ(t)∥L∞

(︁
1 + ∥ψζ (t)∥L∞

)︁
sup 

|k−1|≤r0

∥∂jζ ϕζ (·; k)∥L∞

+ ∥ψζ (t)∥L∞ sup 
|k−1|≤r0

∥∂jζ ϕk(·; k)∥L∞ + ∥∂jζ ψζ (t)∥L∞

for j = 0,1 and t ∈ [0, τmax) with η(t) ≤ 1
2 min{1, r0}. Hence, combining the latter with (5.4)

yields ⃦⃦˜︁w(t)⃦⃦
L∞ ≤ η1(t), 

⃦⃦˜︁w(t)⃦⃦
C1

ub
≤ η1(t)

1
5 (5.20)

for t ∈ [0, τmax) with η(t)≤ 1
2 min{1, r0}.

Proof of key inequality and estimates (1.10)-(1.13). Take t ∈ [0, τmax) such that η(t) ≤
1
2 min{1, r0}. By estimate (5.20) there exists a t- and E0-independent constant C2 > 0 such that
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η2(t)≤ C2η1(t)
1
5 . (5.21)

On the other hand, employing the estimates (5.8), (5.9), (5.13), (5.14), (5.17) and (5.18), we 
establish a t- and E0-independent constant C1 > 0 such that

η1(t)≤ C1

(︂
E0 + η1(t)

6
5

)︂
. (5.22)

Hence, combining (5.21) and (5.22) we acquire

η(t)= η1(t)+ η2(t)
5 ≤

(︂
1 +C5

2

)︂
η1(t)≤ C1

(︂
1 +C5

2

)︂(︂
E0 + η1(t)

6
5

)︂
≤ C1

(︂
1 +C5

2

)︂(︂
E0 + η(t)

6
5

)︂
.

We conclude that there exists a t- and E0-independent constant such that the key inequality (5.2)
holds for all t ∈ [0, τmax) with η(t)≤ 1

2 min{1, r0}. As argued above, this implies, provided E0 ∈
(0, ϵ0), that τmax = ∞ and we have η(t) ≤ M0E0 for all t ≥ 0. The estimates (1.10), (1.11)
and (1.12) now follow directly by combining η1(t)≤M0E0 with (5.19) and (5.20), respectively. 
In addition, η1(t)≤M0E0 and (5.3) yield the estimate (1.13).

Approximation by the viscous Hamilton-Jacobi equation. All that remains is to establish the 
approximation (1.16). We proceed as in [11] and distinguish between the cases ν = 0 and ν ≠ 0. 
We start with the case ν = 0. Then, (1.14) is a linear convective heat equation. We consider the 
classical solution ψ̆ ∈ C

(︁[0,∞),C2
ub(R)

)︁ ∩C1
(︁[0,∞),Cub(R)

)︁
of (1.14) with initial condition 

ψ̆(0) = ˜︁Φ∗
0w0 ∈ C2

ub(R) given by ψ̆(t) = e(d∂
2
ζ −cg∂ζ )t˜︁Φ∗

0w0. Recalling that ψ(t) vanishes iden
tically for t ∈ [0,1] by Proposition 4.3, we obtain by (5.11) a t- and E0-independent constant 
M1 ≥ 1 such that

t
m
2 
⃦⃦⃦
∂mζ

(︂
ψ(t)− ψ̆(t)

)︂⃦⃦⃦
L∞ = t

m
2 
⃦⃦⃦
∂mζ ψ̆(t)

⃦⃦⃦
L∞ ≤ M1E0√

1 + t
, (5.23)

holds for t ∈ [0,1] and m = 0,1. For t ≥ 1, we apply the linear estimates in (5.11) and the 
nonlinear bounds (5.10) and η1(t)≤M0E0 to (4.9) to establish t- and E0-independent constants 
M2,M3 ≥ 1 such that

⃦⃦⃦
∂mζ

(︂
ψ(t)− ψ̆(t)

)︂⃦⃦⃦
L∞ ≤M2

⎛⎝⃦⃦⃦∂mζ r(t)⃦⃦⃦
L∞ +

t∫︂
0 

η1(t)
6
5

log(2 + s) 

(t − s)
m
2 (1 + s)

3
2

ds

⎞⎠
≤M3

η1(t) 

(1 + t)
m
2 

(︃
η1(t)

1
5 + log(2 + t)√

1 + t

)︃
,

(5.24)

holds for m = 0,1. Estimate (1.16) now follows by combining (5.23) and (5.24) and using 
η1(t)≤M0E0.

Next, we take ν ≠ 0. We consider the solution ψ̆ ∈ C
(︁[0,∞),C2

ub(R)
)︁∩C1

(︁[0,∞),Cub(R)
)︁

of (1.14) with initial condition ψ̆(0)= ˜︁Φ∗
0w0 given by

ψ̆(t)= d

ν
log (1 + y̆(t)) with y̆(t)= e(d∂

2
ζ −cg∂ζ )t

(︂
e
ν
d
˜︁Φ∗

0w0 − 1
)︂
,
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which arises through the Cole-Hopf transform and is well-defined as long as E0 = ∥w0∥L∞ is 
sufficiently small. Employing Taylor’s theorem, Theorem 3.9, identities (4.10) and (4.17), and 

estimates (5.10), (5.11) and η1(1) ≤ M0E0, while using that 0 = Sp(1)w0 = ed∂
2
ζ −cg∂ζ˜︁Φ∗

0w0

+˜︁Sr(1)w0 holds by Theorem 3.9, we establish an E0-independent constant M4 > 0 such that

∥y(1)− y̆(1)∥L∞ ≤ ⃦⃦
y(1)+ ν

d
r(1)

⃦⃦
L∞ +

⃦⃦⃦
y̆(1)− ν

d
ed∂

2
ζ −cg∂ζ˜︁Φ∗

0w0

⃦⃦⃦
L∞

+ |ν|
d

⃦⃦
r(1)−˜︁Sr(1)w0

⃦⃦
L∞ ≤M4E

6
5
0 .

(5.25)

Noting that y̆(t) = e(d∂
2
ζ −cg∂ζ )(t−1)

y̆(1), applying the mean value theorem to (4.13), employing 
the estimates (5.11) and (5.16) to (4.18), and using (5.25) and η1(t)≤M0E0, we establish

⃦⃦⃦
ψ(t)− ψ̆(t)

⃦⃦⃦
L∞ ≲ ∥r(t)∥L∞ + ∥y(t)− y̆(t)∥L∞ ≲ ∥r(t)∥L∞ +E

6
5
0 + η1(t)

6
5 ,⃦⃦⃦

ψζ (t)− ψ̆ζ (t)

⃦⃦⃦
L∞ ≲ ∥rζ (t)∥L∞ + ⃦⃦

yζ (t)− y̆ζ (t)
⃦⃦
L∞ + ∥y(t)− y̆(t)∥L∞

⃦⃦
yζ (t)

⃦⃦
L∞

≲
⃦⃦
rζ (t)

⃦⃦
L∞ + E

6
5
0 + η1(t)

6
5√

1 + t

for t ≥ 1. So, using that η1(t) ≤ M0E0, affords a t- and E0-independent constant M5 > 0 such 
that

⃦⃦⃦
∂mζ

(︂
ψ(t)− ψ̆(t)

)︂⃦⃦⃦
L∞ ≤M5

E0

(1 + t)
m
2 

(︃
E

1
5
0 + log(2 + t)√

1 + t

)︃
,

holds for all t ≥ 1. On the other hand, we establish (5.23) for t ∈ [0,1] analogously to the case 
ν = 0. Thus, we obtain (1.16) for ν ≠ 0. □
Remark 5.1. Due to the use of forward-modulated damping in the proof of Theorem 1.4, it is, 
in contrast to [11], not necessary to control derivatives of z(t) or ˜︁w(t) through iterative estimates 
on their Duhamel formulas. That is, we find that the template function η1(t) in the proof of 
Theorem 1.4 coincides with the one from [11, Theorem 1.3], upon omitting all derivatives of 
z(t) and ˜︁w(t). Nevertheless, in order to apply the nonlinear damping estimate in Proposition 4.9, 
the condition (4.21) needs to be fulfilled, which requires control on the first derivative of the 
(forward-modulated) perturbation. For that reason, we introduce the second template function 
η2(t) yielding a priori control on the C1

ub-norm of ˜︁w(t) and, thus, via (1.22) of z̊(t). We can 
then a posteriori bound η2(t)

5 with aid of the nonlinear damping estimate in terms of η1(t). 
Since η1(t) obeys the nonlinear key inequality (5.22), the same then follows for the full template 
function η(t)= η1(t)+ η2(t)

5.

Remark 5.2. The choice of temporal weights in the template function η(t) in the proof of The
orem 1.4 coincides with the one from the proof of [11, Theorem 1.3] and reflects, as explained 
in [11, Remark 5.1], the linear decay rates of z(t), ψ(t), y(t), ˜︁w(t) and r(t), cf. Theorem 3.9
and (5.11), up to a logarithmic correction.
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6. Discussion and outlook

We discuss the wider applicability of our method to establish nonlinear stability of wave trains 
against fully nonlocalized perturbations.

6.1. Applicability to general semilinear dissipative problems

Our analysis does not rely on the specific structure of the FHN system. As a matter of fact, our 
approach only requires that the wave train is diffusively spectrally stable, it has nonzero group 
velocity, the perturbation equation obeys a nonlinear damping estimate and the linearization of 
the system about the wave train generates a C0-semigroup on Cub(R), whose high-frequency 
component is exponentially damped. As long as these criteria are satisfied, we expect our method 
to work for general semilinear dissipative problems.

It was already observed in [3] that the same linear terms in the FHN system (1.1), i.e. the term 
uxx in the first component and the term −εγ v in the second component, are key to obtaining a 
nonlinear damping estimate, as well as high-frequency resolvent bounds leading to exponentially 
damped behavior of the high-frequency part of the semigroup. It has been pointed out in the 
context of the St. Venant equations in [44] that high-frequency resolvent bounds are equivalent 
to linear damping estimates, which then yield a nonlinear damping estimate as long as solutions 
stay small. Therefore, we expect that we can replace the requirements that the high-frequency 
component of the semigroup is exponentially damped and a nonlinear damping estimate can be 
derived by the condition that the linearization obeys high-frequency resolvent bounds.

In addition, we expect that it is possible to drop the requirement that the wave train has nonzero 
group velocity. In the case of zero group velocity the diffusive mode at the origin is branched, 
cf. [3, Section 2.1], i.e., the linear dispersion relation λc(ξ) has a double root at ξ = 0. The 
fact that the linear dispersion relation λc(ξ) is no longer locally invertible about ξ = 0 poses a 
technical hurdle in relating the inverse Laplace representation of the low-frequency part of the 
semigroup to its Floquet-Bloch representation. We anticipate that this challenge can be addressed 
as in [42] by unfolding the double root at 0 by working with the spectral parameter σ = √

λ with 
branch cut along the negative real axis.

6.2. Open problems

There are however several prominent examples of semilinear dissipative systems, where non
linear stability of wave trains against localized perturbations has been established, but where one 
(or more) of the above requirements are not satisfied, thereby obstructing a straightforward ap
plication of our method to extend to fully nonlocalized perturbations. Here, we highlight two of 
these examples.

The first is the Lugiato-Lefever equation, a damped and forced nonlinear Schrödinger equa
tion arising in nonlinear optics, whose diffusively spectrally stable periodic waves are nonlinear 
stable against localized perturbations [21]. Here, the principal part of the linearization about the 
wave is the Schrödinger operator i∂2

x , which does not generate a C0-(semi)group on Cub(R), 
cf. [6, Lemma 2.1]. Thus, an extension of our method to this setting necessitates reconsider
ing the choice of space. Natural candidates are the modulation spaces Mk

∞,1(R) on which the 
Schrödinger operator generates a C0-group, cf. [36, Proposition 3.8]. These spaces consist of 
nonlocalized functions as can be seen from the embeddings Ck+2

ub (R) ↪→ Mk
∞,1(R) ↪→ Ck

b (R)
for k ∈ N0, cf. [35, Theorem 5.7 and Lemma 5.9]. An application of our method would then 
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require to establish high-frequency damping in modulation spaces, which could be challenging. 
We refer to [19] for further background on modulation spaces.

A second example is the St. Venant equations, which describe shallow water flow down 
an inclined ramp and admit viscous roll waves. Nonlinear stability of these periodic traveling 
waves against localized perturbations has been established in [28,44]. The St. Venant system is 
only viscous in one component and therefore, similar to the current analysis for the FHN sys
tem, incomplete parabolicity must be addressed. Moreover, due to the presence of an additional 
conservation law the spectrum of the linearization about the wave train possesses an additional 
curve touching the imaginary axis at 0, thereby violating the spectral stability assumption (D3). 
Thus, the leading-order dynamics of perturbations are no longer governed by the scalar viscous 
Hamilton-Jacobi equation (1.14), but instead by an associated Whitham system describing the 
interactions between critical modes, cf. [25]. It is an open question of how to handle the most 
critical nonlinear terms that cannot be controlled through iterative L∞-estimates on the Duhamel 
formula as the Cole-Hopf transform is no longer available. However, motivated by the results 
in [23] on the dynamics of roll waves in the Ginzburg-Landau equation coupled to a conserva
tion law against Cub-perturbations, we do expect that our method yields control of perturbations 
on exponentially long time scales in the setting of the St. Venant equations and more general 
semilinear dissipative systems admitting conservation laws.

Appendix A. The Laplace transform and its complex inversion formula

This section is devoted to background material on the vector-valued Laplace transforms. In 
particular, we prove that the complex inversion formula holds for the Laplace transform of con
volutions of semigroups. For an extensive introduction into the topic, we refer to the book [1] of 
Arendt, Batty, Hieber and Neubrander.

Let X,Y be complex Banach spaces. We denote by B(X) the space of bounded operators 
mapping from X into X. The growth bound ω0(G) of a map G : [0,∞)→ Y is given by

ω0(G)= inf

{︄
ω ∈ R : sup

t≥0 
e−ωt∥G(t)∥<∞

}︄
.

If ω0(G) <∞, then we say that G is exponentially bounded.
For a continuous and exponentially bounded function F : [0,∞)→X, the Laplace transform 

𝔏(F ) : {λ ∈ C : Re(λ) > ω0(F )} →X is given by

𝔏(F )(λ)=
∞ ∫︂

0 

e−λsF (s) ds.

Strong continuity of an operator-valued map T : [0,∞) → B(X) entails that for each x ∈ X

the orbit map Tx : [0,∞)→X given by Tx(t)= T (t)x is continuous. For a strongly continuous 
and exponentially bounded T : [0,∞)→ B(X), the Laplace transform 𝔏(T ) : {λ ∈ C : Re(λ) >
ω0(T )} → B(X), given by

𝔏(T )(λ)=
∞ ∫︂

0 

e−λsT (s) ds,
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is also well-defined by [1, Proposition 1.4.5]. For a C0-semigroup T : [0,∞) → B(X) with 
infinitesimal generator A : D(A)⊂X →X, it is well-known, by [14, Proposition I.5.5 & Theo
rem II.1.10], that T is exponentially bounded and its Laplace transform is given by the resolvent 
𝔏(T )(λ)= (λ−A)−1 for Re(λ) > ω0(T ).

Let S,T : [0,∞) → B(X) be strongly continuous and exponentially bounded. The convolu
tion S ∗ T : [0,∞)→ B(X) of S and T is given by

(S ∗ T )(t)=
t∫︂

0 

S(s)T (t − s) ds.

The convolution theorem, cf. [14, Theorem C.17], now states that S ∗ T is also strongly continu
ous and exponentially bounded with ω0(S ∗ T )≤ max{ω0(S),ω0(T )} and its Laplace transform 
obeys

𝔏(S ∗ T )(λ)= 𝔏(S)(λ)𝔏(T )(λ), (A.1)

for λ ∈ C with Re(λ) > max{ω0(S),ω0(T )}.
The complex inversion formula of the Laplace transform holds for C0-semigroups. That is, if 

T is a C0-semigroup with infinitesimal operator A, then we have

T (t)x = lim 
R→∞

1 
2π i

ω+iR∫︂
ω−iR

eλt𝔏(T )(λ)x dλ= lim 
R→∞

1 
2π i

ω+iR∫︂
ω−iR

eλt (λ−A)−1x dλ

for all t > 0, ω > ω0(T ) and x ∈D(A), cf. [1, Proposition 3.12.1].
In Section 3, we decompose the C0-semigroup generated by the linearization ℒ0 by deform

ing and partitioning the integration contour of the complex line integral in the inversion formula, 
alongside decomposing the resolvent operator. It has been shown in [3] that for high frequencies 
the resolvent can be expanded as a Neumann series, whose leading-order terms can be identified 
as products of resolvents of simpler, well-understood operators. The formula (A.1) reveals that 
such products can be recognized as the Laplace transform of a convolution of C0-semigroups 
generated by those simpler operators. Indeed, if T and S are C0-semigroups with infinitesimal 
operators A : D(A)⊂X →X and B : D(B)⊂X →X, respectively, then (A.1) and [14, Theo
rem II.1.10] yield

𝔏(S ∗ T )(λ)= (λ−B)−1(λ−A)−1,

for λ ∈ C with Re(λ) > max{ω0(S),ω0(T )}. Thus, to bound the contour integrals arising in the 
decomposition of the inverse Laplace transform of the C0-semigroup eℒ0t , we wish to show that 
the inversion formula of the Laplace transform also holds for convolutions of C0-semigroups. 
As far as we are aware, such a result is not readily stated in the current literature. Therefore, we 
provide a proof in the upcoming. Our proof relies on the observation that the inversion formula 
holds for F as long as it is Lipschitz continuous and F(0)= 0.

Proposition A.1. Let X be a complex Banach space. Let F : [0,∞) → X be Lipschitz continu
ous. Assume F(0)= 0. Then, the complex inversion formula
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F(t)= lim 
R→∞

1 
2π i

ω+iR∫︂
ω−iR

eλt𝔏(F )(λ) dλ

holds for t > 0 and ω > 0.

Proof. Since F is Lipschitz continuous, it grows at most linearly and is therefore exponentially 
bounded with growth bound ω0(F )≤ 0. Let t > 0 and ω > 0. By [1, Theorem 2.3.4], we have

F(t)= lim 
R→∞

1 
2π i

ω+iR∫︂
ω−iR

eλt
r(λ)

λ 
dλ,

where the analytic function r : {λ ∈C : Re(λ) > 0} →X given by

r(λ)=
∞ ∫︂

0 

e−λs dF(s)

is the Laplace-Stieltjes transform of F , cf. [1, Theorem 1.10.6]. We integrate by parts, cf. [1, 
Formula (1.20)], and arrive at

r(λ)

λ 
= lim 

t→∞

t∫︂
0 

e−λs

λ 
dF(s)= lim 

t→∞
1 
λ

⎛⎝e−λtF (t)− F(0)−
t∫︂

0 

F(s) d
(︁
e−λs)︁⎞⎠

=
∞ ∫︂

0 

F(s)e−λs ds = 𝔏(F )(λ)

for λ ∈ C with Re(λ) > 0, which proves the claim. □
The fact that the complex inversion formula of the Laplace transform holds for convolutions 

of C0-semigroups is now a direct consequence of Proposition A.1.

Corollary A.2. Let X be a complex Banach space. Let T ,S : [0,∞)→ ℒ(X) be C0-semigroups 
with infinitesimal generators A : D(A) ⊂ X → X and B : D(B) : X → X, respectively. Then, 
we have

(S ∗ T )(t)x = 1 
2π i

lim 
R→∞

ω+iR∫︂
ω−iR

eλt (λ−B)−1(λ−A)−1x dλ

for t > 0, x ∈D(A) and ω > max{ω0(S),ω0(T )}.

Proof. Let t > 0, x ∈ D(A) and ω > max{ω0(S),ω0(T )}. Take max{ω0(S),ω0(T )} < α < ω. 
The rescaled semigroups T̃ (s) = e−αsT (s) and S̃(s) = e−αsS(s) are generated by A − α and 
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B − α, respectively. Moreover, S̃ and T̃ have negative growth bounds ω0(S̃) = ω0(S) − α and 
ω0(T̃ )= ω0(T )− α and so has their convolution S̃ ∗ T̃ .

Since we have x ∈D(A), the map F : [0,∞)→X given by F(s)= (S̃ ∗ T̃ )(s)x is differen
tiable with

F ′(s)= (S̃ ∗ T̃ )(s)(Ax − αx)+ S̃(s)x.

Thanks to the fact that S̃ ∗ T̃ and S̃ have negative growth bound, there exists a constant M > 0
such that ∥F ′(s)∥ ≤M(∥Ax∥ + ∥x∥) for all s ≥ 0. Hence, using the mean value theorem, cf. [1, 
Proposition 1.2.3], we infer ∥F(s)−F(r)∥ ≤M(∥Ax∥+∥x∥)|s−r|, showing that F is Lipschitz 
continuous. Since we have in addition F(0)= 0, an application of Proposition A.1 yields

(S̃ ∗ T̃ )(t)x = F(t)= lim 
R→∞

1 
2π i

ω̃+iR∫︂
ω̃−iR

eλt𝔏(F )(λ) dλ,

where we denote ω̃ = ω − α > 0. On the other hand, with the aid of [14, Theorems II.1.10 
and C.17], we compute

𝔏(F )(λ)=
∞ ∫︂

0 

e−λs(S̃ ∗ T̃ )(s)x ds = 𝔏(S̃ ∗ T̃ )(λ)x = (λ+ α −B)−1(λ+ α −A)−1x

for λ ∈ C with Re(λ) > 0. Therefore, pulling out the exponential factors and scaling back, we 
arrive at

(S ∗ T )(t)x = eαt (S̃ ∗ T̃ )(t)x = lim 
R→∞

1 
2π i

ω−α+iR∫︂
ω−α−iR

e(λ+α)t (λ+ α −B)−1(λ+ α −A)−1x dλ

= lim 
R→∞

1 
2π i

ω+iR∫︂
ω−iR

eλt (λ−B)−1(λ−A)−1x dλ,

which finishes the proof. □
Appendix B. Derivation of equation for the modified forward-modulated perturbation

Assume (H1) and (D3). Let t ∈ [0,˜︁τmax). Recalling Proposition 1.2 and noting that 
∥ψζ (t)∥L∞ < r0, we substitute k = 1 +ψζ (ζ, t) and y = ζ +ψ(ζ ; t)(1 +ψζ (ζ ; t)) in the equa
tion

k2Dϕyy(y; k)+ω(k)ϕy(y; k)+ F(ϕ(y; k))= 0

for the profile function ϕ(y; k) and arrive at

(1 +ψζ (ζ ; t))2Dϕyy(β(ζ, t))+ω(1 +ψζ (ζ, t))ϕy(β(ζ, t))+ F(ϕ(β(ζ, t)))= 0 (B.1)
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for ζ ∈ R, where we abbreviate β(ζ, t)= (︁
ζ +ψ(ζ ; t)(1+ψζ (ζ ; t));1+ψζ (ζ, t)

)︁
. Using Corol

lary 4.8 and the fact that u(ζ, t) solves (1.3), we compute the temporal derivative

z̊t =Duζ ζ + c0uζ + F(u)− (ϕy ◦ β) (︁ψt(1 +ψζ )+ψψζt

)︁− (ϕk ◦ β)ψζt . (B.2)

In an effort to reexpress the u-contributions in (B.2) in terms of z̊, we determining the spatial 
derivatives of u(ζ, t)= z̊(ζ, t)+ ϕ(β(ζ, t)) yielding

uζ = z̊ζ + (ϕy ◦ β) (︁1 +ψζ (1 +ψζ )+ψψζζ

)︁+ (ϕk ◦ β)ψζζ ,

uζ ζ = z̊ζ ζ + (ϕyy ◦ β) (︁1 +ψζ (1 +ψζ )+ψψζζ

)︁2 + (ϕy ◦ β) (︁ψζζ (1 + 3ψζ )+ψψζζζ

)︁
+ (ϕkk ◦ β)ψ2

ζ ζ + (ϕk ◦ β)ψζζζ + 2(ϕyk ◦ β) (︁1 +ψζ (1 +ψζ )+ψψζζ

)︁
ψζζ .

Thus, inserting u(ζ, t) = z̊(ζ, t) + ϕ(β(ζ, t)) into (B.2) and employing (B.1), we arrive at the 
equation (4.19) for the modified forward-modulated perturbation.
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