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Abstract

Recently, a nonlinear stability theory has been developed for wave trains in reaction-diffusion systems
relying on pure L®-estimates. In the absence of localization of perturbations, it exploits diffusive decay
caused by smoothing together with spatio-temporal phase modulation. In this paper, we advance this theory
beyond the parabolic setting and propose a scheme designed for general dissipative semilinear problems. We
present our method in the context of the FitzHugh-Nagumo system. The lack of parabolicity and localiza-
tion complicates mode filtration in L°°-spaces using the Floquet-Bloch transform. Instead, we employ the
inverse Laplace representation of the semigroup generated by the linearization to uncover high-frequency
damping, while leveraging a link to the Floquet-Bloch representation for the smoothing low-frequency part.
Another challenge arises in controlling regularity in the quasilinear iteration scheme for the modulated
perturbation. We address this by extending the method of nonlinear damping estimates to nonlocalized per-
turbations using uniformly local Sobolev norms.
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1. Introduction

We study the nonlinear stability of traveling periodic waves against bounded, fully nonlocal-
ized perturbations in the FitzHugh-Nagumo (FHN) system

Ot =ty +u(l —u)(u —p) —v,
(1.1)
v=e( —yv—u),

with x € R, > 0 and parameters u € R and y, e > 0. The FHN system was originally pro-
posed as a simplification of the Hodgkin-Huxley model describing signal propagation in nerve
fibers [16,40,41]. Mathematically, system (1.1) is a coupling between a scalar bistable reaction-
diffusion equation and a linear ordinary differential equation and is thereby one of the simplest'
models, which can, and does, exhibit stable spatio-temporal patterns. In fact, exploiting the slow-
fast structure of system (1.1) arising for 0 < ¢ < 1, a large variety of (spectrally) stable patterns
and nonlinear waves have been rigorously constructed using tools from geometric singular per-
turbation theory, such as fast traveling pulses [22,29,30,50], pulses with oscillatory tails [8,9],
periodic wave trains [10,15,48] and pattern-forming fronts [10] connecting such pulse trains to
the homogeneous rest state (i, 0).

Due to its remarkably rich dynamics, yet simple structure, the FHN system is widely rec-
ognized as a paradigmatic model for far-from-equilibrium patterns in excitable and oscillatory
media. It has, in small variations, been employed across various scientific disciplines to explain
phenomena such as the onset of turbulence in fluids [5], oxidation processes on platinum sur-
faces [4,39], and heart arrhythmias [38].

The simplest and most fundamental spatio-temporal patterns exhibited by (1.1) are periodic
traveling waves, or wave trains. Writing (1.1) as a degenerate reaction-diffusion system

_ (1 0 _ful—uw)yu—pn)—v
alu_DuXx+F(u)7 D_(O 0)’ F(u)_< S(M_)/U_//L) ’ (1'2)
inu= («,v) ", wave trains are solutions to (1.2) of the form ug(x, 1) = ¢o(x — cot) with smooth
periodic profile function ¢o: R — R? and propagation speed ¢y € R. Upon switching to the
co-moving frame { = x — cot, in which system (1.2) reads

ou = Du;; + cour + F(u), (1.3)

we find that ¢ is a stationary solution to (1.3).

Wave-train solutions to (1.2) have been constructed in the oscillatory regime with 0 < u < %
and 0 < ¢ K y < 1, as well as in the excitable regime with £ <0 and 0 < ¢ K y < 1, using
geometric singular perturbation theory and blow-up techniques, see [10,48] and Remark 1.1. The
associated profile functions consist of steep jumps interspersed with long transient states, where
the profile varies slowly. Accordingly, these wave trains correspond to highly nonlinear far-from-
equilibrium patterns. It has recently been argued theoretically and demonstrated numerically [10]
that some of these wave trains are selected by compactly supported perturbations of the unstable

1 We note that Sturm-Liouville theory implies that all periodic traveling waves in real scalar reaction-diffusion equa-
tions are unstable.
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rest state (u, 0) in the oscillatory regime and, thus, play a pivotal role in pattern formation away
from onset.

In this paper, we focus on the dynamical, or nonlinear, stability of wave trains as solutions
to (1.2). The nonlinear stability theory for wave trains in spatially extended dissipative problems
such as (1.2) has been rapidly developing over the past decades. The general approach is to
first linearize the system about the wave train, obtain bounds on the Cp-semigroup generated
by the linearization and then close a nonlinear argument by iterative estimates on the associated
Duhamel formulation. A standard issue is that the linearization is a periodic differential operator
acting on an unbounded domain, which possesses continuous spectrum touching the imaginary
axis at the origin due to translational invariance. The lack of a spectral gap prevents, in contrast
to the case of a finite domain with periodic boundary conditions, exponential convergence of the
perturbed solution towards a translate of the original profile.

To overcome this issue a common strategy is to decompose the semigroup generated by the
linearization in a diffusively decaying low-frequency part and an exponentially damped high-
frequency part, cf. [27]. The critical diffusive behavior caused by translational invariance can
then be captured by introducing a spatio-temporal phase modulation, whose leading-order be-
havior is given by a viscous Hamilton-Jacobi equation [13]. The modulated perturbation obeys
a quasilinear equation depending only on derivatives of the phase modulation, which thus sat-
isfy a perturbed Burgers’ equation. Observing that small, sufficiently localized initial data in a
(perturbed) viscous Burgers’ equation decay diffusively, cf. [49, Theorem 1] or [7, Theorem 4],
suggests that the critical dynamics in a nonlinear iteration scheme, tracking the modulated per-
turbation variable and derivatives of the phase, can be controlled. This observation has led to
a series of nonlinear stability results of wave trains against localized perturbations in general
(nondegenerate) reaction-diffusion systems [24,27,31,32,45] relying on renormalization group
theory [45], pointwise estimates [31,32] or L'-H*_estimates [24,27] to close the nonlinear iter-
ation. We note that, since only derivatives of the phase enter in the nonlinear iteration and thus
need to be localized, one could allow for a nonlocalized phase modulation, cf. [24,32,45]. With
the aid of periodic-coefficient damping estimates to obtain high-frequency resolvent bounds and
control regularity in the quasilinear iteration scheme, the method employing L'-H*-estimates
could be extended beyond the parabolic setting to general dissipative semilinear problems (and
some quasilinear problems) such as the St. Venant equations [28,44], the Lugiato-Lefever equa-
tion [21,51] and the FHN system [3].

Recently, a novel approach was developed [11,23] to establish nonlinear stability of wave
trains in (nondegenerate) reaction-diffusion systems, which employs pure L°°-estimates to close
the nonlinear iteration, thereby lifting all localization assumptions on perturbations. In contrast
to previous methods, diffusive decay cannot be realized by giving up localization, but emanates
from smoothing action of the analytic semigroup generated by the linearization about the wave
train. The Cole-Hopf transform is then applied to the equation for the phase to eliminate the
critical Burgers’-type nonlinearity, which cannot be readily controlled by diffusive smoothing.

In this paper, we extend the approach developed in [11,23] beyond the parabolic framework
by proving nonlinear stability of wave trains in the FHN system (1.2) against Cyp-perturbations.
The incomplete parabolicity of (1.2) in combination with lack of localization of perturbations
presents novel challenges in our analysis. These challenges involve the decomposition of the
Cop-semigroup and the control of regularity. We explain the main ideas on how to address these
challenges in §1.3 after we have stated our main result in §1.2.
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Remark 1.1. Let £ <0, y > 0 and ¢ > 0, so that we are in the excitable regime. Upon rescaling
time, space, the variables u and v, and the system parameters &, i and y by setting

f=(-wx, i=(-pi G="—"1 §=_"
=1 —-wx, r1=(1-pt i= ;U=
1—p 1 —mw?
= € ~ 2 ~ Iz
E=—17, v=0-wy pn=—7——,
(1— I—p

(1.4)

of the FHN system (1.1). Here, we have it € (0, 1), ¥ > 0 and & > 0. We note that the formu-
lation (1.4) of the FHN system has been used in the existence and spectral stability analysis of
wave trains and traveling pulses in the excitable regime, cf. [8,15,29,30,48,50].

1.1. Assumptions on the wave train and its spectrum

Here, we formulate the hypotheses for our main result. The first hypothesis concerns the
existence of the wave train.

(H1) There exist a speed cp € R and a period T > 0 such that (1.2) admits a wave-train solution
ugp(x, 1) = ¢o(x — cot), where the profile function ¢p: R — R? is nonconstant, smooth and
T -periodic.

We note that wave-train solutions have been shown to exist, i.e., (H1) has been verified, in the
excitable regime with © <0<y « 1 and 0 < ¢ < 1, cf. [48], and in the oscillatory regime with
O<p<land0<e<y <1, cf [10].

Next, we specify our spectral assumptions on the wave train ug. Linearizing (1.3) about its
stationary solution ¢ yields the T -periodic differential operator

Low = DwW¢ + cowe + F'(¢o)w (1.5)

acting on Cyp(R) x Cyb(R), with domain D(Lo) = C2 (R) x C}, (R).
The spectrum of Ly is determined by the family of Bloch operators

LEW=D (9 +i&)°W+co (3 +i€)w+ F (go)w, &€C

posed on Ly, (0, T) x Ly, (0, T), with domain D(L(§)) = Hp.(0, T) x Hpey (0, T). Since L(§)
has compact resolvent, its spectrum consists of isolated eigenvalues of finite multiplicity. The
spectrum of L is then obtained as the union of the spectra of £(&) for & in the real interval

=55

sloy=|J oL@, (1.6)

e<[-F7)

~
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cf. [18]. Yet, we will also consider £(£) for complex values of the Floquet-Bloch frequency
parameter &, which allows us to access results from analytic perturbation theory and complex
analysis, cf. Propositions 1.3, 2.2, and 3.8.

We require that the following standard diffusive spectral stability assumptions, cf. [11,27,45,
46], are satisfied.

(D1) We have 0 (Ly) C {A € C:Re(X) <0}U{0};
(D2) There exists a constant 6 > 0 such that for any £ € [~ 7%, 7) we have Reo (L(£)) < —0g2;
(D3) 0 is a simple eigenvalue of £(0).

The main result of [2] establishes diffusive spectral stability of wave trains in (1.1) in the oscilla-
tory regime (3 — +/5)/6 < u < % and 0 < ¢ K ¥ < 1. On the other hand, a spectral analysis of
wave trains in the excitable regime with £ <0, ¥ =0 and 0 < & < 1 can be found in [15].”

It is a consequence of translational invariance that O is an eigenvalue of the Bloch operator
L(0) with associated eigenfunction d)(/). Assumption (D3) then states that the kernel of £(0) is
spanned by @ In this case 0 is also a simple eigenvalue of the adjoint operator £(0)*. We denote
by ®¢ the corresponding eigenfunction satisfying

<50, ¢6>L2(0,T) =1

An application of the implicit function theorem in combination with Assumption (D3) readily
yields that the wave train can be continued with respect to the wavenumber, cf. [13, Section 4.2].

Proposition 1.2. Assume (H1) and (D3). Then, there exists a constant ro € (0, 1) and smooth
functions ¢: R x [1 —rg, 1 + ro] > R2 and w: [1 — rp, 1 + rg] — R with ¢(; 1) = ¢o and
w (1) = cq such that ¢ (-; k) is T -periodic and

u(x, 1) = ¢ (kx —w(k)1; k)

is a solution to (1.2) for each wavenumber k € [1 — ro, 1 + rol. By shifting the wave train if
necessary, we can arrange for

(@0, 8 ( 1)) 29,1 = O-

The curve w: [1 — rg, 1 4+ rg] — R from Proposition 1.2 describes the relationship between
the temporal frequency w (k) and the wavenumber k of the 7'/ k-periodic wave train u; and is
called the nonlinear dispersion relation.

Because the Bloch operators £(§) depend analytically on the Floquet exponent & and O is
a simple eigenvalue of £(0) by Hypothesis (D3), it follows by standard analytic perturbation
theory, see e.g. [34], that the O-eigenvalue can be continued to a simple eigenvalue A.(§) of
L&) for & € C close to 0. The spectrum of £y near the origin, which arises by restricting the

2 Although the spectral assumptions (D1) and (D3) are verified in [15], we emphasize that the fact that y = 0 yields
a lack of damping in the second component of (1.1), causing the spectrum of the linearization to asymptote to iR at
infinity. In particular, the spectrum is not bounded away from the imaginary axis away from 0 and the assumption (D2)
does not hold, prohibiting diffusive spectral stability.
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analytic function A.(§) to real values of &, necessarily touches the imaginary axis in a quadratic
tangency by Hypothesis (D2). Using Lyapunov-Schmidt reduction, the eigenvalue 1.(§), as well
as the associated eigenfunction, can be expanded in & about £ =0, cf. [13, Section 4.2] or [25,
Section 2].> We record these facts in the following result.

Proposition 1.3. Assume (H1) and (D1)-(D3). There exist a constant C > 0, open balls V1, V> C
C centered at 0 and an analytic function A.: Vi — C such that the following assertions hold.

(i) Ac(&) is a simple eigenvalue of L(£) for each & € V1. An associated eigenfunction ®¢ of
L&) lies in Hg’ér(O, T) for any m € Ny, is analytic in €, satisfies o = ¢, and fulfills
(@0, ¢$>L2(0,T) =1
for & € Vy.
(ii) It holds o (Lo) N Vo ={Ac(§) :E € VINR}N Vs,
(iii) The complex conjugate A (§) is a simple eigenvalue of the adjoint L(§)* for any § € V\. An
associated eigenfunction ®¢ lies in Hg’;r(O, T) for any m € Ny, is smooth in & and satisfies

(65,(1)5) =1

L2(0,T)

for& e V.
(iv) We have

ké(g) = 2i<5g, D (a; + 15) CI)’;‘)LZ((),T) +ico

and the expansions

he(E) +icgk +d§2’ <CIEP. [ — ) — DG D yuory <CIEE. (1D
hold for § € Vi with coefficients

cg = —2(®Po, DG{) 1207y —C0=a'(1) —co €R,

- . (1.8)
d = (Do, Dy + 2D (-; 1)>L2(O,T) > 0.

The function A in Proposition 1.3 is called the linear dispersion relation. The coefficient ¢,
in (1.7) is the group velocity of the wave train and provides the speed at which perturbations are
transported along the wave train (in the frame moving with the speed cp), cf. [13]. We make the
generic assumption that the wave train has nonzero group velocity. By reversing space x — —x
in (1.2) we may then without loss of generality assume that the group velocity is negative.

(H2) Assuming, in accordance with Hypothesis (D3), that O is a simple eigenvalue of £(0), the
group velocity ¢, defined in (1.8), is negative.

3 For the purpose of our current analysis, it suffices to expand the eigenvalue A () up to second order and the associ-
ated eigenvector up to first order. We refer to Remark 1.5 for further details.
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On the linear level, the interpretation of Assumptions (D1)-(D3) and (H2) is that perturbations
decay diffusively and are transported to the left along the wave train, i.e., there is an outgoing
diffusive mode at the origin, cf. [3, Section 2.1]. In [10], it was shown that the group velocity of
the wave trains is negative in the oscillatory regime with 0 < p < % andD<e<kKy K 1.

Another important consequence of Assumption (H2) is that the linear dispersion relation A,
is invertible in the point £ = 0. Hence, for |A| sufficiently small, the periodic eigenvalue problem
(Lo — 2)w = 0 has a single Floquet exponent converging to 0 as A — 0. In our stability analysis
we exploit this fact to relate the inverse Laplace representation of the low-frequency part of the
semigroup generated by Lo with the Floquet-Bloch representation, see §3.4.

1.2. Main result

We are now ready to present our main result, which establishes Lyapunov stability of diffu-
sively spectrally stable wave trains in the FHN system against Cyp-perturbations. Furthermore,
it yields convergence of the perturbed solution towards a modulated wave train, where the phase

modulation can be approximated by a solution of a viscous Hamilton-Jacobi equation.

Theorem 1.4. Assume (H1), (H2) and (D1)- (D%) Fix a constant K > 0. Then, there exist con-
stants a, €y, M > 0 such that, whenever wg € C b(]R) X C L (R) satisfies

Eo :=[lwoll L~ < €0, ||W0||cgbxc§b <K,

there exist a smooth function Y € COO([O, ) x R, R) with ¥ (0) =0 and ¥ (t) € C[} (R) for
each m € Ny and t > 0 and a unique classical global solution

ue C([0,00), Cp(R) x CZ (R)) N C([0, 00), Ch (R) x CL (R)) (1.9)

to (1.3) with initial condition u(0) = ¢o + Wo, which obey the estimates

lu(®) — ¢oll L= < MEo, (1.10)
ME
lu@@®) — go(- + ¥ (. )l < NiETh (L.11)
log(2
Jut) = go (- + 9 (1) (149 (D) s 1+ () | oo < MEo % (1.12)
and
ME)
Dllre < MEy, 500, 10 (8) ]| Lo <
¥ (Ol < MEg [ @ oo 109 D)L N )
log(2+1) '

ey, 10 (1) ey, < ME—

for all t > 0. Moreover, there exists a unique classical global solution w € C([O 00), C (R))
([O 0), Cub(]R)) with initial condition w(O) CDSWO of the viscous Hamtlton-]acobl equa-
tion
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W =dVree — eV + V7 (1.14)

with coefficients (1.8) and

v=—10"(1) = (0. D (¢ + 20ced (- 1)) + LF"(60) (3 1) kb (2 D)) 20 1

- . - (1.15)
- 2<CI)0’ D¢0>L2(0,T)(q>0’ a{k(p(a 1))L2(O,T)’
satisfying
il aj v o log(2+1)
12 10; (wm - W(t)) H Lo SMEo <Eo + Vieh (1.16)

for j=0,1andt>0.

We compare Theorem 1.4 with earlier nonlinear stability results [11,23] of wave trains in
nondegenerate reaction-diffusion systems against Cyp-perturbations. First of all, we retrieve the
same diffusive decay rates as in the reaction-diffusion case. It is argued in [11, Section 6.1] that
these decay rates are sharp (up to possibly a logarithm). Second, we do require more regular
initial data than in [11], where initial conditions wg in Cyp(R) are considered. The reason is as
follows. The lack of parabolic smoothing naturally leads one to consider initial data wy from the
domain Cﬁb (R) x Cl]lb (R) of the diffusion-advection operator Ly, so that the perturbed solution
u(t) of the semilinear evolution problem (1.3) with initial condition u(0) = ¢ + wy is classical.
Moreover, we lose one additional degree of regularity due to the embedding of uniformly local
Sobolev spaces in Cyp-spaces, cf. [47, Section 8.3.1], which are used to obtain a nonlinear damp-
ing estimate to control regularity in the scheme, see §1.3 below for more details. We emphasize
that we only require our initial data to be bounded in (CSb X C&b)—norm and, similar as in [11],
to be small in L°°-norm. This contrasts with earlier nonlinear stability results [21,28,44] of wave
trains in semilinear (nonparabolic) problems and is due to the use of Gagliardo-Nirenberg inter-
polation in the nonlinear damping estimate, see Remark 4.10 for more details.

The approximation of the phase modulation 1 (¢) by a solution to the viscous Hamilton-Jacobi
equation (1.14) was also found in the reaction-diffusion case in [11]. Thus, independent of the
precise structure and smoothing properties of the underlying system, the viscous Hamilton-Jacobi
equation arises as governing equation for the phase modulation, whose coefficients are fully
determined by the first and second-order terms in the expansion of the linear and nonlinear dis-
persion relations. We refer to [13] for further details. Important to note is that once the diffusive
spectral stability assumptions are violated, e.g. due to the presence of additional conservation
laws, the governing equation of the phase modulation can change, cf. [26].

1.3. Strategy of proof and main challenges

We prove Theorem 1.4 by extending the L°°-theory, which was recently developed in [11,23]
and applied to establish nonlinear stability of wave trains in reaction-diffusion systems against
Cyp-perturbations, beyond the parabolic setting. Here, we outline the strategy of proof and ex-
plain how we address the novel challenges arising due to incomplete parabolicity.

To prove Theorem 1.4, we wish to control the perturbation W(¢) = u(z) — ¢ over time, which
obeys the semilinear equation
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& — Loy W =N@), (1.17)

where Ly is the linearization of (1.3) about ¢ given by (1.5) and N (W) is the nonlinear residual
given by

N@) = F(go+ W) — F(¢o) — F'(¢0)W.

We will establish that £y generates a Co-semigroup e£0' | which, due to the fact that £ has
spectrum up to the imaginary axis iR, does not exhibit decay as an operator on Cy,(R), thus
obstructing a standard nonlinear stability argument.

In earlier works [27,31,45], considering the nonlinear stability of wave trains in reaction-
diffusion systems against localized perturbations, this issue was addressed by employing its
Floquet-Bloch representation to decompose the semigroup generated by the linearization and
introducing a spatio-temporal phase modulation to capture the critical diffusive behavior. More
precisely, one considers the inverse-modulated perturbation

W, ) =u( =¥ (. 1), 1) — do(%), (1.18)

where the spatio-temporal phase modulation (¢, t) is determined a posteriori. The inverse-
modulated perturbation satisfies a quasilinear equation of the form

(3 — Lo) (W+ gy — Yew) = N (W, We, Wee, Yo, 9, Yo, Yeee) s (1.19)

where N is nonlinear in its variables. One decomposes the semigroup e£0' into a principal part
of the form ¢S, (¢), where S, (¢) decays diffusively, and a residual part exhibiting higher order
temporal decay. Finally, one chooses the phase modulation v (¢) in (1.18) in such a way that it
captures the most critical contributions in the Duhamel formulation of (1.19), allowing one to
close a nonlinear iteration argument in ¥, ¥, and w. The leading-order dynamics of the phase
modulation v is then given by a viscous Hamilton-Jacobi equation, cf. [13] and Remark 1.5.

The above approach has successfully been extended to the nonlinear stability analysis of pe-
riodic traveling waves against L2-localized perturbations in nonparabolic dissipative problems
such as the St. Venant equations [28,44] and the Lugiato-Lefever equation [21] using resolvent
estimates and the Gearhart-Priiss theorem to render exponential decay of the high-frequency part
of the Cy-semigroup.

In the nonlinear stability analysis of wave trains in reaction-diffusion systems against Cyp-
perturbations in [11], the decomposition was carried out on the level of the temporal Green’s
function, which is C? and exponentially localized, thus circumventing an application of the
Floquet-Bloch transform to nonlocalized functions, which is only defined in the sense of tem-
pered distributions. This leads to an explicit representation of the low-frequency part of the
semigroup as in [27] and control on the high-frequency part by pointwise Green’s function esti-
mates established in [31].

For nonelliptic operators, such as Ly, the temporal Green’s function is typically a distribution,
complicating a potential decomposition via the Floquet-Bloch transform. We address this chal-
lenge by taking inspiration from [3] and employing its inverse Laplace representation, given by
the complex inversion formula
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n+iR
1
efolw = lim — / ML — L) 'wdr (1.20)
R—o0 271
n—iR

with n,¢ > 0 and w € D(Lp), to decompose the semigroup. By partitioning and deforming the
integration contour in (1.20), we write the semigroup as the sum of a high- and low-frequency
part. Here, we associate the high-frequency part of the semigroup with pieces of the deformed
contour integral where [Im(A)| >> 1, i.e., where e’ rapidly oscillates, and the low-frequency part
of the semigroup with pieces of the deformed contour integral where |A| < 1.

As the space of perturbations Cy,(R) does not admit any Hilbert-space structure, we cannot
rely on the Gearhart-Priiss theorem (or leverage the sectoriality of the linearization) to estab-
lish a spectral mapping property. Therefore, we instead use the expansion of the resolvent as a
Neumann series for A € C with |Im(X)| > 1, which was established in [3], to control the high-
frequency part of the semigroup. The leading-order terms in the Neumann series expansion of
resolvent are not absolutely integrable over the high-frequency parts of the contour in (1.20) and,
thus, the question of how to control these terms is not straightforward. Here, we cannot resort to
the arguments in [3] which rely on test functions, since these are not dense in Cy,(R). Instead,
we identify the critical terms in the Neumann series expansion of (A — £o)~! as products of
resolvents of simple diffusion and advection operators. The corresponding terms in the inverse
Laplace formula then correspond to convolutions of the Cp-semigroups generated by these dif-
fusion and advection operators. As far as the authors are aware, the observation that the complex
inversion formula holds for convolutions of Cg-semigroups is novel and is therefore of its own
interest, cf. [20]. All in all, we obtain that the high-frequency part of the semigroup is exponen-
tially decaying on Cyp(R).

To render decay of the low-frequency part of the semigroup one must rely on diffusive smooth-
ing in the case of nonlocalized perturbations. The diffusive decay rates of the low-frequency part
are not strong enough to control the critical nonlinear term v(w;)2 in the perturbed viscous
Hamilton-Jacobi equation satisfied by . In [11], this difficulty has been addressed by further
decomposing the low-frequency part of the semigroup via its 2FIO(Auet-Bloch representation and
relating its principal part to the convective heat semigroup e @950 )t, which allows to apply the
Cole-Hopf transform to eliminate the critical (w;)z-term.

Here, we link the inverse Laplace representation of the low-frequency part with the Floquet-
Bloch representation from [11] modulo exponentially decaying terms, while exploiting the
nonzero group velocity of the wave train, cf. Assumption (H2). This allows us to harness the
decomposition of and estimates on the low-frequency part of the semigroup from [11]. A similar
relationship between low-frequency Floquet-Bloch and inverse Laplace representations has been
established by different methods for Green’s functions associated with the linearized dynamics
of viscous conservation laws about periodic waves; see [42].

After applying the Cole-Hopf transform to the equation of the phase modulation ¥ to elim-
inate the critical nonlinear term, the decay of all remaining linear and nonlinear terms is strong
enough to close a nonlinear iteration argument in v/, ¥, and w. Yet, the equation for the inverse-
modulated perturbation is quasilinear and an apparent loss of derivatives must be addressed to
control regularity in the nonlinear argument. This is a standard issue in the nonlinear stability
of wave trains and it has been recognized that, as long as the underlying equation is semilinear,
such a loss of derivatives can be addressed by considering the unmodulated perturbation or to the
so-called forward-modulated perturbation

10
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W, 1) =u(, 1) —¢o(& + (¢, 1), (1.21)

which measures the deviation from the modulated wave train, cf. [51]. Both the unmodulated
perturbation W(z) and the forward-modulated perturbation w(¢) obey a semilinear equation in
which no derivatives are lost, yet where decay is too slow to close an independent iteration
scheme. However, by relating W(z) (or W(z)) to the inverse-modulated perturbation w(z) regular-
ity can be controlled in the nonlinear iteration scheme. Regularity control can then be obtained
by showing that W(z) (or W(r)) obeys a so-called nonlinear damping estimate [26,51], which
is an energy estimate bounding the H™-norm of the solution for some m € N in terms of the
H"-norm of its initial condition and the LZ-norm of the solution. A nonlinear damping estimate
for the forward-modulated perturbation has been derived in the setting of the FHN system in [3,
Proposition 8.6].

A second option is to control regularity by deriving tame estimates on derivatives of W(z) (or
Ww(¢)) via its Duhamel formulation [11,12,21]. In the absence of parabolic smoothing, the ad-
vantage of using nonlinear damping estimates is that they yield sharp bounds on derivatives and
typically require less regular initial data, as can for instance be seen by comparing [51, Theo-
rem 6.2] with [21, Theorem 1.3]. In the case of nonlocalized perturbations, one has so far been
compelled to the second approach using tame estimates, cf. [11,12], since the lack of localization
prohibits the use of L2-energy estimates. Motivated by the possibility to accommodate less regu-
lar initial data, we control regularity in this work by extending the method of nonlinear damping
estimates to uniformly local Sobolev norms, see [47, Section 8.3.1], which allow for nonlocalized
perturbations. On top of that, we work with a slightly modified version of the forward-modulated
perturbation given by

¢, 1) =u. ) —dC+ YDA+ (5,0 1+ Y (5, 1)
=W D+ ¢ +Y (. 0)—=dC+¥ (&, DA +Ye (&, 0); 1+ (5, 0)  (1.22)
=W, 0+ ¢0() — ¢+ ¥ &M+ Y (6, 0); 14+ Y (5, 1)),

which again satisfies a semilinear equation in which no derivatives are lost and is well-defined
as long as || (¢)| L= is sufficiently small, cf. Proposition 1.2. The reason is that z(¢) and its
derivatives exhibit stronger decay than w(t), cf. [11, Corollary 1.4]. Having sharper bounds
on derivatives, it is no longer necessary to move derivatives in the Duhamel formulation from
the nonlinearity to the slowly decaying principal low-frequency part S, () of the semigroup as
in [11]. This provides a significant simplification with respect to [11] as the computation and
estimation of commutators between the operators S,(¢) and 9", m € N, is no longer necessary.
Thus, using uniformly local Sobolev norms,* we obtain a nonlinear damping estimate for the
modified forward-modulated perturbation z(¢) and our nonlinear iteration scheme can also be
closed from the perspective of regularity. This then leads to the proof of Theorem 1.4.

Remark 1.5. It was already observed in [13] that the coefficients of the viscous Hamilton-Jacobi
equation (1.14), governing the leading-order phase dynamics, can be expressed in terms of the
coefficients of the second-order expansion of the linear and nonlinear dispersion relations A.(§)

4 We note that uniformly local Sobolev norms have also been used in other works, e.g. [17], to make energy estimate
methods available in L%°-spaces.

11
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and w (k), cf. Propositions 1.2 and 1.3 and identity (1.15). In the current setting of fully nonlocal-
ized perturbations [11], it is important to identify the leading-order Hamilton-Jacobi dynamics
of the phase modulation as this allows for an application of the Cole-Hopf transform to eliminate
the most critical nonlinear term. In contrast, in the nonlinear stability analyses [21,27,28,31,44]
of wave trains against localized perturbations, it is not necessary to determine the leading-order
phase dynamics explicitly. The derivation of the viscous Hamilton-Jacobi equation in the current
setting can be found in §4.3 and exploits the characterization of the first-order term in the expan-
sion of the eigenfunction ®¢ as the derivative of the family of wave trains ¢ (; k), established in
Proposition 1.2, with respect to the wavenumber k, cf. Proposition 1.3.

Remark 1.6. The nonlinear damping estimate, used in the proof of Theorem 1.4, leads to esti-
mates on derivatives of the (modulated) perturbation. Specifically, we can replace the L*°-norms
in lestimates (1.10)-(1.12) by (C&b X C&b)-norms upon substituting Eq by its fractional power
Ej>°

Here, the occurrence of the fractional power is a consequence of the use of Gagliardo-
Nirenberg interpolation in the nonlinear damping estimate, see Remark 4.10. In addition, we note
that, although our initial perturbation wq lies in CSb(R) X C&b (R), we do not control the associ-
ated norm in our nonlinear stability analysis, since we lose one degree of regularity by embedding
of uniformly local Sobolev spaces in Cyp-spaces. Nevertheless, by considering more regular ini-
tial data in Theorem 1.4, it is possible to track higher-order derivatives in the nonlinear argument.
More precisely, taking m € N and wq € CZ{)+3 (R) x C:{fz (R) with ||wo]| o < K in The-
orem 1.4, we find

ue C([0,00), CHF(R) x CHFA(R)) N C1 ([0, 00), CHHI(R) x CHHL(R)),
and the estimates (1.10)-(1.13) can be upgraded to

Q,
I = ol ez, cnn < MEG”,

MEgm
Vi+t

log(2
Ju@ = o ( +v .0 (14¥:C0): 1+ Y C0) | enizyemen < MEgm%

lu) = go + Yo Dl cmsr <

where «;,,, > 0 depends on m only, and

ME log(2+1¢)
b | 34m < , t m < MEy————
lrve Olleggn < 7==- Wec@lcgm < MEo—"

for all ¢+ > 0. For the sake of clarity of exposition and in order to reduce the amount of techni-
calities, we have chosen to only consider (CSb X Cfb)-regular initial data only in our nonlinear
stability analysis.

5 In fact, we can also take o = % in (1.16).
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1.4. Outline

This paper is organized as follows. In §2, we analyze the resolvent associated with the lin-
earization Lo of (1.3) about the wave train. In §3 we decompose the Cy-semigroup efo! and
derive associated estimates with the aid of the inverse Laplace representation and establish a
Floquet-Bloch representation for its critical low-frequency part. In §4, we set up our nonlinear
iteration scheme and derive a nonlinear damping estimate. We close the nonlinear argument and
prove our main result, Theorem 1.4, in §5. We conclude in §6 by discussing the wider appli-
cability of our method to achieve nonlinear stability of wave trains against fully nonlocalized
perturbations in semilinear dissipative problems. Appendix A is devoted to background material
on the vector-valued Laplace transform. In particular, we prove that its complex inversion for-
mula holds for convolutions of Cy-semigroups. Finally, we relegate the derivation of the equation
for the modified forward-modulated perturbation to Appendix B.

Notation. Let S be a set, and let A, B: S — R. Throughout the paper, the expression “A(x) <
B(x) for x € §”, means that there exists a constant C > 0, independent of x, such that A(x) <
C B(x) holds for all x € S.

For £ € N, m € Ny, and F € {R, C}, we define CI’J'L(R,IFK) as the space of bounded and
uniformly continuous functions from R to F¢, which are m times differentiable and whose m
derivatives are also bounded and uniformly continuous. We endow C(Sg(R’ F*) with the stan-
dard W™ *°-norm, so that it is a Banach space. Moreover, we define H;:;r((o, T),IFK) as the
closure in H’”((O, T), IFE) of the subspace {u|¢,7) : u € C*(R, F) is T -periodic}. The space
ng’r((O, T), IFZ) is a Hilbert space with the inner product inherited from H™ ((0, T),F Z). When
the codomain is clear from context or not essential, we simply write Cl’l'{3 (R) or HP’,{c'r(O, T) instead

of CIi (R, F*) and HJ..((0, T), F*), respectively. Finally, we set Lo, (0, T) = H3,.(0, T).

per

Acknowledgments. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) — Project-ID 491897824. We thank the referees for their valuable
feedback and for bringing the reference [42] to our attention.

2. Resolvent analysis

This section is devoted to the study of the resolvent and serves as preparation to derive pure
L*>-estimates on the high- and low-frequency components of the semigroup given by (1.20).
That is, we collect and prove properties of (A — L) ™! in the regimes [Im(A)| > 1 and |A| < 1.

Our refined low-frequency analysis of the resolvent is the starting point to link the inverse
Laplace representation to the Floquet-Bloch representation of the low-frequency part of the semi-

group.
2.1. Low-frequency resolvent analysis and decomposition
We consider the resolvent problem
(Lo—Mw=g 2.1

with w = (1, v) T and g € Cyp(R) for A in a small ball B(0,8) C C of radius § > 0 centered at
the origin. We proceed as in [3] and write (2.1) as a first-order system

13
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V=AMV +G (2.2)

iny = (u,u, v) T with inhomogeneity G = (0, g)—r and coefficient matrix

0 1 0
A= A= fwo) —co gylﬂ ,

&

s eyt

where u is the first-component of the wave train ¢ = (g, vo) " and f(u) = u(1 — u)(u — ) is
the cubic nonlinearity in the FHN system (1.1).

The coefficient matrix A(-; A) is T -periodic for each A € C. Thus, we can apply Floquet
theory, cf. [33, Section 2.1.3], to establish a T-periodic change of coordinates, which is locally
analytic in A, converting the homogeneous problem

v =A@ MY (2.3)
into a constant-coefficient system.

Proposition 2.1. Assume (H1). For § > O sufficiently small, tl_zere exist maps Q: R x B(0,8) —
C3%3 and M : B(0, 8) — C3*3 such that the evolution T(,¢; M) of (2.3) can be expressed as

T(£.2:0) = Q(z: ) ' eMPED oz 2).

Here, Q(-; \) is smooth and T -periodic for each A € B(0, ). Moreover, M and Q(¢; ) are
analytic for each ¢ € R.

An eigenvalue v(A) of the monodromy matrix M (A) is called a spatial Floquet exponent.
It gives rise to a solution ¥ (¢; 1) = e"™% p(z; 1) of (2.3), where p(-; 1) is T-periodic. Thus,
translating back to the eigenvalue problem (Lo — A)w = 0, one readily observes that for each
& € C apoint A € B(0, d) is a (temporal) eigenvalue of the Bloch operator £(£) if and only if i§
is an eigenvalue of M ()). The spectral decomposition (1.6) then implies that a point A € B(0, §)
lies in o (Ly) if and only if M (L) has a purely imaginary eigenvalue.

Proposition 1.3 yields balls Vi, V, C C centered at 0 and a holomorphic map A.: V; — C
such that £(£) has a simple eigenvalue A.(§) for each & € V| and it holds o (L) N Vo = {A:(§) :
& e RNV} N V. Since we have A.(0) = —ic, # 0 by Assumption (H2), the implicit function
theorem implies, provided é > 0 is sufficiently small, that for each A € B(0, §) the matrix M (i)
possesses precisely one simple eigenvalue v.(A) in V. These observations readily lead to the
following proposition.

Proposition 2.2. Assume (H1), (H2) and (D1)-(D3). There exist constants C,§ > 0 and a holo-
morphic map v.: B(0,8) — C satisfying the following assertions.

(1) ve(A) is a simple spatial Floquet exponent associated with the T -periodic first-order prob-
lem (2.3) for each A € B(0, §).

(ii) A point A € B(0, §) lies in o (Lo) if and only if v.(X) is purely imaginary.

(iii)) We have v.(A.(§)) = i€ for each & € V1 such that A.(§) € B(0, 5).

14
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(iv) The expansion

<CIr?

1
Ve(A) + —A
Cg

holds for all ). € B(0, §).
(v) For A € B(0,6) to the right of o (Lg) we have Re(v.(1)) > 0.

Propositions 2.1 and 2.2 imply that for A € B(0, §) system (2.3) has an exponential dichotomy
on R if and only if there are no purely imaginary Floquet exponents, which is the case precisely if
A lies in the resolvent set p(Lo). Hence, taking A € B(0, ) N p(Lp) and letting P¥(A) and P*(A)
be the spectral projections onto the stable and unstable subspaces of M (1), we can express the
spatial Green’s function associated with (2.3) as

G, T 1) = 0 M) eMPE=D (PO Lo (D) — PO jr.00) (D)) Q(Z; 1)

where 1(_so ;] and 1[; o) are indicator functions. Introducing the matrices

0
100
Hz_(o 0 1)’ M3 = (1)

to translate between the original formulation (2.1) and the first-order formulation (2.2) of the
resolvent problem, we find that the unique solution of (2.1) is now given by

’

0
0
~1
0

C

((eo-07"8) © =wicsr) = [ M0, EMgd) .
R
By Proposition 2.2 the spatial Floquet exponent v.(}) is a simple eigenvalue of M()) and all
other spatial Floquet exponents are bounded away from iR for A € B(0, §). Therefore, the spec-
tral projection P“(A) of M (L) onto the eigenspace associated with v.(X) is defined for all

A € B(0,6). For A € B(0, §) to the right of o (L) it holds Re(v.(1)) > 0 and we can decompose
P"(A) = P"(A) + P“(A). This then leads to the desired resolvent decomposition for small A.

Proposition 2.3. Assume (H1), (H2) and (D1)-(D3). There exist constants C, 5 > 0 and a holo-
morphic map Sg: B(0,8) — B(Cub(R)) such that for ) € B(0,38), g € Cyp(R) and ¢ € R we

have

((Co-27"e) © = = [ Mo 0 1@ D1ge (BP0 0 Tag@)
R (24)
+ (stwg) ©

and it holds

stovg| . = Cllgle.
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In order to later relate the inverse Laplace representation of the low-frequency part of the
semigroup eLo 1o its Floquet-Bloch representation, we prove the following technical lemma
showing that the expression I, Q(¢; M) TLPU(A) Q(C; M3 in (2.4) can be written as a product
of solutions of the eigenvalue problem (Lo — A)w = 0 and its adjoint (Lo — A)*w = 0.

Lengma 2.4. Assume (H1), (H2) and (D1)-(D3). There exist a constant § > 0 and functions
W, ¥: R x B(0,8) — C? satisfying

MO M) PN QL M = W(E; MWL A)* (2.5)

fort, . eRand ) e B(0, 8). Moreover, W(-; 1) and \IJ(_~; M) are smooth and T -periodic for each
A€ B(0,48) and V(g; - )W(¢; -)* is analytic for each ¢, ¢ € R. Finally, we have

V(s Ac(§)) = P, M) he(§)) = idg (2.6)
for & € Vi such that ,.(§) € B(0, §), where ®¢ and E)g are defined in Proposition 1.3.

Proof. Let 1 € B(0, §). By Propositions 2.1 and 2.2 the monodromy matrix M (A) has a simple
eigenvalue v.(1), provided § > 0 is sufficiently small. Let w;(X) be an associated eigenvector.
Moreover, let w1 (A) be an eigenvector associated with the simple eigenvalue v, (1) of the adjoint
matrix M (1)*. The spectral projection P* (1) onto the eigenspace of M (1) associated with v, (1)
is now given by

wi (M)W (M)

P = mon

Since v.()) is simple for each A € B(0, §), the map P“: B(0,8) — C33 i holomorphic by
standard analytic perturbation theory [34, Section II.1.4].
We define W, W: R x B(0,8) — C? by

_ 0 M twi ()
(Pive > 2O )7 w1 (W) 200,77

W(g;A) =TTvi(; M), v1(g;A) =

and

TP v 0@ M W (L) -l ~
V(5 A) =II5v2(85 M), V(L5 A) = 100, B0 (T QG5 A) ™ wi(h), Poive) 12(0.7)-

Then, ¥(-; 1) and \1'( )) are smooth and T - periodic for each A € B(0, §) by Proposition 2.1.
One readily observes that (2.5) holds for {,¢ € R and A € B(0, 8). Moreover, since Q(¢; ),
Q(z;-) and P°* are analytic by Proposition 2.1, so is W(¢; JW(Z; )* foreach ¢, ¢ € R.

Next, we observe that the evolution T,q(¢, £; A) of the adjoint problem

9 = —A; M)*D, Q2.7)

of (2.3) is given by Tu(¢,z;A) = T(¢,¢;A)*, where T(¢,¢;A) is the evolution of (2.3).
So, since v.(A) is an eigenvalue of M (L) with associated eigenvector wi(X) and —v.(A)
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is an eigenvalue of —M(1)* with associated eigenvector w;(1), we obtain, by Proposi-
tion 2.1, that ¥ (z; 1) = "Wy (z; 1) and 9(¢; L) = e My, (¢: 1) are solutions of (2.3)
and (2.7), respectively. Consequently, w(¢; L) = el W(Z;A) and W(Z; A) = e_"‘f'()‘)f\il(g; A)
solve the eigenvalue problems (Lo — A)w = 0 and (Lo — A)*W = 0, respectively. Therefore,
W), W)€ szer(O, T) are nontrivial solutions of the eigenvalue problems (L(—iv.(X)) —
Aw =0 and (L(—iv.(X)) — A)*W = 0, respectively. Now, let & € V] be such that A.(§) €
B(0,5). Then, we find with the aid of Proposition 2.2 that W(¢; A.(§)) and ‘I’(CM(E))
lie in ker(ﬁ(é) — Ac(£)) and ker((L(§) — A:(§))"), respectively, which are spanned by &g
and <I>g, respectively, by Proposition 1.3. Hence, on the one hand, the gauge condition
(@5, W(¢; Ae (é)))Lz(O n=1= (CDE, De) 20,1y cf. Proposmon 1.3, 1mplles D =W(; A:(8)).
On the other hand, there exists k¢ € C \ {0} such that ‘lf( Ac(€)) = ke d>5 So, all that remains to
show is that kg =1/A.(§).

First, using that ¥ (¢;A) = e" @y () and 9(¢;A) = e @y, (z3A) are solutions
of (2.3) and (2.7), respectively, and we have v.(A.(§)) = i€ by Proposition 2.2, we obtain

Dy ¢ (co — i$)~51,s — @ &
V(G he(®) = | 1EP1Le + P4 |, v2(8; A (8)) = ke D¢
D) ¢ coP2 ¢

Finally, evoking Proposition 1.3, integrating by parts and using 1 = (CTDg, D¢ ) 20,1y, We arrive at

K‘;l K <v2( A), v1(; A))L2(0 o)
=((co—1E)P1s = B ¢, Pre) oo 1) + (P, iEPLE + D)oo 7,
+ (CO?ISZE’ q)l%‘)LZ(o,T)
=co+ 2(557 D (84 + ig) ¢S)L2(0,T) = —ir(8),

which concludes the proof. O
2.2. High-frequency resolvent analysis

We consider the resolvent (A — L) ! in the high-frequency regime. The spectrum of Lo away
from the origin is by Proposition 1.3 confined to the left-half plane with uniform distance from
the imaginary axis, which allows us to deform the high-frequency parts of the integration contour
in (1.20) into the left-half plane away from the imaginary axis and the spectrum. Specifically, this
leads us to consider the contours connecting b +iwq with b£iR for some b < 0 and R > @ > 0.
Since these contours are unbounded as R — 0o, we require a more refined understanding of the
resolvent to secure exponential decay on the high-frequency contributions of the corresponding
contour integrals.® The idea from [3] is to expand the resolvent (A — Lﬁo)’l as a Neumann series
in [Im(A)|~2 for [Im(A)| > 1. It turns out that it suffices to exphcltly identify the first three terms
in this expansion, since a remainder of order O(|/Im(A)|~ 2) is integrable. These three leading-
order terms can be expressed as products of the resolvents of the simpler operators L : Cyp(R) C

2, [R) = Cup(R) and £: Cyp(R) C CL, (R) = Cup(R) given by

6 Indeed, the naive bound I(A — Ly)™ 1|| < Rek , given by the Hille-Yosida theorem, is not strong enough.
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l:] 2355, ﬁzzcoag —&y.

Before stating the outcome of the expansion procedure in [3], we provide the following stan-
dard result showing that £; and £, generate Cp-semigroups and providing bounds on their
resolvents.

Lemma 2.5. The operators L and L, are closed, densely defined and generate Cy-semigroups
on Cyp(R). Morover, there exists a constant M > 0 such that for each t > 0, g € Cyp(R) and
A € C\ {0} with |arg(L)| < 37” we have A € p(L1) and

_ M
I — L) "l < mllgllmo, le“1 gll oo < Mlgll o

Finally, for eacht >0, g € Cyp(R) and ) € C with Re(L) > —ey it holds A € p(L2) and

_ llgll _
I — L) gll e < ReG) o) le ' gll Lo < ™" |g| L.

Proof. The operator d; generates the strongly continuous translational group on Cyp(R) by [14,
Proposition 11.2.10.1]. Since translation preserves the L°°-norm, e%’ is a group of isome-
tries. Therefore, each A € C with Re(X) > 0 lies in p(d;) and it holds ||(A — 8;)’1g||Loo <
Re(A)~!||gllz for g € Cyp(R) by [14, Corollary 3.7]. The bounds on (A — £5)~! and e£2!
now readily follow by rescaling space. Moreover, £ generates a bounded analytic semigroup
el by [14, Corollary 11.4.9] being the square of the operator d;. The resolvent estimate on
(. — £1)~! is stated in the proof of [14, Corollary I1.4.9]. O

Now, we state the high-frequency expansion of the resolvent (A — Lo)~! obtained in [3].

Proposition 2.6. Assume (H1), (H2) and (D1)-(D3). Let by > 0. Then, there exist constants
C, wo > 0 such that we have b + iw € p(Lo) with

b+iw —Lo) 'g=1) e+ 1} 8+ 1; 8+ 1) 8

for all g = (g1,g22) € Cyp(R) and b, w € R with —38)/ <b < by and |\w| > wy, where we
3
denote

e (im — L) g 2 e (im — L)~ b +im — L2)7 g
b=\ (b+iw — L) 'g )’ b=\ —e(b+iw — L2) ' (w — L1) g1

and
I} g= 0
b —e(b+iw — L) Wiw — L)' b+iw — L2) g )
and the residual operator I :’w 1 Cyp(R) = Cup(R) obeys the estimate

_3
i 0e] < clori g~
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Proof. This result was proved in [3, Lemma B.4] for g € C*°(R), which immediately yields the
statement by density of C*°(R) in Cyp(R). O

3. Semigroup decomposition and linear estimates

In this section, we decompose the Cp-semigroup generated by the linearization Lo of (1.3)
about the wave train ¢ and establish corresponding estimates. To this end, we employ the com-
plex inversion formula (1.20) of the Co-semigroup. We first deform and partition the integration
contour in (1.20). The high-frequency contribution of the deformed integration contour lies fully
in the open left-half plane. Thus, exponential decay of the associated part of the Cp-semigroup
can be obtained with the aid of the high-frequency resolvent expansion established in Proposi-
tion 2.6.

For low frequencies, we employ the resolvent decomposition obtained in Proposition 2.3 lead-
ing to a critical and residual low-frequency contribution of the contour integral. On the one hand,
we shift the contour fully into the open left-half plane to render exponential decay of the residual
low-frequency contribution. On the other hand, we relate the critical low-frequency contribution
to its Floquet-Bloch representation by shifting the integration contour onto the critical spec-
tral curve. This allows us to gather the relevant estimates on this critical part of the semigroup
from [11].

3.1. Inverse Laplace representation

We start by showing that L generates a Co-semigroup on Cy,(R) and represent its action by
the complex inversion formula.

Proposition 3.1. Assume (H1). Let k € Ny. The operator Ly acting on Cl’]‘b (R, C?) x C{fb(]R, C?)
with domain D(Ly) = Cﬁg‘z(R, C) x Cﬁ;l(R, C) generates a strongly continuous semigroup
eLol on Cﬁb (R, Cz). Moreover, there exists n > 0 such that the integration contour I‘(If, which is
depicted in Fig. 1 and connects n — iR to n + iR, lies in the resolvent set p(Lo) and the inverse
Laplace representation

1
e“o'g = lim —,/e“(k—ﬁo)*lgdk 3.1
R—o0 271

ry
holds for any g € D(Lo) and t > 0, where the limit in (3.1) is taken with respect to the Cﬁb—norm.

Proof. The operator L is a bounded perturbation of the diagonal diffusion-advection operator
Lo = Ddg¢ + cod; on CK (R, C?) x Ck (R, C?) with dense domain D(Lo) = CXF*(R, C) x
Cﬁ; Y(R, C). The first component of Lg is sectorial by [37, Corollary 3.1.9] and thus gener-
ates an analytic semigroup, which is strongly continuous by [37, p. 34]. On the other hand, the
second component of L generates the strongly continuous translational semigroup on Cﬁb(]R{)
by [14, Proposition I1.2.10.1]. Since Ly is a bounded perturbation of Lg, Lo also generates a Co-
semigroup by [14, Theorem III.1.3]. The inverse Laplace representation, given by the complex
inversion formula (3.1), follows from [ 1, Proposition 3.12.1]. O
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We note that standard semigroup theory provides sufficient control on the short-time behavior
of the semigroup e~o’. To distinguish between short- and long-time behavior, we introduce a
smooth temporal cut-off function yx : [0, c0) — R satisfying x (r) =0for¢ € [0, 1] and x(¥) =1
for ¢ € [2, 0o) and obtain the following short-time bound.

Lemma 3.2. Assume (H1). Consider Ly as an operator on Cyp(R). There exist constants C, a >
0 such that

10— x (1)e ' g|l < Ce™!
holds for g € Cyp(R) and t > 0.

Proof. This follows immediately from [14, Proposition 1.5.5], Proposition 3.1 and the fact that
1 — x vanishes on [2,00). O

Next, we deform the integration contour F(’f in (3.1) using Cauchy’s integral theorem and
analyticity of the resolvent A — (A — Lo) ™! on p(Lo).

Proposition 3.3. Assume (H1) and (D1)-(D2). Consider Lo as an operator on Cy,(R) and let
n > 0 be as in Proposition 3.1. For each wy > 0 sufficiently large the integration contours Ff
and F§, which are depicted in Fig. | and connect iy — %8)/ to iR — %sy and —iR — %sy to
—iwy — %ey, respectively, as well as the rectangular integration contour 'y, which connects
—iwg — %ey via —iwg + % and iwq + % to iwg — %ey, lie in the resolvent set p(Ly). Moreover,
we have

t t
ebolg = &_)/e“()\—ﬁo)_lgdkjL lim & e (A — Lo) 'gda
2mi R—o0 2
I

1
rRUrk (3.2)

+ (1= x()e g
forge D(Ly) andt > 0.

Proof. Let g € D(Lp) and t > 0. Let R > wy. Let Fg be as in Proposition 3.1. Let Ff and F§
be the integration contours depicted in Fig. | connecting —iR+nto —iR — %ey andiR — %8)/ to
iR + 1, respectively. Let 'R be the closed contour consisting of —I'§, I'f, I',, ¥, 'f and I'%, s0
that 'R is oriented clockwise, cf. Fig. 1. By Assumption (D1) and Proposition 2.6 'R as well as
its interior, lies in p (Lyp), provided @y > 0 is large enough. Moreover, the map p(Lg) = Cyp(R)
given by A — e* (A — L)~ 'g is analytic. Hence, Cauchy’s integral theorem yields

O:/e’\’(k—ﬁo)_lgdk. (3.3)
I‘R
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Fig. 1. The spectrum of the linearization L of system (1.3) about the wave train ¢ (depicted in blue and red) touches
the origin in a quadratic tangency. It asymptotes to the line Re(1) = —ey. The red part of the spectrum is the critical
curve {A¢(§) : £ € RNV} } established in Proposition 1.3. Left panel: the original contour Fg used in the inverse Laplace
representation (3.1) of the Co-semigroup eLor, together with the deformed contour l"f U l"§ uru Ff u l"g. The
contributions of the inverse Laplace integral over Fi and l"§ Xanish as R — oo, cf. Proposition 3.3. Right panel: a
zoom-in on the contour 'y, as well as its deformation I'— U I's U I' - used in the proof of Proposition 3.6. The rectangular
contour I'g lies in the ball B(0, §), is reflection symmetric in the real axis and connects points —iny — 1 to iny — 1y
with 7 5 > 0.

We express the contribution of the complex line integral over Ff U Fg as

eAt

/ M —Lo) lgdr = / T((,\—Lo)—lcog+g) da. (3.4)

Rk R rR
rRurs rRur}

Lemma 2.5 and Proposition 2.6 yield an R-independent constant C > 0 such that we have the
bound ||(A — L)~} | B(cy @Ry < C for A € I‘f U F§. Since the length of Ff U I‘§ can be bounded
by an R-independent constant M > 0, we find that (3.4) implies

=0.

C|L o0 o0
lim / M~ Lo)'gdr| < lim "M 1ol + gl

R—00 00 R

R R
rRur? Lo

Combining the latter with Proposition 3.1 and identity (3.3), we arrive at (3.2), which concludes
the proof. O
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3.2. Estimates on the high-frequency part

We utilize the resolvent expansion obtained in Proposition 2.6 to establish exponential decay
of the high-frequency part of the semigroup e£o' which corresponds to the complex line integrals
over the contours Ff and F§ in the inverse Laplace representation (3.2) of the semigroup.

Proposition 3.4. Assume (H1) and (D1)-(D2). Consider Ly as an operator on Cyp(R). For each
wo > 0 sufficiently large there exist constants C, o > 0 such that the operator Se1 @®): Cp(R) —
Cup(R) given by

1
S,(g=x () lim — f M (A — Lo)'gdn
R—o0 271

rkurf
for g € D(Ly) and t > 0 obeys the estimate

IS, ()gllLx < Ce™ |igll o (3.5)

forge Cypy(R) and t > 0.

Proof. Let g = (g1,¢2)" € D(Lo) and t > 0. We abbreviate b; = —%sy. Employing the high-
frequency resolvent expansion from Proposition 2.6, we arrive, provided wq > 0 is sufficiently
large, at the decomposition

—w) R
1 .
Sling=x@) lim — / +f T (b +iw — Lo) ' gdw
R—o00 21 (3.6)
—-R @o

— b1t (S1()g+ S2(t)g+ S3(1)g + S4(1)g),
where we denote

—wy R

. 1 —_ .
Sj(t)g:)((t)Rli)moog / —I—/ elmllfl,wgdw, j=1,...,4.
-R @0

The estimate on / lfl’wg in Proposition 2.6 readily provides g- and 7-independent constants Cp 2 >
0 such that

o0
3
|S4(H)gllLe < Cy /w_fllgllmo do < CaigllLee. 3.7
@0

We relate the leading-order contributions Sy (¢), S2(¢), S3(¢) to (convolutions of) the Cy-semi-
groups 7T1(t) := eL1' and Th(r) = elL2—b)r using [1, Proposition 3.12.1] and Corollary A.2.
To this end, we define an R-independent contour fz, which connects —iwy to iwg and lies in
Y:={reC\{0}: —;lley <Re()) < %ey, |arg(A)] < 37”}. Moreover, let f‘f and f‘§ be the lines
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J. Alexopoulos and B. de Rijk
connecting —iR + z¢y with —iR and connecting iR with iR + }Tsy, respectively. Using that the
maps ¥ — Cyp(R) given by A — (A — L1)"'gand A — (A + by L)~ are holomorphic by

Lemma 2.5, Cauchy’s integral theorem yields
%sy+iR

t .
x® / M1 g

(t) 1wt J
Iy w8de =0
%syfiR
t .
_ _X( ) / e)‘tllfI ,8dA.

2mi

(3.8)

Durkurk

We note that the length of the contours fz, Iv‘f, Iv”ge C X Cp(L1)Np(Ly—by) can be bounded
by an R-independent constant. So, using the resolvent estimates from Lemma 2.5, we establish

a t-, R- and g-independent constant C3 > 0 such that
) 7€Vt
0 [ e = et gl (3.9)
IourRurk L0
for j=1,2,3.
Lemma 2.5 implies that g1 € D(L1), g2 € D(L£2 — b;) and the semigroups 71 (¢) and T>(t) are
strongly continuous and exponentially bounded with growth bounds @ (77) < 0 and @(7>) <

—z¢ey. Hence, an application of [1, Proposition 3.12.1] and Corollary A.2 yields

fey+iR
S [ e (00
fey—iR
fey+iR
% Jim. f 12 gdi = x (1) (_E:T(‘Tj f}l(;gffg) ,
1ey—iR
and
Jey+HR
A Jim. / g =x© <—e @aTis Ty (r>g2> '

%ay—iR
By [14, Theorem C.17], the convolutions T} * T>, T> * T1 and T * T * T, are strongly contin-
uous and exponentially bounded with growth bounds being at most max{@o(T}), wo(T2)} <0

Therefore, we find a ¢- and g-independent constant C4 > 0 such that

23



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013

%sy+iR
x (@)

271 R / M1}, ,8dh| = Cullgl~

%sy—iR

for j = 1,2,3. Combining the latter with the decompositions (3.6) and (3.8) and the esti-
mates (3.7) and (3.9), we arrive at (3.5) with @ = %sy > 0 by density of D(Lp) in Cyp(R). O

Remark 3.5. Comparing the proof of Proposition 3.4 with the high-frequency analysis of the
semigroup in [3, Appendix B.2], we find that the identification of the critical high-frequency part
of the semigroup as convolutions of the heat and translation semigroups simplifies the analysis
significantly. In particular, it is no longer necessary to compute the inverse Laplace transform
of the leading-order terms of the Neumann-series expansion of the resolvent explicitly for a test
function g.

3.3. Isolating the critical low-frequency part

We wish to employ the decomposition of the resolvent (A — Lo)~! for || sufficiently small
established in Proposition 2.3 to isolate the critical low-frequency part of the semigroup. To this
end, we deform the contour I'; in the inverse Laplace representation (3.2) of the semigroup eLor,
so that its part in the right-half plane is contained in the ball B(0, §), where Proposition 2.3 ap-
plies, cf. Fig. 1. The remainder of the deformed contour lies in the open left-half plane, away from
the spectrum of Ly and, thus, the associated complex line integrals are exponentially decaying.

Proposition 3.6. Assume (H1) and (D1)-(D3). Consider Loy as an operator on Cy,(R). Let
wo > 0. For each § > 0 sufficiently small there exist constants C,«a > 0, a linear operator
Se2(t): Cib(R) = Cup(R) and a rectangular contour T's, which is reflection symmetric in the
real axis, lies in B(0, §) strictly to the right of o (Ly) and connects points —iny — n and iny — 1y
with 01,2 > 0, such that we have the decomposition

ﬂQ/Wa—mr@m:ﬁﬂfwa—mrﬁﬂ+$mg (3.10)
271 27
I Ts

for each g € D(Ly) and t > 0 and the estimate
IS2(D)gll L < Ce ™ |igl Lo (3.1
holds for g € Cyp(R) and t > 0.

Proof. Let g € D(Lp) and t > 0. By Proposition 1.3, there exist constants a € R and b, §g > 0
such that the spectrum of Ly in the ball B(0, 8g) lies on or to the left of the parabola {ia§ —
bE? : £ € R}. Take & € (0, 8p). By Assumption (D1), there exists a constant o > 0 such that the
spectrum of Ly in the compact set Ko = {A € C : |Im(})| < 2wy, [Re(A)| < ¥} \ B(0,§) lies
to the left of the line Re(A) = —p. Furthermore, the contour I'; lies in the resolvent set of Ly
by Proposition 3.3. We conclude that there exist points —n; = iy with 11 2 > 0 lying in B(0, §)
strictly to the right of o (L), as well as contours r_, connecting the lower end point —img — %sy
of I'y to the point —in, — 0, and ﬁ_, connecting iy — 11 to the upper end point iy — %8]/
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of I'p, such that T'_ and l~“+ are both contained in the resolvent set p(L) and in the open left-
half plane. Hence, there exists a rectangular contour I's, which connects —in; — n; to iny — n1,
is reflection symmetric in the real axis and lies in B(0, §), strictly to the right of o (Lgp). Since
the map p(Lo) — Cup(R) given by A > e’ (A — Lo) 'gis analytic, Cauchy’s integral theorem
yields (3.10) with

Sf(t)gzg f+/ eM(n— Lo) 'gda.
g7

The analytic map p(Lg) = Cop(R), A — (A — L0)~! is bounded on the compact sets Fi C
p(Ly), which lie in the open left-half plane. Thus, the estimate (3.11) follows by density of
D(Lp) in Cyp(R). O

We can now identify the critical part of the remaining complex line integral in (3.10) by
employing the low-frequency decomposition of the resolvent obtained in Proposition 2.3 and
using the identity (2.5) derived in Lemma 2.4.

Proposition 3.7. Assume (H1), (H2) and (D1)-(D3). Consider Ly as an operator on Cyp(R).
For each & > 0 sufficiently small there exist constants C,a > 0 and a linear operator

Sg(t): Cup(R) = Cyp(R) such that for each g € D(Ly), £ € R and t > 0 we have the de-
composition

[e¢]

);i.) / M — Lo) ' gdn ] = X / / MWD, ) B(E, 1) dig(©) dE
i 2mi
] I (3.12)

+ (sog) e,
Moreover, the estimate
1S3 (1)gllLe < Ce™ igllzos (3.13)
holds for g € Cyp,(R) and t > 0.

Proof. Provided § > 0 is sufficiently small, identity (3.12) follows readily from Fubini’s theo-
rem, Proposition 2.3 and Lemma 2.4 by setting

x (@)
Sng=7 - / e s0()gdr
Cs

for t > 0 and g € D(Lp), where SS: B(0,8) - B(Cy,(R)) is the analytic map from Proposi-
tion 2.3, obeying the estimate

1S9 (gl < Coligllze (3.14)
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for some g- and A-independent constant Co > 0. Now let T's be the straight line connecting the
end points £iny — n; of I's. Then, ['s lies both in B(0, §) and in the open left-half plane. By
Cauchy’s integral theorem and analyticity of SS, we infer

Sg=20 [ sluea
2mi

T

for g € D(Lp) and ¢ > 0. Taking norms in the latter, using that the compact contour T's lies in the
open left-half plane and applying the bound (3.14) readily yields the estimate (3.13) by density
of D(Ly) in Cyp(R). O

3.4. Floquet-Bloch representation of the critical low-frequency part

Except for the integral appearing on the right-hand side of (3.12) representing its critical
low-frequency part, the semigroup elor is exponentially decaying by Propositions 3.3, 3.4, 3.6
and 3.7 and Lemma 3.2. The following result recovers, up to some exponentially decaying terms,
the same Floquet-Bloch representation for the critical low-frequency part of the semigroup as
in[11].

The main idea is to exploit that the integral

/ M ME=Og (e W)W(T, 1)* di

Ts

possesses an integrand, which is analytic in A on B(0, §) for each ¢, Z € R and ¢ > 0, cf. Propo-
sition 1.3 and Lemma 2.4. This pointwise analyticity’ allows us to shift (part of) the integration
contour I's onto the critical spectral curve A (), see Fig. 2. Via the identities v.(A.(§)) = i&
and (2.6), obtained in Proposition 2.2 and Lemma 2.4, respectively, we then arrive at the desired
Floquet-Bloch representation from [11]. We show that the remainder terms are exponentially de-
caying by using pointwise estimates obtained through integration by parts, essentially following
the same strategy as in [23, Lemma A.1].

Proposition 3.8. Assume (H1), (H2) and (D1)-(D3). For each § > 0 sufficiently small there exist
constants &y, C, a > 0, a linear operator Sﬁ(t) : Cup(R) = Cyp(R) and a smooth cut-off function
p: R — R such that for each g € Cyp(R), ¢ € R and t > 0 we have

)
2mi

//ext+v0(k)({—2)qj(§’ MW, 0)*drgd)dE
¢ Ts

=20 [ [ @i Do) @) as g1 oE + (sHog) e
R R

7 See [3, Section 5.1] for further discussion on pointwise and L? -analyticity.
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Moreover, p is supported on the interval (—&y, &) C Vi N R and satisfies p(§) =1 for & €
[—%50, %Eo]. Finally, for each g € Cy,(R) and t > 0 it holds

IS2(1)gll Lo < Ce ™ ||g|i oo

Proof. First, we note that Propositions 1.3 and 2.2 imply v..(0) = —cg_1 #0and A.(0) = —icg #
0. So, using Proposition 1.3, we can take § > 0 so small that Proposition 2.2 and Lemma 2.4
apply, it holds v/.(1) # 0 for all A € B(0, §), and each point in o (Lg) N B(0, §) lies on the curve
{rAc(€) : £ € VI NR}. In addition, there exists, again by Proposition 1.3, &y > 0 such that we have
[—&0, &0] C V1 NR, it holds sgn(Im(A.(££&p))) = *1, each point on the curve A.([—&p, &o]) lies
in the ball B(0, §) and on the rightmost boundary {z € 6 (Lp) : z + w € p(Lp) for all w > 0} of
the spectrum of Lo, and 1/,(§) is nonzero for each & € [—&p, §9]. We let p: R — R be a smooth
cut-off function, which is supported on (—&p, &y) and satisfies p(§) =1 for & € [—%50, %So].

Our approach is to deform the contour I's into a new contour consisting of a smooth curve
I'_ C B(0,8) N{z € C:Re(r) < 0} which connects the lower endpoint —n; — iny of 'y to
Ae(—&p) and satisfies ' \ {A.(—&p)} C p(Ly), the smooth curve I'. C B(0,8) which con-
nects A.(—&p) to A-(&p) and is parameterized by A, and a smooth curve I'y C B(0,8) N{z €
C : Re(A) < 0} which connects the point A.(&p) to the upper endpoint —n; + in, of I's and
satisfies 'y \ {Ac(£0)} C p(Lo), see Fig. 2. We note that the contours I'+ exist, because the
points —n £ in; lie in the open left-half plane strictly to the right of og(Lo) N B(0, §), it holds
sgn(Im(A.(£&p))) = %1, and each point on the curve A.([—&p, &p]) lies in the ball B(0, §) and on
the rightmost boundary {z € 6 (L) : z + w € p(Ly) for all w > 0} of the spectrum of Ly, which
lies in {z € C : Re(z) < 0} U {0} by assumption (D1).

We choose parameterizations A : [0, 1] — C of the curves 'y satisfying A/, (&) # 0 for & €
[0, 1]. Since v, and W(Z, )W(Z, -)* are analytic and it holds i®g (£)Pe (2)* = W(Z, Ae(E)W(E,
Le(€))*AL(&) for each ¢, E € R and & € (—&p, &) by Proposition 2.2 and Lemma 2.4, Cauchy’s
integral theorem implies

/ekt+vc()~)(§—g)\y(§7)\)\ij(g’)\)*d)\: /+/+/ MWDz, 2)T(E, )" di
I

I's r. T4

=i [ ) O D 0 BB e+ L+ L
R
(3.15)

where we denote

Ii= f MV ME=Og(r )W(T, 1) dA,

|

&
L=i f (1 — pENFOHECD @ (0)e (7)* de
—&o
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for ;,E € R and ¢ > 0. On the other hand, using again i@g({)&)g(&)* = \Jj(g,)\c@))ﬁ;(g’
Le(€))*Ai(§), we infer

i / p(E)FEHECD @ () (D) dE = Iy — 1. (3.16)
R

where we denote

lo= / HHOED (e ) BE, 1) dh

Ie

for ¢, E € Rand ¢t > 0. All in all, (3.15) and (3.16) yield the decomposition

i/p@)exs@)wiswi)%(;)55(5)*dg :1[4,00)(5)/ewv(k)@*f)\p(g,x)ﬁ/(é,x)*dx
R Is

— 112,000 () U+ I- + 1) + L(o0,1(8) (To — )
(3.17)

for ¢, € R and ¢ > 0. We will use integration by parts to establish pointwise approxima-
tions of_ Iy, Iy and I, which yield integrability in space and exponential decay in time of
117,00)(¢) (U4 +1- + 1) and of 1(_s 1(¢) (Io — Ic). This then readily leads to the desired re-
sult.

Pointwise approximations of /. for ¢ < z. We wish to factor out the space-integrable quotient
(14 (¢ —¢)*>)~! by establishing pointwise approximations of 7, and (¢ — ¢)?I,. Recalling
v.(%) # 0 for all A € B(0, §), abbreviating W, (¢, £, 1) = W(¢, A)W¥(Z, A)*/v.. (%) and using inte-
gration by parts and Proposition 2.2, we rewrite

1
-7l = /(; — OO (£, L, A4 (8)) 3 (ev(x+(f)>(¢—2)> d&
0
= I:(é' — E)e)ur(%—)t"_v()ur(g))(g_g)\Ijl (é-’ E’ )\.+(§)):|1
£=0

1
_ /3%_ ((; _ E)e)““(é)t\lll({, E’ )‘—&-(5))) eV(M(E))({*E)dg
0

(¢ — E)e(*m+iﬂ2)t+v(*ri1+in2)(;7§)\pl(é" E o~ +im)
1

- /3s ((C — MOy (¢, z, x+(g))) O+ @D g
0

— (¢ = D) CIHRCD Y, (7,7, A (%))

Ty I — (¢ — D)ere@+H0C=0g, (2. 7 (%))
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Abbreviating Wa(¢, £, A) = Wi (¢, ¢, A)/vi(A) and W3(Z, ¢, A) = 3, W1 (¢, ¢, A)/vL(A) and inte-
grating by parts once again, we arrive at

1

I =— / O (1020, 8,24 (6) + W3(6. 8.2y (6))) 8 (£ P+ D) g
0
1

= [ (HE (1020, Ers ) + a6 B ) ) PO D e
0

= [ O D (150 E ) + W6 E A )]
=fe“+”“>@—f> (PW26. 80 +1 (092680 + W3(6.8.0) + 0,936 8. 0)) da
Iy

N [ @O EED) (1 (2, 7,y (6)) + Us(2. L. A+(E)))L N

We establish pointwise estimates on the contributions 7, I/, and I11. Here, we use the fol-
lowing facts which follow with the aid of Proposition 2.2 and Lemma 2.4. First, since the curves
A+ lie in the open left-half plane and the points —ny &£ iny lie strictly to the right of o (L),
there exists a constant ng > 0 such that Re(v(—n = in2)) > ng and Re(A+(§)) < —no for all
& € [0, 1]. Second, since the curves Ay lie to the right of o (L), it holds Re(v(A+(§))) > O for
all £ € [0, 1]. Third, the functions W; (¢, £, 1) as well as their derivatives with respect to A are
bounded on R x R x B(0, §) for i =1, 2, 3. Thus, we establish the following pointwise bounds

L S 1g = Ele™MHmE0 L [T S (1 4 1)e ™
fort > 0and ¢, ¢ € R with ¢ — ¢ <0. All in all, we conclude

(¢ — )ereor+ifo(¢—0)
1+ (¢ —0)?

(1+1+12)e M 4 |¢ — Z|emi+M0E—0)

I + -
1+ (¢ —2)°

Wi (¢, 8, heE0))| S

(3.18)

fortr>0and ¢,z e Rwith¢ —¢ <0
Analogously, one finds
(1414 12)e M 4 |¢ — Fle~mi+m0(E=0)

\yl(§3 Es )"L(_s())) 5 _
14+ -2)

k]

(¢ — £)ere(—E0r=i&(t—=0)
A =
I+@ =02

(3.19)

fort>0and ¢, € R with¢ — ¢ <0.

Pointwise approximation of Iy for ¢ > ¢. Recalling that the integrand of I is analytic in A on
B(0, ), we can apply Cauchy’s integral theorem to deform the contour I, to a line I', connect-
ing the point A.(—&p) to A.(&y). We parameterize the line by a curve Ag: [0, 1] — C satisfying
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Ao(&) #Oforall £ € [0, 1], see Fig. 2. We proceed similarly as before and factor out the quotient

(14 (¢ —¢)®~!, which is integrable in space. Thus, using integration by parts and Proposi-
tion 2.2, we rewrite

€ =’h= / (€ = ) EWI(Z, T, ho(€)) g (evw@»@—b) dz
0

= (¢ — §)erE =Dy (7,7 .(50)) — (¢ — T)

x elc(*éo)f*ifo@*é:)\pl(g’ Z-’ Ae(—£0))
1
_ /3§ ((C _ Z—)elo(é)lq,l(;’ E, ko(g))) ev()uo(é))(fff) d&.
0

Using integration by parts once again, we establish

1
Ilo:=— / 0 (€ = DO W (¢, 2, 20(8)) ) e P00 g
0

1
= [ M (1026, B. )+ W6, Eho() 8 (D) e
0

HDED (96,0 +1 (3026 E 2 + W36, 8. 0) + (. 8 0)) da

"12\

_ I:eko(E)IJrv()»o(E))(Z*E) (l‘l’z(é“, E, *o(£)) + Wi (z, E’ )\0(5)))]; .

Since FC is a straight line in B(0,§) lying to the left of o(Lp), it holds Re(rg(§)) <

Re(A:(£&0)) < —np and Re(v(Ag(£))) <O forall £ € [0, 1] by Proposition 2.2. Hence, we obtain
the following pointwise bounds

ol 111o] S (141 4 1%)e™™",
fort > 0and ¢, ¢ € R with ¢ — ¢ > 0. We conclude that

I~ +§(C_—€Z)2 (ekc(éo)t-‘-i’;'o({—f)\yl(;, 7. he(fQ)) — et 060G =Dy, (¢ 7. Ac(—é;o)))‘
<G+z+ﬂfjm
1+(¢—-¢)
(3.20)

fort>0and ¢, € R with ¢ — ¢ > 0.
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Pointwise approximation of /.. Again our approach is to factor out the quotient (1 + (¢ —
£)%) . Recalling i®z () D¢ (£)* = W(Z, Ac(E)W(ZF, A (§))*AL(§) for & € [—&o, ], using inte-

gration by parts and applying Proposition 2.2, we rewrite
&0 i
€= 82L= [ (1= p©) € = DO W Ercli (0O D) ag
—&o
= (¢ = D EHOED W (¢, 0 (60) — (€ — ©)
x e)»c(—éo)f—iéo(s“—é:)\yl(é-’ E’ re(=£0))
£o i
= [ e (0= pen € = M6, Bl D
—5o

Abbreviating ‘1’2({, 2,8 =(1—pE)W(¢,Z, Ae(£)) and integrating by parts once again, we
establish

&0
I :=— / O ((; — DOy (¢, g, é)) 60 g
—&o
&0
=i / He® (ké(f)tﬁlz(L £, E)+0:Wa(¢, ¢, 5)) 0 (eis(;_g)) a
—&o

P ere©1HiE(E—E) -
= [ S (@ rien) ate. £.6) + 2 0oro
—$o
x 0o, 2,6) + 0300, T, 6) e

0

FA[OHECD (L @rla@. 8.6 e 20) |
=—£

In order to obtain pointwise estimates on I, and I 1., we note that there exists . > 0 such that
Re(A.(££)) < —n, for all £ € [%Sjo, &o] by Proposition 1.3. Therefore, recalling that 1 — p(§)

vanishes on [—%EO, %%‘0], we obtain
el 1) S (1 4 17)e ™,
fort > 0and ¢, E € R. We conclude

(—¢

I, — - E)Z (eko(éo)t-i-iéo({—é:)\y] (@, E, ro(&0)) — e)»o(—é‘o)t—iéo({—;:)\pl @, E’ AO(—EO)))'
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C C
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c
l-‘_\ .~ N r_ 1 S
7 _inz”’,’ \\\\ —iﬂz,»"’

Fig. 2. In the proof of Proposition 3.8 we relate the Floquet-Bloch representation of the critical part of the semigroup,
corresponding to an inverse Laplace integral over I'¢, with the aid of Cauchy’s integral theorem to complex line integrals
over I's,'— and 'y for ¢ < ¢ (left panel) and over FC fore >¢ (right panel). Here, I'; lies on the critical spectral curve
{Ac(§) : & € RN Vy} established in Proposition 1.3.

2\ a—1Nct
cA+r+1e

- (3.21)
1+ -2)

fort>0and ¢, ¢ €R.

Conclusion. Denote 7 := min{no/2, n./2, 71} > 0. Recalling the decomposition (3.17) and ap-
plying the estimates (3.18), (3.19), (3.20) and (3.21), we find the desired bound

i / f p(E)HOFECD (1) B (D)* dk g(T) di

e ¢]

— / / HHWED (e, B(E, 1) * drg@)dE
¢ Ts
(1+t+t2)e_2’7’ _ |§|eno§ mt o _ .
< gl / 5 f B St

forge Cyp(R), eRandt>0. O

3.5. Linear estimates
By Propositions 3.3, 3.4, 3.6, 3.7 and 3.8, the semigroup elot decomposes for ¢ > 0 as
0 = 8(1) + S (1),
where the operator Sq(¢): Cyp(R) = Cyp(R) given by
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mxn@k]=%%{/fp@k“@”m“@¢ao5ab*@g@mf (3.22)
R R

corresponds to the critical low-frequency part of the semigroup and

Se(t) = (1 — x ()™ + S} (1) + S2(t) + S2 (1) + S* (1) (3.23)

is the exponentially decaying residual. The Floquet-Bloch representation (3.22) of the critical
part of the semigroup is identical to the one obtained in the stability analysis [1 1] of wave trains in
reaction-diffusion systems against Cyp-perturbations. Thus, the further decomposition of S.(¢),
as well as the proofs of the associated L°-estimates, can be taken verbatim from [11]. On the
other hand, estimates on the terms comprising S.(¢) were obtained in Lemma 3.2 and Proposi-
tions 3.4, 3.6, 3.7 and 3.8. In the final result of this section, we collect these results and state
the decomposition of the semigroup and associated estimates needed for our nonlinear stability
analysis.

Theorem 3.9. Assume (H1), (H2) and (D1)-(D3). Let j,l € Nq. There exist constants C,a > 0
such that the semigroup eLor decomposes as

efol = (60 + 0k (-, 1)0;) Sp () + Sr-(1) + S (1), (3.24)
where the operators S,(t), Sy (t): Cuyp(R) = Cup(R) obey the estimates

_ lIgll oo
| Se(t)gllLe < Ce™*||g]| Lo, I1Sr@®)gllLe < C1—+t (3.25)
fort>0and g e Cyp(R). In addit;'on, Sp@): Cyp(R) — Cyp(R) satisfies Sy () =0 fort € [0, 1]
and the map t — Sp(t)g lies in C' ([0, 00), Cl]l‘b(R)) forany i, k € No with

» lIgllzo

| @ + cede) 0LS,p (g o < C—ot— (3.26)
(14+1)/*2
fort >0 and ge Cyp(R). We have the further decomposition
9ms __am (dagz_cga{)’ Xk my

VS, (Ng=0]"e (P52) + 0" S, (1)g. (3.27)

where the operator 82” §r #): Cap(R) — Cup(R) obeys the estimate
|078, (D] oo <CA+ 072 gl (3.28)

form=0,1,t>0and g € Cy,(R). Finally, there exist a bounded operator Ay, : Lger((O, T), Rz)
— C(R, R) such that it holds

e(da?—cgm)t (U(T)Sg) = e(dag_cgag)t ((50, g) 20,1V — An(@)0; U) + 3§e(dag_0g8;)t (An(@v),

(3.29)
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forge L2,((0,T),R?), ve CL (R,R) and t > 0.

per

Proof. The decomposition efor = Sc (1) + S, (1), where S, () is given by (3.23) and S, (¢) is given
by (3.22), follows from Propositions 3.3, 3.4, 3.6, 3.7 and 3.8. The desired bound (3.25) on S, (#)
can be derived by combining Lemma 3.2 and Propositions 3.4, 3.6, 3.7 and 3.8. Moreover, it has
been shown in [11, Section 3.3] that S.(¢) decomposes as S.(t) = (d)(’) + 0rd (-, 1)84) Sp) +
S, (t), where §,(1), S,(t): Cup(R) — Cyp(R) are operators obeying the estimates (3.25)
and (3.26). Moreover, S,(t) satisfies S,(t) =0 for ¢ € [0, 1] and the map ¢ — S, (¢)g lies in
C¥([0, 00), CK (R)) for any i, k € No. Finally, the decomposition (3.27), the estimates (3.28)
and the identity (3.29) can be found in [11, Section 3.5]. O

4. Nonlinear iteration scheme and nonlinear estimates

In this section, we set up the nonlinear iteration scheme and state associated nonlinear es-
timates, which will be employed in the upcoming section to prove our nonlinear stability re-
sult, Theorem 1.4. To this end, we consider a diffusively spectrally stable wave-train solution
ug(x,t) = ¢o(x — cot) to (1.2), i.e., we assume that Hypotheses (H1), (H2) and (D1)-(D3)
are satisfied, and an initial perturbation wg € Cl‘?b(IR) X Cfb(R). We wish to control the per-
turbation W(z) = u(t) — ¢ over time, where u(?) is the solution to (1.3) with initial condition
u(0) = ¢ + wo. The perturbation W(¢) satisfies equation (1.17). Theorem 3.9 shows that the
bounds on full semigroup e£o" are too weak to close a nonlinear iteration argument using the
Duhamel formulation of (1.17).

As explained in §1.3, this leads us to consider the inverse-modulated perturbation w(¢) given
by (1.18). We derive a quasilinear equation for w(¢), establish L°°-bounds on the nonlinearity and
define a suitable phase modulation v/ (#) compensating for the most critical terms in the Duhamel
formulation of w(#). We then infer, as in [11], that v (¢) satisfies a perturbed viscous Hamilton-
Jacobi equation, whose most critical nonlinear term cannot be controled through L*°-estimates,
but can be eliminated with the aid of the Cole-Hopf transform. We formulate an equation for the
Cole-Hopf variable and state L°°-bounds on the nonlinearity.

Lastly, we control regularity in the quasilinear iteration scheme by relying on forward-
modulated damping estimates. We obtain an equation for the modified forward-modulated per-
turbation z(¢) given by (1.22), establish norm equivalences between z(z) and the residual

z(t) =w(1) — ke (s DY (1), 4.1
and we derive a nonlinear damping estimate for z(¢) using uniformly local Sobolev norms.
4.1. The unmodulated perturbation

The unmodulated perturbation W(z) satisfies the semilinear equation (1.17), whose nonlinear-
ity N: C&b R) — Cl}b (R) is readily seen to be continuously Fréchet differentiable. On the other
hand, regarding L as an operator on C&b(R) X Cdb(R) with dense domain CSb R) x Cgb (R),
Proposition 3.1 yields that £y generates a Cg-semigroup on Clib (R). Hence, local existence and
uniqueness of a classical solution to (1.17) follows by standard results, e.g. [43, Theorem 6.1.5],
from semigroup theory.
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Proposition 4.1. Assume (H1). Let wy € Cleb(R) X C&b(R). Then, there exists a maximal time
Tmax € (0, 0o] such that (1.17) admits a unique classical solution

W e C([0, Tmax), C (R) x CZ(R)) N C ([0, Tnax), Ciy (R) x Ciyy (R)),

with initial condition W(0) = wo. Moreover, if Tmax < 00, then we have

lim sup || W(z) ||C1ch1b = 00.
tTTm?lX u Y

4.2. The inverse-modulated perturbation

Using that u(z) and ¢g solve (1.3), one finds that the inverse-modulated perturbation w(z),
given by (1.18), obeys the quasilinear equation

(0 — Lo) [W+ ¢ov ] = N (W, ¥, 8,9) + (3 — Lo) [r W] 4.2)

with nonlinearity

N(Ws W’ 1/’!) = Q(W, lﬁ) + B{R(ws ws lﬁz),

where

Qw, ¥) = (F(¢o + W) — F(o) — F'(¢o)w) (1 — ¥¢)

is quadratic in w and

(We + Vo) ve

R(W. ¥, Yi) = (o — Y)W + D (
1— 1,0;

+ (Wlﬁg)g),

contains all linear terms in w. We refer to [3, Appendix E] for a detailed derivation of (4.2).
It is relatively straightforward to verify the relevant nonlinear bound.

Lemma 4.2. Assume (H1). Then, we have
IN O ¥ 0l S Wik + 10 ¥l e, (IWlea e, + 1)

J;orw = (u,v) € CZ(R) x CYy (R) and (Y, ) € C (R) x Cly (R) satisfying ||ull Lo, [|¥e || Lo <

-

Inspired by earlier works [24,27], we implicitly define the phase modulation by the integral
equation

t

V(1) = Sp(1)wo + / Sp(t =N (W(s), ¥ (s), 3, (s)) ds. (4.3)

0
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Recalling from Theorem 3.9 that S, (0) = 0, we find that ¥ () vanishes at ¢ = 0. Thus, integrat-
ing (4.2) yields the Duhamel formulation

t

w(t) + dur (1) = e wo + / DTN (W(s), ¥ (5), B () ds + Y (WD), 4.4)

0

Writing the left-hand side of (4.4) as w(z) +¢61ﬂ(l) =z(t)+ (q)(’) ~+ 0k (+; 1)8;) Y (t), where z(t)
is given by (4.1), and recalling the semigroup decomposition (3.24), we observe that by defining
the phase modulation by (4.3), the term (qb(’) + 0 (-; 1)3;) ¥ (t) compensates for the critical,
slowest decaying, contributions on the right-hand side of (4.4). Indeed, we arrive at the Duhamel
formulation

t
z(t) = (Sr(t)+Se(l))Wo+/(Sr(t =) + Se(t = )N (W(s), ¥(s), ¥ (s))ds “5)
J :

+ Y (Hw(t),
for the residual z(z), where S, (t) + S.(¢) exhibits stronger decay than e£o’ | ¢f. Theorem 3.9.
Local existence of the phase modulation () can be obtained by applying a standard con-

traction mapping argument to the integral equation (4.3), where one employs Proposition 4.1 and
expresses the inverse-modulated perturbation as

WG, =W =Y, 0, 1)+ do¢ — ¥ (&, 1) — o(0), (4.6)

to obtain a fixed point problem in v (¢) and its derivatives. This leads to the following result,
whose proof is identical to [11, Proposition 4.4].

Proposition 4.3. Assume (H1). Let wg € CSb (R) x C&b(R). Fix j,1,m € Ng. For W and Tyax as
in Proposition 4.1, there exists a maximal time Tmax € (0, Tmax] such that equation (4.3), with w
given by (4.6), possesses a solution

¥ € C([0, Tmax), CE™(R)) N CH ([0, Tmax), CLy(R)),

satisfying W (¢t) = 0 forallt € [0, Tmax) With t < 1. Moreover, we have || (¥ (¢), 8t1p(t))|lcszcub <
3 for all t € [0, Tmax)- Finally, if Tmax < Tmax, then

i 1
limsup ||y (0, ¥ )¢z, ey, = 5
11 Tmax u

The existence and regularity of the inverse-modulated perturbation w(¢) and the residual z(z)
now follow immediately from (4.6) and (4.1), respectively, upon applying Propositions 1.2, 4.1

and 4.3 and using the uniform continuity of functions in Cy,(R).

36



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013

Corollary 4.4. Assume (H1) and (D3). Let wyg € Cib (R) x C&b (R). For W as in Proposition 4.1
and W and tmax as in Proposition 4.3, the inverse-modulated perturbation w, defined by (1.18),
and the residual z, defined by (4.1), obey

w,z € C([0, Tmax), Cop (R) x Cg(R)).
Moreover, their Duhamel formulations (4.4) and (4.5) hold for t € [0, Tmax)-
4.3. Derivation of the perturbed viscous Hamilton-Jacobi equation

The estimates in Theorem 3.9, in combination with (4.3) and (4.5), show that, at least on
the linear level, the derivative 3{] 8}1//(t) of the phase modulation decays at rate t~U+)/2 for
Jj»1 € No, whereas the residual z(¢) and

() = 9 (1) + o (1),

decay at rate 1~ !. Therefore, after substituting

w(t) =2(1) + @ (s DY (1), Y () =y () —cg¥e (1), 4.7

in the nonlinearity A (w, ¥, ¥;) one finds that the nonlinear terms exhibiting the slowest decay
are of Burgers’-type, i.e. of the form fi/, (1)* with coefficient f € Lger(O, T).

The decay rates of the principal part S,(¢) of the semigroup e£o" are not strong enough to

control these most critical nonlinear terms through iterative estimates on the equation (4.3) for
the phase modulation. As outlined in § 1.3, we address this issue by proceeding as in [11]. That is,
we show that v (¢) obeys a perturbed viscous Hamilton-Jacobi equation and subsequently apply
the Cole-Hopf transform to this equation to eliminate the critical wg—contributions.

To derive a viscous Hamilton-Jacobi equation for v (¢), we first isolate the ¥ 2-contributions
in the nonlinearity A (w, ¥, ;) of (4.3). We do so by reexpressing w(z) and 9, (¢) through (4.7)
wherever necessary. Thus, recalling ¢y + ¢, = '(1) from Proposition 1.3, we arrive at

NW(s), ¥ (), 9 () =Epire ()7 + Np(a(s), W(s), ¥ (5), ¥ (s)), (4.8)

with T-periodic coefficient

1
£ = 5 F(0) (0 (5 D). kb (1) + 0/ (D05ip (3 1) + D (6 + 20ccx (1)
and residual nonlinearity
Np @ W,y ) = Qp(z, W, ) + 8 Rp (2, W, ¥, 1),

where we denote
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Q,(z, w, ) = (F(¢o + W) — F(¢o) — F'(¢0)W) ¥¢ + F(¢po + W) — F (o) — F'(¢o)W
1 1 1
= S F" @)W, W) + S F"(90) (2, W) + S F (90) (2, 9k (5 1)
+ 2Y Yo (@ (D (5 1) + D (¢) + 200 (5 1)),
Ry, W, ¥, ) = —yw+ o' (1)Yz

b ((Wz + W) V¢

o + 22, + Wirer + 2006 l)lﬁ;lﬂcc)-

We establish an L°°-estimate on the residual nonlinearity.

Lemma 4.5. Assume (H1) and (D3). Then, we have

N 2w, Dl S (1wl + 1l ) (w13 + 2l )
+ (I, + ey, ) Wl
+ (Wl + IWlea el + el ) el
forz,we C b(R) and (Y, w) € Cgb(R) X Cub(]R) satisfying ||Wll oo, [[Ye [l Lo %

Next, we substitute the decompositions (3.27) of the propagtor S, Ea) f'inda( .8) of the nonlin-
earity N(W(s), ¥ (s), 3 (s)) into (4.3) and use (3.29) to reexpress e\" ¢ (cb*f,,wg) All
in all, we arrive at

t

Y0 =) + L) Frwg) + / (lEere)e (v0re ) = AnEa; (ve(5)?) ) ds
0
t

+ fe(‘”’?‘”gf’f)("” (5;;N,,(z(s),w(s),w(s),&(s))) ds, 4.9)

0

where we denote

V= (@0, fp)LZ(O,T)

and
1 t
r(6) =S (ywo + / S.t—s) (fpwg(sﬁ) ds + 9 f o cxic) -0 (Ah(fp)l/fg(s)2> ds
0 0
t
+ / gr(t — S)Np(z(s), w(s), ¥ (s), &(s)) ds. (4.10)

0
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Since ¥ (0) vanishes identically by Proposition 4.3, setting ¢ = 0 in (4.9) yields
r(0) = —®iwo. 4.11)

Moreover, following the computations in [ 13, Section 4.2], one finds that the coefficient v in (4.9)
equals _Z“’N(l) Thus wgthc thé} aid of Propositior} 1.3, we arrive at the expression (1.15) for
v. Since S, (¢) and B;e 5% decay at rate 1~ 2 as operators on Cyp(R), we find that r(¢)
captures, at least on the linear level, the decaying contributions in (4.9), cf. Theorem 3.9.

Finally, applying the convective heat operator 9; — d 83 + ¢4 0 to (4.9), we arrive at the per-
turbed viscous Hamilton-Jacobi equation

(at—da§+cga;)(1/f—r)=m/f§+c;(z, W, U, ) 4.12)

with nonlinear residual
G W, v ) = SN, @ w v, 1) — AnlEp)d; (v2).

Indeed, modulo the higher-order terms r and G (w, z, ¥, 1/~/) equation (4.12) coincides with the
Hamilton-Jacobi equation (1.14). Regarding (4.12) as an inhomogeneous parabolic equation,
regularity properties of ¥ (¢) — r(¢), and thus of r(¢), can be readily deduced from standard
analytic semigroup theory.

Corollary 4.6. Assume (H1) and (D3). Let wg € C L (R) x C L (R). For Y and tax as in Propo-
sition 4.3 and for w and z as in Corollary 4.4, the reszdual r, given by (4.10), obeys

re C([O Tmax)s C (R)) nc' ([07 Tmax), Cub(R))o

Proof. Moving r(¢) to the left-hand side, we can regard (4.9) as the mild formulation of
the inhomogeneous problem (4.12) for ¥ (¢) — r(¢t) with inhomogeneity ¢ — v, )% +

G(z(t),w(t), ¥ (1), 1/~/(t)) which lies in C([O Tmax)» Cub(]R)) by Proposition 4.3 and Corol-
lary 4.4. It is well-known that d 8{ — cg d¢ is a sectorial operator on Cyp(R) with domain C L (R),
cf. [37, Corollary 3.1. 9] Therefore, since the initial condition v (0) — r(0) = CD*WO hes in the
domain C zb(R) and C b(IR) is an intermediate space between Cy,(R) and the domain C L (R),
it follows from [37 Proposmons 2.1.1 and 2.1.4 and Theorem 4.3.8] that ¢ — ¥ (¢) — r(t) lies
in C([0, Tmax). C% (R)) N C([0, Tmax), Cup(R)). Invoking Proposition 4.3 then yields the re-
sult. O

4.4. Application of the Cole-Hopf transform

We apply the Cole-Hopf transform to remove the critical nonlinear term l)l//? in (4.12). That
is, we introduce the new variable

y(t) = edWO—r®) _ 1, (4.13)
which satisfies
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Y€ C([Oa Tmax) CLzlb(R)) nc' ([07 Tmax)» Cub(R)) 4.14)

by Proposition 4.3 and Corollary 4.6. It is readily seen that y(¢) is a solution of the convective
heat equation

(8 — 92 + o ) y = 20y + 3 (v2+G@w v, )6+ 1) 4.15)
with initial condition
Y(0) = ed PV O=rO) _ | i ®iwo _ (4.16)
cf. Proposition 4.3 and (4.11).

Recalling that ¥ () vanishes identically for ¢ € [0, 1] by Proposition 4.3, the Cole-Hopf vari-
able y(#) can be expressed in terms of the residual »(#) through

Y@y =e"a"® 4.17)

for ¢ € [0, Tmax) With £ < 1. On the other hand, the Duhamel formulation of (4.15) reads

52 C v F*
y(t) :e(ddf_cgdg)(l_l) (ezq)owo _ 1)

C (4.18)
* / (2 ) 0= N () 3(5), 2(5), WEs), B (8, 1 (5)) ds

1

for t € [0, Tmax) With # > 1, where the nonlinearity is given by
~ v ~
N,y 2w, 0. ) = 2vreye + = (v + Glawo v D)) 0+ 1.

We use (4.17) for short-time control on y(¢) (rather than its Duhamel formulation) in the upcom-
ing nonlinear argument. The reason is that we use a temporal weight \/s+/1 + s on r (s), so that
the obtained bound on 7, (s)? is nonintegrable and blows up as 1/s as s | 0. We refer to the proof
of Theorem 1.4 and Remark 5.2 for further details.

With the aid of Lemma 4.5, we obtain the following nonlinear estimate.

Lemma 4.7. Assume (H1) and (D3). It holds
I,y Wz, 0 D) e S (Il =+l i) lre o
+ (Wl + ey, ) (1w + Dzl )
+ (W, + Iveely, ) IWler,
+ (e, + Wil 19 s + 1 13 ) Wl

for each r,y € CL (R), z,w € C3, (R) and (Y, ) € C3, (R) x CL (R) with |[y|lLe, [|W]| L,
Vel < 3.
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4.5. Forward-modulated damping

The modified forward-modulated perturbation z(¢) is given by (1.22), where the T -periodic
continuation ¢ (-; k) of the wave train ¢y with respect to the wavenumber k is defined for k
in the neighborhood [1 — rg, 1 + rg] by Proposition 1.2. Combining the latter with Proposi-
tions 4.1 and 4.3, we find that the forward-modulated perturbation z(¢) is well-defined as long
as t € [0, Tmax) is such that ||y (t)||L < ro. Its regularity then follows readily from Proposi-
tions 1.2, 4.1 and 4.3.

Corollary 4.8. Assume (H1) and (D3). Let wg € CSb(R) X Cgb(]R). For ro > 0 as in Proposi-
tion 1.2, W as in Proposition 4.1, and v and Tmax as in Proposition 4.3, we have

Tonax = sup {1 € [0, Tmax) : W ()l < ro for all s €[0,1]} > 0

and the modified forward-modulated perturbation (t), given by (1.22), is well-defined for t €
[0, Tmax) and satisfies

z€ C([0, Tmax), Coy (R) x C2 (R)) N C([0, Tinax), Cop (R) x Cly (R)).

Using that the wave train ui(x,?) = ¢ (kx — w(k)t; k) is a solution to (1.1) and u(z)
solves (1.3), one obtains the equation

O = Dirr + cotr + F' (00 + O, ¥) + R, ¥, d¥) (4.19)

for the modified forward-modulated perturbation, where

Oz, ¥) = F(a+ ¢ (BW))) — F($(BW))) — F'(0)z
((d’l(ﬂ(l/f)) Q420 =32) =3p1(BWN* + (1 +p — 21)21)21)
0

is the nonlinearity in z = (21, 25),

RO, ) = D[ by, B (14 e+ 90) + ie)” = (L4 900%) + bk BV,

+ 20 (BN Yee (1+ Y A+ v0) + i)
+ oy (B (Wee (1 +390) + Y ieee)

+ S BUece | + S BW (covree — Vi)
+ 8B (co+ @ (e =0 +) = + o (V2 + ¥vee )
— Vi — V)
is the #-independent residual and we used
BAWN&. )= (6 + V(& O+ (€. 0); L+ (L. 1))
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to abbreviate the argument of the profile function ¢ (y; k) = (¢1(y; k), $2(y; k)) and its deriva-
tives. We refer to Appendix B for further details on the derivation of (4.19).

We proceed with deriving a nonlinear damping estimate for the modified forward-modulated
perturbation z(¢), which will be employed in the nonlinear stability argument to control regu-
larity. A nonlinear damping estimate in H 3(R) x H2(R) for the “classical” forward-modulated
perturbation w(z), given by (1.21), was established in [3, Proposition 8.6]. Here, we extend the
method in [3] to nonlocalized perturbations by relying on the embedding of the uniformly local
Sobolev space Hull(]R) in Cyp(R), see [47, Lemma 8.3.11].

The equation (4.19) for z(¢) has a similar structure as the one for w(z) derived in [3]. That is,
the second derivative d;.Z; yields damping in the first component of (4.19) and the term —ey 2>
yields damping in the second component. Since (4.19) is semilinear, all other linear and nonlinear
terms can be controlled by these damping terms.

All in all, we arrive at the following result.

Proposition 4.9. Assume (H1) and (D3). Fix R > 0. Let wo € C (R) x C2, (R). Let ¥ (t) be as

in Proposition 4.3 and let 7(t) and Tax be as in Corollary 4.8. There exist Wo- and t -independent
constants C, a > 0 such that the nonlinear damping estimate

t

1
[0z vcr, = C(Himum +[20)] 7~ [e_w”w‘)”isbxczb + / e (|~
0

7 2
+ 1Wer IEs + 109 @lgs + [T s, (420)
%

el (e @I~ + ||asw<s>||%oo))ds] )

holds for all t € [0, Tmax) with
2 R. 4.21

sup ([ e, + 1o, ) < (“21)

Proof. Fix a constant R > 0 and set

1 . ey
9=—-minql, ———¢.
2 2|col +1

We start by relating the (Cfb X Cdb)-norm of z(¢) to a uniformly local Sobolev norm. First, we
define the window function ¢o: R — R given by

)= 2

which is positive, smooth and Ll-integrable, and satisfies
') <e) <1 (4.22)
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for all ¢ € R. Next, we apply the Gagliaro-Nirenberg interpolation inequality, while noting that
0 € WHLI(R) N WKT1L.2%(R) and 0(0) = 1, to infer

|0k2] o0 = sup 0@ ¢ + y)0z 1 Szl it + sup 8 (@@ + y0)2) [ 1o
yeR ub yeR
4 1
Szl + sup| o e+l ] 1

1 4
Slizllger + N1zl sup |95 (e@ ¢+ y)2) |3
ub yeR

4 1 1 4

4 1 1 el it

Slizllgre-r + IIZIIék Izll; o + llzll ] o sUp ||Q(15‘(- er))az+ Z||zz
ub ub yeR

for z € Cﬁ; '(R) and k = 1, 2. Hence, interpolating between Cl’fb(]R) and Cyp(R), applying
Young’s inequality and rearranging terms, we arrive at

1 4
Ielles, S Mlle Il sup e+ 32 2] 1,
ye

for z € Cﬁ;’ 1(]R) and k = 1,2. Combining the latter with (4.22) and recalling Corollary 4.8,
yields

. . N 2
[20] 2 o1 S 2O 1 + |20 | oo sup Ey ()5 (4.23)
ub ub yeR
for t € [0, Tmax), Where we denote
30 2 2 2 ey
£ = [ 0@+ (v]pitien| +[aen| )d  vi= -0
R

for y € R. The estimate (4.23) provides the desired relationship between the (C&b X C&b)-norm
of Z(¢) and the family of energies E (), which are associated with the norm on the uniformly
local Sobolev space HL?I(JR{) X Huzl (R) with dilation parameter ¢, cf. [47, Section 8.3.1].

Our next step is to derive an inequality for the energies E,(f). In order to be able to differ-
entiate £, (¢) with respect to ¢, we restrict ourselves for the moment to initial conditions wo €
Csb(R) X Cl‘l‘b(R). With these two additional degrees of regularity one derives, analogously as
in Proposition 4.1, that W € C ([0, Tiax), C3 (R) x Cif (R)) N C ([0, Tinax), Coy (R) x CJ (R)).
Combining the latter with Propositions 1.2 and 4.3 yields Z € C([0, Tmax), Co, (R) x C (R)) N
C([0, Tmax), C2, (R) x C3, (R)).

Let y € R and let ¢ € [0, Tmax) be such that (4.21) holds. Using (4.19) and

F(0) = <_8“ __81)/)

while noting that the second component of Q(i, Yr) vanishes, we compute
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1
EasEy(S)=I+II+III+IV, (4.24)
where

I=v / o0& +y)) (agzl(g, $), 2218, 8) + c0dg £1(¢, 8) — 22 (¢, 8) — pd21 (¢, s>> d¢
R

2
dg

=3 f (D + )0 [9222(. )
R

e / o0& + ) (0202(0.9). 03210, 5) = y92a(c.9)) ¢
R

are the contributions from the linear terms, and

111=v/g(ﬁ(;+y>)
R

30 Q o ~
(P ) 2 (St 90 069 4 R0 T 806 )

3 0 0 :
v —R[Q(ﬁ(é +y))<<a;222(§’s)>,3;R(¢(C,S),Iﬂ(C,S),BxI/f(C,S))> dg

are the nonlinear contributions for s € [0, ¢]. Integrating by parts, we rewrite

— 45 2 39 2_ 40 20
1=—v [ o+ ([otac.o| +ufodae.s| - (02 9.02069) ) &
R

—vd / o'W +y) (agzl (Z,9), 97218, 5) — 07222, s)) d¢
R

+ cov f o +y) (93216, 9), 0215, 9)) g
R

and

2
dg

I=—¢y f Q(ﬁ(§+y))’3422(;° 9| de - 07 f 0D + ) |02, 5)
R

R

& / 0(0(¢ + ) (0322(6.9), 02210, )) de
R

for s € [0, ¢]. Applying Young’s inequality to the latter, while using (4.22) and 4|co|0 < ey,
yields a ¢- and wp-independent constant C; > 0 such that
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dg

1< —Z/Q(ﬁ‘(s“+)’)))8;zl(§ 9 d§+vfg(ﬁ(§+y))’3{zz(§ )
R R

2
+ clfa(z?(z + ) |03 9| de
R

(4.25)

and

3ey 2 2 2, 2
11==27 [ ooty |aes)| dra e rm|Enes] & g
R R

for s € [0, ¢]. Similarly, employing Young’s inequality, while using that (4.21) holds and p is
Ll—integrable, we establish a - and wg-independent constant C, > 0 such that

3. 2 |a2e 2 . 2
=6 [ewe+y ([aes| +|aes] + el ) a
R

12O I+ 1ec g + 100 ©lgs + 6] es, @.27)

+ 1@l (1Y@l + ||asw(s>||%oo))

and

ey . 2 ~
V= f @@+ [0Z2206.9)| 6 +Co (IWec @I + 109 OI% + [F6)] G2,
R

vl (VeI + ||asw<s>||%oo))

(4.28)
for s € [0, t]. Applying the estimates (4.25), (4.26), (4.27) and (4.28) to (4.24) and using that

v =gy /4, we obtain a - and wo-independent constant C3 > 0 such that

1 2
3050 =T 56 -7 [ o0 m[Ene| d+ e (1O + o,
R

10U g + [T g, + 1@ (W) + 80 617 )

3o 2 2o 2 o 2
+ e+ ()agm(;:s)( + |28 9)| + ot )| )dc
R
(4.29)
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for s € [0, ¢].
We control the term on the last line of (4.29) by deriving an interpolation inequality. To this
end, we take k € N, n € (0, %) and ay, ..., ar > 0. Integration by parts, Young’s inequality, and

the estimate (4.22) yield

k
Z“/fe(ﬂ(é +) ]8}2(;)(2 d¢
=l R

k
= —Zajf(e?(ﬂ@ + 0 (00 120). 0071 20)) ¢
=l R
+ 00/ @ +) (020, a{”z(;))) d

i;’/e(ﬁ@ +y)>( o7z + ooz ( +ﬁ)\a’ 20| )d;

for z € Cﬁ;r IR). Setting ap = 0 = a1, using ¥ < % and rearranging terms in the latter, we
arrive at the interpolation inequality

k
2 20— a1 = zais (- + 5 / @ + ‘af ‘Zd
j:1<4a’ %=1 2a1+1<n 2))RQ (€ +¥)|9;2(8)| d¢

k1 ! 11 2
<20 [+ |t ac+ a1<n+—)/gw(;+y)>|z(;)| d
R R

2
(4.30)

for z € Cﬁ;‘ ! (R). Next, we fix kK = 3 and solve the linear system

3 n 1 1 1 .

Zaj—iaj—l_iaj-ﬂ ;4‘5 =1, J=123,
yielding the solution

4(4—20°+ 9%+ 10) 4(2+20% +4n) 4(5+4n% +4n)
al = b a2 = —’ a3 = —’
3n2(1 —4n) (1 —4n) 3(1—4n)

where we have ay, ap, a3z > 0 since n < %. Thus, taking these values for aj, az, a3 in (4.30), we
find

2n (5 +4n* +4n)
3(1 —4n)

Z/Q(ﬂ<;+y>)\a’z<;>\ d =

2
[ e+ g
J=IR R

46



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013

(n+2) (4 =270 +9n* + 10)
3n3(1 —4n)

/Q(ﬂ(; + ) 1z de
R

for z € C4 (R). So, taking 1 € (0, }) so small that

2n(5+4n2+4n)< v
3(1 —4n) T 4G5

we establish a constant C4 > 0 such that

3 e 2
> [ewe+mpzf de= - [ewe+m otz aorcatalie @
J=1R R

for z € C4 (R).
We apply the interpolation identity (4.31) to (4.29) and deduce

& . -
A, Ey(s) < —%Ey(s) +Cs (”ZI(S)”ioo FIVee @I + 1ve ()% + [7o)ea
e (WO + 180 @)

for s € [0, ¢], where C5 > 0 is a t- and wp-independent constant. Multiplying the latter inequality
. &y . . .
with e2¥ and integrating, we acquire

t
E,() <e  T'E,(0) + CS/C—%V(t—s) (
0

819) | + W g, + 199 (53

+ [T, + 1@ (e + 109 I ) ) ds.

Lastly, using that there exists a wo-independent constant C¢ > 0 such that Ey(0) < C6||W()||2C3 <C2
and plugging the latter estimate into (4.23), we arrive at (4.20). e

In order to extend our result to the general case wg € CSb (R) x C&b (R) we argue as in the
proof of [3, Proposition 8.6]. That is, we approximate the initial condition wg in leb(]R{) X Cgb (R)
by a sequence (Wo,,,)n oy IR Cgb R) x C;‘b (R). By continuity of solutions with respect to initial
data and the fact that (4.20) only depends on the (CSb X C&b)-norm of (t), the desired result
follows by approximation. We refer to [3] for further details. O

Remark 4.10. In addition to the fact that we extend the proof of the nonlinear damping estimate
in [3, Proposition 8.6] to nonlocalized perturbations by employing an energy associated with
uniformly local Sobolev norms, our analysis deviates from the one in [3] in another important
way: rather than using the bound ||Bé‘w|| Lo < ||3é‘w|| p1, we employ the Gagliardo-Nirenberg
interpolation inequality

3

4 1
[3gwl o < 3¢ wl il
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for w € H*'(R) N L'(R) and k = 1,2. This leads to the additional factor ||2(t)||‘L/o§ in the
nonlinear damping estimate (4.20), enabling us to only require that the L°-norm of the initial
perturbation wy is small (and its (CSb X Cgb)—norm is bounded) in our nonlinear stability result,
Theorem 1.4. We expect that a similar approach can be adopted to relax the smallness condition
on initial data in [3].

It has been argued in [51, Corollary 5.3] that, as long as [|v/;(¢)||zo stays sufficiently small,
the Sobolev norms of the forward- and inverse-modulated perturbation w(¢) and w(t) are equiv-
alent modulo Sobolev norms of ¥ (¢) and its derivatives. We extend this result by proving norm
equivalence of the modified forward-modulated perturbation z(¢) and the residual z(¢) (up to
controllable errors in Y, (¢) and its derivatives).

Lemma 4.11. Let v (t) be as in Proposition 4.3, let z(t) be as in Corollary 4.4 and let z(t) and
Tmax be as in Corollary 4.8. Then, there exists a constant C > 0 such that

o 2
12003 e, = € (180 ca e, + IWee Oy, + W Ol ). (4.32)

and

#(0)] oo = € (12O 1 + 1W5e Ol + e O} ) (4.33)
for any t € [0, Tmax)-

Proof. Inserting w(¢,t) =u(¢ — ¥ (Z,1),t) — ¢o(¢) into (4.1) and using (1.22) to reexpress
u(¢ — ¥ (g, t),t), we arrive at

28, ) =ua(g, 1), 1) — ¢o(§) — o (& DY (&, 0) + ¢ (b(5,1);¢(L, 1)) (4.34)

for ¢ € R and ¢ € [0, Tmax), Wwhere we abbreviate

a(t,t)y=¢ =Y, 0, b, )=C+Y & =Y, 0,01+ ¥ =¥, 0),0) =¥, 1)

and

c@.)=1+v:( =¥ 0).0).

Differentiating the latter with respect to ¢ yields

20(¢, 1) =2.(a (g, 1), )ag (6, 1) — ¢p(§) — e (&3 DY (8, 1) — $i(¢s DY (1)
+ ¢p (b(E,1);¢(8, 1)) b (8, 1) + P (b(E, 1); ¢(§, 1)) e (8, 1)

(4.35)

and
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2ec (1) =2 (@S, 1), Dag (6.1 + 2 (a (€, 1), Dage (C.1) — ¢§ (&) — Pree (63 DY (£, 1)
— 20k (&3 DWee (6, 1) — dx (&5 DWeec (6,1) + e (B(C, 1); (8, 1)) be (¢, 1)?
+ 20k (D(L, 1); €€, 1)) be (8, 1)ce (,1) + duk (DL, 1) €€, 1) e (6, 1)*
+ ¢c (D(E,1);¢(8, 1)) bee (8, 1) + i (b(L,1); ¢(8, 1)) cee (8, 1)
(4.36)

forz e Rand t € [0, Tmax)-
Next, we use Taylor’s theorem to bound

b0 = ¢ = [W & =Y @00 =¥ @D +¥e G0V @ D)
+ Y€ = Y@ 0.0V E =Y @00 = e @OV E D)
S IOl (Iee Ol ¥ Ol + 19 Ol )
|e@. ) = 1= (€. 0 < IOl Ve @l e,

4.37)

and
|be (0. ) = 1] < [ (¢ =¥ (1), (L =Y (£, 1) — Y (£, 1)
+ )w;;(z — Y&, D), DVE =YL, 1), 1)+ Y (§ —Y(L, 1), t)zj 1=t 1)
S (||w(t>||Loo e ()l + 1 ¥e (r)||%oo) e AGIIR) (4.38)

for £ € R and 7 € [0, Timax). Recall from Proposition 1.2 that ¢: R x [1 — rg, 1 4+ ro] = R? is
smooth. So, applying Taylor’s theorem and estimate (4.37), while recalling from Proposition 4.3
and Corollary 4.8 that ||1/f(l‘)||czb < % and || (t)|| L < ro, we infer the bounds

|0/6) b 03 e 1) = 0{6) @ e )| = b~ ] sup

lk—=1]=ro

ol ecsn|
S @l + 1 O,
|0}6) @500 = @) (& 1+ v €. 0)| < le@. ) = 1= e €. )]

sup
lk—1]<ro

o) S Wee @l
(4.39)

and
\(8;’?1)) (&2 1+ @.0) — 9 po (@) — ) (&3 DY (2, r)\ S0 H 8] bu 1)Hm
S Ol (4.40)
for ¢ € R, 7 € [0, Tmax) and j =0, 1, 2. Using again || (1) | 2, < 1, we obtain
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laC,Dllca S1. llegCo Dl bge (Dl S el (441

forz e R and t € [0, Tmax)-

Finally, applying the bounds (4.38), (4.39), (4.40) and (4.41) to (4.34), (4.35) and (4.36),
while recalling that ¢ is smooth, one readily infers (4.32). Similarly, applying (4.39) and (4.40)
to (4.34), we establish

|2 ). 0] o0 S N2@ L + [Vee Ol + 1 (O Fo (4.42)

for t € [0, Tmax). Since we have e ()L < %, itholds a; (¢, 1) > % for all ¢ € R and the func-
tiona(-,t): R — R is bijective for each ¢ € [0, Tmax). Consequently, we have ||z(a(-, 1), t) ||L<><> =
|2(-, )] ;o for each ¢ € [0, Timax), which yields (4.33) upon invoking (4.42). O

5. Nonlinear stability argument

We prove our nonlinear stability result, Theorem 1.4, by applying the linear bounds, obtained
in Theorem 3.9, and the nonlinear bounds, established in Lemmas 4.2, 4.5 and 4.7, to iteratively
estimate the phase modulation v (¢), the residuals z(¢) and r(¢), and the Cole-Hopf variable
y(¢) through their respective Duhamel formulations (4.3), (4.5), (4.10) and (4.18). We control
regularity in the scheme via the nonlinear damping estimate in Proposition 4.9.

Proof of Theorem 1.4. Take w € CJ (R) x C% (R) with IWolle 2. < K. Propositions 4.1

and 4.3, Corollaries 4.4 and 4.6, and identity (4.14) yield that the template function 7n: [0, Tjmax)
— R given by

n(t) =1 (1) + m@)°,
with

7 ()l Loe + /s llre ()1l oo
log(2 +)

n(t) = sup [IIW(S)IILoo F YOz + Vs ye($)llze + 1+ (

O<s<t

1+s

+ IW;(S)IIL&) + m

(12l + [e ) s + 9 6) ||c;*b>] ’
and

m(t) = o %]

is well-defined, positive, monotonically increasing and continuous, where we recall IZ(I) =
0 (1) + cg¥r (¢). In addition, if Tmax < 00, then we have

lim () > % 5.1)

11 Tmax

We refer to Remarks 5.1 and 5.2 for motivation for the choice of template function.
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Approach. Let rg > 0 be the constant from Proposition 1.2. As usual in nonlinear iteration argu-
ments, our goal is to prove a nonlinear inequality for the template function 7(¢). Specifically, we
show that there exists a constant C > 1 such that for all ¢ € [0, Tiyax) With n(t) < 1 > min{l, ro} we
have the key inequality

1 =€ (Eo+n0)7), (5:2)

where we denote E( := ||wgl| L. We note that by interpolation there exists an Egy-independent
constant Co > 0 such that it holds ||W0||c1 < Co+/Ey as long as Eg < 1. So, recalling that v (0)
vanishes identically by Proposition 4.3 and using (4.11) and (4.16), we find an Eg-independent
constant C, > 0 such that n(0) < C,Ep as long as Ey < 1. Subsequently, we set

. 1 min{l, ro}

My =2max{C, Cy} > 2, €0 =min§ —, ———— < 1.
My 2My
Assuming that (5.2) holds, we claim that, provided Eg € (0, €p), we have () < MyEy for all
t € [0, tmax). To prove the claim we, argue by contradiction and assume that there exists a ¢ €
[0, Tmax) With n(¢) > MyEy. Since 7 is continuous and n(0) < C,Eq < MyEy, there must exist
to € (0, Tmax) With n(ty) = MyEy < %min{l, ro}. Thus, applying (5.2) and using Eg < €, we
arrive at

6 1
n(to) < CEp (1 + My Eg) <2CEy < MyEy,

which contradicts 1(fg) = Mo Ey. Therefore, it must hold n(¢) < MyEq for all t € [0, Tmax)- Since
My > 2, we have MyEg < % which implies Tyax = 00 by (5.1), i.e., u(t) = W(t) + ¢y is a global
solution to (1.3) satisfying (1.9) by Proposition 4.1.

Our next step is thus to establish the key inequality (5.2). The estimates (1.10)-(1.13)
and (1.16) then follow readily by employing applying Lemma 4.11 and using that n(t) < MoEy
holds for all £ > 0.

Bounds on w(¢) and 0, (¢). Let ¢t € [0, Tax) With n(¢) < mln{l ro}. We bound w(s) = z(s) +
Wp (5 DY (s) and Y (s) = ¥ (s) — cg e () as

Wl < 126 1z + 1 Ol S~

~MVT+s

10w ©)l S IF Ol + 1Y)l S Jn%

(5.3)

for s € [0, t].

Application of nonlinear damping estimate. Take ¢ € [0, tax) such that n(z) < mm{l ro}.
Then, we have 1 < Tax by Corollary 4.8. Moreover, using identity (1.22), n(r) < mm{l ro}

and the fact that ¢: [1 —rg, 1 + 19l X R — R2 is smooth by Proposition 1.2, we ﬁnd a t- and
Eyp-independent constant Ry > O such that ||z(t)]| cl, < Rg for t € [0, t]. On the other hand,
Lemma 4.11 implies
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log(2+ 1)

)] e £ mO=1

for T € [0, ¢], where we use that 11 (¢) < % Hence, employing the nonlinear damping estimate in
Proposition 4.9, while using 7 (¢) < % and ||i(r)||clb < Ry for 7 € [0, ¢], we arrive at

1 s
s log(2 + s log2+s)\5 [ _ . log(2 + 7)2
”Z(S)“Cuzhxcdbgm([)M_F( l(l‘)M) e s +/ g(

1+ 1+ e?G=1)(1 4 1)2
0
1log(2+s)
< )5 ————~
S mi) Iy
5.4)
for s € [0, t]. We combine the latter with Lemma 4.11 and use n{(t) < % to obtain
1log(2+ )
< 5o 7
[z ca et Sm@©> = (5.5)

for s € [0, ¢]. Therefore, recalling w(s) = z(s) + k@ (-; 1) (s) and using ny(¢) < %, the latter
estimate yields

1
n)s
W2 1, S Iz N2 e + e ()l 2, S (3.6)

~J1+s
for s € [0, ¢].

Bounds on z(t), ¥, (t) and I/Nf(l‘). Let ¢ € [0, Tax) be such that n(¢) < %min{l, ro}. We invoke

the nonlinear bound in Lemma 4.2, employ the estimates (5.3) and (5.6), and use n1(t) < % to
obtain

6
IN W), ¥ (5). B )l S @7
+

5.7
for s € [0, t].

Subsequently, we apply the linear estimates in Theorem 3.9 and the nonlinear estimate (5.7)
to the Duhamel formulas (4.3) and (4.5) and establish

t 6
1 _ 1 Cat—s)) M@ ni(t)?
Z(t o <[ —— eaz E / S —— ea(t 5) d
S N<1+t+ ) 0F <1—|—t—s+ T+s O T
0

(5.8)
log(2+1¢)

6
<(E 13)
< (Botmo?) 252

and
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log(2+1)
1+1¢

’

|@+eaoiavol, s /(1~I—tni(3§1+s)d < (Eo+mf)

5.9
for all ¢ € [0, Tmax) With n(z) < %min{l, ro} and j,l € Ng with 2 <[ 4 2j < 6, where we used
Sp(0) = 0 when taking the temporal derivative of (4.3).

Bounds on r(¢) and r;(¢). Let ¢ € [0, Tyjax) With n(z) < % min{1, ro}. We employ the nonlinear
bound in Lemma 4.5 and estimates (5.3), (5.5) and (5.6) to establish
. log(2 6
[N (@(s), W(s), ¥ (s), ¥)llLe (1—3771(05, (5.10)
13

for s € [0, ¢], where we used 11 (f) < %
We recall the well-known L®°-estimates on the convective heat semigroup:

H agne(dag—cga()rz

m 19 —cod lwll
"Loo<f 7 |1zl oo, Hage( 2—c, t)er < u

~ L2~ J1+1

form=0,1,1 7“82 z Ga ()’Hb(R) and w € C ,(R), cf. [11, Proposition 3.6]. So, using that 9,
commutes with e ‘g% we estimate

(5.11)

t

a?/e(dafzcgaf)(‘s) (Ah(f[,)lﬂg(s)2) ds

0 L
(5.12)
max{0,—1} ) t ) 21
t t 1) log(2+1¢
< (1) ds + n1(t) dsgm() g( )’
@t —s)1+s) JE—s(1+5) 141¢
max{0,r—1}

for all # € [0, Tmax). Thus, applying the linear estimates in (5.11) and in Theorem 3.9 and the
nonlinear estimates (5.10) to (4.10), we obtain the bounds

6
i) log(2+1)
I (D)l Lo N\/1+ f«/f—s(1+s)d N(EOJH?](I)S)TT (5.13)
and, using (5.12),
Ire @) m? 4y MO g 1)
o N*[V“F ) NT=sVT+i—s(+s) 141 51

log(2+1¢)
NIVSET,;

for all 7 € [0, Tmax) With n(7) < 3 min{1, ro}.

< (Eo+m (r)s)
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Bounds on y(7) and y, (). Applying the estimates (5.13) and (5.14) to (4.17), we derive the
short-time bound

m m 6
121107 y(Dlloo S 121107 r Dlloe S Eo+n1(1)3, (5.15)

form =0, 1 and all 7 € [0, Tymax) With # < 1 and n(r) < £ min{1, ro}.
Next, take t € [0, Tmax) With £ > 1 and n(z) < %min{l, ro}. Using the nonlinear bound in
Lemma 4.7 and the estimates (5.3), (5.5) and (5.6), we infer

_m®3log2+5)

NG (s), y(5), 2(s), W(s), ¥ (s), ¥ ()l oo < 3 (5.16)
(1+5)2

for s € [1, t], where we use n(t) < %
We apply the linear estimates (5.11) and the nonlinear bound (5.16) to the Duhamel for-
mula (4.18) and use (5.15) to establish

t

lyMlien /nl(t)%log(2+s)d _ Ey+m®3
m m 3 SN m
(1+0)2 (t—5)3(1+s)3 (1+1)3

v, =
1

form =0,1 and all ¢ € [0, Tax) With ¢ > 1 and n(¢) < %min{l, ro}. Combining the latter with
the short-time bound (5.15), we arrive at

m 6
120197yl < Eo+m(0)3, (5.17)

form =0, 1 and all 7 € [0, Tmax) With n(¢) < 5 min{1, ro}.

Bounds on v/ (¢) and v (¢). We start by considering the case v # 0. Through (4.13) we can
express ¥ (¢) in terms of the residual r(¢) and the Cole-Hopf variable y(z) as

d
Y(@)=r()+ 5 log(y(t) + 1),
with derivative

dy; (1)

Ye() =re(t) + m,

for t € (0, tmax). We emphasize that, as long as n(¢) < % and v # 0, the above expres-

sions are well-defined. So, using ||32.n1ﬁ(l)||Loo < ||8;”r(t)||Loo + ||82”y(t)||Loc, employing the
estimates (5.13), (5.14) and (5.17) and recalling the fact that ¥ (s) vanishes identically for
s € [0, Tmax) With s < 1 by Proposition 4.3, we establish

6
Eo+n1(1)3

m (5.18)
(14102

197" DL~ S
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form =0,1 and ¢ € [0, Tphax) With n(t) < m1n{1 ro}-

Next, we consider the case v = 0. Recalhng that v (s) vanishes for s € [0, 1] by Proposi-
tion 4.3, we apply the linear estimates in (5.11) and the nonlinear bounds (5.10), (5.13) and (5.14)
to (4.9), and deduce

t
log(2 +¢ log(2 +s
2( )+Eo+/ 6 log( )

o < | E + Sid <E i
WOl < (Bo+m©3 ) = s Y
and
t 6 6
e (1) o <(Eo~|-m(t)5> log2+1) M3 log2+s)  _ Eotm(®)}

By <
N VAN ) JT=s5(1+5)3 ’ NIET;

for t € [0, Tmax) With n(t) < m1n{1 ro}. That is, (5.18) also holds for v =0.

Bounds on W(r) and w(z). Using (1.22), applying the mean value theorem and recalling that ¢
is smooth, we bound the forward-modulated perturbation w(¢), defined by (1.21), as

W@ | o S |20 0 + sup o az.1):ar (2. 1)) — pola(z. 1)
le

- sup o ac,0) +v (@&, OV (€. 1);ar (€, 1) — plal¢, 1); ac (¢, 1)

5.19
<||z(r>||Loo+||w;<t>||polksup e )l oo 619
—1|<rg
n1 ()
+ 00 (o] ,k OOS
Ol Ole sup 190 Dl £ i

for all ¢ € [0, Tmax) With n(z) < mm{l ro}, where we abbreviate a(¢,t) = ¢ + ¥ (¢, t). Simi-
larly, we establish

10O oo S 8{20)] e + 1Y Ol (14 19 (1)1 L) sup 18] ¢ (- ko)l o

|k—1]<ro

+ [ @)L Sup II3’¢k( k)IILvoJrllajlﬂ;(t)llLoo

lk—1]<rg

for j =0,1 and ¢ € [0, Tmax) With n(z) < mm{l ro}. Hence, combining the latter with (5.4)
yields

[FO] e =m@.  [F0]a =m®3 (5.20)

for t € [0, Tmax) With n(f) < 4 min{1, ro}.

Proof of key inequality and estimates (1.10)-(1.13). Take 7 € [0, tmax) such that n(z) <
% min{1, ro}. By estimate (5.20) there exists a - and Eg-independent constant C, > 0 such that
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m (1) < Can (1)5. 5.21)

On the other hand, employing the estimates (5.8), (5.9), (5.13), (5.14), (5.17) and (5.18), we
establish a - and Eg-independent constant C| > 0 such that

m@ = (Eo+m®?). (5.22)

Hence, combining (5.21) and (5.22) we acquire

10 =m®+n0’ < (1+)no = (1+63) (B +m®?)
=i (1+63) (Eo+nf).

We conclude that there exists a #- and Ep-independent constant such that the key inequality (5.2)
holds for all # € [0, Tmax) With n(f) < %min{l, ro}. As argued above, this implies, provided Eg €
(0, €p), that Tmax = 00 and we have n(t) < MyEy for all + > 0. The estimates (1.10), (1.11)
and (1.12) now follow directly by combining 11 (¢) < MoEo with (5.19) and (5.20), respectively.
In addition, 11 () < MoEp and (5.3) yield the estimate (1.13).

Approximation by the viscous Hamilton-Jacobi equation. All that remains is to establish the
approximation (1.16). We proceed as in [11] and distinguish between the cases v =0 and v # 0.
We start with the case v = 0. Then, (1.14) is a linear convective heat equation. We consider the
c}assicalgolution 1} € C([O, 00), Céb (]R)) N C; ([0, 00), Cup (R)) of (1.14) with initial condition
¥ (0) = ®fwo € C2 (R) given by ¥ (1) = e @9 ced ﬁ(bgwo. Recalling that ¥/ (¢) vanishes iden-
tically for ¢ € [0, 1] by Proposition 4.3, we obtain by (5.11) a ¢- and Ep-independent constant
M > 1 such that

M1 Eg
N
holds for ¢ € [0,1] and m = 0, 1. For ¢ > 1, we apply the linear estimates in (5.11) and the

nonlinear bounds (5.10) and 11 (t) < MyEy to (4.9) to establish 7- and Eg-independent constants
M>, M3 > 1 such that

m
12

o (vo-yo)| =3 |orvo| | < (5.23)

|.-=

t

5 6 log(2
e i T Koot B
Mg(lni—(g,g (m(t)% + %)

holds for m = 0, 1. Estimate (1.16) now follows by combining (5.23) and (5.24) and using
n () < MyEjp. .

Next, we take v 7 0. We consider the solution ¢ € C ([0, 00), C2,(R)) N C!([0, 00), Cup (R))
of (1.14) with initial condition ¥ (0) = ®3W0 given by

o d a2 v Fx
F0="log1 130y with §) =@ e (ciFiv 1),
V
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which arises through the Cole-Hopf transform and is well-defined as long as Eg = ||wo||z~ is

sufficiently small. Employing Taylor’s theorem, Theorem 3.9, identities (4.10) and (4.17), and

a2 a9~
estimates (5.10), (5.11) and 51(1) < MoEo, while using that 0 = S, (1)wo = e*% % Sxw,

+ 5,(1)w0 holds by Theorem 3.9, we establish an Eg-independent constant M4 > 0 such that

o o 2_ ~
1) = 5Dl = [y + 5] o + |50 = 5 Fiwo|

. (5.25)
+ LLrD) = S, (Dwo | o0 < M4E; .

a2 p
Noting that y(¢) = @0 =D 5 1) applying the mean value theorem to (4.13), employing

the estimates (5.11) and (5.16) to (4.18), and using (5.25) and n;(¢) < MyEy, we establish

v 6 6
[y = F0]  SIrOl+ 150 =50l S Ir Ol + £ +m®?,
[we = SIre@lim + 300 = 5@ e + 150 = 5O |30

¢ 6
E5 +n1(1)s

V14t

for t > 1. So, using that n1(t) < MyEy, affords a - and Eg-independent constant M5 > O such
that

Slre®] o +

e - 90 s (o + 527

holds for all # > 1. On the other hand, we establish (5.23) for ¢ € [0, 1] analogously to the case
v = 0. Thus, we obtain (1.16) forv #0. O

Remark 5.1. Due to the use of forward-modulated damping in the proof of Theorem 1.4, it is,
in contrast to [11], not necessary to control derivatives of z(¢) or W(r) through iterative estimates
on their Duhamel formulas. That is, we find that the template function 71(¢) in the proof of
Theorem 1.4 coincides with the one from [11, Theorem 1.3], upon omitting all derivatives of
z(t) and W(r). Nevertheless, in order to apply the nonlinear damping estimate in Proposition 4.9,
the condition (4.21) needs to be fulfilled, which requires control on the first derivative of the
(forward-modulated) perturbation. For that reason, we introduce the second template function
n2(t) yielding a priori control on the C&b-norm of W(t) and, thus, via (1.22) of (). We can
then a posteriori bound 7(¢)° with aid of the nonlinear damping estimate in terms of 7;(z).
Since 11 (¢) obeys the nonlinear key inequality (5.22), the same then follows for the full template
function n(¢t) = n1(t) + n2(¢)°.

Remark 5.2. The choice of temporal weights in the template function 7 (¢) in the proof of The-
orem 1.4 coincides with the one from the proof of [11, Theorem 1.3] and reflects, as explained
in [11, Remark 5.1], the linear decay rates of z(t), ¥ (t), y(t), W(z) and r(t), cf. Theorem 3.9
and (5.11), up to a logarithmic correction.
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6. Discussion and outlook

We discuss the wider applicability of our method to establish nonlinear stability of wave trains
against fully nonlocalized perturbations.

6.1. Applicability to general semilinear dissipative problems

Our analysis does not rely on the specific structure of the FHN system. As a matter of fact, our
approach only requires that the wave train is diffusively spectrally stable, it has nonzero group
velocity, the perturbation equation obeys a nonlinear damping estimate and the linearization of
the system about the wave train generates a Cp-semigroup on Cyp(R), whose high-frequency
component is exponentially damped. As long as these criteria are satisfied, we expect our method
to work for general semilinear dissipative problems.

It was already observed in [3] that the same linear terms in the FHN system (1.1), i.e. the term
Uy, in the first component and the term —ey v in the second component, are key to obtaining a
nonlinear damping estimate, as well as high-frequency resolvent bounds leading to exponentially
damped behavior of the high-frequency part of the semigroup. It has been pointed out in the
context of the St. Venant equations in [44] that high-frequency resolvent bounds are equivalent
to linear damping estimates, which then yield a nonlinear damping estimate as long as solutions
stay small. Therefore, we expect that we can replace the requirements that the high-frequency
component of the semigroup is exponentially damped and a nonlinear damping estimate can be
derived by the condition that the linearization obeys high-frequency resolvent bounds.

In addition, we expect that it is possible to drop the requirement that the wave train has nonzero
group velocity. In the case of zero group velocity the diffusive mode at the origin is branched,
cf. [3, Section 2.1], i.e., the linear dispersion relation A.(£) has a double root at £ = 0. The
fact that the linear dispersion relation A.(£) is no longer locally invertible about £ = 0 poses a
technical hurdle in relating the inverse Laplace representation of the low-frequency part of the
semigroup to its Floquet-Bloch representation. We anticipate that this challenge can be addressed
as in [42] by unfolding the double root at 0 by working with the spectral parameter o = /A with
branch cut along the negative real axis.

6.2. Open problems

There are however several prominent examples of semilinear dissipative systems, where non-
linear stability of wave trains against localized perturbations has been established, but where one
(or more) of the above requirements are not satisfied, thereby obstructing a straightforward ap-
plication of our method to extend to fully nonlocalized perturbations. Here, we highlight two of
these examples.

The first is the Lugiato-Lefever equation, a damped and forced nonlinear Schrodinger equa-
tion arising in nonlinear optics, whose diffusively spectrally stable periodic waves are nonlinear
stable against localized perturbations [21]. Here, the principal part of the linearization about the
wave is the Schrodinger operator 183, which does not generate a Cp-(semi)group on Cyp(R),
cf. [6, Lemma 2.1]. Thus, an extension of our method to this setting necessitates reconsider-
ing the choice of space. Natural candidates are the modulation spaces M é‘o’l(R) on which the
Schrodinger operator generates a Co-group, cf. [36, Proposition 3.8]. These spaces consist of
nonlocalized functions as can be seen from the embeddings Cﬁ;r 2(IR) — M ]O‘o,l (R) — C{j (R)
for k € Ny, cf. [35, Theorem 5.7 and Lemma 5.9]. An application of our method would then
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require to establish high-frequency damping in modulation spaces, which could be challenging.
We refer to [19] for further background on modulation spaces.

A second example is the St. Venant equations, which describe shallow water flow down
an inclined ramp and admit viscous roll waves. Nonlinear stability of these periodic traveling
waves against localized perturbations has been established in [28,44]. The St. Venant system is
only viscous in one component and therefore, similar to the current analysis for the FHN sys-
tem, incomplete parabolicity must be addressed. Moreover, due to the presence of an additional
conservation law the spectrum of the linearization about the wave train possesses an additional
curve touching the imaginary axis at 0, thereby violating the spectral stability assumption (D3).
Thus, the leading-order dynamics of perturbations are no longer governed by the scalar viscous
Hamilton-Jacobi equation (1.14), but instead by an associated Whitham system describing the
interactions between critical modes, cf. [25]. It is an open question of how to handle the most
critical nonlinear terms that cannot be controlled through iterative L°°-estimates on the Duhamel
formula as the Cole-Hopf transform is no longer available. However, motivated by the results
in [23] on the dynamics of roll waves in the Ginzburg-Landau equation coupled to a conserva-
tion law against Cyp-perturbations, we do expect that our method yields control of perturbations
on exponentially long time scales in the setting of the St. Venant equations and more general
semilinear dissipative systems admitting conservation laws.

Appendix A. The Laplace transform and its complex inversion formula

This section is devoted to background material on the vector-valued Laplace transforms. In
particular, we prove that the complex inversion formula holds for the Laplace transform of con-
volutions of semigroups. For an extensive introduction into the topic, we refer to the book [1] of
Arendt, Batty, Hieber and Neubrander.

Let X, Y be complex Banach spaces. We denote by B(X) the space of bounded operators
mapping from X into X. The growth bound wo(G) of amap G: [0, c0) — Y is given by

wo(G) = inf{a) eR:supe |G| < oo} .

t>0

If wo(G) < oo, then we say that G is exponentially bounded.
For a continuous and exponentially bounded function F': [0, c0) — X, the Laplace transform
L(F): {xeC :Re(r) > wo(F)} — X is given by

[e¢]

L(F)(V) = / e M F(s)ds.

0

Strong continuity of an operator-valued map 7 : [0, c0) — B(X) entails that for each x € X
the orbit map T, : [0, 00) — X given by Ty (t) = T (t)x is continuous. For a strongly continuous
and exponentially bounded 7 : [0, c0) — B(X), the Laplace transform £(7): {» € C : Re(}) >
wo(T)} - B(X), given by

e ¢]

L(TY(L) = / e MT(s)ds,

0
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is also well-defined by [1, Proposition 1.4.5]. For a Cy-semigroup 7 : [0, 0c0) — B(X) with
infinitesimal generator A: D(A) C X — X, it is well-known, by [14, Proposition 1.5.5 & Theo-
rem I1.1.10], that T is exponentially bounded and its Laplace transform is given by the resolvent
L(T)(X) = (A — A)~! for Re(r) > wy(T).

Let S, T: [0,00) — B(X) be strongly continuous and exponentially bounded. The convolu-
tion S % T: [0,00) = B(X) of S and T is given by

t
S*T)(1) = / S()T (t —s)ds.
0
The convolution theorem, cf. [14, Theorem C.17], now states that S« T is also strongly continu-

ous and exponentially bounded with wo (S * T) < max{wy(S), wo(T)} and its Laplace transform
obeys

LS *T)(A) = LS MET)(A), (A.1)
for A € C with Re(A) > max{wy(S), wo(T)}.

The complex inversion formula of the Laplace transform holds for Cy-semigroups. That is, if
T is a Cp-semigroup with infinitesimal operator A, then we have

w+iR o+iR
: 1 A : 1 At -1
T(t)x = lim — e L(TY(Mxdri = lim — e (A—A)" 'xdAr
R—o00 271 R—o00 271
w—iR o—iR

forall t > 0, w > wo(T) and x € D(A), cf. [1, Proposition 3.12.1].

In Section 3, we decompose the Cp-semigroup generated by the linearization £ by deform-
ing and partitioning the integration contour of the complex line integral in the inversion formula,
alongside decomposing the resolvent operator. It has been shown in [3] that for high frequencies
the resolvent can be expanded as a Neumann series, whose leading-order terms can be identified
as products of resolvents of simpler, well-understood operators. The formula (A.1) reveals that
such products can be recognized as the Laplace transform of a convolution of Cp-semigroups
generated by those simpler operators. Indeed, if 7 and S are Cy-semigroups with infinitesimal
operators A: D(A) C X — X and B: D(B) C X — X, respectively, then (A.1) and [14, Theo-
rem II.1.10] yield

LS*xTYMN)=K—-B) -4,

for A € C with Re(X) > max{wy(S), wo(T)}. Thus, to bound the contour integrals arising in the
decomposition of the inverse Laplace transform of the Cy-semigroup e£o’ | we wish to show that
the inversion formula of the Laplace transform also holds for convolutions of Cp-semigroups.
As far as we are aware, such a result is not readily stated in the current literature. Therefore, we
provide a proof in the upcoming. Our proof relies on the observation that the inversion formula
holds for F as long as it is Lipschitz continuous and F(0) = 0.

Proposition A.1. Let X be a complex Banach space. Let F: [0, 00) — X be Lipschitz continu-
ous. Assume F(0) = 0. Then, the complex inversion formula
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1 w+iR
F(t)= lim — / eML(F)(L) da
R—o0 271

w—iR
holds for t > 0 and w > 0.

Proof. Since F is Lipschitz continuous, it grows at most linearly and is therefore exponentially
bounded with growth bound wo(F) < 0. Let 7 > 0 and w > 0. By [1, Theorem 2.3.4], we have

! w+iR
A
F(t)= lim — / RUACNY
R—o00 271 A
w—iR

where the analytic function r: {A € C : Re(}) > 0} — X given by

o0

r(\) = / e M dF(s)

0

is the Laplace-Stieltjes transform of F, cf. [1, Theorem 1.10.6]. We integrate by parts, cf. [,
Formula (1.20)], and arrive at

t t

r) e ™ RTINSV —hs
T_tlggo - cuv(s)_tlgxoloX e F(t)—F(O)—/F(s)d(e )
0 0
= f F(s)e ™™ ds = £(F)(\)

0

for A € C with Re(X) > 0, which proves the claim. O

The fact that the complex inversion formula of the Laplace transform holds for convolutions
of Cp-semigroups is now a direct consequence of Proposition A.1.

Corollary A.2. Let X be a complex Banach space. Let T, S: [0, 00) — L(X) be Cy-semigroups
with infinitesimal generators A: D(A) C X — X and B: D(B): X — X, respectively. Then,
we have

1 w+iR
(S*T)(1)x = — lim / e —B) ' —A) " xda
271 R—o0

w—iR
fort >0, x € D(A) and v > max{wy(S), wo(T)}.

Proof. Let 7 > 0, x € D(A) and @ > max{wo(S), wo(T)}. Take max{wo(S), wo(T)} < < w.
The rescaled semigroups 7'(s) = e~ **T(s) and S(s) = e *S(s) are generated by A — o and
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B — «, respectively. Moreover, S and T have negative growth bounds wo(S) = wo(S) — @ and
wo(T) = wo(T) — o and so has their convolution S * T

Since we have x € D(A), the map F': [0, c0) — X given by F(s) = (S’ * f")(s)x is differen-
tiable with

F'(s) = (S*T)(s)(Ax — ax) + S(s)x.

Thanks to the fact that S % 7 and S have negative growth bound, there exists a constant M > 0
such that || F/(s)|| < M(||Ax|| + ||x||) for all s > 0. Hence, using the mean value theorem, cf. [1,
Proposition 1.2.3], we infer || F(s) — F(r)|| < M(||Ax||+ ||x|))|s —r|, showing that F is Lipschitz
continuous. Since we have in addition F'(0) = 0, an application of Proposition A.1 yields

o+iR
(S*T)(t)x = F(1) = lim i / M L(F)(L)da,
R—o00 2771
w—iR

where we denote @ = w — a > 0. On the other hand, with the aid of [14, Theorems II.1.10
and C.17], we compute

SF)(W) = /e*“(S xT))xds=LS«TH)Mx=A4+a—B) 'O+a—A)"'x
0

for A € C with Re(}) > 0. Therefore, pulling out the exponential factors and scaling back, we
arrive at

w—a+iR
. 1
(S*T)(0)x =e* (S« T)(t)x = lim — / e 4ta—B) 'O +a—A) " xdr
R—o00 271
w—a—iR
w+iR
— 1 L Mer  py=lgq _ oay—1
= lim - e (A—B) ' (A—A) 'xda,
R—o00 271
w—iR

which finishes the proof. O
Appendix B. Derivation of equation for the modified forward-modulated perturbation
Assume (H1) and (D3). Let f € [0, Tmax). Recalling Proposition 1.2 and noting that
lre ()|l Lo < 1o, we substitute k =14+ Y- (¢, ) and y = ¢ + ¥ (&5 £)(1 + ¥ (&5 1)) in the equa-
tion
k2D (v; k) + 0 (K)py (v k) + F($(y: k) =0
for the profile function ¢ (y; k) and arrive at

(1 + 9@ 0Dy (BE&, D) + (L + 9 0y (BE, D)+ F@BE, D) =0  (B.1)

62



J. Alexopoulos and B. de Rijk Journal of Differential Equations 457 (2026) 114013

for { € R, where we abbreviate B(¢,1) = (¢ + ¥ (¢; )(1+¥¢ (¢51)); 1+, (¢, 1)). Using Corol-
lary 4.8 and the fact that u(¢, ¢) solves (1.3), we compute the temporal derivative

2, = Dug; + coug + F(w) = (¢y 0 B) (Y (1 + ¥e) + Yber) — (Pr 0 B)Yer- (B.2)

In an effort to reexpress the u-contributions in (B.2) in terms of z, we determining the spatial
derivatives of w(¢, 1) =z(¢, t) + ¢ (B(¢, t)) yielding

u =2+ (¢y 0 B) (1 + e (1 +¥0) + Viee) + (dr 0 B)Vee
e =Zee + (Pyy 0 B) (1 + Y (1 + ) + 1/“/fcc)2 + (py 0 B) (Vee (1 +3%0) + ¥ iveee)
+ (Bri 0 BIWE + (1 0 B)Wece +2byk 0 B) (14 e (1 +¥e) + ¥riee) e

Thus, inserting u(¢, 1) = z(¢, 1) + ¢(B(¢, 1)) into (B.2) and employing (B.1), we arrive at the
equation (4.19) for the modified forward-modulated perturbation.
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