KIT | KIT-Bibliothek | Impressum | Datenschutz

A facile construction of LiF interlayer and F-doping via PECVD for LATP-based hybrid electrolytes: Enhanced Li-ion transport kinetics and superior lithium metal compatibility

Li, Xian-Ao; Xu, Yiwei; Zhu, Kepin; Wang, Yang; Zhao, Ziqi; Dong, Shengwei; Wu, Bin; Huo, Hua; Lou, Shuaifeng; Xia, Xinhui; Liu, Xin; Chen, Minghua; Passerini, Stefano 1; Chen, Zhen
1 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract:

Hybrid solid-liquid electrolytes show promise in resolving interfacial side reactions and poor electrode|electrolyte contact of solid-state batteries. However, the energy barrier between the liquid and the solid-state electrolytes impedes Li-ion migration, reducing Li$^+$ transport efficiency and overall battery performance. Here, we propose a modification strategy using plasma-enhanced chemical vapor deposition (PECVD) technology with fluoroethylene carbonate as the fluorine source, enabling in situ construction of a LiF buffer layer and F-doping on the Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$P$_3$O$_{12}$ (LATP) skeleton. Computational analyses reveal that F-doping activates additional Li-ion migration pathways, enhances ionic conductivity, and suppresses Li dendrite growth. The LiF layer prevents electron penetration and direct contact between LATP and Li metal, while also reducing the desolvation energy barrier to improve Li-ion transport across the solid|liquid interface with aids of F-doping. Consequently, Li||Li cells demonstrate stable cycling for 9000 h at 0.1 mA cm$^{-2}$ and a critical current density of 2.2 mA cm$^{-2}$. Furthermore, full cells paired with LiFePO$_4$ and LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$ cathodes retain 81.3 % and 67.2 % of their initial capacity after 300 cycles at 0.5 C. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189158
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 1369-7021, 1873-4103
KITopen-ID: 1000189158
Erschienen in Materials Today
Verlag Elsevier
Band 91
Seiten 1 - 12
Vorab online veröffentlicht am 13.10.2025
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page