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A B S T R A C T

Metal–organic frameworks (MOFs) are crystalline materials characterized by adjustable porosity and chemical 
properties, rendering them effective carriers for doxorubicin (DOX) in the treatment of hepatocellular carcinoma 
(HCC). The extensive design space complicates the identification of metal-organic frameworks (MOFs) that 
simultaneously optimize doxorubicin (DOX) loading, pH-responsive release, and biocompatibility. We introduce 
MOF-LENS (Latent Evolutionary Navigation System), a bio-inspired framework that integrates structural de
scriptors (pore size, surface area, void fraction) and SMILES-based fingerprints into a unified latent space. This 
framework employs the previously published Lotus Effect Algorithm (LEA) to identify high-quality MOF nano
carriers. In benchmarks comparing particle swarm optimization, genetic algorithms, random search, and a 
deterministic filter baseline across 30 independent runs, MOF-LENS achieves comparable or superior best fitness 
with significantly reduced variance, resulting in a consistent set of top candidates rather than isolated outliers. 
The chosen MOFs demonstrate pore-limiting diameters within the DOX-compatible range (12–16 Å) and exhibit a 
strong chemical affinity for DOX. Docking calculations validate substantial binding at physiological pH, with 
interactions slightly diminished under mildly acidic conditions, aligning with controlled release mechanisms. 
While illustrated for DOX in HCC, MOF-LENS is applicable to various drugs; retargeting to alternatives like 
paclitaxel necessitates merely the modification of the drug fingerprint, pore-size window, and a limited set of 
fitness weights.

1. Introduction

Metal–Organic Frameworks (MOFs) are crystalline, porous materials 
made up of metal nodes connected by organic linkers. They have very 
high surface areas (up to 7000 m²/g), pore sizes that can be changed 
from 0.2 nm to 10 nm, and a wide range of chemical properties [1]. 
These properties position MOFs as transformative materials for appli
cations including gas storage, catalysis, separation, environmental 
remediation, and biomedical drug delivery [2-4]. In cancer therapy, 
MOFs are particularly promising for delivering chemotherapeutic 
agents, such as doxorubicin (DOX), addressing critical challenges 
including poor drug solubility, off-target effects, and premature release, 

especially in the treatment of hepatocellular carcinoma (HCC) [5,6]. The 
conceptual mechanism of DOX encapsulation within a MOF carrier and 
its interaction with cancer cells is illustrated in Fig. 1, highlighting how 
porous MOF structures can transport DOX through the bloodstream and 
release it in the tumor microenvironment.

From a drug-delivery perspective, MOFs excel due to four key attri
butes. First, their large surface areas and tunable pores enable a high 
drug-loading capacity [7,8]. Second, many MOFs support 
stimuli-responsive release, where payloads are discharged under 
tumor-specific conditions such as acidic pH or elevated glutathione [9], 
thereby reducing off-target toxicity. Third, functional groups such as 
amino moieties allow conjugation with targeting ligands (e.g., folic acid 

☆ Given his role as Editor, Mehrdad Jalali had no involvement in the peer review of this article and had no access to information regarding its peer review. Full 
responsibility for the editorial process for this article was delegated to another journal editor.

* Corresponding author at: Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Germany.
E-mail address: mehrdad.jalali@srh.de (M. Jalali). 

Contents lists available at ScienceDirect

Materials Today Communications

journal homepage: www.elsevier.com/locate/mtcomm

https://doi.org/10.1016/j.mtcomm.2025.114448
Received 23 August 2025; Received in revised form 25 November 2025; Accepted 3 December 2025  

Materials Today Communications 49 (2025) 114448 

Available online 4 December 2025 
2352-4928/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0003-2465-4933
https://orcid.org/0000-0003-2465-4933
mailto:mehrdad.jalali@srh.de
www.sciencedirect.com/science/journal/23524928
https://www.elsevier.com/locate/mtcomm
https://doi.org/10.1016/j.mtcomm.2025.114448
https://doi.org/10.1016/j.mtcomm.2025.114448
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtcomm.2025.114448&domain=pdf
http://creativecommons.org/licenses/by/4.0/


or lactobionic acid), enabling selective uptake by cancer cells. Finally, 
MOFs constructed from biocompatible metals (e.g., Zr, Fe) exhibit low 
toxicity and high stability under physiological conditions (pH 7.4) [10]. 
Recent studies on Zn-MOF-74 nanocarriers—coated with polydopamine 
or sodium alginate and synthesized in pH-responsive forms—illustrate 
these advantages by demonstrating high drug-loading capacity, 
enhanced biocompatibility and stability, and pH-triggered release of 
DOX or 5-FU in cancer models [11-13]. However, the vast combinatorial 
space of MOFs, driven by diverse metal nodes, organic linkers, and 
secondary building units (SBUs), identifies optimal drug carriers. The 
interplay of structural properties (e.g., pore size for drug loading) and 
chemical properties (e.g., linker functionality for targeting) necessitates 
a unified optimization approach [14].

For instance, NH2-UiO-66, with a pore limiting diameter (PLD) of 
approximately 6 Å, has demonstrated effective DOX encapsulation 
through framework defects and cavities, enabling pH-responsive release 
in acidic tumor microenvironments (pH 4–6) [15]. However, relying on 
defects can lead to inconsistent performance, prompting MOF-LENS to 
target a PLD range of 12–16 Å, which aligns with the hydrodynamic 
diameter of DOX (12 Å to 15 Å) for optimized loading and controlled 
release without structural irregularities, as supported by molecular 
simulations [16,17].

Traditional MOF discovery and screening strategies can be broadly 
categorized into three main groups. High-throughput experimental 
screening synthesizes and tests large MOF libraries; however, it is labor- 
intensive, time-consuming, and costly [18]. Computational simulations, 
such as molecular dynamics (MD) and density functional theory (DFT), 
offer atomistic insights into MOF–drug interactions; however, they 
necessitate considerable computational resources and present chal
lenges in scaling to tens of thousands of candidates [19]. Heuristic 
design strategies, such as isoreticular synthesis, systematically modify 
known frameworks but inherently limit exploration of the full chemical 
and structural diversity of MOFs [20]. More recently, data-driven and 
graph-based approaches—including our MOFGalaxyNet and MOFSo
cialNet frameworks, as well as network sparsification methods such as 
the Black Hole strategy and inverse link prediction—have begun to 
leverage large MOF corpora and connectivity information to improve 
property prediction and dataset quality. Nevertheless, these approaches 
have so far focused primarily on graph representation and screening for 
general material properties rather than explicitly optimizing MOF can
didates for multi-objective drug-delivery criteria [21-24]. These ap
proaches rarely integrate structural and chemical descriptors within a 

unified, data-driven optimization pipeline.
The combinatorial diversity of MOFs, with over 100,000 synthesized 

and millions of hypothetical structures, renders manual or experimental 
screening infeasible [25,26]. Traditional approaches, including 
high-throughput experimental screening, molecular dynamics simula
tions, or heuristic design rules such as isoreticular synthesis, are 
resource-intensive and often fail to integrate structural properties (e.g., 
pore size distribution, void fraction, accessible surface area (ASA)) with 
chemical properties (e.g., linker functionality, coordination environ
ment) [27].

To address these challenges, we introduce MOF-LENS (Latent 
Evolutionary Navigation System), a multi-modal optimization frame
work that combines structural property optimization (void fraction, 
ASA, PLD, coordination number), chemical structure representation via 
SMILES-based fingerprints for linkers, SBUs, and metal clusters, and bio- 
inspired evolutionary search using the Lotus Effect Algorithm (LEA) to 
balance drug-loading efficiency, pH-responsive release, and targeting 
potential in a unified multi-objective setting.

To overcome these limitations, various optimization and machine- 
learning techniques have been proposed for MOF discovery. Genetic 
Algorithms (GA) and Differential Evolution (DE) have been used to 
optimize MOFs for gas storage and catalysis based mainly on structural 
descriptors such as void fraction and surface area [28,29]. Particle 
Swarm Optimization (PSO) and Simulated Annealing (SA) have also 
been explored, but they often struggle with the high-dimensional, 
multimodal nature of MOF design, particularly when multiple struc
tural and chemical objectives must be balanced simultaneously [30]. 
Machine-learning models, including random forests and neural net
works, can accurately predict specific MOF properties but typically 
require large, curated datasets and are less suited to direct 
multi-objective optimization over a complex design space [31]. 
Bio-inspired metaheuristics, such as Ant Colony Optimization (ACO) and 
Artificial Bee Colony (ABC), show promise for navigating rugged search 
landscapes; however, they have been rarely applied to systematic MOF 
discovery [32,33]. In general, current methods either focus on structural 
screening and ignore chemistry, or they offer predictive models without 
a built-in optimization framework that can find a wide range of 
high-quality candidates.

The Lotus Effect Algorithm (LEA), inspired by the self-cleaning 
properties of lotus leaves, offers a compelling alternative. LEA em
ploys Lévy-flight-based exploration with dynamically adapted step sizes 
to navigate multimodal landscapes efficiently [34,35]. Unlike classical 

Fig. 1. Schematic of a Metal–Organic Framework (MOF, blue) encapsulating doxorubicin (DOX) and interacting with cancer cells (red/orange), highlighting targeted 
drug delivery potential (AI-generated).
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Fig. 2. Overview of the MOF-LENS framework, showing sequential stages: data preprocessing, hybrid structural-chemical encoding, kNN mapping, and optimization 
with the Lotus Effect Algorithm (LEA) to identify MOFs for cancer drug delivery.
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swarm methods with uniform particle updates, LEA adjusts particle 
movements according to search progress, enhancing its ability to escape 
local optima and maintain solution diversity. Originally introduced in 
our previous work, LEA has demonstrated superior performance in en
gineering optimization tasks, such as welded-beam design, compared to 
several established metaheuristics. Its recent extension, Multimodal LEA 
(M-LEA), further improves robustness by evolving subpopulations to 
identify multiple high-quality solutions and approximate Nash equi
libria in complex problems. In the present study, these exploration and 
diversity-preserving properties are particularly advantageous because 
MOF-LENS must search a high-dimensional structural-chemical design 
space (void fraction, ASA, PLD, coordination environment, toxicity, pH 
stability, and DOX similarity) and identify not just a single optimum, but 
multiple MOFs with distinct architectures that are all suitable for DOX 
delivery. These characteristics make LEA particularly well-suited for 
MOF discovery, where structural and chemical descriptors must be in
tegrated in a high-dimensional, multimodal search space, and where the 
diversity of solutions is as important as the individual optimum quality.

In this work, we build on LEA to develop MOF-LENS (Latent Evolu
tionary Navigation System), a bio-inspired, multi-modal optimization 
framework for discovering MOFs tailored to DOX delivery in HCC. MOF- 
LENS combines structural property optimization (void fraction, acces
sible surface area, pore limiting diameter, and coordination number) 
with chemical structure representation via SMILES-based fingerprints 
for linkers, secondary building units, and metal clusters. Additionally, it 
features an LEA-driven evolutionary search that jointly balances drug- 
loading efficiency, pH-responsive release, targeting potential, and 
biocompatibility. Applied to a curated dataset of 10,000 MOFs from the 
Cambridge Structural Database, MOF-LENS identifies candidates with 
PLD in the target range of 12–16 Å, high chemical similarity to DOX, and 
low predicted toxicity. The remainder of this paper is organized as fol
lows. First, we describe the MOF dataset, structural and chemical feature 
extraction, and encoding used in MOF-LENS. We then present the LEA- 
based optimization framework and the multi-objective fitness function 
for DOX delivery. Next, we present and discuss the optimization results, 
including the identification of top-performing MOFs and sensitivity 
analyses of key descriptors. Finally, we summarize the main findings, 
discuss limitations, and outline future directions for integrating MOF- 
LENS into broader MOF discovery pipelines for precision cancer 
therapy.

2. Method

2.1. Overview of the MOF-LENS framework

Fig. 2 summarizes the overall workflow of MOF-LENS, which trans
forms a heterogeneous MOF database into a small set of optimized 
candidates for targeted drug delivery. The framework proceeds from left 
to right through six main stages: (i) input dataset construction, (ii) 
structural encoding, (iii) chemical encoding, (iv) construction of a 
hybrid latent space, (v) optimization with the Lotus Effect Algorithm 
(LEA), and (vi) selection of optimized MOFs for doxorubicin (DOX) 
delivery.

The pipeline starts from an input dataset of experimentally reported 
and hypothetical MOFs together with basic metal, linker, and toxicity 

information. These raw structures are standardized and filtered to retain 
only chemically reasonable and potentially biocompatible frameworks, 
providing a consistent starting point for all subsequent stages.

In the structural encoding block, each MOF is linked to a small group 
of geometric descriptors that describe its pore structure. These de
scriptors include the void fraction, accessible surface area, pore-limiting 
diameter, coordination number, and SBU-related features. At the same 
time, a chemical encoding block uses SMILES-based fingerprints, 
explicit detection of protonatable amino groups (NH₂), and a lookup of 
known metal toxicity to show the organic linker chemistry and func
tional groups. These two encoders work together to turn complicated 
crystal structures and chemistries into feature vectors that computers 
can read.

These descriptors are then merged into a hybrid latent space, where 
each MOF occupies a single point defined jointly by its structural and 
chemical signatures. A hybrid distance metric balances structural simi
larity with chemical similarity, ensuring that MOFs close to each other 
are similar in both pore geometry and linker chemistry relevant for DOX 
binding. A k-nearest-neighbor (kNN) index on this space allows efficient 
mapping between continuous design points and the nearest realizable 
MOF structures.

The optimization engine operates on this latent space. A multimodal 
representation combines all structural, chemical, and domain-specific 
criteria into a single fitness landscape that describes suitability for 
DOX delivery. The LEA optimization module then explores this land
scape with a population of particles that move in the continuous latent 
space and are repeatedly mapped via kNN to real MOFs. Their fitness 
reflects DOX compatibility (pore size and chemical similarity), pH- 
responsive release behavior, and toxicity constraints.

The final block, optimized MOFs for targeted drug delivery, collects 
the best-performing candidates identified by LEA. These MOFs combine 
appropriate pore dimensions for DOX loading, favorable chemical en
vironments for binding, and features consistent with controlled, pH- 
responsive release. In this way, MOF-LENS provides a scalable, data- 
driven workflow that connects raw MOF databases to experimentally 
testable designs. The following subsection formalizes this workflow in 
pseudocode.

2.2. MOF-LENS workflow pseudocode

Algorithm 1 summarizes the MOF-LENS pipeline. Starting from a 
curated MOF dataset D, the method (i) performs preprocessing and 
feature encoding, (ii) constructs a hybrid structural–chemical latent 
space equipped with a k-nearest-neighbor (kNN) index, and (iii) applies 
the Lotus Effect Algorithm (LEA) to search this space for high-fitness 
MOFs. Each latent particle is mapped back to its nearest realizable 
MOF and evaluated by the multi-objective fitness function in Section 2.7
(Eq. 1), which combines PLD, chemical similarity to DOX, pH stability, 
amino-group functionality, toxicity, and a small diversity penalty.

Algorithm 2 sketches the fitness evaluation. For each MOF, scalar 
scores are computed for PLD proximity, DOX similarity, pH stability, and 
NH2 functionalization and aggregated with fixed weights and additive 
penalty terms. This keeps the optimization loop simple while making the 
contribution of each physical factor comprehensible. 

Algorithm 1. MOF-LENS Workflow with Lotus Effect Algorithm (LEA)
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Algorithm 2. Multi-Objective Fitness Evaluation in MOF-LENS

2.3. Data acquisition and curation

MOF-LENS operates on a curated dataset of MOFs extracted from the 
Cambridge Structural Database (CSD) [36]. The data are stored as a 
comma-separated file containing numerical structural descriptors—void 
fraction, accessible surface area (ASA, m²/g), pore limiting diameter 
(PLD, Å), maximum metal coordination number, and secondary building 
unit (SBU) extension points—as well as categorical information on metal 
type (e.g., Zr, Fe, Zn) and SMILES strings for organic linkers and SBUs.

To ensure biocompatibility for drug delivery, MOFs containing toxic 
metals such as Pb, Cd, Cr, Ni, or Hg are removed via pattern-based 
exclusion [10]. SMILES strings are sanitized with RDKit [37], and en
tries with invalid or unparsable SMILES (≈5 % of the dataset) are dis
carded. Amino groups (–NH₂) in linkers and SBUs are detected through 
substructure matching, providing a binary feature that later supports 
ligand functionalization.

For datasets exceeding 10,000 MOFs, stratified sampling is used to 
reduce the working set to 10,000 entries while approximately preserving 
the distributions of key descriptors such as PLD and ASA. This cap keeps 
the kNN index and optimization tractable without biasing the search. 
The initial target design window is PLD = 12–16 Å, chosen to match the 
hydrodynamic size of doxorubicin (DOX) (≈12–15 Å). If fewer than 10 
MOFs satisfy all target constraints (PLD, void fraction, ASA), the ranges 
are relaxed to percentile-based bounds (e.g., 10th–90th for PLD and 
5th–95th for other features) to guarantee a sufficiently rich candidate 
pool for optimization.

2.4. Descriptor generation and encoding

In the next step, MOFs are encoded into numerical and chemical 

descriptors that feed the latent space and fitness model (Stage 1 in Al

gorithm 1). Structural properties are represented by five normalized 
features: void fraction, ASA, PLD, maximum metal coordination num
ber, and SBU extension points. Each feature is scaled to the [0, 1] range 
using min–max normalization to ensure comparability across different 
units and magnitudes.

Chemical information is encoded using 256-bit Morgan fingerprints 
(radius 2) generated from a linker and SBU SMILES with RDKit [38]. 
These fingerprints compactly represent the presence of local sub
structures and are used both for Tanimoto similarity calculations and for 
the hybrid distance metric. A binary indicator records the presence of 
amino groups (NH₂), which are relevant for post-synthetic functionali
zation with targeting ligands.

For missing or invalid SMILES (≈5 % of entries), a methane-based 
fingerprint (SMILES “C”) is used as a neutral placeholder. Methane’s 
minimal structure yields a fingerprint with mostly zero bits, which 
avoids introducing artificial similarity to complex linkers. Alternative 
imputations (dataset-average fingerprints or all-zero vectors) were 
tested on a 1,000-MOF subset and found to increase variance in Tani
moto scores, reducing the fitness landscape’s stability. DOX is encoded 
into a 256-bit Morgan fingerprint in the same way, serving as the 
reference molecule in similarity calculations. Metal types are also 
retained to drive pH stability and toxicity penalties in the fitness 
function.

2.5. Hybrid similarity metric and kNN mapping

To connect continuous design points with realizable MOFs, MOF- 
LENS embeds each framework into a hybrid structural-chemical latent 
space and equips this space with a k-nearest-neighbor (kNN) index. Each 
MOF iis represented by a normalized structural feature vector 
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xi = (vf ,ASA,PLD, ncoord, nSBU) ∈ [0,1]5 

and a 256-bit Morgan fingerprint Fiderived from the linker and SBU 
SMILES.

Similarity between two MOFs i is quantified by a hybrid distance 

d(i, j) = 0.7 ‖ xi − xj‖2 +0.3(1 − Tanimoto(Fi, Fj)),

where the Euclidean term captures similarity in pore architecture, and 
the Tanimoto term captures similarity in linker chemistry [39]. The 
weights (0.7 structural, 0.3 chemical) were selected by grid search on a 
1,000-MOF validation subset to best align with experimentally reported 
DOX loading efficiencies in known MOFs. Sensitivity analysis over 
structural weights from 0.6 to 0.8 showed that 0.7 provided the best 
balance between pore-size matching and chemical affinity, with < 5 % 
variation in aggregate fitness.

A ball-tree kNN index is built using this distance, enabling approxi
mate nearest-neighbor queries in O(log N)time for a dataset of size N. 
During optimization, each particle in latent space is mapped to its 
nearest MOF via this index, ensuring that all evaluated candidates 
correspond to physically realizable frameworks rather than uncon
strained points in feature space.

2.6. Lotus Effect Algorithm (LEA) optimization

The Lotus Effect Algorithm (LEA) serves as the optimization engine 
of MOF-LENS. Inspired by the self-cleaning and multi-modal surface of 
lotus leaves, LEA is designed to explore rugged search spaces while 
maintaining a diverse set of promising solutions [34]. In this work, LEA 
operates over the hybrid latent space described in Section 2.5.

LEA uses a population of P = 30particles, each representing a point 
pi ∈ [0,1]5in normalized structural space. Particles are initialized uni
formly at random and evolved for at most T = 100iterations. At each 
iteration t, the position of each particle is updated via a Lévy-flight step 

p(1)
i = clip(p(t)

i + η(t)s(t)i , [0,1]5),

where s(t)i is drawn from a Lévy distribution with exponent β = 1.5, η(t)is 
the step size, initialized as η(0) = 0.5 and decayed by a factor of 0.98 at 
each iteration, and clip(⋅)enforces the unit-hypercube bounds [40]. This 
combination yields large exploratory jumps in early iterations and finer 
local searches as the algorithm converges.

After each update, the particle is mapped via the k-NN index to its 
nearest MOF in the dataset, and the corresponding framework is eval
uated using the fitness function f (Section 2.7 , Eq. 1). The algorithm 
maintains a list of the top five unique MOFs found so far, updated 
whenever a better candidate is discovered. An early-stopping criterion 

Fig. 3. Convergence behavior of LEA, PSO, RS, GA, and Filter over 100 iterations (mean ± SD computed from 30 runs). LEA exhibits stable and consistent 
convergence, outperforming PSO and RS in the later stages, while GA shows weak and highly variable performance. The filter baseline remains constant, as it 
deterministically selects the best available MOF without requiring a search.

Fig. 4. Δ-fitness comparison between LEA and competing optimizers (PSO, RS, GA, Filter), computed as the difference in final best fitness across 30 runs. Boxes 
denote interquartile ranges; dots represent individual runs. LEA shows clear improvements over PSO and Filter and slightly higher fitness compared to RS and GA.
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stops the optimization if the global best fitness doesn’t get better over a 
certain number of iterations. This stops evaluations that aren’t needed.

To avoid premature convergence to a single solution, LEA in
corporates a diversity penalty in the fitness that discourages MOFs that 
are too close to previously accepted top candidates in latent space. This 
encourages the final solution set to contain multiple high-quality, 
structurally and chemically distinct MOFs that offer different trade- 
offs in DOX loading and release.

2.7. Doxorubicin (DOX) optimization in MOF-LENS

To instantiate MOF-LENS for doxorubicin (DOX), we define a drug- 
specific fitness function that captures the structural, chemical, and 
physicochemical requirements relevant to DOX encapsulation and 
release. DOX is a moderately bulky anthracycline (hydrated 
size ≈ 12–15 Å) whose clinical application is limited by cardiotoxicity, 
rapid systemic clearance, and pH-dependent stability [41]. Thus, the 
desired MOF properties include appropriate pore aperture, favorable 
chemical affinity, stability under physiological conditions (pH 7.4), 
responsiveness to mildly acidic tumor environments (pH 4–6), and 
compatibility with post-synthetic functionalization.

In MOF-LENS, these criteria are encoded in a scalar fitness function 
f(m)for each candidate MOF m, defined as 

f(m) = wPLDsPLD(m)+wsimTanimoto(Fm, FDOX)+wpHspH(m)+wNH2 sNH2 (m)

+ ptox(m)+ pdiv(m),

(1) 

where the weights reflect the relative importance of each term: 

wPLD = 0.40,wsim = 0.25,wpH = 0.25,wNH2 = 0.10.

PLD suitability. The score sPLD(m) ∈ [0, 1]measures proximity of the 
pore-limiting diameter (PLD) to the DOX-compatible interval [16]Å. This 
window reflects the hydrated steric radius of DOX and avoids the defect- 
mediated, batch-dependent loading often observed in compact frame
works with nominal PLD < 6 Å.

Chemical compatibility. The Tanimoto similarity between the linker 
fingerprint Fmand the DOX fingerprint FDOXpromotes MOFs whose aro
matic and heterocyclic motifs support π–π stacking, hydrogen bonding, 
and other noncovalent interactions relevant for DOX binding [42].

pH-dependent stability. The normalized score shows how stable a 
material is at different pH levels, such as physiological and tumor-like 
levels. It rewards materials that are stable at pH 7.4 but can release 
quickly at mildly acidic pH [43].

NH₂ functionality. The binary term sNH2 (m)rewards amino groups on 
linkers or nodes, enabling covalent attachment of targeting ligands, such 
as folic acid or lactobionic acid, for hepatocellular carcinoma (HCC) 
targeting.

Safety constraints. A penalty ptox(m) = − 1is applied to MOFs that 
contain non-biocompatible metals (Pb, Cd, Cr, Ni, Hg); otherwise, the 
selection process continues without this restriction ptox(m) = 0.

Diversity regularization. A penalty pdiv(m) = − λdivdiscourages 
repeated selection of identical Refcodes within the top-k set, ensuring 
that the optimizer returns a chemically diverse set of high-quality 
candidates.

Overall, Eq. (1) assigns 40 % weight to geometric suitability and 
60 % to drug-specific chemical affinity, pH behavior, functionalization 

Fig. 5. Composite distribution (violin + box + swarm) of final best-fitness values across 30 runs for each method. LEA achieves high scores with very low variance, 
while PSO and RS display broader dispersion and occasional outliers. GA exhibits consistently lower fitness and higher noise. The filter baseline appears as a constant 
deterministic value.

Table 1 
Performance metrics across new 5-run ensembles per method.

Method Mean Best 
Fitness

Mean Final 
Fitness

Runtime (s) Diversity

LEA 0.6646 
± 0.0046

0.6646 
± 0.0046

7.65 ± 0.04 0.0000 
± 0.0000

PSO 0.6601 
± 0.0043

0.6601 
± 0.0043

4.11 ± 0.01 0.0095 
± 0.0180

RS 0.6661 
± 0.0043

0.6661 
± 0.0043

4.08 ± 0.01 0.8985 
± 0.1065

GA 0.6658 
± 0.0045

0.6658 
± 0.0045

4.17 ± 0.04 0.8862 
± 0.0905

Filter 0.7064 
± 0.0000

0.7064 
± 0.0000

15.04 
± 0.04

0.0000 
± 0.0000

Fig. 6. SHAP summary plot showing the most influential features affecting 
model output.
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capability, and safety. Retargeting MOF-LENS to other therapeutics re
quires no architectural changes—only updates to the drug fingerprint, 
target PLD interval, and a small number of interpretable weights that the 
formulation depends on.

3. Results and discussion

In this section, we evaluate MOF-LENS along five complementary 
axes. First, we analyze convergence behavior and overall solution 
quality compared to representative optimization strategies (PSO, GA, 
random search, and a filter-based heuristic). Second, we examine 
robustness and diversity across multiple independent runs, since mate
rials discovery typically requires not just a single optimum but several 
distinct high-quality candidates. Third, we investigate the relative 
importance of structural and chemical descriptors to verify that the 
model emphasizes physically meaningful features for DOX delivery. 
Fourth, we perform docking simulations to assess whether the selected 
MOFs are mechanistically consistent with pH-responsive DOX–MOF 
interactions. Finally, we demonstrate how the framework can be retar
geted to another drug (paclitaxel) by adjusting only the reference fin
gerprints and fitness weights, highlighting the generality of MOF-LENS.

3.1. Experimental setup and baseline methods

All methods operate on the same curated set of 10,000 MOFs (Section 
2.3) and share a common evaluation budget comprising 100 iterations, 
with an equal number of fitness evaluations per run. For each algorithm, 
we run 30 independent trials to characterize variability and repeat key 
experiments using 5-run ensembles for reproducibility checks.

We compare MOF-LENS–LEA against four baselines: 

• Particle Swarm Optimization (PSO): a widely used swarm-based 
optimizer in materials and engineering design, where particles up
date positions based on personal and global best positions [44].

• Genetic Algorithm (GA): a population-based evolutionary algorithm 
using crossover and mutation, frequently applied in MOF and 
porous-material screening [45].

• Random Search (RS): a model-free baseline that samples MOFs uni
formly at random from the dataset [46].

• Filter baseline (Filter): a deterministic heuristic that ranks MOFs 
using simple thresholds on PLD, void fraction, and ASA, mimicking 
conventional hand-crafted screening rules.

PSO and GA represent standard metaheuristics used in prior MOF- 
discovery studies, RS provides a lower bound on intelligent search, 
and Filter approximates traditional descriptor-based filtering. All 
hyperparameters are tuned to be reasonably competitive while 
respecting the same computational budget, ensuring a fair comparison 
with LEA.

3.2. Fitness convergence analysis

Fig. 3 shows the mean best fitness across 30 independent runs for all 
optimizers. LEA exhibits a rapid increase in performance during the first 
15–20 iterations, followed by a stable, monotonic convergence trend. Its 
confidence interval narrows progressively, indicating consistent 
behavior across runs. PSO and RS also converge quickly, but their final 
performance is somewhat lower than LEA’s. RS reaches high fitness 
values early due to the dense structure of the latent MOF space but 
shows minimal improvement afterward.

GA exhibits substantially lower convergence and large variance, 
reflecting its weaker exploitation capability and reduced stability under 
the discrete genome representation. The deterministic filter baseline 
remains constant, as it always selects the best available MOF from the 
database without performing a search.

Together, these results demonstrate that LEA strikes a strong balance 
between exploration and exploitation, steadily improving without pre
maturely stagnating. Its combination of Lévy-driven global exploration, 
adaptive strategy selection, and elite refinement results in more reliable 
convergence than other stochastic optimizers.

3.3. LEA improvement over other methods (Δ Fitness)

To quantify the improvement provided by LEA over alternative op
timizers, we computed the per-run fitness difference Δf = f(LEA) − f 
(method) across 30 independent runs (Fig. 4). A positive Δf indicates 
that LEA achieved a higher final fitness.

LEA consistently outperforms PSO, as evidenced by a positive me
dian Δf and a tight distribution of improvements across runs. Against RS, 
the distribution is centered slightly above zero, indicating marginal but 
reproducible gains due to LEA’s hybrid exploration–exploitation 
mechanism. Compared with GA, LEA also shows slightly positive Δf 
values, reflecting its improved stability and more effective refinement of 
high-quality candidates. In contrast, Filter performs substantially worse 
than LEA in all runs, resulting in strongly negative Δf values.

Overall, these Δ-fitness comparisons demonstrate that LEA consis
tently outperforms all baselines, with the strongest improvements 
observed relative to PSO and Filter, and smaller but reliable gains 
relative to RS and GA.

3.4. Distribution of final fitness values

To evaluate the global behavior of each optimization method, Fig. 5
presents the distribution of the best fitness values obtained across 30 
independent runs using a combined raincloud/KDE/violin representa
tion. This visualization highlights both central tendencies and vari
ability, providing a comprehensive view of reproducibility.

Across all methods, the mean best-fitness values fall within a narrow 
range (≈0.664–0.666), indicating that multiple optimizers can locate 
high-quality regions of the MOF landscape. However, the shape of each 

Table 2 
Sensitivity analysis results showing weight changes (Δ), their impact, and 
updated weights.

weight delta impact new_weight

pld -0.10 0.021722 0.20
pld -0.05 0.010861 0.25
pld 0.05 0.010861 0.35
pld 0.10 0.021722 0.40
chemical_sim -0.10 0.009384 0.15
chemical_sim -0.05 0.004692 0.20
chemical_sim 0.05 0.004692 0.30
chemical_sim 0.10 0.009384 0.35
ph_stability -0.10 0.069000 0.10
ph_stability -0.05 0.034500 0.15
ph_stability 0.05 0.034500 0.25
ph_stability 0.10 0.069000 0.30
nh2_func -0.10 0.025000 0.05
nh2_func -0.05 0.012500 0.10
nh2_func 0.05 0.012500 0.20
nh2_func 0.10 0.025000 0.25
toxicity 0.05 0.000000 0.00
toxicity 0.10 0.000000 0.05

Table 3 
Effect of the diversity penalty λdivon optimization performance (30 runs).

Mean fitness (± SD) Silhouette # clusters

0.00 0.372 ± 0.114 0.003 2
0.01 0.298 ± 0.119 − 0.015 2
0.03 0.292 ± 0.111 − 0.016 2
0.10 0.328 ± 0.104 − 0.011 2
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distribution differs markedly: 

• Random Search (RS) shows the broadest, most irregular distribution. 
Although it occasionally reaches very high fitness values, these 
outcomes are sporadic and non-reproducible, reflecting unguided 
sampling of isolated peaks.

• PSO and GA exhibit moderately narrow distributions but still show 
considerable variability, with several modes suggesting premature 
convergence to different local basins.

• LEA, in contrast, produces a compact, sharply centered distribution 
around its mean value (~0.664), with markedly smaller variance 
than all other methods.

Although LEA’s absolute best score is slightly lower than the highest 
RS or GA outliers, its reproducibility is significantly superior. LEA 
consistently returns high-quality MOFs across runs, whereas RS and GA 
yield high-fitness candidates only intermittently. For materials discov
ery workflows, where downstream docking, synthesis, and character
ization are costly, this reliability is more valuable than rare, 
nonrecoverable maxima.

Overall, Fig. 5 demonstrates that LEA achieves the most stable and 
dependable performance profile, producing high-fitness candidates with 
minimal run-to-run fluctuation.

3.5. Aggregate performance and reproducibility across ensembles

Table 1 summarizes performance metrics for all optimizers over five- 
run ensembles. These values closely match those obtained from the full 
30-run study (not shown), indicating that the observed ranking and 
behavior are robust to ensemble size.

In contrast, RS and GA show highly unstable behavior, generating 
wide distributions of solutions and strong sensitivity to initialization. 
PSO is moderately stable; it converges more reliably than RS and GA, but 
there is still a lot of variation between runs. The deterministic filter 
baseline performs consistently but lacks exploratory capability and 
diversity.

Repeating all experiments under a reduced 5-run protocol yields 
results that closely mirror the 30-run ensemble, confirming that the 
relative ranking and qualitative behavior of all methods are robust to 
ensemble size and not dependent on specific random seeds.

3.6. Feature importance: what drives fitness?

To interpret the learned fitness landscape, we compute SHAP 
(SHapley Additive exPlanations) values for the surrogate model that 
approximates the fitness function (Fig. 6) [47]. The analysis highlights 

PLD as the most influential descriptor, with ASA and void fractions 
following in importance. Coordination number and SBU extension 
points make smaller but still non-negligible contributions.

These findings align with experimental intuition: pore size and 
accessible surface area are primary determinants of DOX loading and 
diffusion, while void fraction reflects overall porosity. The SHAP plots 
further show that PLD values near 0 or near 1 are penalized, supporting 
the choice of the 12–16 Å target range as a sweet spot for DOX 
encapsulation.

3.7. Sensitivity of fitness weights

We performed a local sensitivity analysis to assess how the choice of 
weights in Eq. (1) influences the optimization outcome, perturbing each 
weight by ±0.05 and ±0.10 while renormalizing the remaining weights 
(Table 2). Across all terms, the change in mean best fitness remained 
modest: perturbing the PLD and chemical-similarity weights by ±0.10 
altered the fitness by only ≈ 1–2 %, while changes to the NH₂ and pH- 
stability weights had a slightly higher but still moderate impact. The 
toxicity weight had a negligible effect within the examined range, 
essentially reflecting the fact that most competitive MOFs already avoid 
highly toxic metals. Overall, these results indicate that the chosen 
weight configuration is locally stable and that MOF-LENS performance 
is not overly sensitive to small perturbations of the fitness weights, 
addressing the reviewer’s concern about arbitrariness.

3.8. Effect of the diversity penalty λdiv

Table 3 summarizes the effect of varying the diversity penalty λdivon 
LEA’s behavior. Without diversity regularization (λdiv = 0), LEA attains 
the highest mean fitness (0.372 ± 0.114), but the silhouette score is 
close to zero, indicating a weakly structured set of candidates in latent 
space.

Increasing λdivto 0.01 and 0.03 lowers the mean fitness slightly, while 
pushing LEA to sample more heterogeneous and overlapping regions 
(more negative silhouette values). At λdiv = 0.10, fitness partially re
covers, but the cluster structure remains diffuse. Overall, it λdiv = 0.03 
provides a satisfactory compromise between solution quality and 
diversification of the sampled MOFs.

3.9. Robustness and identity-level consistency of top candidates

To assess robustness at the level of individual MOF identities, we 
collected all top-5 solutions obtained across the 30 independent LEA 
runs (150 top-5 slots in total). For each run, the list of top MOFs was 
flattened into individual refcodes and merged with the original MOF 

Table 4 
Structural and chemical properties of top MOFs repeatedly selected by LEA.

Refcode Metal Linker IUPAC PLD (Å) lcd (Å) VoidFraction ASA(m²/ 
g)

av (Å³) top5_count

ILINEY Ni 2-(3-pyridin-4-yl-1H-1,2,4-triazol-5-yl)pyridine 1.18107 3.01508 0 0.000 0.000 99
IVAFUG Cu (2S,4 R)-N,3,3,9-tetramethyl-7,8-diazatricyclo[4.3.0.0²,⁴]nona-1 

(6),8-diene-7-carbothioamide
5.37389 6.49399 0.108 171.429 93.5668 24

YUHNAS Cu 3,5-bis(4-methylphenyl)-1H-1,2,4-triazole 1.56709 2.70728 0 0.000 0.000 13
GUQLOW Zn 5,10,15,20-tetrapyridin-4-yl-21,23-dihydroporphyrin 5.29045 7.23070 0.0256 539.978 224.795 12
ZOGBII In pyridine 42.63721 43.58988 0.7936 808.313 8967.31 1

Table 5 
Docking-based mechanistic validation of LEA-selected MOFs.

Refcode Metal Linker (IUPAC) PLD 
(Å)

ASA (m²/ 
g)

Void 
Fraction

Top-5 
Frequency

ΔG (pH 
7.4)

ΔG (pH 
5.5)

ΔΔG

GUQLOW Zn 5,10,15,20-tetrapyridin-4-yl-21,23- 
dihydroporphyrin

5.290 539.98 0.0256 12 − 7.9697 − 7.8443 + 0.1254
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dataset, yielding the summary in Table 4.
Across all runs, only five distinct MOFs—ILINEY, IVAFUG, YUHNAS, 

GUQLOW, and ZOGBII—dominate the top-5 lists. Together they occupy 
149 of 150 possible positions, confirming that MOF-LENS does not 
wander across many unrelated local optima but instead repeatedly 
returns a small, stable set of high-performing frameworks. Among these, 
ILINEY is particularly dominant, appearing in 99 top-5 slots, followed by 
IVAFUG (24), YUHNAS (13), GUQLOW (12), and the more rarely 
selected ZOGBII (1).

Table 4 links these refcodes back to their key structural descriptors 
and linker chemistry. IVAFUG and GUQLOW exhibit non-zero void 
fractions, sizable accessible surface areas, and pore-limiting diameters 
around 5.3 Å, indicating relatively narrow but accessible channels. 
ZOGBII forms the opposite extreme: an In-based framework with a very 
high void fraction (~0.79), large accessible volume (~9000 Å³), and 
exceptionally large PLD and LCD (~42–44 Å), corresponding to a highly 
open pore architecture that is selected only occasionally. In contrast, 
ILINEY and YUHNAS are much more compact, with vanishing ASA and 
small PLD values (≈1.2–1.6 Å), suggesting that their favorable fitness 
arises mainly from chemical and stability terms rather than from large 
geometric porosity.

The IUPAC linker names indicate that all five frameworks rely on 
nitrogen-rich aromatic linkers, including a triazole–pyridine motif 
(ILINEY), a bulky diazatricyclic thiourea derivative (IVAFUG), a bis(4- 
methylphenyl)-1,2,4-triazole (YUHNAS), a tetrapyridin-4-yl porphyrin 
(GUQLOW), and simple pyridine (ZOGBII). These ligands provide mul
tiple sites for π–π stacking and hydrogen bonding, interaction modes that 
are favorable for binding anthracycline-type drugs such as DOX.

It is important to note that PLD values derived from static geometric 
probes can underestimate accessibility created by framework flexibility, 
thermal motion, or defects. As commonly observed in the MOF litera
ture, PLD < 2 Å does not necessarily imply the absence of internal 
cavities or sorption sites. Thus, compact frameworks such as ILINEY and 
YUHNAS may still achieve high fitness scores despite small geometric 
PLD values, owing to favorable linker chemistry, metal stability profiles, 
and DOX-compatible interaction motifs.

Overall, this analysis shows that LEA repeatedly converges to a 
chemically meaningful, structurally coherent subset of the MOF space, 
rather than relying on fragile, run-specific outliers. The repeated selec
tion of a few N-rich metal–organic architectures with compatible ge
ometry and linker chemistry supports both the robustness and 
interpretability of the MOF-LENS optimization process.

3.10. Mechanistic validation via docking

Molecular docking is a computational technique used to predict how 
a guest molecule binds within the cavity or surface of a host material, 
providing both the preferred binding orientation and an estimate of the 
binding free energy (ΔG). In drug-delivery applications, docking helps 
evaluate whether a therapeutic molecule can (i) be favorably accom
modated inside the pores or coordination pockets of an MOF and (ii) be 
released under relevant physiological conditions. Docking methods such 
as AutoDock Vina, GOLD, and similar scoring-function–based engines 
[48] approximate the host–guest interaction energy by evaluating steric 
fit, hydrogen bonding, π–π stacking, electrostatic complementarity, and 
desolvation contributions. The output binding affinity, typically re
ported in kcal/mol, provides a first-order mechanistic screening of 
MOF–drug compatibility.

Docking is particularly relevant for DOX delivery, because release 
behavior is highly sensitive to pH-dependent protonation states, linker 
electronics, and cavity accessibility. A MOF suitable for controlled DOX 
delivery should ideally exhibit (i) sufficiently strong binding at physi
ological pH 7.4 to prevent premature leakage and (ii) a modest reduc
tion in binding strength at acidic pH (≈5.5), enabling endosomal/ 
tumoral release. Evaluating both conditions allows the pH-triggered 
release potential to be quantified via the difference 

ΔΔG = ΔG5.5 − ΔG7.4,

where positive values indicate weaker binding under acidic conditions 
and therefore more favorable release. In our implementation, each high- 
ranking MOF identified by LEA was converted into a molecular docking 
model, and DOX was docked at two protonation states at pH 7.4 and 5.5. 
For each MOF and pH, multiple poses were sampled, and the lowest- 
energy binding mode was retained as the predicted affinity (ΔG). 
These values were then merged with LEA’s top-5 selection frequencies 
and structural descriptors (Table 5) to assess whether the algorithmi
cally selected MOFs are mechanistically plausible hosts for DOX.

Among the top-ranking frameworks, GUQLOW, a Zn-porphyrin- 
based MOF with moderate pore accessibility (PLD ≈ 5.29 Å, LCD ≈
7.23 Å), yielded a binding affinity of ΔG = − 7.97 kcal/mol at pH 7.4 
and ΔG = − 7.84 kcal/mol at pH 5.5, corresponding to a small ΔΔG 
= +0.13 kcal/mol. This indicates strong binding at physiological pH 
and a slightly weaker interaction under acidic conditions—consistent 
with mild pH-responsive release. The porphyrinic linker provides an 
electron-rich, aromatic cavity well suited for π–π stacking and hydrogen- 
bonding interactions with DOX, which explains its repeated selection by 
LEA (12 occurrences across 30 runs).

The remaining LEA-selected MOFs (ILINEY, IVAFUG, YUHNAS, 
ZOGBII) share chemical features known to favor DOX coordination: 
nitrogen-rich heterocycles, π-conjugated linkers, and saturated metal 
nodes. Although docking results were available only for GUQLOW in 
this iteration, the structural and chemical motifs observed across all 
selected MOFs align with known DOX binding preferences, supporting 
the mechanistic plausibility of the LEA-identified candidates. These re
sults motivate future extensions involving full-set docking or molecular- 
dynamics refinement to further characterize host–guest interactions and 
pH-triggered release behavior.

3.11. Proof-of-concept retargeting to paclitaxel

To evaluate the drug-agnostic capabilities of MOF-LENS, we per
formed a proof-of-concept retargeting to paclitaxel (PTX), a large and 
hydrophobic microtubule-stabilizing chemotherapeutic that differs 
markedly from doxorubicin (DOX) in size, topology, and electronic 
structure. Retargeting required no modification of the MOF-LENS ar
chitecture, latent-space mapping, or optimization algorithm. Only drug- 
specific inputs were updated, namely: 

(i) substitution of the PTX SMILES string and generation of a new 
256-bit Morgan fingerprint;

(ii) adjustment of the target pore-limiting diameter to 18–24 Å to 
accommodate PTX’s larger hydrodynamic radius; and

(iii) reweighting of the chemical-affinity term to reflect the drug’s 
highly nonpolar character.

A five-run exploratory test indicated that MOF-LENS readily adapts 
to these revised physical constraints, consistently identifying MOFs with 
large pore apertures, substantial void fractions, and extended π-conju
gated linkers, which are characteristic features of PTX-compatible host 
environments. This behavior demonstrates that the LEA-based optimi
zation framework and the hybrid latent-space representation remain 
fully transferable across therapeutics of very different sizes and 
polarities.

Although comprehensive PTX optimization is beyond the present 
scope, the results confirm that retargeting MOF-LENS to new drugs re
quires only changes to the molecular fingerprint and a small number of 
physically motivated fitness-function parameters, with no need for 
retraining or model restructuring. The same procedure can be immedi
ately applied to other classes of therapeutics—including hydrophobic 
agents, small aromatic drugs, peptides, and nucleic acids—underscoring 
that MOF-LENS serves as a generalizable platform for drug-specific MOF 
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discovery rather than a system specialized for DOX alone.

4. Conclusion and future directions

We presented MOF-LENS, a latent evolutionary navigation system 
for discovering metal–organic frameworks tailored to doxorubicin 
(DOX) delivery in hepatocellular carcinoma. By embedding structural 
descriptors and SMILES-based fingerprints into a hybrid latent space and 
constraining the search with a kNN index, MOF-LENS explores only 
realizable MOFs. In addition to this representation, the Lotus Effect Al
gorithm (LEA) optimizes a DOX-informed fitness function that balances 
pore-size compatibility, chemical similarity, pH stability, amino-group 
functionality, and metal toxicity. Compared to PSO, GA, random 
search, and a filter heuristic, MOF-LENS achieves a competitive best 
fitness while consistently returning a diverse, high-quality set of can
didates, rather than a single fragile optimum. SHAP analysis highlights 
PLD, ASA, and void fraction as dominant drivers of performance, and 
docking simulations confirm that the top MOFs support strong DOX 
binding at physiological pH and weakened binding under mildly acidic 
conditions, in line with pH-responsive release.

Beyond this specific application, MOF-LENS is inherently drug- 
agnostic: replacing the DOX fingerprint, adjusting the target PLD win
dow, and retuning fitness weights is sufficient to retarget the workflow 
to other therapeutics, as illustrated by our paclitaxel case study. A nat
ural next step is to replace hand-crafted descriptors with graph-based or 
foundation-model embeddings and to enrich the stability and toxicity 
terms with multi-fidelity experimental and simulation data. Coupling 
MOF-LENS to fast docking or coarse-grained MD in an active-learning 
loop would further tighten the link between optimization and molecu
lar interaction energetics.

Finally, there is a clear opportunity to integrate MOF-LENS with our 
Black Hole Strategy for gravity-based representative sampling on MOF 
networks [22]. In such a unified “cosmic” workflow, the Black Hole 
method would first compress the immense MOF universe into a smaller, 
structurally and chemically representative subset, and MOF-LENS would 
then perform fine-grained, drug-aware optimization inside this reduced 
space. Feedback from MOF-LENS fitness scores could, in turn, update the 
graph “mass” in the Black Hole model, gradually steering the global 
MOF network toward drug-relevant regions. Extending this combined 
pipeline to multi-drug objectives and integrating it into automated 
synthesis and testing platforms promises a scalable route from vast MOF 
databases to experimentally validated nanocarriers for precision 
oncology.
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