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Metal-organic frameworks (MOFs) are crystalline materials characterized by adjustable porosity and chemical
properties, rendering them effective carriers for doxorubicin (DOX) in the treatment of hepatocellular carcinoma
(HCCQ). The extensive design space complicates the identification of metal-organic frameworks (MOFs) that
simultaneously optimize doxorubicin (DOX) loading, pH-responsive release, and biocompatibility. We introduce
MOF-LENS (Latent Evolutionary Navigation System), a bio-inspired framework that integrates structural de-
scriptors (pore size, surface area, void fraction) and SMILES-based fingerprints into a unified latent space. This
framework employs the previously published Lotus Effect Algorithm (LEA) to identify high-quality MOF nano-
carriers. In benchmarks comparing particle swarm optimization, genetic algorithms, random search, and a
deterministic filter baseline across 30 independent runs, MOF-LENS achieves comparable or superior best fitness
with significantly reduced variance, resulting in a consistent set of top candidates rather than isolated outliers.
The chosen MOFs demonstrate pore-limiting diameters within the DOX-compatible range (12-16 A) and exhibit a
strong chemical affinity for DOX. Docking calculations validate substantial binding at physiological pH, with
interactions slightly diminished under mildly acidic conditions, aligning with controlled release mechanisms.
While illustrated for DOX in HCC, MOF-LENS is applicable to various drugs; retargeting to alternatives like
paclitaxel necessitates merely the modification of the drug fingerprint, pore-size window, and a limited set of
fitness weights.

1. Introduction especially in the treatment of hepatocellular carcinoma (HCC) [5,6]. The

conceptual mechanism of DOX encapsulation within a MOF carrier and

Metal-Organic Frameworks (MOFs) are crystalline, porous materials
made up of metal nodes connected by organic linkers. They have very
high surface areas (up to 7000 m?/g), pore sizes that can be changed
from 0.2nm to 10nm, and a wide range of chemical properties [1].
These properties position MOFs as transformative materials for appli-
cations including gas storage, catalysis, separation, environmental
remediation, and biomedical drug delivery [2-4]. In cancer therapy,
MOFs are particularly promising for delivering chemotherapeutic
agents, such as doxorubicin (DOX), addressing critical challenges
including poor drug solubility, off-target effects, and premature release,

its interaction with cancer cells is illustrated in Fig. 1, highlighting how
porous MOF structures can transport DOX through the bloodstream and
release it in the tumor microenvironment.

From a drug-delivery perspective, MOFs excel due to four key attri-
butes. First, their large surface areas and tunable pores enable a high
drug-loading capacity [7,8]. Second, many MOFs support
stimuli-responsive release, where payloads are discharged under
tumor-specific conditions such as acidic pH or elevated glutathione [9],
thereby reducing off-target toxicity. Third, functional groups such as
amino moieties allow conjugation with targeting ligands (e.g., folic acid
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Cancer cells

Fig. 1. Schematic of a Metal-Organic Framework (MOF, blue) encapsulating doxorubicin (DOX) and interacting with cancer cells (red/orange), highlighting targeted

drug delivery potential (Al-generated).

or lactobionic acid), enabling selective uptake by cancer cells. Finally,
MOFs constructed from biocompatible metals (e.g., Zr, Fe) exhibit low
toxicity and high stability under physiological conditions (pH 7.4) [10].
Recent studies on Zn-MOF-74 nanocarriers—coated with polydopamine
or sodium alginate and synthesized in pH-responsive forms—illustrate
these advantages by demonstrating high drug-loading capacity,
enhanced biocompatibility and stability, and pH-triggered release of
DOX or 5-FU in cancer models [11-13]. However, the vast combinatorial
space of MOFs, driven by diverse metal nodes, organic linkers, and
secondary building units (SBUs), identifies optimal drug carriers. The
interplay of structural properties (e.g., pore size for drug loading) and
chemical properties (e.g., linker functionality for targeting) necessitates
a unified optimization approach [14].

For instance, NH»-UiO-66, with a pore limiting diameter (PLD) of
approximately 6 A, has demonstrated effective DOX encapsulation
through framework defects and cavities, enabling pH-responsive release
in acidic tumor microenvironments (pH 4-6) [15]. However, relying on
defects can lead to inconsistent performance, prompting MOF-LENS to
target a PLD range of 12-16 A, which aligns with the hydrodynamic
diameter of DOX (12 A to 15 10\) for optimized loading and controlled
release without structural irregularities, as supported by molecular
simulations [16,17].

Traditional MOF discovery and screening strategies can be broadly
categorized into three main groups. High-throughput experimental
screening synthesizes and tests large MOF libraries; however, it is labor-
intensive, time-consuming, and costly [18]. Computational simulations,
such as molecular dynamics (MD) and density functional theory (DFT),
offer atomistic insights into MOF-drug interactions; however, they
necessitate considerable computational resources and present chal-
lenges in scaling to tens of thousands of candidates [19]. Heuristic
design strategies, such as isoreticular synthesis, systematically modify
known frameworks but inherently limit exploration of the full chemical
and structural diversity of MOFs [20]. More recently, data-driven and
graph-based approaches—including our MOFGalaxyNet and MOFSo-
cialNet frameworks, as well as network sparsification methods such as
the Black Hole strategy and inverse link prediction—have begun to
leverage large MOF corpora and connectivity information to improve
property prediction and dataset quality. Nevertheless, these approaches
have so far focused primarily on graph representation and screening for
general material properties rather than explicitly optimizing MOF can-
didates for multi-objective drug-delivery criteria [21-24]. These ap-
proaches rarely integrate structural and chemical descriptors within a

unified, data-driven optimization pipeline.

The combinatorial diversity of MOFs, with over 100,000 synthesized
and millions of hypothetical structures, renders manual or experimental
screening infeasible [25,26]. Traditional approaches, including
high-throughput experimental screening, molecular dynamics simula-
tions, or heuristic design rules such as isoreticular synthesis, are
resource-intensive and often fail to integrate structural properties (e.g.,
pore size distribution, void fraction, accessible surface area (ASA)) with
chemical properties (e.g., linker functionality, coordination environ-
ment) [27].

To address these challenges, we introduce MOF-LENS (Latent
Evolutionary Navigation System), a multi-modal optimization frame-
work that combines structural property optimization (void fraction,
ASA, PLD, coordination number), chemical structure representation via
SMILES-based fingerprints for linkers, SBUs, and metal clusters, and bio-
inspired evolutionary search using the Lotus Effect Algorithm (LEA) to
balance drug-loading efficiency, pH-responsive release, and targeting
potential in a unified multi-objective setting.

To overcome these limitations, various optimization and machine-
learning techniques have been proposed for MOF discovery. Genetic
Algorithms (GA) and Differential Evolution (DE) have been used to
optimize MOFs for gas storage and catalysis based mainly on structural
descriptors such as void fraction and surface area [28,29]. Particle
Swarm Optimization (PSO) and Simulated Annealing (SA) have also
been explored, but they often struggle with the high-dimensional,
multimodal nature of MOF design, particularly when multiple struc-
tural and chemical objectives must be balanced simultaneously [30].
Machine-learning models, including random forests and neural net-
works, can accurately predict specific MOF properties but typically
require large, curated datasets and are less suited to direct
multi-objective optimization over a complex design space [31].
Bio-inspired metaheuristics, such as Ant Colony Optimization (ACO) and
Artificial Bee Colony (ABC), show promise for navigating rugged search
landscapes; however, they have been rarely applied to systematic MOF
discovery [32,33]. In general, current methods either focus on structural
screening and ignore chemistry, or they offer predictive models without
a built-in optimization framework that can find a wide range of
high-quality candidates.

The Lotus Effect Algorithm (LEA), inspired by the self-cleaning
properties of lotus leaves, offers a compelling alternative. LEA em-
ploys Lévy-flight-based exploration with dynamically adapted step sizes
to navigate multimodal landscapes efficiently [34,35]. Unlike classical
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Fig. 2. Overview of the MOF-LENS framework, showing sequential stages: data preprocessing, hybrid structural-chemical encoding, KNN mapping, and optimization
with the Lotus Effect Algorithm (LEA) to identify MOFs for cancer drug delivery.
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swarm methods with uniform particle updates, LEA adjusts particle
movements according to search progress, enhancing its ability to escape
local optima and maintain solution diversity. Originally introduced in
our previous work, LEA has demonstrated superior performance in en-
gineering optimization tasks, such as welded-beam design, compared to
several established metaheuristics. Its recent extension, Multimodal LEA
(M-LEA), further improves robustness by evolving subpopulations to
identify multiple high-quality solutions and approximate Nash equi-
libria in complex problems. In the present study, these exploration and
diversity-preserving properties are particularly advantageous because
MOF-LENS must search a high-dimensional structural-chemical design
space (void fraction, ASA, PLD, coordination environment, toxicity, pH
stability, and DOX similarity) and identify not just a single optimum, but
multiple MOFs with distinct architectures that are all suitable for DOX
delivery. These characteristics make LEA particularly well-suited for
MOF discovery, where structural and chemical descriptors must be in-
tegrated in a high-dimensional, multimodal search space, and where the
diversity of solutions is as important as the individual optimum quality.

In this work, we build on LEA to develop MOF-LENS (Latent Evolu-
tionary Navigation System), a bio-inspired, multi-modal optimization
framework for discovering MOFs tailored to DOX delivery in HCC. MOF-
LENS combines structural property optimization (void fraction, acces-
sible surface area, pore limiting diameter, and coordination number)
with chemical structure representation via SMILES-based fingerprints
for linkers, secondary building units, and metal clusters. Additionally, it
features an LEA-driven evolutionary search that jointly balances drug-
loading efficiency, pH-responsive release, targeting potential, and
biocompatibility. Applied to a curated dataset of 10,000 MOFs from the
Cambridge Structural Database, MOF-LENS identifies candidates with
PLD in the target range of 12-16 A, high chemical similarity to DOX, and
low predicted toxicity. The remainder of this paper is organized as fol-
lows. First, we describe the MOF dataset, structural and chemical feature
extraction, and encoding used in MOF-LENS. We then present the LEA-
based optimization framework and the multi-objective fitness function
for DOX delivery. Next, we present and discuss the optimization results,
including the identification of top-performing MOFs and sensitivity
analyses of key descriptors. Finally, we summarize the main findings,
discuss limitations, and outline future directions for integrating MOF-
LENS into broader MOF discovery pipelines for precision cancer
therapy.

2. Method
2.1. Overview of the MOF-LENS framework

Fig. 2 summarizes the overall workflow of MOF-LENS, which trans-
forms a heterogeneous MOF database into a small set of optimized
candidates for targeted drug delivery. The framework proceeds from left
to right through six main stages: (i) input dataset construction, (ii)
structural encoding, (iii) chemical encoding, (iv) construction of a
hybrid latent space, (v) optimization with the Lotus Effect Algorithm
(LEA), and (vi) selection of optimized MOFs for doxorubicin (DOX)
delivery.

The pipeline starts from an input dataset of experimentally reported
and hypothetical MOFs together with basic metal, linker, and toxicity
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information. These raw structures are standardized and filtered to retain
only chemically reasonable and potentially biocompatible frameworks,
providing a consistent starting point for all subsequent stages.

In the structural encoding block, each MOF is linked to a small group
of geometric descriptors that describe its pore structure. These de-
scriptors include the void fraction, accessible surface area, pore-limiting
diameter, coordination number, and SBU-related features. At the same
time, a chemical encoding block uses SMILES-based fingerprints,
explicit detection of protonatable amino groups (NH2), and a lookup of
known metal toxicity to show the organic linker chemistry and func-
tional groups. These two encoders work together to turn complicated
crystal structures and chemistries into feature vectors that computers
can read.

These descriptors are then merged into a hybrid latent space, where
each MOF occupies a single point defined jointly by its structural and
chemical signatures. A hybrid distance metric balances structural simi-
larity with chemical similarity, ensuring that MOFs close to each other
are similar in both pore geometry and linker chemistry relevant for DOX
binding. A k-nearest-neighbor (kNN) index on this space allows efficient
mapping between continuous design points and the nearest realizable
MOF structures.

The optimization engine operates on this latent space. A multimodal
representation combines all structural, chemical, and domain-specific
criteria into a single fitness landscape that describes suitability for
DOX delivery. The LEA optimization module then explores this land-
scape with a population of particles that move in the continuous latent
space and are repeatedly mapped via kNN to real MOFs. Their fitness
reflects DOX compatibility (pore size and chemical similarity), pH-
responsive release behavior, and toxicity constraints.

The final block, optimized MOFs for targeted drug delivery, collects
the best-performing candidates identified by LEA. These MOFs combine
appropriate pore dimensions for DOX loading, favorable chemical en-
vironments for binding, and features consistent with controlled, pH-
responsive release. In this way, MOF-LENS provides a scalable, data-
driven workflow that connects raw MOF databases to experimentally
testable designs. The following subsection formalizes this workflow in
pseudocode.

2.2. MOF-LENS workflow pseudocode

Algorithm 1 summarizes the MOF-LENS pipeline. Starting from a
curated MOF dataset D, the method (i) performs preprocessing and
feature encoding, (ii) constructs a hybrid structural-chemical latent
space equipped with a k-nearest-neighbor (kNN) index, and (iii) applies
the Lotus Effect Algorithm (LEA) to search this space for high-fitness
MOFs. Each latent particle is mapped back to its nearest realizable
MOF and evaluated by the multi-objective fitness function in Section 2.7
(Eq. 1), which combines PLD, chemical similarity to DOX, pH stability,
amino-group functionality, toxicity, and a small diversity penalty.

Algorithm 2 sketches the fitness evaluation. For each MOF, scalar
scores are computed for PLD proximity, DOX similarity, pH stability, and
NH, functionalization and aggregated with fixed weights and additive
penalty terms. This keeps the optimization loop simple while making the
contribution of each physical factor comprehensible.

Algorithm 1. MOF-LENS Workflow with Lotus Effect Algorithm (LEA)
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Input:

MOF dataset Dwith structural features and linker fingerprints;
DOX fingerprint Fpoy; target PLD interval [12,16] Ao;
population size P = 30; maximum iterations T = 100;
early-stopping patience E = 10; diversity penalty /Luv = 0.03.
Output:

Top-MOFs ranked by fitness.

Stage 1 — Data preprocessing

Remove MOFs containing toxic metals (Pb, Cd, Cr, Ni, Hg).
Validate linker SMILES; discard invalid entries.

Annotate MOFs containing NH, groups.
If| D |[> 10000, subsample Dto 10,000 entries.
Normalize structural features to [1].
Compute 256-bit Morgan fingerprints for each linker and for DOX.
7. If fewer than 10 MOFs fall into the target PLD interval, relax the interval to the 5th—95th PLD percentiles.
Stage 2 — Hybrid similarity and kNN index

ounewNE

8. For MOFs x,y € D, define the hybrid distance
dpyp (%, ¥) = 0.7 | Xstruct = Ystruce 2+ 0.3(1 — Tanimoto(Fy, Fy)).
9. Construct a kNN index over Dusing dpyy,.

Stage 3 — LEA optimisation in latent space
10. Initialize a population of latent particles {pi}f=1 c [0,1]d.

11. For each particle, set its personal best p; « p;; set the global best pas the best among {pf}
12. |Initialize an early-stopping counter C < 0and an empty set of selected MOFs S.
13. Fort=1,..,TwhileC <E:
a. Evaluation. For each particle p;:
i. Map p;to its nearest MOF m; € Dusing the kNN index.
ii. Compute fitness f (m;)via Algorithm 2.
iii. Update p;and pzimprove the current best values.
iv. Insert the Refcode of m;into S(unique entries only).
b. Early stopping. If pgimproved in this iteration, set C « 0; otherwise set C « C + 1.
c. Position update (LEA step). For each particle p;:
i. Propose a new position by combining
— a Lévy-flight exploration step around pg,
— attraction towards its personal best p;, and
— a small differential-type perturbation using randomly selected peers.
ii. Clip the updated p;to [l]d.
iii. Periodically apply a mild local search around pgand re-initialize a subset of particles near pgif the population
diversity falls below a threshold.

Stage 4 — Post-processing
14. Sort all MOFs in Sby fitness in descending order.
15. Return the top-k MOFs with their Refcodes, fitness values and associated descriptors.
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Algorithm 2. Multi-Objective Fitness Evaluation in MOF-LENS
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descriptors that feed the latent space and fitness model (Stage 1 in Al-

Input:
MOF mwith structural features and fingerprint F,;;
DOX fingerprint Fpoy; target PLD interval [12,16] A
pH-stability score s, (m); toxicity flag tox(m);
NH, flag NH,(m); set Sof already selected MOFs;
diversity penalty /Lu-,,.
Output:
Fitness value f(m)and component scores.

1. PLD proximity.

o
’

Compute a scalar score sp; p(m)that equals 1 at the center of the target interval and decreases linearly
outside, with a soft penalty beyond [12,16] Ao(as defined in Eq. 1).

2. Chemical similarity to DOX.
simpox(m) « Tanimoto(Fy, Fpox)-

3.  pH stability.

Spr(m) <normalized stability score in [1].
4. NH, reward.

Snu, (M) < 1if NH;(m) = 1, otherwise 0.
5. Toxicity penalty.

Prox (M) « —1if tox(m) = 1, otherwise 0.
6. Diversity penalty.

Paiv(Mm) < —A44if Refcode(m) € S, otherwise 0.

7. Aggregation.

f(m) = wpypSprp (M) + Wi Simpox (M) + Wy Spr (M) + Wiy, Sy, (M) + Prox (M) + Pain (M),
with fixed weights wp;p = 0.40, wg, = 0.25, w,y = 0.25, and wyy, = 0.10.
8. Return f(m)together with the component scores and penalty terms.

2.3. Data acquisition and curation

MOF-LENS operates on a curated dataset of MOFs extracted from the
Cambridge Structural Database (CSD) [36]. The data are stored as a
comma-separated file containing numerical structural descriptors—void
fraction, accessible surface area (ASA, m?/g), pore limiting diameter
(PLD, A), maximum metal coordination number, and secondary building
unit (SBU) extension points—as well as categorical information on metal
type (e.g., Zr, Fe, Zn) and SMILES strings for organic linkers and SBUs.

To ensure biocompatibility for drug delivery, MOFs containing toxic
metals such as Pb, Cd, Cr, Ni, or Hg are removed via pattern-based
exclusion [10]. SMILES strings are sanitized with RDKit [37], and en-
tries with invalid or unparsable SMILES (~5 % of the dataset) are dis-
carded. Amino groups (-NH>) in linkers and SBUs are detected through
substructure matching, providing a binary feature that later supports
ligand functionalization.

For datasets exceeding 10,000 MOFs, stratified sampling is used to
reduce the working set to 10,000 entries while approximately preserving
the distributions of key descriptors such as PLD and ASA. This cap keeps
the kNN index and optimization tractable without biasing the search.
The initial target design window is PLD = 12-16 A, chosen to match the
hydrodynamic size of doxorubicin (DOX) (~12-15 A). If fewer than 10
MOFs satisfy all target constraints (PLD, void fraction, ASA), the ranges
are relaxed to percentile-based bounds (e.g., 10th-90th for PLD and
5th-95th for other features) to guarantee a sufficiently rich candidate
pool for optimization.

2.4. Descriptor generation and encoding

In the next step, MOFs are encoded into numerical and chemical

gorithm 1). Structural properties are represented by five normalized
features: void fraction, ASA, PLD, maximum metal coordination num-
ber, and SBU extension points. Each feature is scaled to the [0, 1] range
using min-max normalization to ensure comparability across different
units and magnitudes.

Chemical information is encoded using 256-bit Morgan fingerprints
(radius 2) generated from a linker and SBU SMILES with RDKit [38].
These fingerprints compactly represent the presence of local sub-
structures and are used both for Tanimoto similarity calculations and for
the hybrid distance metric. A binary indicator records the presence of
amino groups (NHz), which are relevant for post-synthetic functionali-
zation with targeting ligands.

For missing or invalid SMILES (x5 % of entries), a methane-based
fingerprint (SMILES “C”) is used as a neutral placeholder. Methane’s
minimal structure yields a fingerprint with mostly zero bits, which
avoids introducing artificial similarity to complex linkers. Alternative
imputations (dataset-average fingerprints or all-zero vectors) were
tested on a 1,000-MOF subset and found to increase variance in Tani-
moto scores, reducing the fitness landscape’s stability. DOX is encoded
into a 256-bit Morgan fingerprint in the same way, serving as the
reference molecule in similarity calculations. Metal types are also
retained to drive pH stability and toxicity penalties in the fitness
function.

2.5. Hybrid similarity metric and kNN mapping

To connect continuous design points with realizable MOFs, MOF-
LENS embeds each framework into a hybrid structural-chemical latent
space and equips this space with a k-nearest-neighbor (kNN) index. Each
MOF iis represented by a normalized structural feature vector
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Fig. 3. Convergence behavior of LEA, PSO, RS, GA, and Filter over 100 iterations (mean + SD computed from 30 runs). LEA exhibits stable and consistent
convergence, outperforming PSO and RS in the later stages, while GA shows weak and highly variable performance. The filter baseline remains constant, as it

deterministically selects the best available MOF without requiring a search.

X; = (V, ASA, PLD, Nigoora, Nispy) € [0,1]°

and a 256-bit Morgan fingerprint F;derived from the linker and SBU
SMILES.
Similarity between two MOFs i is quantified by a hybrid distance

d(i,j) = 0.7 || x; — xj||2 + 0.3(1 — Tanimoto(F;, F;)),

where the Euclidean term captures similarity in pore architecture, and
the Tanimoto term captures similarity in linker chemistry [39]. The
weights (0.7 structural, 0.3 chemical) were selected by grid search on a
1,000-MOF validation subset to best align with experimentally reported
DOX loading efficiencies in known MOFs. Sensitivity analysis over
structural weights from 0.6 to 0.8 showed that 0.7 provided the best
balance between pore-size matching and chemical affinity, with < 5 %
variation in aggregate fitness.

A ball-tree kNN index is built using this distance, enabling approxi-
mate nearest-neighbor queries in O(log N)time for a dataset of size N.
During optimization, each particle in latent space is mapped to its
nearest MOF via this index, ensuring that all evaluated candidates
correspond to physically realizable frameworks rather than uncon-
strained points in feature space.

2.6. Lotus Effect Algorithm (LEA) optimization

The Lotus Effect Algorithm (LEA) serves as the optimization engine
of MOF-LENS. Inspired by the self-cleaning and multi-modal surface of
lotus leaves, LEA is designed to explore rugged search spaces while
maintaining a diverse set of promising solutions [34]. In this work, LEA
operates over the hybrid latent space described in Section 2.5.

LEA uses a population of P = 30particles, each representing a point
pi € [0,1]%in normalized structural space. Particles are initialized uni-
formly at random and evolved for at most T = 100iterations. At each
iteration t, the position of each particle is updated via a Lévy-flight step

pl! = clip(p’ +49s\",0,1%),

where 5"is drawn from a Lévy distribution with exponent = 1.5, y%is
the step size, initialized as 4(®) = 0.5 and decayed by a factor of 0.98 at
each iteration, and clip(-)enforces the unit-hypercube bounds [40]. This
combination yields large exploratory jumps in early iterations and finer
local searches as the algorithm converges.

After each update, the particle is mapped via the k-NN index to its
nearest MOF in the dataset, and the corresponding framework is eval-
uated using the fitness function f (Section 2.7 , Eq. 1). The algorithm
maintains a list of the top five unique MOFs found so far, updated
whenever a better candidate is discovered. An early-stopping criterion

LEA Improvement Over Other Methods (A Fitness)

0.01

000 --- S ——

|
I
o

-0.02

Delta Fitness

-0.03

-0.04

-0.05

PSO RS

GA Filter
Method

Fig. 4. A-fitness comparison between LEA and competing optimizers (PSO, RS, GA, Filter), computed as the difference in final best fitness across 30 runs. Boxes
denote interquartile ranges; dots represent individual runs. LEA shows clear improvements over PSO and Filter and slightly higher fitness compared to RS and GA.
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0.69

o
@
@

Best Fitness

D\
y

0.65

RS GA Filter
Method

Fig. 5. Composite distribution (violin + box + swarm) of final best-fitness values across 30 runs for each method. LEA achieves high scores with very low variance,
while PSO and RS display broader dispersion and occasional outliers. GA exhibits consistently lower fitness and higher noise. The filter baseline appears as a constant

deterministic value.

stops the optimization if the global best fitness doesn’t get better over a
certain number of iterations. This stops evaluations that aren’t needed.

To avoid premature convergence to a single solution, LEA in-
corporates a diversity penalty in the fitness that discourages MOFs that
are too close to previously accepted top candidates in latent space. This
encourages the final solution set to contain multiple high-quality,
structurally and chemically distinct MOFs that offer different trade-
offs in DOX loading and release.

2.7. Doxorubicin (DOX) optimization in MOF-LENS

To instantiate MOF-LENS for doxorubicin (DOX), we define a drug-
specific fitness function that captures the structural, chemical, and
physicochemical requirements relevant to DOX encapsulation and
release. DOX 1is a moderately bulky anthracycline (hydrated
size ~ 12-15 A) whose clinical application is limited by cardiotoxicity,
rapid systemic clearance, and pH-dependent stability [41]. Thus, the
desired MOF properties include appropriate pore aperture, favorable
chemical affinity, stability under physiological conditions (pH 7.4),
responsiveness to mildly acidic tumor environments (pH 4-6), and
compatibility with post-synthetic functionalization.

In MOF-LENS, these criteria are encoded in a scalar fitness function
f(m)for each candidate MOF m, defined as

f(m) = wprpSprp (M) + Wyim Tanimoto(Fp,, Fpox) + WprSpr () + Wi, S, ()
+ Prox(M) + paw(m),
(€9)

where the weights reflect the relative importance of each term:

Table 1
Performance metrics across new 5-run ensembles per method.
Method  Mean Best Mean Final Runtime (s) Diversity
Fitness Fitness
LEA 0.6646 0.6646 7.65 £+ 0.04 0.0000
+ 0.0046 + 0.0046 + 0.0000
PSO 0.6601 0.6601 4.11 £ 0.01 0.0095
+ 0.0043 + 0.0043 + 0.0180
RS 0.6661 0.6661 4.08 £+ 0.01 0.8985
+0.0043 + 0.0043 + 0.1065
GA 0.6658 0.6658 4.17 £ 0.04 0.8862
=+ 0.0045 + 0.0045 =+ 0.0905
Filter 0.7064 0.7064 15.04 0.0000
+ 0.0000 + 0.0000 + 0.04 + 0.0000

Wpip = 0~4O>Wsim = 0'257WpH = 0~257WNH2 =0.10.

PLD suitability. The score sp;p(m) € [0, 1]measures proximity of the
pore-limiting diameter (PLD) to the DOX-compatible interval [16]A. This
window reflects the hydrated steric radius of DOX and avoids the defect-
mediated, batch-dependent loading often observed in compact frame-
works with nominal PLD < 6 A.

Chemical compatibility. The Tanimoto similarity between the linker
fingerprint Fpand the DOX fingerprint Fpoxpromotes MOFs whose aro-
matic and heterocyclic motifs support n-x stacking, hydrogen bonding,
and other noncovalent interactions relevant for DOX binding [42].

pH-dependent stability. The normalized score shows how stable a
material is at different pH levels, such as physiological and tumor-like
levels. It rewards materials that are stable at pH 7.4 but can release
quickly at mildly acidic pH [43].

NHz functionality. The binary term sy, (m)rewards amino groups on
linkers or nodes, enabling covalent attachment of targeting ligands, such
as folic acid or lactobionic acid, for hepatocellular carcinoma (HCC)
targeting.

Safety constraints. A penalty p,x(m) = — lis applied to MOFs that
contain non-biocompatible metals (Pb, Cd, Cr, Ni, Hg); otherwise, the
selection process continues without this restriction px(m) = 0.

Diversity regularization. A penalty pg,(m) = — Agydiscourages
repeated selection of identical Refcodes within the top-k set, ensuring
that the optimizer returns a chemically diverse set of high-quality
candidates.

Overall, Eq. (1) assigns 40 % weight to geometric suitability and
60 % to drug-specific chemical affinity, pH behavior, functionalization
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Fig. 6. SHAP summary plot showing the most influential features affecting
model output.
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Table 2
Sensitivity analysis results showing weight changes (A), their impact, and
updated weights.

weight delta impact new_weight
pld -0.10 0.021722 0.20
pld -0.05 0.010861 0.25
pld 0.05 0.010861 0.35
pld 0.10 0.021722 0.40
chemical_sim -0.10 0.009384 0.15
chemical_sim -0.05 0.004692 0.20
chemical_sim 0.05 0.004692 0.30
chemical_sim 0.10 0.009384 0.35
ph_stability -0.10 0.069000 0.10
ph_stability -0.05 0.034500 0.15
ph_stability 0.05 0.034500 0.25
ph_stability 0.10 0.069000 0.30
nh2_func -0.10 0.025000 0.05
nh2_func -0.05 0.012500 0.10
nh2 func 0.05 0.012500 0.20
nh2_func 0.10 0.025000 0.25
toxicity 0.05 0.000000 0.00
toxicity 0.10 0.000000 0.05

capability, and safety. Retargeting MOF-LENS to other therapeutics re-
quires no architectural changes—only updates to the drug fingerprint,
target PLD interval, and a small number of interpretable weights that the
formulation depends on.

3. Results and discussion

In this section, we evaluate MOF-LENS along five complementary
axes. First, we analyze convergence behavior and overall solution
quality compared to representative optimization strategies (PSO, GA,
random search, and a filter-based heuristic). Second, we examine
robustness and diversity across multiple independent runs, since mate-
rials discovery typically requires not just a single optimum but several
distinct high-quality candidates. Third, we investigate the relative
importance of structural and chemical descriptors to verify that the
model emphasizes physically meaningful features for DOX delivery.
Fourth, we perform docking simulations to assess whether the selected
MOFs are mechanistically consistent with pH-responsive DOX-MOF
interactions. Finally, we demonstrate how the framework can be retar-
geted to another drug (paclitaxel) by adjusting only the reference fin-
gerprints and fitness weights, highlighting the generality of MOF-LENS.

3.1. Experimental setup and baseline methods

All methods operate on the same curated set of 10,000 MOFs (Section
2.3) and share a common evaluation budget comprising 100 iterations,
with an equal number of fitness evaluations per run. For each algorithm,
we run 30 independent trials to characterize variability and repeat key
experiments using 5-run ensembles for reproducibility checks.

We compare MOF-LENS-LEA against four baselines:

e Particle Swarm Optimization (PSO): a widely used swarm-based
optimizer in materials and engineering design, where particles up-
date positions based on personal and global best positions [44].

Table 3
Effect of the diversity penalty 14,0n optimization performance (30 runs).
Mean fitness (+ SD) Silhouette # clusters
0.00 0.372 +0.114 0.003 2
0.01 0.298 + 0.119 —0.015 2
0.03 0.292 +0.111 —0.016 2
0.10 0.328 + 0.104 —0.011 2
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Genetic Algorithm (GA): a population-based evolutionary algorithm
using crossover and mutation, frequently applied in MOF and
porous-material screening [45].

e Random Search (RS): a model-free baseline that samples MOFs uni-
formly at random from the dataset [46].

Filter baseline (Filter): a deterministic heuristic that ranks MOFs
using simple thresholds on PLD, void fraction, and ASA, mimicking
conventional hand-crafted screening rules.

PSO and GA represent standard metaheuristics used in prior MOF-
discovery studies, RS provides a lower bound on intelligent search,
and Filter approximates traditional descriptor-based filtering. All
hyperparameters are tuned to be reasonably competitive while
respecting the same computational budget, ensuring a fair comparison
with LEA.

3.2. Fitness convergence analysis

Fig. 3 shows the mean best fitness across 30 independent runs for all
optimizers. LEA exhibits a rapid increase in performance during the first
15-20 iterations, followed by a stable, monotonic convergence trend. Its
confidence interval narrows progressively, indicating consistent
behavior across runs. PSO and RS also converge quickly, but their final
performance is somewhat lower than LEA’s. RS reaches high fitness
values early due to the dense structure of the latent MOF space but
shows minimal improvement afterward.

GA exhibits substantially lower convergence and large variance,
reflecting its weaker exploitation capability and reduced stability under
the discrete genome representation. The deterministic filter baseline
remains constant, as it always selects the best available MOF from the
database without performing a search.

Together, these results demonstrate that LEA strikes a strong balance
between exploration and exploitation, steadily improving without pre-
maturely stagnating. Its combination of Lévy-driven global exploration,
adaptive strategy selection, and elite refinement results in more reliable
convergence than other stochastic optimizers.

3.3. LEA improvement over other methods (A Fitness)

To quantify the improvement provided by LEA over alternative op-
timizers, we computed the per-run fitness difference Af = f(LEA) — f
(method) across 30 independent runs (Fig. 4). A positive Af indicates
that LEA achieved a higher final fitness.

LEA consistently outperforms PSO, as evidenced by a positive me-
dian Af and a tight distribution of improvements across runs. Against RS,
the distribution is centered slightly above zero, indicating marginal but
reproducible gains due to LEA’s hybrid exploration-exploitation
mechanism. Compared with GA, LEA also shows slightly positive Af
values, reflecting its improved stability and more effective refinement of
high-quality candidates. In contrast, Filter performs substantially worse
than LEA in all runs, resulting in strongly negative Af values.

Overall, these A-fitness comparisons demonstrate that LEA consis-
tently outperforms all baselines, with the strongest improvements
observed relative to PSO and Filter, and smaller but reliable gains
relative to RS and GA.

3.4. Distribution of final fitness values

To evaluate the global behavior of each optimization method, Fig. 5
presents the distribution of the best fitness values obtained across 30
independent runs using a combined raincloud/KDE/violin representa-
tion. This visualization highlights both central tendencies and vari-
ability, providing a comprehensive view of reproducibility.

Across all methods, the mean best-fitness values fall within a narrow
range (~0.664-0.666), indicating that multiple optimizers can locate
high-quality regions of the MOF landscape. However, the shape of each
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Table 4
Structural and chemical properties of top MOFs repeatedly selected by LEA.
Refcode Metal  Linker IUPAC PLD (A) led (A) VoidFraction ~ ASA(m%/  av (A% top5_count
g)
ILINEY Ni 2-(3-pyridin-4-yl-1H-1,2,4-triazol-5-yl)pyridine 1.18107 3.01508 0 0.000 0.000 99
IVAFUG Cu (25,4 R)-N,3,3,9-tetramethyl-7,8-diazatricyclo[4.3.0.0%,*]nona-1 5.37389 6.49399 0.108 171.429 93.5668 24
(6),8-diene-7-carbothioamide
YUHNAS Cu 3,5-bis(4-methylphenyl)-1H-1,2,4-triazole 1.56709 2.70728 0 0.000 0.000 13
GUQLOW Zn 5,10,15,20-tetrapyridin-4-yl-21,23-dihydroporphyrin 5.29045 7.23070 0.0256 539.978 224.795 12
ZOGBII In pyridine 42.63721 43.58988 0.7936 808.313 8967.31 1
Table 5
Docking-based mechanistic validation of LEA-selected MOFs.
Refcode Metal  Linker (IUPAC) PLD ASA (m?/ Void Top-5 AG (pH AG (pH AAG
A 2) Fraction Frequency 7.4) 5.5)
GUQLOW Zn 5,10,15,20-tetrapyridin-4-yl-21,23- 5.290 539.98 0.0256 12 —7.9697 —7.8443 + 0.1254

dihydroporphyrin

distribution differs markedly:

e Random Search (RS) shows the broadest, most irregular distribution.
Although it occasionally reaches very high fitness values, these
outcomes are sporadic and non-reproducible, reflecting unguided
sampling of isolated peaks.

PSO and GA exhibit moderately narrow distributions but still show
considerable variability, with several modes suggesting premature
convergence to different local basins.

LEA, in contrast, produces a compact, sharply centered distribution
around its mean value (~0.664), with markedly smaller variance
than all other methods.

Although LEA’s absolute best score is slightly lower than the highest
RS or GA outliers, its reproducibility is significantly superior. LEA
consistently returns high-quality MOFs across runs, whereas RS and GA
yield high-fitness candidates only intermittently. For materials discov-
ery workflows, where downstream docking, synthesis, and character-
ization are costly, this reliability is more valuable than rare,
nonrecoverable maxima.

Overall, Fig. 5 demonstrates that LEA achieves the most stable and
dependable performance profile, producing high-fitness candidates with
minimal run-to-run fluctuation.

3.5. Aggregate performance and reproducibility across ensembles

Table 1 summarizes performance metrics for all optimizers over five-
run ensembles. These values closely match those obtained from the full
30-run study (not shown), indicating that the observed ranking and
behavior are robust to ensemble size.

In contrast, RS and GA show highly unstable behavior, generating
wide distributions of solutions and strong sensitivity to initialization.
PSO is moderately stable; it converges more reliably than RS and GA, but
there is still a lot of variation between runs. The deterministic filter
baseline performs consistently but lacks exploratory capability and
diversity.

Repeating all experiments under a reduced 5-run protocol yields
results that closely mirror the 30-run ensemble, confirming that the
relative ranking and qualitative behavior of all methods are robust to
ensemble size and not dependent on specific random seeds.

3.6. Feature importance: what drives fitness?

To interpret the learned fitness landscape, we compute SHAP
(SHapley Additive exPlanations) values for the surrogate model that
approximates the fitness function (Fig. 6) [47]. The analysis highlights
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PLD as the most influential descriptor, with ASA and void fractions
following in importance. Coordination number and SBU extension
points make smaller but still non-negligible contributions.

These findings align with experimental intuition: pore size and
accessible surface area are primary determinants of DOX loading and
diffusion, while void fraction reflects overall porosity. The SHAP plots
further show that PLD values near O or near 1 are penalized, supporting
the choice of the 12-16 A target range as a sweet spot for DOX
encapsulation.

3.7. Sensitivity of fitness weights

We performed a local sensitivity analysis to assess how the choice of
weights in Eq. (1) influences the optimization outcome, perturbing each
weight by £0.05 and +0.10 while renormalizing the remaining weights
(Table 2). Across all terms, the change in mean best fitness remained
modest: perturbing the PLD and chemical-similarity weights by £0.10
altered the fitness by only ~ 1-2 %, while changes to the NH: and pH-
stability weights had a slightly higher but still moderate impact. The
toxicity weight had a negligible effect within the examined range,
essentially reflecting the fact that most competitive MOFs already avoid
highly toxic metals. Overall, these results indicate that the chosen
weight configuration is locally stable and that MOF-LENS performance
is not overly sensitive to small perturbations of the fitness weights,
addressing the reviewer’s concern about arbitrariness.

3.8. Effect of the diversity penalty Ag;,

Table 3 summarizes the effect of varying the diversity penalty A4, 0n
LEA’s behavior. Without diversity regularization (14, = 0), LEA attains
the highest mean fitness (0.372 + 0.114), but the silhouette score is
close to zero, indicating a weakly structured set of candidates in latent
space.

Increasing A4;,t0 0.01 and 0.03 lowers the mean fitness slightly, while
pushing LEA to sample more heterogeneous and overlapping regions
(more negative silhouette values). At A4, = 0.10, fitness partially re-
covers, but the cluster structure remains diffuse. Overall, it 14, = 0.03
provides a satisfactory compromise between solution quality and
diversification of the sampled MOFs.

3.9. Robustness and identity-level consistency of top candidates

To assess robustness at the level of individual MOF identities, we
collected all top-5 solutions obtained across the 30 independent LEA
runs (150 top-5 slots in total). For each run, the list of top MOFs was
flattened into individual refcodes and merged with the original MOF
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dataset, yielding the summary in Table 4.

Across all runs, only five distinct MOFs—ILINEY, IVAFUG, YUHNAS,
GUQLOW, and ZOGBII—dominate the top-5 lists. Together they occupy
149 of 150 possible positions, confirming that MOF-LENS does not
wander across many unrelated local optima but instead repeatedly
returns a small, stable set of high-performing frameworks. Among these,
ILINEY is particularly dominant, appearing in 99 top-5 slots, followed by
IVAFUG (24), YUHNAS (13), GUQLOW (12), and the more rarely
selected ZOGBII (1).

Table 4 links these refcodes back to their key structural descriptors
and linker chemistry. IVAFUG and GUQLOW exhibit non-zero void
fractions, sizable accessible surface areas, and pore-limiting diameters
around 5.3 A, indicating relatively narrow but accessible channels.
ZOGBII forms the opposite extreme: an In-based framework with a very
high void fraction (~0.79), large accessible volume (~9000 1°X3), and
exceptionally large PLD and LCD (~42-44 A), corresponding to a highly
open pore architecture that is selected only occasionally. In contrast,
ILINEY and YUHNAS are much more compact, with vanishing ASA and
small PLD values (~1.2-1.6 A), suggesting that their favorable fitness
arises mainly from chemical and stability terms rather than from large
geometric porosity.

The IUPAC linker names indicate that all five frameworks rely on
nitrogen-rich aromatic linkers, including a triazole-pyridine motif
(ILINEY), a bulky diazatricyclic thiourea derivative (IVAFUG), a bis(4-
methylphenyl)-1,2,4-triazole (YUHNAS), a tetrapyridin-4-yl porphyrin
(GUQLOW), and simple pyridine (ZOGBII). These ligands provide mul-
tiple sites for n—r stacking and hydrogen bonding, interaction modes that
are favorable for binding anthracycline-type drugs such as DOX.

It is important to note that PLD values derived from static geometric
probes can underestimate accessibility created by framework flexibility,
thermal motion, or defects. As commonly observed in the MOF litera-
ture, PLD < 2 A does not necessarily imply the absence of internal
cavities or sorption sites. Thus, compact frameworks such as ILINEY and
YUHNAS may still achieve high fitness scores despite small geometric
PLD values, owing to favorable linker chemistry, metal stability profiles,
and DOX-compatible interaction motifs.

Overall, this analysis shows that LEA repeatedly converges to a
chemically meaningful, structurally coherent subset of the MOF space,
rather than relying on fragile, run-specific outliers. The repeated selec-
tion of a few N-rich metal-organic architectures with compatible ge-
ometry and linker chemistry supports both the robustness and
interpretability of the MOF-LENS optimization process.

3.10. Mechanistic validation via docking

Molecular docking is a computational technique used to predict how
a guest molecule binds within the cavity or surface of a host material,
providing both the preferred binding orientation and an estimate of the
binding free energy (AG). In drug-delivery applications, docking helps
evaluate whether a therapeutic molecule can (i) be favorably accom-
modated inside the pores or coordination pockets of an MOF and (ii) be
released under relevant physiological conditions. Docking methods such
as AutoDock Vina, GOLD, and similar scoring-function-based engines
[48] approximate the host-guest interaction energy by evaluating steric
fit, hydrogen bonding, n-n stacking, electrostatic complementarity, and
desolvation contributions. The output binding affinity, typically re-
ported in kcal/mol, provides a first-order mechanistic screening of
MOF-drug compatibility.

Docking is particularly relevant for DOX delivery, because release
behavior is highly sensitive to pH-dependent protonation states, linker
electronics, and cavity accessibility. A MOF suitable for controlled DOX
delivery should ideally exhibit (i) sufficiently strong binding at physi-
ological pH 7.4 to prevent premature leakage and (ii) a modest reduc-
tion in binding strength at acidic pH (x5.5), enabling endosomal/
tumoral release. Evaluating both conditions allows the pH-triggered
release potential to be quantified via the difference
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AAG = AGs5 —AGy 4,

where positive values indicate weaker binding under acidic conditions
and therefore more favorable release. In our implementation, each high-
ranking MOF identified by LEA was converted into a molecular docking
model, and DOX was docked at two protonation states at pH 7.4 and 5.5.
For each MOF and pH, multiple poses were sampled, and the lowest-
energy binding mode was retained as the predicted affinity (AG).
These values were then merged with LEA’s top-5 selection frequencies
and structural descriptors (Table 5) to assess whether the algorithmi-
cally selected MOFs are mechanistically plausible hosts for DOX.

Among the top-ranking frameworks, GUQLOW, a Zn-porphyrin-
based MOF with moderate pore accessibility (PLD ~ 5.29 A, LCD ~
7.23 A), yielded a binding affinity of AG = —7.97 kcal/mol at pH 7.4
and AG = —7.84 kcal/mol at pH 5.5, corresponding to a small AAG
= +0.13 kcal/mol. This indicates strong binding at physiological pH
and a slightly weaker interaction under acidic conditions—consistent
with mild pH-responsive release. The porphyrinic linker provides an
electron-rich, aromatic cavity well suited for n—x stacking and hydrogen-
bonding interactions with DOX, which explains its repeated selection by
LEA (12 occurrences across 30 runs).

The remaining LEA-selected MOFs (ILINEY, IVAFUG, YUHNAS,
ZOGBII) share chemical features known to favor DOX coordination:
nitrogen-rich heterocycles, n-conjugated linkers, and saturated metal
nodes. Although docking results were available only for GUQLOW in
this iteration, the structural and chemical motifs observed across all
selected MOFs align with known DOX binding preferences, supporting
the mechanistic plausibility of the LEA-identified candidates. These re-
sults motivate future extensions involving full-set docking or molecular-
dynamics refinement to further characterize host-guest interactions and
pH-triggered release behavior.

3.11. Proof-of-concept retargeting to paclitaxel

To evaluate the drug-agnostic capabilities of MOF-LENS, we per-
formed a proof-of-concept retargeting to paclitaxel (PTX), a large and
hydrophobic microtubule-stabilizing chemotherapeutic that differs
markedly from doxorubicin (DOX) in size, topology, and electronic
structure. Retargeting required no modification of the MOF-LENS ar-
chitecture, latent-space mapping, or optimization algorithm. Only drug-
specific inputs were updated, namely:

(i) substitution of the PTX SMILES string and generation of a new
256-bit Morgan fingerprint;
(ii) adjustment of the target pore-limiting diameter to 18-24 A to
accommodate PTX’s larger hydrodynamic radius; and
(iii) reweighting of the chemical-affinity term to reflect the drug’s
highly nonpolar character.

A five-run exploratory test indicated that MOF-LENS readily adapts
to these revised physical constraints, consistently identifying MOFs with
large pore apertures, substantial void fractions, and extended n-conju-
gated linkers, which are characteristic features of PTX-compatible host
environments. This behavior demonstrates that the LEA-based optimi-
zation framework and the hybrid latent-space representation remain
fully transferable across therapeutics of very different sizes and
polarities.

Although comprehensive PTX optimization is beyond the present
scope, the results confirm that retargeting MOF-LENS to new drugs re-
quires only changes to the molecular fingerprint and a small number of
physically motivated fitness-function parameters, with no need for
retraining or model restructuring. The same procedure can be immedi-
ately applied to other classes of therapeutics—including hydrophobic
agents, small aromatic drugs, peptides, and nucleic acids—underscoring
that MOF-LENS serves as a generalizable platform for drug-specific MOF
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discovery rather than a system specialized for DOX alone.
4. Conclusion and future directions

We presented MOF-LENS, a latent evolutionary navigation system
for discovering metal-organic frameworks tailored to doxorubicin
(DOX) delivery in hepatocellular carcinoma. By embedding structural
descriptors and SMILES-based fingerprints into a hybrid latent space and
constraining the search with a kNN index, MOF-LENS explores only
realizable MOFs. In addition to this representation, the Lotus Effect Al-
gorithm (LEA) optimizes a DOX-informed fitness function that balances
pore-size compatibility, chemical similarity, pH stability, amino-group
functionality, and metal toxicity. Compared to PSO, GA, random
search, and a filter heuristic, MOF-LENS achieves a competitive best
fitness while consistently returning a diverse, high-quality set of can-
didates, rather than a single fragile optimum. SHAP analysis highlights
PLD, ASA, and void fraction as dominant drivers of performance, and
docking simulations confirm that the top MOFs support strong DOX
binding at physiological pH and weakened binding under mildly acidic
conditions, in line with pH-responsive release.

Beyond this specific application, MOF-LENS is inherently drug-
agnostic: replacing the DOX fingerprint, adjusting the target PLD win-
dow, and retuning fitness weights is sufficient to retarget the workflow
to other therapeutics, as illustrated by our paclitaxel case study. A nat-
ural next step is to replace hand-crafted descriptors with graph-based or
foundation-model embeddings and to enrich the stability and toxicity
terms with multi-fidelity experimental and simulation data. Coupling
MOF-LENS to fast docking or coarse-grained MD in an active-learning
loop would further tighten the link between optimization and molecu-
lar interaction energetics.

Finally, there is a clear opportunity to integrate MOF-LENS with our
Black Hole Strategy for gravity-based representative sampling on MOF
networks [22]. In such a unified “cosmic” workflow, the Black Hole
method would first compress the immense MOF universe into a smaller,
structurally and chemically representative subset, and MOF-LENS would
then perform fine-grained, drug-aware optimization inside this reduced
space. Feedback from MOF-LENS fitness scores could, in turn, update the
graph “mass” in the Black Hole model, gradually steering the global
MOF network toward drug-relevant regions. Extending this combined
pipeline to multi-drug objectives and integrating it into automated
synthesis and testing platforms promises a scalable route from vast MOF
databases to experimentally validated nanocarriers for precision
oncology.
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