KIT | KIT-Bibliothek | Impressum | Datenschutz

Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving

Shen, Yinzhe 1; Tas, Omer Şahin ORCID iD icon 2; Wang, Kaiwen 1; Wagner, Royden ORCID iD icon 1; Stiller, Christoph 3
1 Institut für Mess- und Regelungstechnik (MRT), Karlsruher Institut für Technologie (KIT)
2 Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract:

Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. The code will be released.


Verlagsausgabe §
DOI: 10.5445/IR/1000189166
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000189166
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Band 2025
Heft 11
Vorab online veröffentlicht am 16.11.2025
Externe Relationen Abstract/Volltext
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page