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Due to the strongly nonlinear behavior of ferromagnetic yokes, the numerical analysis of fast-ramping magnets is highly
cumbersome and, therefore, in practice overly simplified by means of anhysteretic material descriptions and a posteriori loss
formulae. This paper establishes the use of a dynamic ferromagnetic model combining a preconditioned energy-based hysteresis
description and a thin-sheet eddy-current model in time-domain. The model was successfully employed in the analysis of a normal-
conducting bending magnet in order to precisely calculate losses and fields.
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I. INTRODUCTION

FAST-ramping normal-conducting magnets delivering rise
rates of several kT/s receive increasing attention as

they fill various key roles in particle accelerator lattices. A
synchrotron-based muon collider will make extensive use of
such magnets in the intermediate acceleration stages [1], [2].
The magnets will be excited by periodically pulsed currents
with very short duty cycles [3], in order to minimize resistive
loss while reliably enforcing the requested ramp-up of the
magnetic field.

The ramped excitation and the locally strong saturation of
the ferromagnetic yoke prohibit the application of frequency-
domain approaches. Moreover, calculating the hysteresis loss
by post-processing an anhysteretic solution, e.g. by the
Steinmetz-Bertotti formulae [4], yields inaccurate results as
overall energy conservation and the time-lag between exciting
current and generated magnetic field are neglected. In order
to precisely resolve the ferromagnetic behavior of hysteresis
and eddy-current phenomena, an adequate dynamic material
model as in [5], [6] will be formulated and applied.

In the following sections, the numerical representations of
Maxwell’s equation and the applied dynamic energy-based
hysteresis model are introduced. The proposed method is
then successfully applied on one of the current designs of a
fast-ramping muon-collider magnet. Lastly, the computational
costs are compared and discussed.

II. FORMULATION AND DISCRETIZATION

The magnetic vector potential approach resolves the mag-
netic law of Gauss and the law of Faraday-Lenz as

B = ∇×A, (1)

E = −Ȧ−∇φ, (2)

with magnetic flux density B(r, t), electric field strength
E(r, t), magnetic vector potential A(r, t) and electric scalar
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potential φ(r, t). With current density J = σE we formulate
the law of Ampère as

∇×H+ σȦ = −σ∇φ, (3)

with H(r, t) the magnetic field strength and σ(r) the conduc-
tivity. A so-called field-circuit coupling is needed to account
for the external circuitry creating the pulse. Every conductor
is given a distribution function xm(r) [7] of dimension m−1

such that

−σ∇φ =
∑
m

umσxm, (4)

where um(t) are the voltages along the conductors. The
currents through the solid conductors are given by

im = Gmum − (xm, σȦ)Ω, (5)

where Gm = (xm, σxm)Ω is the conductance of conductor m
and (·, ·)Ω denotes the L2 scalar product over the computa-
tional domain Ω. The variational form of (3) is

(v,H)Ω +�������:0
(H× v,n)∂Ω + (w, σȦ)Ω =

∑
m

um(w, σxm)Ω,

(6)

where the test function w belongs to the space H(curl,Ω) of
tangentially continuous vector fields with vanishing tangential
components at the Dirichlet boundaries, and v = ∇×w.

Adopting the Ritz-Galerkin approach, i.e., using the same
functions wn for discretizing A ≈ ∑

n an(t)wn and testing
one obtains

⌢
h(a, ȧ) +Mσȧ = Xu, (7)

with
⌢
hj = (vj ,H)Ω, Mσ|j,k = (wj , σwk)Ω, X|j,m =

(wj , σxm)Ω. In case of known current excitations the system
can be reformulated by incorporating (5)

⌢
h(a, ȧ) + (Mσ −XRX⊤)ȧ = XRi, (8)

with R|j,m = Rmδjm as diagonal matrix of all resistances.
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The right hand side of (7) (or selectively (8)) is known for
all times. A Newton based solving scheme expands the left
hand side locally around a guess a′, ȧ′

⌢
h(a, ȧ) +Mσȧ ≈

⌢
h(a′, ȧ′) +Mσȧ′ +

∂
⌢
h
′

∂a
δa+

(
∂
⌢
h
′

∂ȧ
+Mσ

)
δȧ, (9)

with δȧ = ȧ− ȧ′, δa = a− a′ and

∂
⌢
hj

∂ak
=

(
vj ,

∂H

∂ak

)
Ω

=

(
vj ,

∂H

∂B
vk

)
Ω

,

∂
⌢
hj

∂ȧk
=

(
vj ,

∂H

∂ȧk

)
Ω

=

(
vj ,

∂H

∂Ḃ
vk

)
Ω

.

Within the scope of this paper we will expect ∂H
∂Ḃ

to be
constant, such that the system of differential equations is given
in explicit form Mȧ = f(t,a) and standard time-integration
routines can be applied. We use the in-house Python package
Pyrit [8] to assemble all finite element systems.

III. MAGNETIC CONSTITUTIVE LAWS

On the macroscopic scale the magnetic flux density and
the magnetic field strength are related via the magnetization
M : H 7→ M

B = µ0(H+M(H)) = (µ0 + µ0M)H. (10)

In this section we characterize the ferromagnetic response
of the M235-35A soft-magnetic alloy, which will serve as
iron yoke material in the accelerator magnet design. Extensive
measurement data on this material can be found and was used
in the frame of this work [9], [10], [11].

A. Anhysteretic Material Response

The anhysteretic magnetization shall be given by an
isotropic relationship as in [9]

|µ0Man| = µ0MaL(
|H|
ha

) + µ0MbL(
|H|
hb

), (11)

with Langevin function L(x) = coth(x) − x−1, µ0Ma =
1.39T, ha = 18.18A/m, µ0Mb = 0.56T, hb = 3.91 kA/m.
The maximum susceptibility of χmax = 20.32 103 is found
for very small excitations |µ0Man| = µ0χmax|H|+O(|H|3).

Anhysteretic models are commonly applied as they offer
a rapid evaluation of H 7→ B and also B 7→ H, whereby
the latter may require the use of look-up-tables as analytical
inverses often can not be provided. Similarly straight forward
is the construction of the differential tensors

∂µ0Man

∂H
=

|µ0Man|
|H| [I− eHe⊤H] +

∂|µ0Man|
∂|H| eHe⊤H. (12)

By construction, this type of material model is incapable of
reproducing the hysteretic behavior of ferromagnetic alloys.
Accordingly, the hysteresis loss can only be approximated
using a posteriori formulae for which we here assume the prin-
ciple of loss separation [4] combined with signal-independent

generalized loss expressions [12]. The time-averaged hystere-
sis and eddy current loss densities are

p̄hyst =

∫ T

0
γkhyst|Ḃ|B̂dt/T∫ 2π

0
|2π cos(θ)|dθ/2π

, (13)

p̄eddy =

∫ T

0
γkeddy|Ḃ|2dt/T∫ 2π

0
|2π cos(θ)|2dθ/2π

, (14)

with mass-density γ, empirically obtained parameters khyst,
keddy and B̂ as one half of the peak to peak value
of the local magnetic flux density. The values khyst =

13.88mW/(kgHzT
2
) and keddy = 44.77 µW/(kgHz

2
T2)

have been reported in [10] and are used here. The so-called
excess loss will not be discussed in this work.

B. Hysteretic Material Response – Forward
The energy-based hysteresis model of Bergqvist [13] and

refined by Henrotte [14] expresses the magnetization as

M(H) =
∑
k

Mk(H) =
∑
k

wkManHk
r H, (15)

for which the weights wk fulfill
∑

k wk = 1. The operator
Man realizes the anhysteretic mapping as defined in III-A.
A history dependence is included in the operators Hk

r which
can be approximated by a vector-play model with pinning
forces κk ≥ 0 and Heaviside function Θ [14]

Hk
r = Hk

rH = Hk
r,prev + f(|δHk|, κk)eδHk

, (16)

f(x, y) = (x− y)Θ(x− y),

δHk = H−Hk
r,prev.

For unidirectional fields this approximation is fully consis-
tent with the energy conserving framework. For arbitrary
fields, errors are introduced by this model which can only
be diminished by solving a computationally more expensive
optimization problem [16].

For both approaches the computation of the differential
susceptibility tensor ∂M

∂H and differential permeability tensor
∂B
∂H = µ0 + µ0

∂M
∂H becomes a concatenation of analytical

expressions [17]

∂M

∂H
=
∑
k

wk
∂Man

∂Hk
r

∂Hk
r

∂H
. (17)

The local power density H · Ḃ translates into a change in
stored magnetic energy wmag and a hysteretic loss physt

ẇmag = H · µ0Ḣ+
∑
k

Hk
r · µ0Ṁk, (18)

physt =
∑
k

(
H−Hk

r

)
· µ0Ṁk ≥ 0. (19)

Within the scope of this work the vector-play model was
selected, as the impact of the thereby introduced errors has
been observed to be marginal for our intended application of
accelerator magnets for which global losses and aperture field
are the main quantities of interest.

Figure 1 illustrates the identified model parameters for
M235-35A based on the algorithm and data discussed in [15].
A total of eleven summands Mk was intentionally selected to
balance computational complexity and physical fidelity.
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1Fig. 1. Weights and pinning forces of M235-35A, based on [15].

C. Hysteretic Material Response – Inverse

The introduced vector-potential based solving algorithm (7)
requires the inverse mapping (µ0 + µ0M)−1 : B 7→ H.
A direct realization of this operation has been recently pro-
posed [18]. State-of-the-art implementations rely on fixed-
point iteration schemes based upon the forward model [17].

The fixed-point iteration schemes for a given B∗ are char-
acterized by Q : H,B∗ 7→ Q such that Hn+1 = Q(Hn,B

∗)
constructs a converging series with limn→∞ Hn = H∗ and
B∗ = B(H∗). Root finding algorithms applied on the residual

g(H∗,B∗) = B(H∗)−B∗ = 0 (20)

lead to the following iterative schemes
a) Direct Iteration:

Q(H,B∗) = H− (µ0µr,max)
−1g(H,B∗), (21)

b) Newton Iteration:

Q(H,B∗) = H− ∂B

∂H

−1

g(H,B∗). (22)

The direct iteration has ensured convergence for all initial
guesses H0 with µ0µr,max being the maximum differential
permeability but converges slowly. The Newton iteration is
able to provide a much faster convergence if the initial guess
is well justified for example by using the previous result in
combination with a very fine time stepping. As the validity
of the initial guess is not a priori known the Newton method
generally needs to be stabilized by additional success criteria
and relaxation factors. Furthermore, the differential tensors
must be constructed for every iteration step.

To overcome the disadvantages of both of these well studied
schemes we introduce the preconditioned iteration scheme.
The preconditioned residual is defined as

gp(H
∗,B∗) = B−1

an (B(H∗))−B−1
an (B∗) = 0 (23)

yielding the
c) Preconditioned Iteration:

Q(H,B∗) = H− gp(H,B∗) (24)

The preconditioned iteration thus actively exploits information
on the anhysteretic magnetization curve Ban for which the
inverse operation can be cheaply performed using look-up-
tables. It yields ensured convergence for the ferromagnetic
material and drastically reduces the amount of iteration steps
as opposed to the direct iteration.

TABLE I
COMPUTATION TIME IN µs PER PROBLEM AND ITERATION COUNT (BOLD)

relative error h0 = 100A/m h0 = 1kA/m
Direct Newton Precond. Direct Precond.

10−3 13.2 10.2 6.3 53.0 7.2
10 3 4 48 5

10−6 25.8 11.8 10.4 64.0 11.3
22 4 8 59 9

10−9 38.0 11.8 15.2 77.1 16.4
33 4 13 70 14
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1Fig. 2. Anhysteretic and hysteretic material response (ascending branch,
major cycle). Input b∗ and target h∗ of the one-dimensional inverse hysteresis
problem.

Identical one-dimensional inverse problems with B∗ =
0.7T eθ on the ascending branch of the major hysteresis cycle
(Fig. 2) with angular direction eθ = cos(θ)ex + sin(θ)ey
have been solved for 36000 distinct angles using a serial imple-
mentation. Table I displays the averaged runtime per problem
and iteration count. The solution is approximately given by
H∗ ≈ 78.68A/m eθ. For a comparably good initial guess of
H0 = h0eθ = 100A/m eθ the Newton iteration performs best
in terms of iterations needed and computation time for a strict
tolerance of 10−9. For lower tolerances the preconditioned
iteration was found to be the fastest scheme. Generally the
preconditioned iteration has a time consumption in the same
order of magnitude as the Newton scheme. Both methods
clearly outperform the direct iteration. For the significantly
worse initial guess of h0 = 1kA/m the iteration count of
the preconditioned iteration only rises by one. The Newton
method is unable to converge and the time consumption of
the direct iteration scheme more than doubles.

The preconditioned iteration scheme describes a computa-
tionally inexpensive and stable procedure to realize the inverse
hysteretic mapping B 7→ H. Unlike the Newton method, it
does not necessitate relaxation criteria or sufficiently fine time
stepping. Based on these considerations we have concluded to
use the preconditioned iteration scheme of up to 20 iteration
steps in this work.

D. Dynamic Ferromagnetic Response

The magnetic response of soft-magnetic alloys is further
governed by the eddy current problem which in case of purely
transversal fields with ∂x = ∂y = 0 reduces to the so-called
one-dimensional lamination problem −∂2

zH = −σFeḂ.
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It was shown that the dynamic model

Hsurf = H(B) +
σFed

2

12
Ḃ (25)

is able to approximate the magnetic field strength Hsurf at
the iron-insulation-interface very well for low frequent pe-
riodic excitations [5], [19]. The assumption of ∂Hsurf

∂Ḃ
being

constant (II) is fulfilled. The eddy current loss is given by

peddy =
σFed

2

12
|Ḃ|2 ≥ 0. (26)

Further refinements of this dynamic model including excess
terms have been suggested but are not considered in this
scope [6]. In the following section we will apply the anhys-
teretic and hysteretic material responses with and without the
eddy-current contribution of (25).

IV. APPLICATION

A. Magnet Layout

A dipole magnet consisting of an angled H-type ferromag-
netic yoke and eight solid conductors (Fig. 3) will be analyzed.
This particular design is the result of a cost minimizer for the
second rapid cycling synchrotron (RCS2) of a potential muon
collider [20]. The provided dipole field must be ramped from
negative (−1.8T) to positive peak (1.8T) within 1ms [20],
[21]. The length measures several meters, such that end effects
are of no interest in this initial study and the assumption of
purely transversal fields holds (III-D).
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1Fig. 3. Analyzed H-type dipole magnet. All lengths in millimeters.

B. Sinusoidal Excitation

We firstly select a sinusoidal current excitation of I =
12.5 kA sin(2π · 500Hz · t + ϕ0) per conductor and compare
the results of the discussed material models. To accommodate
an initial system state without current and without electro-
magnetic field the initial phase ϕ0 is considered to be zero.
We simulate three periods with 100 equidistant implicit Euler
steps per 1ms time intervall.

The loss of the third cycle is given by 336.08 J/m and is
heavily dominated by the resistive loss occurring in the copper
conductors (Tab. II and Fig. 4). The iron yoke loss contributes
less than 20% of the total loss whereby the eddy current loss
is more than twice as large as the hysteresis loss.

All used ferromagnetic models agree in terms of resistive
loss. The eddy current and hysteresis loss obtained via the

TABLE II
LOSS PER CYCLE IN J/m FOR A SINUSOIDAL EXCITATION

Material model Eddy current Hysteresis Resistive

Anhysteretic (static) 47.15 (a post.) 23.54 (a post.) 272.90
Anhysteretic (dynamic) 41.22 0 272.88

Hysteretic (static) 0 20.12 273.41
Hysteretic (dynamic) 42.61 20.09 273.38
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Eddy current loss
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1
Fig. 4. Loss as obtained by using the dynamic hysteresis model for a
sinusoidal excitation.

(a) BH in point A. (b) BH in point B.

(c) BH in point C. (d) BH in point D.

Fig. 5. BH loci in the ferromagnetic yoke. Static model: solid lines. Dynamic
model: dashed lines.

(a) Dipole component. (b) Relative differences of dipole com-
ponent compared to the dynamic hys-
teresis model.

Fig. 6. Dipole component in the air gap center.
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a posteriori formulae is 11% and 17% larger than with the
dynamic hysteresis model. The discrepancy is caused by the
a posteriori loss factors keddy and khyst which are not tuned for
the comparably high frequency of 500Hz [10]. Our results
underline the weaknesses of a posteriori loss estimates and
would allow to readjust keddy and khyst for this particular
frequency.

The BH loci in four yoke points are shown in Fig. 5. The
initial state is given by zero. The static loci in all points are
almost identical, whereas the dynamic model causes a notably
different broadening of the BH loop of each point.

The dipole component in the air gap center (Fig. 6a) is not
significantly influenced by the ferromagnetic model. Relative
differences in the order of 10−3 are observed (Fig. 6b).

C. Triangular Pulsed Excitation

We will now assume an excitation of repeating triangular
pulses (Fig. 7) as idealized current supply of the magnet ob-
tained from a switched resonance circuit [3]. In the simulations
the intended repetition rate of 5Hz was increased to 100Hz
in order to shorten the constant zero-phases and thus reduce
computational efforts. Again 100 equidistant time steps per
1ms are applied.
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1
Fig. 7. Triangular pulsed current. The fall rates are four times larger than the
rise rates.

The hysteresis loss of the pulsed excitation is identical to
the result obtained for the sinusoidal excitation (Tab. III). The
eddy current loss is more than halved due to the lower rise
and fall rates. The overall loss of one pulse with 358.70 J/m
is however higher than for a single sinusoidal period due to an
increase of almost 46 J/m in resistive loss. Due to skin- and
proximity effects the resistive loss does not instantaneously
drop to zero once a pulse terminates. Instead, the resistive
loss decays exponentially (Fig. 8).

The BH loci of the dynamic models (Fig. 9) are narrower
than for the sinusoidal excitation. The ascending branch en-
closes a much smaller area than the descending branch, due
to significantly different rise and fall rates of the current
excitation. We can furthermore identify plateaus at which B
and H transfer from dynamic to static behavior once a pulse
terminates, such as Bx = 0.4T in point D (Fig. 9d).

The resulting aperture field (Fig. 10) again differs by
only 0.2%. The most noteworthy difference is the constant
remanence field of −0.75mT after each pulse which can only
be resolved by the hysteretic models.

TABLE III
LOSS PER CYCLE IN J/m FOR A PULSED EXCITATION

Material model Eddy current Hysteresis Resistive

Anhysteretic (static) 21.63 (a post.) 23.60 (a post.) 318.79
Anhysteretic (dynamic) 18.62 0 318.78

Hysteretic (static) 0 20.14 319.23
Hysteretic (dynamic) 19.38 20.10 319.22
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Fig. 8. Loss as obtained by using the dynamic hysteresis model for a pulsed
excitation.

(a) BH in point A. (b) BH in point B.

(c) BH in point C. (d) BH in point D.

Fig. 9. BH loci in the ferromagnetic yoke. Static model: solid lines. Dynamic
model: dashed lines.

(a) Dipole component. (b) Relative differences of dipole com-
ponent compared to the dynamic hys-
teresis model.

Fig. 10. Dipole component in the air gap center.
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V. RUNTIME COMPARISON

The simulation runtime increases linearly with the
timesteps Nt, nonlinear iteration steps NNewton and degrees of
freedom NNodes, i.e., O(NtNNewtonNNodes). The calculations
with anhysteretic and hysteretic model only differ in the
ferromagnetic material evaluation, which is required in all
NFe

int integration points of the iron yoke. The additional time
consumption related to the serialized material evaluation scales
as O(NtNNewtonN

Fe
int ).

The calculation with sinusoidal excitation was repeated for
various uniformly resolved meshes using a standard desktop
computer with 10 cores and 32 GB of RAM. The amount of
time steps and Newton iterations was fixed as Nt = 600 and
NNewton = 5. The simulation with a mesh of NFe

int = 11898
integration points required 32.7min with anhysteretic mate-
rials and 43.5min with hysteretic materials (Fig. 11). The
difference of 10.8min translates into an additional individual
evaluation time of 18.2 µs per integration point which is in a
good agreement with the results reported in Tab. I.

Since the material evaluations for each integration point
are fully independent of another, a parallelization is easily
implementable. A dual thread material evaluation reduced
the simulation time to 38.3min and thus almost halved the
time difference. For coarser meshes the speed-up was lower
due to the necessarily introduced overhead of the parallelized
implementation.

Under idealized circumstances the runtime can be reduced
to O(NtNNewton) and thus a constant in NFe

int by performing all
NFe

int material evaluations on distinct threads. In this example
the additional simulation time would be only 55ms.
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1Fig. 11. Runtime for solving the transient FE problem with sinusoidal
excitation on uniformly resolved meshes. The parallel material evaluation used
two threads.

VI. CONCLUSION

In this paper, we have presented a new stable and quickly
evaluable inversion scheme of the energy-based hysteresis
model. The static ferromagnetic model has been extended by
the thin sheet eddy-current description to obtain a dynamic
hysteresis model. It enabled an accurate simulation of a
fast-ramping accelerator magnet for sinusoidal and triangular
pulsed current excitations. The resulting differences in fields
and loss as compared to a static anhysteretic model were
comparably small, granted correctly adjusted loss parameters
of the a posteriori formulae. However, the dynamic hysteresis

model is the only analyzed option actively incorporating eddy
current and hysteresis loss in the time domain simulation. This
property is crucial when analyzing the behavior of switched
resonance circuits consisting of capacitor banks and magnets.
We have shown that the added computational complexity in
terms of material evaluation time is manageable and can even
on standard machines be reduced by exhausting parallelization.
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[16] L. Prigozhin et al., ”On the Energy-Based Variational Model for Vector
Magnetic Hysteresis”, IEEE Trans. Magn., vol. 52, no. 12, pp. 1-11,
2016.

[17] K. Jacques et al., ”Inclusion of a Direct and Inverse Energy-Consistent
Hysteresis Model in Dual Magnetostatic Finite-Element Formulations”,
IEEE Trans. Magn., vol. 52, no. 3, pp. 1-4, 2016.

[18] H. Egger et al.,”On Forward and Inverse Energy-Based Magnetic Vector
Hysteresis Operators”, IEEE Trans. Magn., vol. 61, no. 4, pp. 1-7, 2025.

[19] P. Dular et al., “A 3-D magnetic vector potential formulation taking
eddy-currents in lamination stacks into account”, IEEE Trans. Magn.,
vol. 39, no. 3, pp. 1424–1427, 2003.

[20] C. Accettura et al., ”Interim report for the International Muon Collider
Collaboration”, arxiv:2407.12450, 2024.

[21] M. Breschi et al., ”Comparative Analysis of Resistive Dipole Accel-
erator Magnets for a Muon Collider”, IEEE Transactions on Applied
Superconductivity, vol. 34, no. 5, pp. 1-5, 2024.

This article has been accepted for publication in IEEE Transactions on Magnetics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2025.3639643

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


