KIT | KIT-Bibliothek | Impressum | Datenschutz

DEAP DIVE: Dataset Investigation with Vision transformers for EEG evaluation

Hoffsommer, Annemarie 1; Schneider, Helen ORCID iD icon 2; Pavlitska, Svetlana 3; Zöllner, J. Marius 2,3
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
3 FZI Forschungszentrum Informatik (FZI)

Abstract:

Accurately predicting emotions from brain signals has the potential to achieve goals such as improving mental health, human-computer interaction, and affective computing. Emotion prediction through neural signals offers a promising alternative to traditional methods, such as selfassessment and facial expression analysis, which can be subjective or ambiguous. Measurements of the brain activity via electroencephalogram (EEG) provides a more direct and unbiased data source. However, conducting a full EEG is a complex, resource-intensive process, leading to the rise of low-cost EEG devices with simplified measurement capabilities. This work examines how subsets of EEG channels from the DEAP dataset can be used for sufficiently accurate emotion prediction with low-cost EEG devices, rather than fully equipped EEG-measurements.Using Continuous Wavelet Transformation to convert EEG data into scaleograms, we trained a vision transformer (ViT) model for emotion classification. The model achieved over 91,57% accuracy in predicting 4 quadrants (high/low per arousal and valence) with only 12 measuring points (also referred to as channels). Our work shows clearly, that a significant reduction of input channels yields high results compared to state-of-the-art results of 96,9% with 32 channels. ... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 01.10.2025
Sprache Englisch
Identifikator KITopen-ID: 1000189196
HGF-Programm 46.24.01 (POF IV, LK 01) Applied TA: Digitalizat. & Automat. Socio-Technical Change
Verlag arxiv
Umfang 10 S.
Schlagwörter Computer Vision and Pattern Recognition (cs.CV)
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page