KIT | KIT-Bibliothek | Impressum | Datenschutz

Understanding the Influence of Iridium Oxide Catalyst State on the Performance in Oxygen Evolution Reaction

Kardeş, Gözde ORCID iD icon 1; Röse, Philipp ORCID iD icon 1; Wildersinn, Leonie 1; Jeschull, Fabian ORCID iD icon 2; Korneychuk, Svetlana ORCID iD icon 1,3,4; Pundt, Astrid 5; Grunwaldt, Jan-Dierk ORCID iD icon 6; Krewer, Ulrike ORCID iD icon 1
1 Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
5 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)
6 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

Proton-exchange membrane (PEM) water electrolysis is a critical technology for hydrogen production. The oxygen evolution reaction (OER) kinetics at the anode significantly determines the electrolysis performance, requiring the development of active and stable catalysts for high conversion rates. Despite extensive experimental studies, it is still difficult to fully understand how the catalyst state, i.e., the structure, morphology, and oxidation state, which vary by synthesis conditions, affect the OER kinetics and free energies. In this study, we delve into the influence of catalyst calcination on the catalyst state and its relationship with the OER kinetics by a combination of experimental analysis and microkinetic modeling. Our results show that the increasing degree of crystallinity upon calcination and, thus, the reduced number of active sites are the main reason for the decreasing performance of Ir-oxide nanoparticles. Additionally, the water adsorption step becomes thermodynamically more favorable, CUS-mediated PCET and O$_2$ release are modestly hindered, and the bridge-site redox contribution declines with increasing crystallinity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189197
Veröffentlicht am 22.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1)
Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Nanotechnologie (INT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Karlsruhe Nano Micro Facility (KNMF)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 02.01.2026
Sprache Englisch
Identifikator ISSN: 2155-5435
KITopen-ID: 1000189197
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in ACS Catalysis
Verlag American Chemical Society (ACS)
Band 16
Heft 1
Seiten 211–227
Vorab online veröffentlicht am 19.12.2025
Schlagwörter water electrolysis, catalyst characterization, calcination, microkinetic modeling, reaction kinetics, active site density
Nachgewiesen in Dimensions
Web of Science
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page