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ABSTRACT
Indoor mold infestations lead to adverse effects on air quality and thus pose significant health risks to humans. Traditional
methods for mold detection and identification are time-consuming and costly. In this study, the application of an electronic
nose as a highly reliable tool for detecting and identifying mold is explored. Two common indoor mold species, Stachybotrys
chartarum and Chaetomium globosum, each separately grown on two different substrates, are investigated. Our e-nose uses vapor-
liquid-solid-grown, UV-activated SnO2 nanowires as the chemiresistive sensing material. Linear discriminant analysis (LDA) is
used for classification. Moreover, novelty detection is enabled by default using decision boundaries. While the conventional LDA
only shows mediocre classification results, improved versions can achieve an average F1-score of 98.37%. Therefore, our results
demonstrate that the e-nose can not only detect but also identify different mold genera, and thus making a significant step toward
fast, objective, and cost-effective indoor air quality monitoring.

1 Introduction

Mold fungi are commonly found in damp indoor environ-
ments and can pose a variety of health issues for humans
and animals. In addition to direct health risks, the result-
ing remediation costs and long-term consequential damage
can represent a significant financial burden. Therefore, timely
mold detection and identification are crucial for maintaining
a healthy indoor environment and preventing costly conse-
quences. Two filamentous fungi, Stachybotrys chartarum and
Chaetomium globosum, are particularly interesting because they
are among the most frequently detected molds in damp and
water-damaged indoor environments, especially on cellulose-
based construction materials such as gypsum board and wall-
paper [1–3]. Both species are representative of distinct eco-
logical and biochemical groups relevant to indoor exposure
assessment [1–5].

S. chartarum is a slow-growing, cellulolytic mold that requires
high water activity and sustained moisture to proliferate. Certain
chemotypes produce macrocyclic trichothecenes (e.g., satratox-
ins) and spirocyclic drimanes, metabolites implicated in irritant
and inflammatory responses [4, 6–10]. S. chartarum is repeatedly
isolated from gypsum wallboard and other cellulose-rich indoor
substrates in situ [1–3].

By contrast, C. globosum is a rapidly growing, cellulolytic fungus
that commonly colonizes paper, wood, and gypsum materials in
water-damaged buildings [1, 11]. Field surveys consistently report
C. globosum among the most abundant genera on moisture-
compromised building materials [1, 2, 5].

Traditional methods for mold detection and identification are
based on various sampling techniques such as swab, tape, bulk,
and air samples, followed by culture-based laboratory analyses
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[12]. These approaches typically require three to seven days,
leading not only to delays in remediation but also to additional
costs. An alternative approach is the use of mold-detection dogs.
They detect and locate mold by the characteristic odor the
mold produces. However, they have significant limitations: their
training is costly and time-consuming [13], and while they can
signal the presence of mold, they lack the ability to differentiate
between different mold genera, making precise identification
difficult if not practically impossible.

To retain the fundamental principle of odor-based mold detec-
tion, electronic noses (e-noses) emerge as a promising techno-
logical solution, that enables rapid, cost-efficient, and objective
detection. E-noses usually consists of a sensor array that is
used to generate an odor-specific signal pattern. This pattern
can be recognized using various machine learning algorithms
[14]. Multiple sensing principles exist, including, among others,
mechanical (e.g. surface-acoustic-wave) and electrical (e.g. capac-
itive, resistive, and field-effect-based). Its capability of detecting
and distinguishing biological samples is further documented by
existing reports in related applications such as food safety [15–
17], and medical [18]. Various classification methods can be used,
such as neural networks, decision trees, ensembles, principal
component analysis, and linear discriminant analysis (LDA).
While the best classifier is usually application-dependent, LDA
stands out as a good and versatile general method. Moreover,
a decision boundary can be implemented that can be directly
utilized for novelty detection [19], which is critical for practical
e-nose applications where previously unknown odors may be
presented. Other studies also demonstrated the successful use of
e-noses to identify various mold genera based on their typical
odor profiles [20, 21]. For mold detection and identification
specifically, the sensing mechanism of the e-nose relies on
the sensing of volatile organic compounds (VOCs) emitted as
metabolic byproducts by the mold. These VOCs include a range
of alcohols, ketones, ethers, and esters. Depending on the VOC,
it may directly act as an oxidizing or reducing gas or indirectly
affect the adsorption properties of other interacting gases such as
oxygen species [22]. For instance, S. chartarum is known to emit
unique microbial volatile organic compounds (MVOCs) such as
anisole (methoxybenzene), 3-octanone, and various alcohols [3,
23]. Furthermore, the VOCprofile can vary depending on the sub-
strate and incubation period, influencing the mold’s metabolic
expression. Likewise,C. globosumhas been shown to produce var-
ious metabolites with 3-ocatnone, 2-pentatnone, and 1-hexanol
as the top three hexane-soluble fraction [24]. Additionally, it
produces a diverse array of secondary metabolites, including
chaetoglobosins, azaphilones, and chaetomugilins, which are
relevant in the context of indoor exposure and bioactivity [11, 25].
The differences in MVOC output can be captured by the e-nose,
leading to identification of and separation between mold species
[26].

Here, we report a detailed evaluation of the potential of a
chemiresistive e-nose system for the detection and identification
of the two mold species, S. chartarum and C. globosum, by using
linear discrimination analysis (LDA). We additionally explore
different strategies to improve the classification performance.
Furthermore, two different growth substrates are used to simulate
different environments and test the generalization capability of
the e-nose.

2 Results and Discussion

2.1 Transient Response

To assess the ability of an e-nose to detect and identify distinct
mold species on different substrates, measurements under labo-
ratory conditions are conducted. Besides the reference air, bare
growth substrates (agar mixed with shredded gypsum and wheat
flour) are measured as additional reference samples. All four
combinations between mold and substrates are considered as
distinct classes and are measured individually. The experimental
details are stated in the Experimental Section. The transient
resistance responses of S. chartarum (a) and C. globosum (b)
are shown in Figure 1. The average resistance for reference
air is approximately 30 kΩ. Sample measurements start with
an initial spike in resistance, followed by a steadily falling
signal throughout the whole 30 min measurement duration. The
response signal of the samples does not fully stabilize in this time
frame. In contrast, the resistance values recover rapidly when
presented with reference air. Over the course of two weeks, only
minor signal changes were observed, as shown in Figure S3.
The sub-sensors are showing negative humidity coefficients, as
expected for SnO2, which is an n‑type semiconductor.

2.2 Conventional Linear Discriminant Analysis

First, the classification performance of a conventional LDAmodel
is assessed. For that, the LDA model is trained and tested with
all seven initially defined classes. The number of discriminants
𝒕 ∈ [1..𝒏𝒄 − 1], is optimized. Hereby, nc is the number of classes.

In this case, with seven classes, t is found to be six. Additionally,
feature selection is performed iteratively to remove features with
a negative impact on the classification. This can be interpreted
as ignoring bad sub-sensors. Here, two from the initial 16 features
are removed,while the remaining 14 sensor signals are considered
for further processing.

Training (dots) and test (crosses) data are shown in Figure 2a,
which are projected to the discriminant space (d1, d2). Except for
SoW (pink) and CoW (purple), all other classes overlap severely
in the displayed discriminant space. Nonetheless, the majority
of data can still be distinguished by the LDA as shown in the
confusion matrix (Figure 2b) and the classification report (Table
S2), partially due to the contribution of other discriminants.
The no-mold samples (A, G, W) have a substantial number
of misclassifications among each other and thus have lower
F1-scores than all other classes containing mold. In contrast,
SoW and CoW display the highest F1-scores (> 94%) with 100%
precision. SoW and CoW both have 100% precision, with no other
classes being misclassified as these two. This finding aligns with
the observations in the LDA plot in Figure 2a. A non-negligible
part of the test data is classified as novelty by this LDA model,
most prevalently of the classes A and CoW, indicating a higher
signal noise or deviation. Practically, the LDA can classify all
seven classes, although the performance is lackluster. Therefore,
various performance-improving approaches are shown in the
following subsections. This conventional LDA model, including
all seven classes, is abbreviated to LDA-0 to distinguish it from
other models.
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FIGURE 1 Two representative measurement series showing the median signal of the 16 subsensors. a) Measurement containing S. chartarum
samples, b) Measurement containing C. globosum samples. The segments are abbreviated as follows: reference air (A), gypsum reference (G), wheat
reference (W), S. chartarum on gypsum (SoG) and wheat (SoW), C. globosum on gypsum (CoG) and wheat (CoW).

FIGURE 2 Classification results of the conventional LDA including all 7 classes. a) Projected data points in the discriminant space (d1, d2). Training
data are displayed as dots, and the test data are displayed as crosses. The classes are abbreviated as follows: novelty (N), reference air (A), gypsum reference
(G), wheat reference (W), S. chartarum on gypsum (SoG) and wheat (SoW), C. globosum on gypsum (CoG) and wheat (CoW). The decision boundaries
of each class are shown as dashed lines in the same color as the represented class.

2.3 Substrate-Independent Analysis

Mold detection and identification are the two most important
tasks. The LDA model can be simplified to solely focus on these
tasks by removing the substrate dependency of the classes. To
remove this dependency, the classes A, G, and W are merged as
“no mold” (NM), SoG and SoW are merged as Stachybotrys (S),
andCoGandCoWaremerged asChaetomium (C). This substrate-
independent model is subsequently abbreviated as LDA-SI.

The optimized number of discriminants is found to be t = 2.
Seven features are selected from the 16 initial features. The
resulting LDA plot is shown in Figure 3a. In there, the three
classes display less severe overlap compared to the LDA-0 model.
The NM class has data outside its own and inside other classes’
decision boundaries, which leads to misclassifications that are
evidenced by the corresponding confusion matrix in Figure 3b.
This also causes the lower recall values of other classes in

the classification report in Table S3. S. chartarum has a single
out-of-bound data cluster, which is positioned at the center of
the NM class.This is reflected by misclassifications to NM in
the confusion matrix. The data points of C. globosum are well
enclosed within its decision boundary with a negligible number
of outliers. Therefore, the recall of C. globosum is over 99%. All
metric values of C. globosum are higher than the corresponding
ones of S. chartarum. Compared to the LDA-0 model, novelty is
rarely predicted. This finding indicates that the mold is mainly
responsible for the detectable odor signal, while substrates have a
lesser impact.

2.4 Substrate-Specific Analysis

In a real-world application case, the growth substrate is usually
known beforehand. Therefore, simplified substrate-specific LDA
models can be created that exclude all other substrate references
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FIGURE 3 Substrate-independent LDA model test results. a) LDA plot b) Confusion matrix normalized to rows (true labels). The classes are
abbreviated as follows: novelty (N), no mold (NM), S. chartarum (S), and C. globosum (C). The decision boundary (DB) is shown as dashed lines in the
LDA plot.

and mold-on-substrate samples, which in our case results in
twomodels: the gypsum-specific (LDA-G) and the wheat-specific
(LDA-W) model. Both substrate-specific models are generalized
as LDA-SS.

For both LDA-G and LDA-W, the optimal number of discrim-
inants is found to be t = 2. From the 16 features, nine are
selected for LDA-G and eight for LDA-W. The LDA plot of LDA-
G (Figure 4a) shows less overlap compared to LDA-0. The spatial
separation is even superior in the LDA plot of LDA-W, as shown
in Figure 4c. Here, all three classes are well enclosed within
their respective decision boundaries, and no overlapping of the
decision boundaries is observed.

Compared to the LDA-SI model (refer to Figure 3a), the NM
class has fewer outliers, which translates into a significant
increase in recall for both LDA-SS models, as shown in Table
S4. On gypsum, the S. chartarum class has a considerably higher
precision (98.59 %) compared to recall (87.87%). This is attributed
to the misclassification as NM evidenced in the confusion matrix
(Figure 4b). Still, a non-negligible part of NM class test data
is predicted as novelty for both LDA-SS models. Both LDA-G
and LDA-W achieve higher average F1-scores (92.64% and 98.09%
respectively) compared to LDA-0 and LDA-SI. These findings
generally support a substrate-specific approach, if possible.

2.5 LDA Ensemble With Softmax Regressor

In our analysis, we have observed that individual LDA models
that are trained on specific subsets of classes may perform signifi-
cantly better; for example, the substrate-specificmodels discussed
in section 2.4. Thus, this behavior is exploited by creating an
ensemble of LDA models, each trained with a unique subset
of classes. The detailed model structure is shown in Figure 5.
This means for a given number of classes nc, 𝑛𝑚 = 2𝑛𝑐 − 𝑛𝑐 − 1

number ofmodels are initially created, as deduced in Equation S1.
Thereafter, a softmax regressor takes the nm predictions as input
and re-predicts one of the nc classes. This LDA-ensemble with
a subsequent softmax regression is subsequently abbreviated as
LDA-SR.

Undesirably, the softmax regressor intrinsically removes the
novelty detection function of the LDA models. Therefore, an
additional majority voting algorithm is implemented to rein-
troduce the novelty class. The softmax prediction is accepted
if more than half of the relevant LDA models in the ensem-
ble match. Otherwise, the prediction is rejected and declared
novel.

The LDA ensemble is trained without any hyperparameter opti-
mization or feature selection for the individual LDA models.
Hereby, always the maximum number of discriminants is used.
Next, the softmax regressor is tuned and trained using the LDA
model predictions of the training data. The optimal regularization
strength C is found to be 0.09. Feature selection is performed on
the pre-prediction of the LDA ensemble and removes 20 from
the initial 120 features. This can be interpreted as removing
bad-performing LDA models from the ensemble. Finally, the
complete LDA-SR model is tested. The confusion matrix of the
test result without majority voting is shown in Figure 6a, and the
classification report is presented in Table S5. The model achieves
superb precision, recall, and thus also F1-scores across all classes.
No significantmisclassification is observed. As expected,majority
voting reintroduces the novelty label if enabled, as shown in
the confusion matrix in Figure 6b. But only a minor amount
of novelty is detected during testing. No recall value changes
occur from the majority voting, since majority voting only
introduces the novelty label, which has no occurrences in the
test data set. Compared to LDA-0, LDA-SI, and LDA-SS, all
classification performance metrics improved considerably. This
is especially significant for low-performing classes; hence, the
performance disparity between classes decreases. It must be
noted that compared to other presented models, the LDA-SR is
more computationally expensive for large class counts nc due to
the exponentially growing number of LDA models 𝑛𝑚 ∝ 2𝑛𝑐 in
the ensemble. This drawback can be partiallymediated by feature
selection and by reducing the number of classes, for example,
with the simplification approaches discussed in sections 2.3
and 2.4.

It should be noted that in a real-world application, other sources
of VOC, such as building materials, human activities, household
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FIGURE 4 Substrate-specific analysis results. a) and c): LDA plots, b) and d): confusion matrices for gypsum and wheat-specific models,
respectively. The classes are abbreviated as follows: novelty (N), no mold (NM), S. chartarum (S), and C. globosum (C). The decision boundary (DB)
is shown as dashed lines in the LDA plots.

FIGURE 5 Data flow chart of the ensemble classifier including multiple LDA models, a softmax regressor, and a majority voting algorithm.

products, and combustion by-products, have to be considered
[26–29]. Consequently, the e-nose may face challenges sensing
mold, depending on the concentration and type of the interfering
VOCs. Nevertheless, local baseline measurements at mold-free
areas should at least enable mold indication using outlier detec-
tionmethods. Other environmental factors, such as humidity and

airflow, can be relatively easily controlled even formobile devices.
Finally, the e-noses ability to detect other common mold genera
such as Aspergillus and Penicillium is considered likely since they
also emit characteristic MVOCs [30–32]. But additional research
is required to establishwhichmold species can be unambiguously
and reliably identified and which species belong to broader

Advanced Sensor Research, 2025 5 of 10
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FIGURE 6 Confusion matrices of the test result of LDA ensemble combined with softmax regression. a) without majority voting, b) with majority
voting. The classes are abbreviated as follows: novelty (N), reference air (A), gypsum reference (G), wheat reference (W), S. chartarum on gypsum (SoG)
and on wheat (SoW), C. globosum on gypsum (CoG) and on wheat (CoW).

groups where individuals within the group are indistinguishable
from each other.

3 Conclusion

This work assesses the capability of a chemiresistive e-nose
sensor to detect and identify common indoor mold. For that,
the two mold species, S. chartarum and C. globosum, are chosen
and grown in laboratory conditions on two different substrates
(agar mixed with either shredded gypsum or wheat). An e-nose
using UV-activated, chemiresistive SnO2 nanowires is used for
this case. Different LDA variations are trained and tested using
the measurement data. The conventional LDA model (LDA-
0), which is trained on all seven initial classes, only displays
mediocre results with an average F1-score of 83.74% due to
severe overlapping of decision boundaries. Therefore, different
strategies are explored to improve the classification performance.
The LDA model can be simplified by either merging classes to
remove the substrate dependency (LDA-SI) or by creating LDA
models specific to each substrate (LDA-SS). Both approaches
lead to improvements in classification performance. Moreover,
a novel ensemble classifier consisting of individual LDA models
and a subsequent softmax regressor (LDA-SR) is implemented
and tested. This ensemble is further extended by amajority voting
algorithm to preserve the novelty detection capability of the LDA
models. This LDA-SR model achieves an astounding F1-score of
98.57% in testing with all seven classes. Conclusively, we show
that the chemiresistive e-nose can successfully and highly reliably
detect and identify the presented mold genera grown on two
different substrates.

4 Experimental Section

4.1 Mold Sample Preparation

All fungal strains used in this work were obtained from the
State Health Authority of Baden-Wuerttemberg (Germany) and
cultivated under standardized laboratory conditions as detailed

below. To ensure optimal growth conditions for the selectedmold
species, two different culturemediawere used: whole wheat flour
agar (composition: 30 gwholewheat flour, 15 g agar-agar, 1000mL
distilled water), and gypsum board agar (composition: 30 g finely
ground gypsum board, 15 g agar–agar, 1000 mL distilled water).
For the whole wheat flour agar, flour and agar–agar were first
weighed, then mixed with distilled water, and finally autoclaved
(Varioclav 135S, HP Labortechnik GmbH) at 121◦C for 15 min
to ensure sterility. For the gypsum board agar, gypsum board
was first mechanically ground into a fine powder, then mixed
with agar-agar, and subsequently dissolved in distilled water.
Finally, the mixture was autoclaved under identical conditions
as the whole wheat flour agar. Each culture medium was
aliquoted into sterile culture bottles (DURAN 1000 mL, GLS 80,
DWK Life Sciences) under sterile conditions. After cooling to
room temperature, the agar solidified, forming a stable growth
surface. After complete solidification of the media, the culture
bottles were inoculated with the selected mold strains. The mold
species S. chartarum and C. globosum were cultured separately
in different bottles. Each sterile bottle was inoculated in a Class
II biological safety cabinet (Airstream ESCO Class II Biological
Safety Cabinet) to prevent cross-contamination. The spores were
applied directly onto the surface of the agar media using a sterile
loop. Subsequently, the inoculated bottles were incubated at 25
± 3◦C with 60% relative humidity. The incubation time was at
least 10 days or until the agar surface was fully colonized bymold.
Regular visual and microscopic inspections were conducted to
monitor the growth phase and ensure full colonization.

4.2 Sensor Fabrication

A suitable sensingmaterial is required to operate a chemiresistive
sensor. For this purpose, tin(IV) oxide (SnO2) nanowires (NWs)
were chosen for their well-known superb gas sensing capabilities
[33–54]. The SnO2 NWs were manufactured by the vapor-liquid-
solid (VLS) process, as described in references [54, 55]. First, a
ceramic boat was filled with two spatula tips of the precursor
tin(II) oxide (SnO) powder. The precursor-filled boat was placed
in the center of the tube oven with an inner diameter of
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approximately 40 mm. Growth substrates (Si-wafers) are placed
immediately after the precursor boat in the gas flow direction
on top of a second ceramic boat. The surface of the Si-wafers
had been sputtered with 5 nm Au to enable the VLS process.
The oven tube was first evacuated and heated to 300◦C in the
first step to remove remaining residues and impurities. In a
second step, the temperature was raised to 1040◦C over 2 h and
then kept for 2 h. During this step, the pressure inside the tube
was maintained at 300 mbar and 50 sccm Ar and 0.1 sccm O2
flows were constantly supplied for the VLS process. Finally, the
substrateswere allowed to cool down slowly overnight. A detailed
illustration of the VLS setup is shown in Figure S1a, and an
electronmicrograph of the obtained SnO2 NWs is shown in Figure
S1b. Only SnO2 NWs were used as the sensing material in our
sensor. The chemiresistive e-nose platform used in this work was
designed in-house at Karlsruhe Institute of Technology (KIT) and
has been successfully employed in the past for various projects
[54, 56]. It is inspired by the preceding “Karlsruhe Mikronase”
(KAMINA) sensor [15, 49, 57–63]. The sensing area of the platform
consists of an interdigitated electrode array. Each of the 17 gold
electrodes in the array is 50 µm wide and 50 µm apart from its
next neighbor. The overlapping length of the electrodes is 4 mm.
SnO2 NWs were dispersed in 2-propanol by magnetic stirring and
were subsequently deposited on top of the electrodes by mask-
assisted drop casting. The SnO2 NWs electrically connected the
electrodes to form 16 chemiresistive sub-sensors. Images of the
sensor area before and after deposition are shown in Figure S2.
The sensor was operated at room temperature (24 ± 3◦C) and
the SnO2 NWs were excited using UV irradiation (λ = 365 nm,
I ≈ 15 mW cm−2) to promote gas-material interactions and to
reduce the electrical resistivity of SnO2. Per measurement cycle,
the electrical resistances of all 16 sub-sensors were captured
and logged. The entire cycle is executed approximately once per
second.

4.3 Experimental Setup

Azero-air generator (Sylatech, TG 12UP)was used to obtain clean
and dry reference air. The reference air was humidified to 90%
relative humidity (RH) in a controlledmanner. This was achieved
by redirecting and fully humidifying 90% of the reference air with
a washing bottle before merging and remixing it back with the
remaining 10% dry reference air.

The rationale for using 90% RH is detailed below. The substrates
had a high capacity for water storage. When the carrier gas
humidity was too low, such as at 50% RH, the stored water
was released into the carrier gas. This release caused two
critical issues. First, the substrates dried out over time, severely
altering the environmental conditions. Second, the reabsorbed
humidity in the carrier gas resulted in an enormous resistance
difference between reference air and the othermeasurements. For
example, when using reference air at 50% RH, it was observed
that the resistance for the reference air was around 10 MΩ.
In contrast, resistances around 10 kΩ were observed for other
gas flows. Furthermore, the absolute noise of the reference
air measurements was also in the MΩ range. Therefore, the
reference air’s difference and noise overshadowed the relatively
minor resistance differences between the samples, subsequently

impairing the classification. By increasing the relative humidity
to 90%, these issues were mitigated.

The humidified reference air was either directly used for ref-
erence measurement via the bypass or rerouted to the samples
as carrier gas. Each measurement consisted of alternating seg-
ments of reference air and samples. The measurements always
started and ended with a reference air measurement. All sam-
ple measurements were 30 min long, while the reference air
measurements had a measurement time of 10 min. The shorter
reference air measurement duration was justified due to faster
signal stabilization compared to sample measurements. For each
mold species, eight measurements were taken over the course of
two weeks.

4.4 Data Analysis

The following seven distinct base classes were defined and
labeled: reference air (A), gypsum reference (G), wheat reference
(W), S. chartarum on wheat and gypsum substrate (SoW and
SoG), and C. globosum on wheat and gypsum substrate (CoW,
CoG). Each sample consisted of 16 features, which are the
resistance values from the sub-sensors. Only data from the last
5 min of each measurement segment was extracted to obtain
the most stationary and stable signal. Across all measurements,
158 091 samples were taken. The data was resampled for each
second by linear interpolation that results in 323 770 total
samples. 36 595 of these data were labeled. A more detailed class-
dependent distribution of the labeled samples is presented in
Table S1. The number of data samples per class varied due to
the different number of measurement segments per class. Such
imbalanced data sets may negatively impact the performance of
machine learning models generally and also of LDA specifically
[64–67]. For this reason, the data was randomly downsampled
so that the sample size of each class matches the minority class
(2107 data samples). Logarithm to the base of 10 is applied
to all resistance feature values. No further preprocessing was
performed. Although the data at this stage only loosely conform
to a normal distribution according to QQ-plots, the deviations
were tolerable for subsequent analyses [68]. The datawas shuffled
and split into training and test data with a relative test size of
approximately 10%. For all LDA models, the decision boundaries
are calculated using f-distributionwith a fixed confidence interval
of 95% according to Henrion and Henrion [19]. The number of
used discriminantswas optimized using ten-fold cross-validation,
if not otherwise stated. Feature selection was iteratively done
by backward elimination of features. The metrics confusion
matrix, precision, recall, and F1-score were evaluated for the test
results. Python (3.13.0) was used for all data analysis with the
following packages used for calculations numpy (2.1.3), scipy
(1.14.1), sklearn (1.5.2) and imblearn (0.13.0). For all random
processes the random_state variablewas set to 42 for repeatability.
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