KIT | KIT-Bibliothek | Impressum | Datenschutz

pyGinkgo: A Sparse Linear Algebra Operator Framework for Python

Tuteja, Keshvi; Olenik, Gregor; Mishchuk, Roman; Tsai, Yu-Hsiang ORCID iD icon 1; Götz, Markus ORCID iD icon 1; Streit, Achim ORCID iD icon 1; Anzt, Hartwig ORCID iD icon 1; Debus, Charlotte 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Sparse linear algebra is a cornerstone of many scientific computing and machine learning applications. Python has become a popular choice for these applications due to its simplicity and ease of use. Yet high-performance sparse kernels in Python remain limited in functionality, especially on modern CPU and GPU architectures. We present pyGinkgo, a lightweight and Pythonic interface to the Ginkgo library, offering high-performance sparse linear algebra support with platform portability across CUDA, HIP, and OpenMP backends. pyGinkgo bridges the gap between high-performance C++ backends and Python usability by exposing Ginkgo’s capabilities via Pybind11 and a NumPy and PyTorch compatible interface. We benchmark pyGinkgo’s performance against state-of-the-art Python libraries including SciPy, CuPy, PyTorch and TensorFlow. Results across hardware from different vendors demonstrate that pyGinkgo consistently outperforms existing Python tools in both Sparse Matrix Vector (SpMV) product and iterative solver performance, while maintaining performance parity with native Ginkgo C++ code. Our work positions pyGinkgo as a compelling backend for sparse machine learning models and scientific workflows.


Verlagsausgabe §
DOI: 10.5445/IR/1000189209
Veröffentlicht am 22.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 20.12.2025
Sprache Englisch
Identifikator ISBN: 979-8-4007-2074-1
KITopen-ID: 1000189209
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in ICOO'25: Proceedings of the 54th International Conference on Parallel Processing, CA, San Diego, September 8-11, 2025
Veranstaltung 54th International Conference on Parallel Processing (ICPP 2025), San Diego, CA, USA, 08.09.2025 – 11.09.2025
Verlag Association for Computing Machinery (ACM)
Seiten 753–763
Schlagwörter Sparse Linear Algebra, Performance Optimization, Software Engineering, Parallel Algorithms, Python, Sparse Matrix Vector Multiplication
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page