

LETTER • OPEN ACCESS

## Denitrification in biogeochemical models—challenges and advances in simulating N<sub>2</sub> and N<sub>2</sub>O emission in agricultural systems

To cite this article: Clemens Scheer *et al* 2025 *Environ. Res. Lett.* **20** 124061

View the [article online](#) for updates and enhancements.

You may also like

- [On biodiversity-inclusive carbon crediting in agriculture: insights from crop residue burning](#)

Vijesh V Krishna, Ashiq Parambil-Peedika, Chima Rickards *et al.*

- [Basal ice but not summer temperature affects land surface greenness in parts of the landscape in high Arctic tundra](#)

Lia Lechlér, Åshild Ørnvik Pedersen, Isla H Myers-Smith *et al.*

- [Different places, different challenges: mapping global variations in agrifood-system burdens](#)

Christian Levers, Zia Mehrabi, Kushank Bajaj *et al.*



The advertisement features a large white circle containing the number '250' in red and green, with a blue ribbon banner across it that reads 'ECS MEETING CELEBRATION'. Below this, text on a dark blue background states: '250th ECS Meeting', 'October 25–29, 2026', 'Calgary, Canada', and 'BMO Center'. To the right, the ECS logo (blue 'ECS' inside a green oval) is followed by the text 'The Electrochemical Society' and 'Advancing solid state & electrochemical science & technology'. A large green banner with white text says 'Step into the Spotlight'. A red button at the bottom right says 'SUBMIT YOUR ABSTRACT'. Below that, a dark blue banner with white text says 'Submission deadline: March 27, 2026'.

# ENVIRONMENTAL RESEARCH LETTERS



## LETTER

### OPEN ACCESS

RECEIVED  
2 July 2025

REVISED  
13 November 2025

ACCEPTED FOR PUBLICATION  
26 November 2025

PUBLISHED  
12 December 2025

Original content from  
this work may be used  
under the terms of the  
Creative Commons  
Attribution 4.0 licence.

Any further distribution  
of this work must  
maintain attribution to  
the author(s) and the title  
of the work, journal  
citation and DOI.



# Denitrification in biogeochemical models—challenges and advances in simulating N<sub>2</sub> and N<sub>2</sub>O emission in agricultural systems

Clemens Scheer<sup>1,\*</sup> , Kathrin Fuchs<sup>1</sup> , Balazs Grosz<sup>2</sup> , Andrew Smerald<sup>1</sup> , Rene Dechow<sup>2</sup> , Mahboube Jarrah<sup>2</sup> , Boris Ouattara<sup>2</sup> , Heather R Pasley<sup>3</sup> , Matthias Kuhnert<sup>4</sup> and David Kraus<sup>1</sup>

<sup>1</sup> Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, D-82467 Garmisch-Partenkirchen, Germany

<sup>2</sup> Thünen Institute of Climate-Smart Agriculture, Bundesallee 68, Braunschweig, Germany

<sup>3</sup> CSIRO Agriculture and Food, St Lucia, Brisbane 4067, Australia

<sup>4</sup> School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom

\* Author to whom any correspondence should be addressed.

E-mail: [clemens.scheer@kit.edu](mailto:clemens.scheer@kit.edu)

**Keywords:** denitrification, sustainable nitrogen management, agricultural nitrogen losses

Supplementary material for this article is available [online](#)

## Abstract

Denitrification represents a major nitrogen (N) loss pathway in agriculture, reducing plant N uptake, lowering crop N use efficiency, while emitting the potent greenhouse gas nitrous oxide (N<sub>2</sub>O). However, due to methodological challenges, field measurements of N<sub>2</sub> emissions remain rare, leaving denitrification losses poorly characterised across most cropping systems and comprehensive N budgets lacking. This constrains parameterization and validation of biogeochemical models, impeding efforts to forecast denitrification losses under changing conditions and design effective mitigation strategies. This study (i) reviewed the current literature on field-based N<sub>2</sub> measurements, (ii) tested the ability of five different models to accurately simulate denitrification losses, and (iii) simulated denitrification losses from agricultural soils in Germany using gridded and point-based modelling frameworks. Results show that field studies suitable for model calibration remain scarce and mostly limited to temperate systems. Simulated cumulative N<sub>2</sub> emissions varied widely between models, ranging from 0.89 to 6.07 kg N ha<sup>-1</sup>, far below the observed N<sub>2</sub> emissions of  $21 \pm 3$  kg N ha<sup>-1</sup>. The ratio of N<sub>2</sub>O to (N<sub>2</sub>O + N<sub>2</sub>) emitted ( $R_{N_2O}$ ), a key determinant of the climate impact of denitrification, was not only strongly overestimated by all models but also exhibited considerable variations, ranging from 0.056 to 0.707, compared to the measured ratio of 0.006. Models also failed to capture expected responses of to environmental drivers. For Germany, simulated average N<sub>2</sub> emissions from agricultural soils ranged from 1.7 to 14.5 kg N ha<sup>-1</sup> yr<sup>-1</sup>, with corresponding  $R_{N_2O}$  ratios ranging from 0.18 to 0.59. Spatial patterns of emissions also differed significantly across modelling frameworks, reflecting large structural uncertainties. These findings highlight that both N<sub>2</sub> emissions and  $R_{N_2O}$  ratios remain poorly represented in current models, severely limiting our ability to establish reliable N budgets and develop targeted N management strategies. Coordinated advancements in field-based measurements and modelling are urgently needed to improve the representation of denitrification in biogeochemical models.

## 1. Introduction

Denitrification, the microbial reduction of nitrate ( $\text{NO}_3^-$ ) and nitrite ( $\text{NO}_2^-$ ) to gaseous emissions of nitric oxide (NO), nitrous oxide ( $\text{N}_2\text{O}$ ) and dinitrogen ( $\text{N}_2$ ), represents a major pathway for nitrogen (N) loss from terrestrial ecosystems. It plays a central role in regulating the size and fate of reactive nitrogen ( $\text{N}_r$ ) pools in the environment and the majority of anthropogenic  $\text{N}_r$  created each year is ultimately returned to the atmosphere as inert  $\text{N}_2$  by terrestrial denitrification processes (Scheer *et al* 2020).

In fertilised agricultural systems 5%–30% of applied N fertiliser is assumed to be lost through denitrification (IPCC 2019), reducing plant N uptake and lowering crop N use efficiency. These N losses create significant environmental concerns; particularly due to the emissions of  $\text{N}_2\text{O}$ , which is not only a potent greenhouse gas with a global warming potential 273 times greater than  $\text{CO}_2$  (IPCC 2021), but is also the primary contributor to stratospheric ozone depletion (Ravishankara *et al* 2009, Davidson *et al* 2014).

While significant progress in analytical techniques in the last decade have improved our process understanding at the microscale (Kleineidam *et al* 2025), data on  $\text{N}_2$  emissions at field-relevant scales are still largely missing, hence limiting the ability to reliably upscale denitrification dynamics to larger scales (Robertson 2023). Consequently, as the anticipated largest N flux from denitrification, emissions of  $\text{N}_2$  are a major source of uncertainty in agroecosystem N budgets. Since no method currently exists to directly quantify  $\text{N}_2$  emissions at larger spatial scales, upscaling efforts must rely on functional relationships of measurable quantities. In this context, biogeochemical process models that operate at the field or larger scale offer a powerful tool, as they typically provide a coherent representation of the entire N cycle including all kind of ecosystem N fluxes such as storage, vegetation exchange, leaching and gaseous losses. However, the representation of denitrification processes in these models is often derived from incubations or step-tank experiments that relied on the problematic acetylene inhibition technique (AIT) (Leffelaar *et al* 1988, Parton *et al* 1996, Del Grosso *et al* 2000). Moreover, the general lack of experimental data on denitrification-related metabolic rates, particularly  $\text{N}_2$  production, makes thorough calibration and validation of denitrification rates in these models difficult. As a consequence,  $\text{N}_2$  fluxes are frequently neglected in model applications, leading to large variability in process formulations and parameterizations, with simulated  $\text{N}_2$  emissions differing by an order of magnitude or more across models (Fuchs *et al* 2020, Grosz *et al* 2023). Particularly, the ratio of  $\text{N}_2\text{O}$  to ( $\text{N}_2\text{O} + \text{N}_2$ ) emitted ( $R_{\text{N}_2\text{O}}$ ), a key determinant of the climate impact of denitrification, is still poorly constrained in most models. These

uncertainties restrict our capacity to predict denitrification losses in the context of changing environmental conditions, as well as our ability to develop sustainable N management strategies for agriculture.

This study (i) critically summarizes the latest research findings of denitrification losses and their control under field conditions, (ii) evaluates the ability of different process-based models to simulate  $\text{N}_2$  and  $\text{N}_2\text{O}$  emissions at site and landscape scales, and (iii) examines how denitrification processes are currently represented in these models. By identifying knowledge gaps and proposing improvements, this study aims to enhance the predictive capacity of denitrification models to support evidence-based policy and sustainable N management.

## 2. Material and methods

### 2.1. Literature review of field-based measurements of denitrification

We conducted a literature review using the search terms ‘denitrification’, ‘ $\text{N}_2$ ’, and ‘agriculture’ on ISI Web of Science and Google Scholar to find field based  $\text{N}_2$  measurements. Relevant publications had to meet the following criteria: They had to report measured  $\text{N}_2$  fluxes using either the  $^{15}\text{N}$  gas flux method or the  $\text{He}/\text{O}_2$  or  $\text{Ar}/\text{O}_2$  incubation method. Studies using the AIT were excluded due to the well documented problems associated with this method (Bollmann *et al* 1997, Groffman *et al* 2006). Studies had to include a minimum of 7 measurements days directly in the field or under field-like conditions and present either cumulative results for each treatment or results in a way that enabled cumulative fluxes to be calculated over the experimental period. Laboratory studies using intact plant-soil systems where the plants were in the dark during gas flux measurement were also accepted if the denitrification product stoichiometry obtained was used to derive field  $\text{N}_2$  fluxes in combination with high resolution *in situ*  $\text{N}_2\text{O}$  flux measurements. To supplement the database, we also screened the reference lists of all relevant publications. From the selected studies, we extracted  $\text{N}_2$  and  $\text{N}_2\text{O}$  fluxes as well as the  $R_{\text{N}_2\text{O}}$  ratio. We used a Welch’s *t*-test to compare group means for the following variables: land use type (arable or grassland), fertiliser type (mineral or organic), and measurement technique ( $\text{He}/\text{O}_2$  versus  $^{15}\text{N}$  tracer). The target variables were  $\text{N}_2$ ,  $\text{N}_2\text{O}$ , emission factors (N emissions as a percentage of the fertiliser N inputs) for  $\text{N}_2$  ( $\text{EF}_{\text{N}_2}$ ) and  $\text{N}_2\text{O}$  ( $\text{EF}_{\text{N}_2\text{O}}$ ), and total denitrification.

### 2.2. Site & regional simulations

#### 2.2.1. Simulations of site-scale denitrification losses

Five biogeochemical models were tested based on their ability to accurately simulate denitrification losses from a well-defined *in-situ* lysimeter experiment (Yankelzon *et al* 2025a). These models included

LandscapeDNDC (LDNDC) (Haas *et al* 2013), DNDC-Can (Smith *et al* 2020), MONICA (Nendel 2014), APSIM (Holzworth *et al* 2014), and DayCent (Parton *et al* 1998). The five models estimate  $N_2$  and  $N_2O$  emissions in different ways (references to the applied model version are provided in the supplementary material).

The models LDNDC and DNDC-Can use a process-oriented Michaelis–Menten kinetics approach to describe nitrification and denitrification processes and implement the concept of aerobic and anaerobic soil volumes driven by  $O_2$  concentration. Nitrifying and denitrifying models are explicitly modelled. In contrast, DayCent, MONICA and APSIM apply empirically derived relationships to describe  $N_2O$  and  $N_2$  production rates of nitrification and denitrification using sets of soil physical and chemical parameters without linking those rates to explicitly modelled  $O_2$  concentrations and nitrifying/denitrifying microbial communities.

Each model used the same input data including information on initial soil properties, daily weather variables and agricultural management. Initial soil properties provided for each soil horizon included bulk density, pH, soil texture (i.e. clay, silt and sand content), and organic carbon (C) and N content. The daily weather data included maximum and minimum temperature ( $^{\circ}C$ ), precipitation (mm), relative humidity (%), global radiation ( $W\ m^{-2}$ ) and wind speed ( $m\ s^{-1}$ ).

The rationale behind the selection of this data for model testing was the comprehensive set of relevant variables that were measured: The experiment provided measurements of all major N fluxes, including plant N uptake,  $NO_3^-$  leaching and ammonia ( $NH_3$ ),  $N_2$  and  $N_2O$  emissions, during one winter wheat growing season (Yankelzon *et al* 2025a).

### 2.2.2. Simulations of regional denitrification losses

Two modelling approaches were employed to estimate denitrification losses from agricultural soils in Germany. LDNDC used a gridded framework with high-resolution input data on crop types ( $10 \times 10\ m$ ), soil properties ( $100 \times 100\ m$ ), fertiliser inputs across  $\sim 10\ 000$  municipalities, planting/harvesting dates, and N deposition ( $1 \times 1\ km$ ) for the period 2017–2022 (Smerald *et al* 2025). For each administrative district, 100 representative fields were simulated. District-level denitrification was calculated by averaging the fields with equal weighting. National  $N_2$  and  $N_2O$  emissions were derived from area-weighted grid cell averages.

MONICA and DNDC-Can used a point data approach based on 1236 cropland sites from the German Agricultural Soil Inventory (Poeplau *et al* 2020), with simulations covering 2007–2010. Total denitrification losses at the district level were then determined by averaging over the simulated sites in

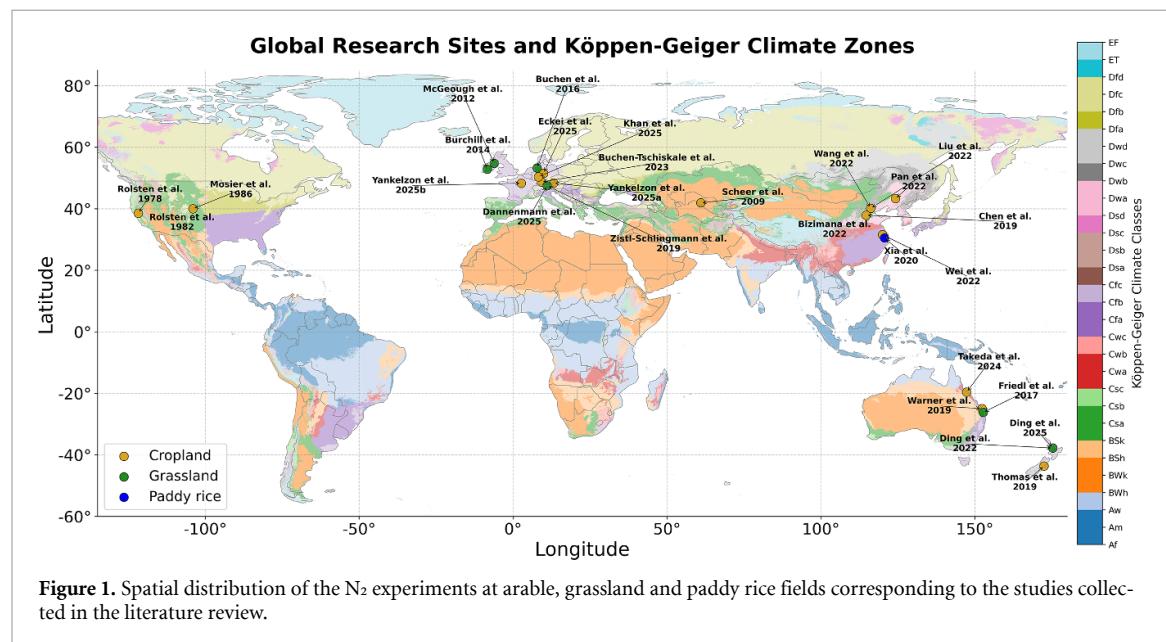
each district. For each of these sites, measured soil properties (soil organic carbon, C:N ratio, texture, pH, bulk density) were available up to a depth of 1 m. Management data were collected via farmer questionnaires for a period of 10 years. Timings of management operations were derived based on phenological stages of agricultural crops (Ouattara *et al* 2025). Weather data were taken from adjacent weather stations of the German Weather Service station network (DWD 2024). Simulations were preceded by spin-up runs of 3 years.

## 3. Results and discussion

### 3.1. Field based measurements of denitrification

A comprehensive review of the literature identified 25 relevant publications on  $N_2$  fluxes under field or field-like conditions (table 1, and SI), comprising 99 observations linked to specific site-treatment combinations. This number is substantially lower than that of a recent meta-analysis by Pan *et al* (2022a), which included studies using the AIT. In contrast, our strict inclusion criteria excluded AIT-based studies and those lacking direct measurements under field or field-like conditions, demonstrating the continued scarcity of field data suitable for model calibration.

These studies, published between 1978 and 2025, show that despite decades of research, the number of studies suitable for calibrating biogeochemical models with realistic field data on denitrification losses is still extremely limited. Moreover, the data show a clear geographical and climatic bias: most experiments were conducted in temperate systems, with only four in subtropical environments, one in an irrigated semi-arid system and one in a tropical sugarcane system (figure 1).


The majority of observations (80) were conducted on arable land, while two observations were made in a paddy rice system and 17 in grasslands. No significant differences in denitrification rates were found between arable and grassland systems ( $p > 0.05$ ), nor did fertiliser type significantly affect denitrification or the average  $R_{N_2O}$  ratio ( $p > 0.05$ ). However, there was a tendency toward higher  $R_{N_2O}$  with mineral fertiliser compared to organic fertiliser ( $p = 0.07$ ), a trend that warrants further study.

Both helium/oxygen ( $He/O_2$ ) and  $^{15}N$  tracer techniques yielded similar mean  $N_2$  and  $N_2O$  fluxes, emission factors, and  $R_{N_2O}$  values, indicating both methods are suitable for quantifying  $N_2$  emissions at field scale (Friedl *et al* 2020). Measured cumulative  $N_2$  fluxes ranged from 0 to  $209\ kg\ N\ ha^{-1}$ , with a mean of  $20\ kg\ N\ ha^{-1}$ . However, the reported denitrification losses were measured over highly variable observation periods (from two weeks to a full year) and across a wide range of fertiliser application rates (0– $800\ kg\ N\ ha^{-1}$  of mineral and organic fertiliser N combined), making direct comparisons of absolute

**Table 1.** Summary of available field data with  $\text{N}_2$  measurements.  $\text{N}_2\text{O}:(\text{N}_2 + \text{N}_2\text{O})$  ratios ( $\text{RN}_{\text{N}_2\text{O}}$ ), Emission factors (EFs<sup>a</sup>) for  $\text{N}_2$  ( $\text{EF}_{\text{N}_2}$ ) and  $\text{N}_2\text{O}$  ( $\text{EF}_{\text{N}_2\text{O}}$ ) as well as cumulative  $\text{N}_2\text{O}$  and  $\text{N}_2$  emissions over the duration of the experiment from 99 observations (site\*treatment combinations) published in 25 publications between 1978 to 2025.

| Study type               | <i>n</i> | $\text{R}_{\text{N}_2\text{O}}$ | $\text{EF}_{\text{N}_2\text{O}+\text{N}_2}$<br>(%) | $\text{EF}_{\text{N}_2\text{O}}$<br>(%) | $\text{EF}_{\text{N}_2}$<br>(%) | $\text{N}_2\text{O}$<br>(kg $\text{Nha}^{-1}$ ) | $\text{N}_2$<br>(kg $\text{Nha}^{-1}$ ) | Total<br>(kg $\text{Nha}^{-1}\text{yr}^{-1}$ ) |
|--------------------------|----------|---------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|
| Arable                   | 74       | 0.16 ( $\pm 0.02$ )             | 8.5 ( $\pm 1.2$ )                                  | 1.3 ( $\pm 0.3$ )                       | 7.3 ( $\pm 1.2$ )               | 2.3 ( $\pm 0.5$ )                               | 15.8 ( $\pm 3.2$ )                      | 18.2 ( $\pm 3.4$ )                             |
| Grassland                | 23       | 0.09 ( $\pm 0.02$ )             | 13.1 ( $\pm 1.8$ )                                 | 1.2 ( $\pm 0.3$ )                       | 11.9 ( $\pm 1.7$ )              | 2.7 ( $\pm 0.7$ )                               | 31.7 ( $\pm 9.2$ )                      | 34.3 ( $\pm 9.5$ )                             |
| Paddy rice               | 2        | 0.01 ( $\pm 0.00$ )             | 22.8 ( $\pm 1.6$ )                                 | 0.2 ( $\pm 0.0$ )                       | 22.8 ( $\pm 1.6$ )              | 0.3 ( $\pm 0.1$ )                               | 50.2 ( $\pm 3.5$ )                      | 50.6 ( $\pm 3.6$ )                             |
| Mineral fertiliser       | 40       | 0.19 ( $\pm 0.04$ )             | 9.0 ( $\pm 2.0$ )                                  | 0.8 ( $\pm 0.1$ )                       | 8.3 ( $\pm 2.0$ )               | 1.9 ( $\pm 0.3$ )                               | 18.7 ( $\pm 5.6$ )                      | 20.6 ( $\pm 5.9$ )                             |
| Organic fertiliser       | 57       | 0.11 ( $\pm 0.02$ )             | 10.0 ( $\pm 1.0$ )                                 | 1.5 ( $\pm 0.5$ )                       | 8.5 ( $\pm 1.0$ )               | 2.8 ( $\pm 0.6$ )                               | 20.2 ( $\pm 4.1$ )                      | 23.0 ( $\pm 4.3$ )                             |
| $^{15}\text{N}$ gas flux | 80       | 0.14 ( $\pm 0.02$ )             | 9.6 ( $\pm 1.1$ )                                  | 1.2 ( $\pm 0.3$ )                       | 8.4 ( $\pm 1.1$ )               | 2.3 ( $\pm 0.5$ )                               | 19.7 ( $\pm 3.9$ )                      | 22.0 ( $\pm 4.1$ )                             |
| $\text{He}/\text{O}_2$   | 17       | 0.13 ( $\pm 0.03$ )             | 9.8 ( $\pm 2.2$ )                                  | 1.3 ( $\pm 0.3$ )                       | 8.5 ( $\pm 2.2$ )               | 3.0 ( $\pm 0.7$ )                               | 18.9 ( $\pm 5.5$ )                      | 21.9 ( $\pm 5.6$ )                             |
| All upland soils         | 97       | 0.14 ( $\pm 0.02$ )             | 9.7 ( $\pm 1.1$ )                                  | 1.2 ( $\pm 0.3$ )                       | 8.4 ( $\pm 1.0$ )               | 2.4 ( $\pm 0.4$ )                               | 19.6 ( $\pm 3.3$ )                      | 22.0 ( $\pm 3.5$ )                             |
| All data                 | 99       | 0.14 ( $\pm 0.02$ )             | 9.9 ( $\pm 1.2$ )                                  | 1.2 ( $\pm 0.3$ )                       | 8.7 ( $\pm 1.0$ )               | 2.4 ( $\pm 0.4$ )                               | 20.2 ( $\pm 0.3$ )                      | 22.6 ( $\pm 3.4$ )                             |

<sup>a</sup>EFs are defined as N emissions as a percentage of the fertiliser N inputs.



**Figure 1.** Spatial distribution of the  $\text{N}_2$  experiments at arable, grassland and paddy rice fields corresponding to the studies collected in the literature review.

values challenging. The average  $\text{R}_{\text{N}_2\text{O}}$  was 14%, which is consistent with recent findings—a meta-analysis by Kleineidam *et al* (2025) reported an average  $\text{R}_{\text{N}_2\text{O}}$  of 15%, and global estimates for terrestrial denitrification by Scheer *et al* (2020) suggested 8% (with a range of 6%–11%), and 11% for agricultural soils. These values are significantly lower than those reported in previous reviews that included studies using the AIT, but it is now well established that AIT significantly overestimates  $\text{R}_{\text{N}_2\text{O}}$  and should therefore not be used to estimate field-based denitrification losses (Friedl *et al* 2020).

The mean emissions factor for  $\text{N}_2$  emissions ( $\text{EF}_{\text{N}_2}$ ) was  $8.7\% \pm 1.0\%$  of applied N emitted as  $\text{N}_2$ , comparable to the  $10.0\% \pm 1.5\%$  reported by Kleineidam *et al* (2025). However, such an emission factor does not align with values estimated from global N budgets. Scheer *et al* (2020) estimated  $\text{N}_2$  emissions from global agricultural soils at about 45 (38–55)  $\text{Tg N yr}^{-1}$ , corresponding to an  $\text{EF}_{\text{N}_2}$  of 28% (24% to 34%). Moreover, Zhang *et al* (2021)

estimated that more than 50% of total N inputs to croplands are lost via atmospheric emissions, leaching, and runoff, which is hard to reconcile with an  $\text{EF}_{\text{N}_2}$  of 10% or lower.

One likely reason for the low  $\text{EF}_{\text{N}_2}$  values is the short duration of most field studies, which often measure  $\text{N}_2$  emissions only over a few weeks, whereas emission factors should reflect annual losses. Additionally, subsoil denitrification—commonly excluded from surface flux measurements—can contribute substantially to total  $\text{N}_2$  emissions, with reported rates up to  $60\text{--}70 \text{ kg N ha}^{-1} \text{ yr}^{-1}$  (van Cleemput 1998). Recent evidence also shows that field surface flux measurements using the  $^{15}\text{N}$  gas flux method can severely underestimate true denitrification rates, as a significant fraction of these gases may diffuse into the subsoil rather than being emitted at the surface (Well *et al* 2019). Furthermore,  $\text{N}_2$  fluxes may only occur after soil drainage facilitates gas diffusion or appear late in the growing season (Ding *et al* 2022, Almaraz *et al* 2024). As a result, such fluxes may be missed

if the measurement period is too short or sampling frequency too low to capture sporadic but substantial emission events.

In summary, although field-based measurements of  $\text{N}_2$  emissions have increased and methodologies improved over the past decade, substantial data and methodological gaps persist. Denitrification losses remain poorly characterized across most global cropping systems, and comprehensive N budgets are still largely lacking. These shortcomings hinder the accurate parameterization and validation of biogeochemical models, restrict the development of effective mitigation strategies, and reduce confidence in  $\text{N}_2$  simulations—particularly in comparison to  $\text{N}_2\text{O}$ —underscoring the urgent need for improved field-based measurements and more robust model calibration that explicitly accounts for the magnitude and dynamics of  $\text{N}_2$  losses.

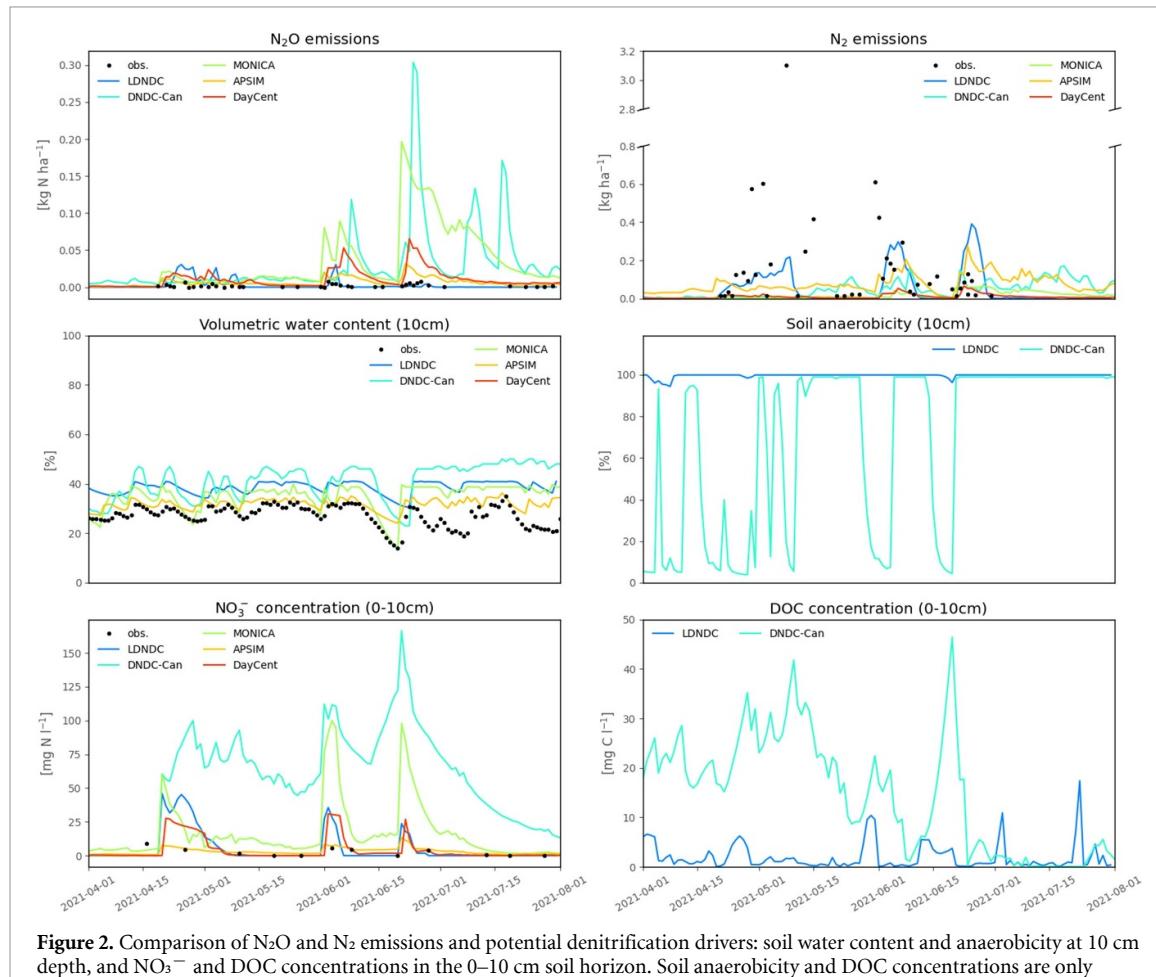
### 3.2. Modelling denitrification in ecosystem models

#### 3.2.1. Site scale simulations

Denitrification associated N losses are challenging to model, as denitrification is not an isolated process chain—it is embedded within a complex network of biogeochemical interactions. These include upstream processes that produce  $\text{NO}_3^-$ , such as nitrification, as well as competing pathways for  $\text{NO}_3^-$  consumption, including microbial assimilation, plant uptake, and transport. This interdependency complicates targeted model development, comparison, and validation. To address these challenges, we assessed how five biogeochemical models represent key denitrification processes, particularly  $\text{N}_2$  emissions and  $R_{\text{N}_2\text{O}}$ , and how well they capture the observed patterns from an *in situ* lysimeter experiment with winter wheat under fertigation ( $171 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ ).

Soil moisture is a key regulator of biogeochemical processes and is typically modelled with vertical resolution aligned to field measurements (figure 2). Its dynamics are largely governed by standard model boundary conditions (e.g. precipitation, irrigation) and consistently represented using approaches like the Richards' equation or the tipping bucket model. As a result the simulated soil moisture showed strong agreement across models. Similarly, soil temperature is primarily driven by atmospheric air temperature and handled uniformly via the heat diffusion equation (results not shown).

Regarding the metabolic switch to denitrification under anoxic conditions, soil  $\text{O}_2$  is the direct and physiologically relevant driver. Among the models assessed, LDNDC and DNDC-Can explicitly incorporate soil  $\text{O}_2$  as a key control on denitrification, DayCent uses respiration activity while the others rely on soil moisture. In LDNDC and DNDC-Can, the simulated  $\text{O}_2$  is used to divide the soil into aerobic and anaerobic soil volumes. While based on the same


basic concept, the implementation and interpretation of it leads to significantly different results especially during the early season (see figure 2). This discrepancy arises because the anaerobic soil volume is treated more as an expedient parameterizable functional dependency of upstream processes such as denitrification on  $\text{O}_2$  availability rather than being evaluated against measurements directly. Although methods for measuring soil  $\text{O}_2$  are well established, such data are often unavailable. This likely explains why biogeochemical models often use soil moisture as a proxy for anaerobic conditions. However, this can overlook critical dynamics because moisture levels do not always reflect  $\text{O}_2$  availability. For example, microbial respiration triggered by C inputs can rapidly deplete  $\text{O}_2$ , independent of moisture levels.

Simulated cumulative  $\text{N}_2$  emissions varied considerably between models, ranging from  $0.89$  to  $6.07 \text{ kg N ha}^{-1} \text{ yr}^{-1}$  (table 2), well below the observed  $\text{N}_2$  emissions of  $21 \pm 3 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ . Nevertheless, several models reproduced the timing of  $\text{N}_2$  peaks reasonably well, suggesting they capture denitrification dynamics but underestimate flux magnitude (figure 2). In contrast,  $\text{N}_2\text{O}$  emissions were overestimated by all models, ranging from  $0.35$  to  $2.79 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ , compared to an observed value of  $0.13 \text{ kg N ha}^{-1} \text{ yr}^{-1}$  (table 2). The dynamics of  $\text{N}_2\text{O}$  emissions were captured well by some models, but the magnitude of peak emissions was in all cases overestimated (figure 2). While this overestimation was small to moderate for all models in April and May, several models simulated much higher  $\text{N}_2\text{O}$  peaks than observed during June and July. Across models, the share of  $\text{N}_2\text{O}$  production attributed to nitrification ranged from 2% (DNDC-Can) to 77% (DayCent), with the remaining 23%–98% originating from denitrification. These contrasting values again highlight fundamental conceptual differences among models and demonstrate that similar overall results may arise from different underlying process representations. However, we cannot validate these pathway contributions directly, as isotopomer measurements or  $^{15}\text{N}$  labelling of the  $\text{NO}_3^-$  pool would be required to determine the origin of  $\text{N}_2\text{O}$  in the field (Micucci *et al* 2025). This limitation is still a major challenge in model parametrization and evaluation: while soil surface  $\text{N}_2\text{O}$  emissions are widely measured, they typically do not distinguish between nitrification- and denitrification-derived  $\text{N}_2\text{O}$ . Globally, current estimates suggest roughly equal contributions from both processes ( $\approx 50:50$ ), but this ratio can vary considerably depending on site-specific conditions and ecosystem types (Han *et al* 2024).

A comparison of simulated and measured  $R_{\text{N}_2\text{O}}$  ratios reveals a substantial discrepancy (table 2). Due to the high  $\text{N}_2$  and low  $\text{N}_2\text{O}$  emissions in this trial, the observed  $R_{\text{N}_2\text{O}}$  ratio was very low (0.006). In contrast, the models simulated a higher  $R_{\text{N}_2\text{O}}$  ratio, ranging

**Table 2.** Observed and simulated cumulative  $\text{N}_2$  and  $\text{N}_2\text{O}$  emissions, and  $\text{N}_2\text{O}:(\text{N}_2 + \text{N}_2\text{O})$  ratios ( $R_{\text{N}_2\text{O}}$ ) as well as simulated  $\text{N}_2\text{O}$  production from nitrification and denitrification for the lysimeter experiment published in Yankelzon *et al* (2025a). The observation period for which  $\text{N}_2$  was measured was 21.4 to 02.7.2021, thus all quantitative comparisons refer to this period.

| Model    | $\text{N}_2$ emission<br>(kg N $\text{ha}^{-1} \text{yr}^{-1}$ ) | $\text{N}_2\text{O}$ emission<br>(kg N $\text{ha}^{-1} \text{yr}^{-1}$ ) | $\text{N}_2\text{O}$ nitrification<br>(kg N $\text{ha}^{-1} \text{yr}^{-1}$ ) | $\text{N}_2\text{O}$ denitrification<br>(kg N $\text{ha}^{-1} \text{yr}^{-1}$ ) | $R_{\text{N}_2\text{O}}$ (-) |
|----------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| Observed | 21.00                                                            | 0.134                                                                    | NA                                                                            | NA                                                                              | 0.005                        |
| LDNDC    | 5.776                                                            | 0.345                                                                    | 0.055 (16%)                                                                   | 0.289 (84%)                                                                     | 0.056                        |
| DNDC-Can | 3.048                                                            | 2.075                                                                    | 0.052 (2%)                                                                    | 2.024 (98%)                                                                     | 0.405                        |
| MONICA   | 1.153                                                            | 2.785                                                                    | 0.382 (14%)                                                                   | 2.404 (86%)                                                                     | 0.707                        |
| DayCent  | 0.845                                                            | 1.078                                                                    | 0.833 (77%)                                                                   | 0.245 (23%)                                                                     | 0.561                        |
| APSIM    | 6.069                                                            | 0.611                                                                    | 0.174 (28%)                                                                   | 0.438 (72%)                                                                     | 0.092                        |



**Figure 2.** Comparison of  $\text{N}_2\text{O}$  and  $\text{N}_2$  emissions and potential denitrification drivers: soil water content and anaerobicity at 10 cm depth, and  $\text{NO}_3^-$  and DOC concentrations in the 0–10 cm soil horizon. Soil anaerobicity and DOC concentrations are only simulated in the models (DNDC and DNDC-Can) and are not supported by measurements.

from 0.056 in the LDNDC simulations to 0.707 in the MONICA simulations.  $R_{\text{N}_2\text{O}}$  is sensitive to  $\text{NO}_3^-$  and C availability: high  $\text{NO}_3^-$  favours incomplete denitrification and elevated  $R_{\text{N}_2\text{O}}$  (Senbayram *et al* 2020).  $\text{NO}_3^-$  levels, in turn, are influenced by upstream N cycling processes such as mineralization, nitrification, and plant and microbial uptake, as well as by N loss pathways including  $\text{NH}_3$  volatilization and  $\text{NO}_3^-$  leaching. Inaccurate representation of these processes may lead to poor estimates of  $\text{NO}_3^-$  concentrations and errors in denitrification dynamics and  $R_{\text{N}_2\text{O}}$  ratios. However, it is important to note that  $\text{NO}_3^-$  concentrations were measured at depth 10 cm

using soil water suction cups. The fact that the models overestimated  $\text{NO}_3^-$  can partly be attributed to this sampling technique, which differed from the soil extraction method which is typically used for model testing (Djurhuus *et al* 1995). Despite large biases in simulated  $\text{NO}_3^-$ , a correlation analysis (see SI figure 1.1–1.9) showed a positive relationship between  $R_{\text{N}_2\text{O}}$  and  $\text{NO}_3^-$  across all models, consistent with the literature, underscoring  $\text{NO}_3^-$  availability as a robust driver of denitrification and  $R_{\text{N}_2\text{O}}$ .

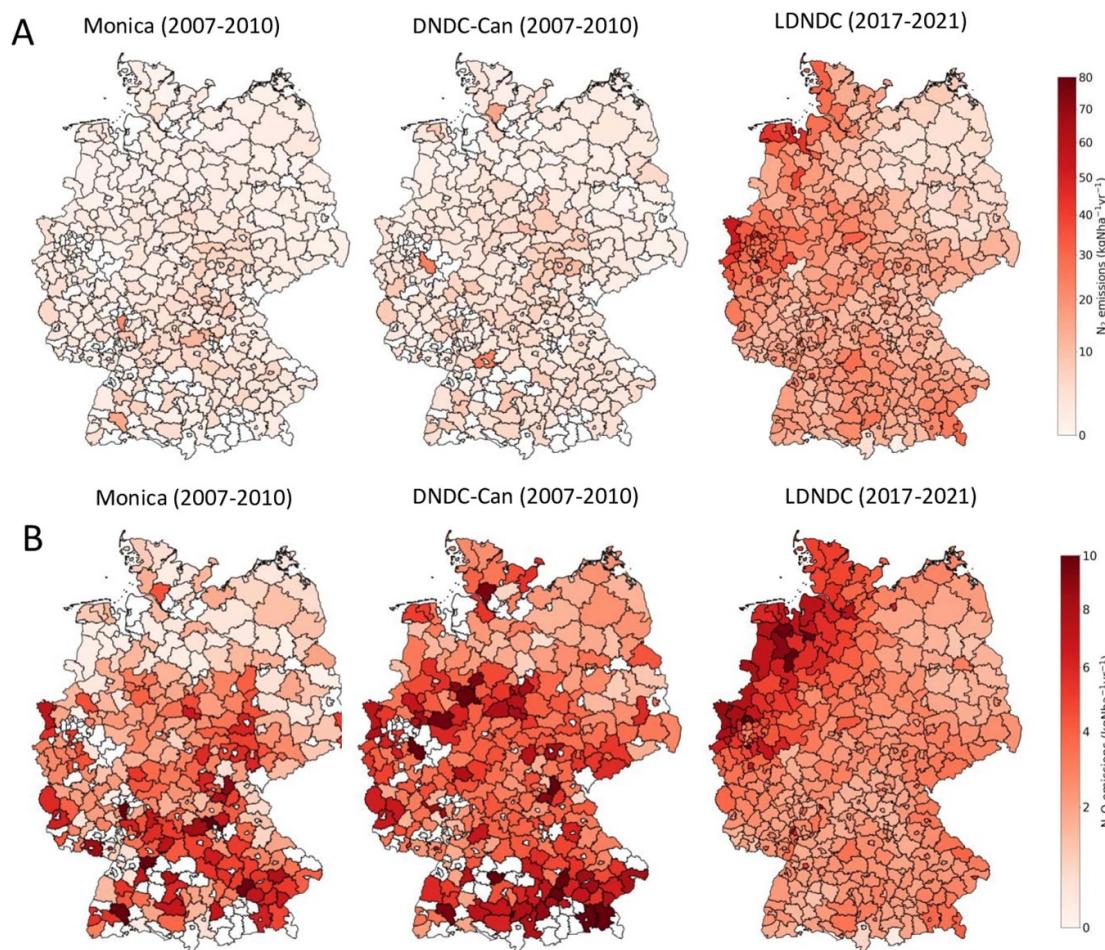
Carbon availability is equally important, as denitrification is a heterotrophic process. Greater availability of labile C generally enhances denitrification

and reduces  $R_{N_2O}$  (Weier *et al* 1993, Miller *et al* 2008). However, accurately representing C quality and accessibility in models is challenging. Most models abstract C availability using a simplified bulk pool of dissolved organic carbon (DOC). In this study, only LDNDC and DNDC-Can simulated DOC dynamics. Interestingly,  $R_{N_2O}$  emissions were lower in LDNDC despite its lower simulated DOC concentrations, suggesting that higher C availability does not necessarily directly translate into more complete denitrification, as reported in the literature. Although a linear correlation analysis revealed a positive relationship between  $R_{N_2O}$  and DOC for both DNDC and LDNDC, an additional partial dependency analysis showed that  $R_{N_2O}$  may not exhibit a consistent upward or downward trend in relation to DOC concentrations. This pattern may partly result from cross-correlations with other drivers; for example, a positive correlation between DOC and  $NO_3^-$  could mask or alter the direct effect of DOC on  $R_{N_2O}$ . Negative correlations with soil moisture and anaerobicity further complicate the interpretation, highlighting that carbon availability in the models interacts strongly with multiple environmental factors rather than acting as an independent driver.

In addition to C and N, pH is a well-known modulator of  $R_{N_2O}$  (Samad *et al* 2016). Under acidic conditions ( $pH < 6$ ),  $R_{N_2O}$  levels tend to increase, independent of soil type (Čuhel and Šimek 2011). The experimental site's neutral pH (7.3), should favour low  $R_{N_2O}$ , across all models, again highlighting structural differences (table 2). While pH is a dynamic variable that can show significant microscale variation and influence denitrification enzyme activity, most models do not account for these microscale fluctuations. Instead, they rely on a static, site-specific pH value at initialization, and are not able to capture potential dynamic effects of pH on denitrification.

Microsite variability remains another major modelling challenge to field-scale biogeochemical modelling. Anaerobic microsites within otherwise well-aerated soil can develop due to localized high respiratory activity (Robertson 2023). These microsites are hard to represent in models regardless of whether they rely on bulk  $O_2$  concentrations or water saturation. Schlüter *et al* (2025) proposed a novel approach using the spatial distance between organic matter and air-filled pores to simulate anaerobic conditions. While promising, this method has yet to be applied or evaluated at the field scale. Microbial denitrification pathways are highly simplified in models. Although denitrification is driven by microbial community structure and enzyme regulation, most models either simulate  $R_{N_2O}$  as an emergent property of microbial kinetics (e.g. LDNDC and DNDC-Can), or as a state variable influenced by environmental factors like pH, DOC and temperature (e.g. DayCent), thereby abstracting the underlying processes. Nevertheless, this abstraction is necessary in

order to balance complexity with the availability of input parameters.


Ideally, the observed data would exhibit the expected relationships between  $R_{N_2O}$  and its environmental drivers, enabling a more robust analysis of the models. However, the scarcity of field measurements often limits such analyses. For the observational dataset, only the relationship between  $R_{N_2O}$  and soil water content could be evaluated, and no clear pattern emerged from these measurements. This lack of strong observational constraints makes it difficult to disentangle whether unexpected modelled relationships (e.g. between  $R_{N_2O}$  and C) reflect structural model errors or real environmental variability.

### 3.2.2. Regional simulations

We simulated  $N_2O$  and  $N_2$  emissions for 403 administrative districts across Germany using two modelling frameworks and three process-based models (figure 3). While average national  $N_2O$  emissions were relatively consistent, substantial differences were found in the simulated  $N_2$  emissions (table 3). For 2017–2022, LDNDC simulated an average of  $14.5 \text{ kg N ha}^{-1}$  of  $N_2$ , compared to just  $1.7 \text{ kg N ha}^{-1}$  by MONICA for 2007–2010.

A correlation analysis revealed notable differences in the main drivers of denitrification among the different models and modelling frameworks (Figure SI 2). In LDNDC, denitrification losses were primarily driven by the fertilizer N input rate. In contrast, in MONICA and DNDC-Can denitrification was mainly influenced by soil clay content, pH, and SOC, with only a minor effect of fertilizer inputs. These discrepancies highlight persistent uncertainties in regional N budgets and denitrification estimates. Some of these differences are likely attributable to the modelling frameworks themselves, as previous studies have shown that the representation of field management can introduce substantial uncertainty in regional N flow simulations (Rahimi *et al* 2024). MONICA and DNDC-Can used point-based simulations (1,236 measured sites), with each district represented by 1–25 points. With this low spatial density, the resulting N emission patterns largely reflect the variability of reported site-specific management and observed soil characteristics. In contrast, LDNDC employed a gridded approach based on national statistics and remote sensing, covering over 40 000 grid cells across Germany. Furthermore, the differing simulation periods (2007–2010 for MONICA and DNDC-Can; 2017–2022 for LDNDC) could have influenced the results. However, since climatic conditions and average fertilizer application rates were comparable between the two periods, the effect of differing simulation years on model outcomes was likely limited.

Notably, MONICA and DNDC-Can simulated much higher  $R_{N_2O}$  ratios than LDNDC, consistent with the site-level simulations (table 2). These high



**Figure 3.** Simulated  $\text{N}_2$  (A), and  $\text{N}_2\text{O}$  (B) emissions for the different administrative districts in Germany. Simulations using the MONICA and DNDC-Can models were performed for the period 2007–2010, based on point data from the German agricultural soil survey. Simulations using the LDNDC model were performed for the period 2017–2022, employing a gridded approach with high-resolution input data from the German Federal Crop Statistics. Districts with no available input data for simulation are shown in white.

**Table 3.** Simulated average  $\text{N}_2$  and  $\text{N}_2\text{O}$  emissions, total N fertiliser inputs,  $\text{N}_2\text{O}:(\text{N}_2 + \text{N}_2\text{O})$  ratios ( $R_{\text{N}_2\text{O}}$ ), and emission factors (EFs<sup>a</sup>) for  $\text{N}_2$  ( $\text{EF}_{\text{N}_2}$ ) and  $\text{N}_2\text{O}$  ( $\text{EF}_{\text{N}_2\text{O}}$ ) for the different administrative districts in Germany, as well as corresponding emission factors. Simulations using the MONICA and DNDC-Can models were performed for the period 2007–2010, based on point data from the German agricultural soil survey. Simulations using the LDNDC model were performed for the period 2017–2022, employing a gridded approach with high-resolution input data from the German Federal Crop Statistics.

|                                                                         | MONICA (2007–2010) | DNDC-Can (2007–2010) | LDNDC (2017–2022) |
|-------------------------------------------------------------------------|--------------------|----------------------|-------------------|
| $\text{N}_2\text{O}$ emissions ( $\text{kg-N ha}^{-1} \text{yr}^{-1}$ ) | 2.34               | 3.70                 | 3.10              |
| $\text{N}_2$ emissions ( $\text{kg-N ha}^{-1} \text{yr}^{-1}$ )         | 1.69               | 2.57                 | 14.50             |
| N fertiliser input ( $\text{kg-N ha}^{-1} \text{yr}^{-1}$ )             | 178.2              | 178.2                | 182.6             |
| $R_{\text{N}_2\text{O}}$                                                | 0.58               | 0.59                 | 0.18              |
| $\text{EF}_{\text{N}_2\text{O}} (\%)$                                   | 1.31               | 2.08                 | 1.70              |
| $\text{EF}_{\text{N}_2} (\%)$                                           | 0.95               | 1.44                 | 7.95              |

<sup>a</sup> EFs are defined as N emissions as a percentage of the fertiliser N inputs.

ratios conflict with values reported in the literature (table 1) and global scale denitrification estimates (Scheer *et al* 2020), thus underscoring the findings of the site simulations that these models tend to underestimate  $\text{N}_2$  emissions. However, estimates of  $\text{EF}_{\text{N}_2}$  and  $R_{\text{N}_2\text{O}}$  ratios from both the data collections used in this study and global budgets also vary substantially (50%–100%) underpinning the need for a more comprehensive data base to evaluate bias and uncertainty

of model estimates. The high variability across models and regions underscores the challenge of identifying denitrification hotspots and assessing regional N losses with current modelling approaches.

#### 4. Conclusion

This study highlights major inconsistencies in how denitrification losses and  $R_{\text{N}_2\text{O}}$  are represented in

biogeochemical models. While  $\text{N}_2\text{O}$  emissions were simulated relatively consistent across models, modelled  $\text{N}_2$  emissions varied by more than an order of magnitude, reflecting structural differences in the implementation of key processes related to denitrification across models. This is exacerbated by a lack of field data on  $\text{N}_2$  fluxes, limiting thorough calibration of these processes and validation of the results at a field level. Furthermore, the absence of detailed spatial data on land use, soil type, and agricultural management restricts our ability to generate robust N budgets at a regional level, identify emission hotspots of environmental N pollution, and design effective strategies to improve N use efficiency. Consequently, denitrification losses in the form of gaseous  $\text{N}_2$  emissions from agricultural soils remain a major uncertainty in N budgets, particularly at field and landscape scales.

To overcome this knowledge gap, field experiments are required that not only measure  $\text{N}_2$  emissions directly under field conditions, but also quantify the full N budget of a cropping system. Additionally, a more comprehensive evaluation of the drivers of denitrification to  $\text{N}_2$  is needed to improve our understanding of this process and its representation in models. Recent advances in measurement techniques offer promising opportunities to develop standardized protocols to assess  $\text{N}_2$  fluxes, helping to resolve key uncertainties in N cycling. Integrating field and lab-based experiments with advanced methods—such as  $^{15}\text{N}$  tracing and  $\text{N}_2\text{O}$  isotopomer analysis—and  $^{15}\text{N}$  stable isotope-based modelling (Denk *et al* 2019) offers a new way to refine biogeochemical models and provide benchmark datasets essential to reduce model uncertainty.

This will advance process-based representations of N fluxes, enabling more accurate and scalable systems-level modelling. As previously demonstrated, numerous processes that could significantly influence the results are either absent or not implemented in sufficient detail in the models. Researching and integrating these processes into the models is an important task, but the first step is to assess the current capabilities of the models. Detailed N-balance data would enable the calibration and testing of the models and reveal their shortcomings, and guide targeted model improvements.

Combining the strengths of individual models for predicting denitrification losses in different cropping systems through model intercomparison and ensembles should improve accurate estimates of denitrification and reduce associated uncertainties, thereby supporting evidence-based policy and sustainable N management.

## Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Supplementary data 2 available at <http://doi.org/10.1088/1748-9326/ae2494/data1>.

Supplementary data 1 available at <http://doi.org/10.1088/1748-9326/ae2494/data2>.

## Acknowledgment

This work was funded within the framework of the project MinDen ('Measures to Mitigate Direct and Indirect Climate-Impacting Emissions Caused by Denitrification in Crop Production,' Grant Number 2822ABS029) by the Federal Ministry of Agriculture, Food and Regional Identity (BMELH), based on a decision of the Parliament of the Federal Republic of Germany. The project was administered by the Federal Office for Agriculture and Food (BLE) within the framework of the Arable Farming Strategy. Additional funding was provided by the Agency for Renewable Resources (FNR) under the project RESOURCE (Grant Number 2220NR018B). Matthias Kuhnert was supported by ClieNFarms project which received funding from the European Union's Horizon 2020 Societal Challenges Program under the Grant Agreement No 101036822.

## ORCID iDs

Clemens Scheer  0000-0001-5396-2076

Kathrin Fuchs  0000-0003-1776-283X

Balazs Grosz  0000-0003-4138-4840

Andrew Smerald  0000-0003-2026-273X

Rene Dechow  0009-0006-1184-5043

Mahboubé Jarrah  0000-0001-6811-6892

Boris Ouattara  0000-0002-7124-5748

Heather R Pasley  0000-0002-5659-9097

Matthias Kuhnert  0000-0003-3284-2133

David Kraus  0000-0003-2485-8389

## References

Almaraz M, Ryals R, Groffman P and Porder S 2024 Biotic regulation of nitrogen gas emissions in temperate agriculture *Biogeochemistry* **167** 1079–87

Djurhuus J and Jacobsen O K 1995 Comparison of ceramic suction cups and KC1 extraction for the determination of nitrate in soil *Eur. J. Soil Sci.* **46** 387–95

Bizimana F, Luo J, Timilsina A, Dong W, Gaudel G, Ding K, Qin S and Hu C 2022 Estimating field  $\text{N}_2$  emissions based on laboratory-quantified  $\text{N}_2\text{O}/(\text{N}_2\text{O} + \text{N}_2)$  ratios and field-quantified  $\text{N}_2\text{O}$  emissions *J. Soils Sediments* **22** 2196–208

Bollmann A and Conrad R 1997 Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide *Soil Biol. Biochem.* **29** 1067–77

Buchen C, Lewicka-Szczebak D, Fuß R, Helfrich M, Flessa H and Well R 2016 Fluxes of  $\text{N}_2$  and  $\text{N}_2\text{O}$  and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol *Soil Biol. Biochem.* **101** 6–19

Buchen-Tschiske C, Well R and Flessa H 2023 Tracing nitrogen transformations during spring development of winter wheat induced by  $^{15}\text{N}$  labeled cattle slurry applied with different techniques *Sci. Total Environ.* **871** 162061

Chen T, Oenema O, Li J, Misselbrook T, Dong W, Qin S, Yuan H, Li X and Hu C 2019 Seasonal variations in  $N_2$  and  $N_2O$  emissions from a wheat–maize cropping system *Biol. Fertility Soils* **55** 1–13

Čuhel J and Šimek M 2011 Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities *Folia Microbiol.* **56** 230–5

Dannenmann M et al 2025 Fates of slurry-nitrogen applied to mountain grasslands: the importance of dinitrogen emissions versus plant N uptake *Biol. Fertility Soils* **61** 455–68

Davidson E A and Kanter D 2014 Inventories and scenarios of nitrous oxide emissions *Environ. Res. Lett.* **9** 105012

Del Grosso S J, Parton W, Mosier A, Ojima D, Kulmala A and Phongpan S 2000 General model for  $N_2O$  and  $N_2$  gas emissions from soils due to denitrification *Glob. Biogeochem. Cycles* **14** 1045–60

Denk T R A, Kraus D, Kiese R, Butterbach-Bahl K and Wolf B 2019 Constraining N cycling in the ecosystem model LandscapeDNDC with the stable isotope model SIMONE *Ecology* **100** e02675

Ding K, Luo J, Clough T J, Ledgard S, Lindsey S and Di H J 2022 *In situ* nitrous oxide and dinitrogen fluxes from a grazed pasture soil following cow urine application at two nitrogen rates *Sci. Total Environ.* **838** 156473

Ding K, Luo J, Clough T J, Ledgard S, Lindsey S and Di H 2025 Soil type affects partitioning of ruminant urine- $^{15}N$  due to variation in nitrification potential, immobilisation and drainage under autumn-winter conditions *Soil Biol. Biochem.* **205** 109782

DWD 2024 Daily station observations (temperature, pressure, precipitation, sunshine duration, etc.) for Germany

Ecke J, Well R, Maier M, Matson A, Dittert K and Rummel P S 2025 Determining  $N_2O$  and  $N_2$  fluxes in relation to winter wheat and sugar beet growth and development using the improved  $^{15}N$  gas flux method on the field scale *Biol. Fertility Soils* **61** 489–505

Friedl J, Cardenas L M, Clough T J, Dannenmann M, Hu C and Scheer C 2020 Measuring denitrification and the  $N_2O:(N_2O+N_2)$  emission ratio from terrestrial soils *Curr. Opin. Environ. Sustain.* **47** 61–71

Friedl J, Scheer C, Rowlings D W, Mumford M T and Grace P R 2017 The nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) reduces  $N_2$  emissions from intensively managed pastures in subtropical Australia *Soil Biol. Biochem.* **108** 55–64

Fuchs K et al 2020 Multimodel evaluation of nitrous oxide emissions from an intensively managed grassland *J. Geophys. Res.* **125** e2019JG005261

Groffman P M, Altabet M A, Böhlke J, Butterbach-Bahl K, David M B, Firestone M K, Giblin A E, Kana T M, Nielsen L P and Voytek M A 2006 Methods for measuring denitrification: diverse approaches to a difficult problem *Ecol. Appl.* **16** 2091–122

Grosz B et al 2023 Modeling denitrification: can we report what we don't know? *AGU Adv.* **4** e2023AV000990

Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L and Butterbach-Bahl K 2013 LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrophere exchange processes at site and regional scale *Landscape Ecol.* **28** 615–36

Han B, Yao Y, Liu B, Wang Y, Su X, Ma L, Liu D, Niu S, Chen X and Li Z 2024 Relative importance between nitrification and denitrification to  $N_2O$  from a global perspective *Glob. Change Biol.* **30** e17082

Holzworth D P et al 2014 APSIM—Evolution towards a new generation of agricultural systems simulation *Environ. Model. Software* **62** 327–50

IPCC 2019 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Intergovernmental Panel on Climate Change)

IPCC 2021 *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* ed V Masson-Delmotte et al (Cambridge University Press) [10.1017/9781009157896](https://doi.org/10.1017/9781009157896)

Khan F et al 2025 Effect of preceding integrated and organic farming on  $^{15}N$  recovery and the N balance, including emissions of  $NH_3$ ,  $N_2O$ , and  $N_2$  and leaching of  $NO_3^-$  *Biogeosciences* **22** 5081–102

Kleineidam K et al 2025 Denitrification in agricultural soils—integrated control and modelling at various scales (DASIM) *Biol. Fertility Soils* **61** 329–42

Leffelaar P and Wessel W 1988 Denitrification in a homogeneous, closed system: experiment and simulation *Soil Sci.* **146** 335–49

Liu Y Rui WA, Zhan-lei P, Huan-huan W E, Bao-ling M E, Zhi Q U, Yun-ting F A and Xiao-tang J U 2022 Quantifying *in situ*  $N_2$  fluxes from an intensively managed calcareous soil using the  $^{15}N$  gas-flux method *J. Integr. Agric.* **21** 2750–66

McGeough K L, Laughlin R J, Watson C J, Müller C, Ernfors M, Cahalan E and Richards K G 2012 The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on *in situ* nitrous oxide and dinitrogen emissions *Biogeosciences* **9** 4909–19

Micucci G, Lewicka-Szczebak D, Sgouridis F, Well R, Buchen-Tschiskale C, McNamara Niall N, Krause S, Lynch I, Roos F and Ullah S 2025 Combining the  $^{15}N$  gas flux method and  $N_2O$  isotopocule data for the determination of soil microbial  $N_2O$  sources *Rapid Commun. Mass Spectrom.* **39** e9971

Miller M N, ZebARTH B J, Dandie C E, Burton D L, Goyer C and Trevors J T 2008 Crop residue influence on denitrification,  $N_2O$  emissions and denitrifier community abundance in soil *Soil Biol. Biochem.* **40** 2553–62

Mosier A, Guenzi W and Schweizer E 1986 Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado *Soil Sci. Soc. Am. J.* **50** 344–8

Nendel C 2014 *Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia* ed L Mueller et al (Springer) pp 389–405

Ouattara B, Aiteew K, Jarrah M and Dechow R 2025 Modelling nitrogen balances of German croplands: advancing the MONICA model for high-resolution N flux estimates pp EGU25–2095

Pan B, Xia L, Lam S K, Wang E, Zhang Y, Mosier A and Chen D 2022a A global synthesis of soil denitrification: driving factors and mitigation strategies *Agric. Ecosyst. Environ.* **327** 107850

Pan Z, Wang R, Liu Y, Wang L, Zheng X, Yao Z, He H and Zhang X 2022b Characteristics of  $N_2$  and  $N_2O$  fluxes from a cultivated black soil: a case study through *in situ* measurement using the  $^{15}N$  gas flux method *Agriculture* **12** 1664

Parton W J, Hartman M, Ojima D and Schimel D 1998 DAYCENT and its land surface submodel: description and testing *Glob. Planet. Change* **19** 35–48

Parton W, Mosier A R, Ojima D S, Valentine D W, Schimel D S, Weier K and Kulmala A E 1996 Generalized model for  $N_2$  and  $N_2O$  production from nitrification and denitrification *Glob. Biogeochem. Cycles* **10** 401–12

Poeplau C, Jacobs A, Don A, Vos C, Schneider F, Wittnebel M, Tiemeyer B, Heidkamp A, Prietz R and Flessa H 2020 Stocks of organic carbon in German agricultural soils—Key results of the first comprehensive inventory *J. Plant Nutr. Soil Sci.* **183** 665–81

Rahimi J, Haas E, Scheer C, Grados D, Abalos D, Aderele M O, Blicher-Mathiesen G and Butterbach-Bahl K 2024 Aggregation of activity data on crop management can induce large uncertainties in estimates of regional nitrogen budgets *npj Sustain. Agric.* **2** 7

Ravishankara A R, Daniel J S and Portmann R W 2009 Nitrous oxide ( $N_2O$ ): the dominant ozone-depleting substance emitted in the 21st century *Science* **326** 123–5

Robertson G P 2023 Denitrification and the challenge of scaling microsite knowledge to the globe *mLife* **2** 229–38

Rolston D E, Hoffman D and Toy D 1978 Field measurement of denitrification: i. flux of  $N_2$  and  $N_2O$  *Soil Sci. Soc. Am. J.* **42** 863–9

Rolston D, Sharpley A, Toy D and Broadbent F 1982 Field Measurement of Denitrification: III. Rates During Irrigation Cycles 1 *Soil Sci. Soc. Am. J.* **46** 289–96

Samad M S, Bakken L R, Nadeem S, Clough T J, de Klein C A M, Richards K G, Lanigan G J and Morales S E 2016 High-resolution denitrification kinetics in pasture soils link  $N_2O$  emissions to pH, and denitrification to C mineralization *PLoS One* **11** e0151713

Scheer C, Fuchs K, Pelster D E and Butterbach-Bahl K 2020 Estimating global terrestrial denitrification from measured  $N_2O:(N_2O+N_2)$  product ratios *Curr. Opin. Environ. Sustain.* **47** 72–80

Scheer C, Wassmann R, Butterbach-Bahl K, Lamers J and Martius C 2009 The relationship between  $N_2O$ ,  $NO$ , and  $N_2$  fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin, Uzbekistan *Plant Soil* **314** 273–83

Schlüter S *et al* 2025 The anaerobic soil volume as a controlling factor of denitrification: a review *Biol. Fertility Soils* **61** 343–65

Senbayram M, Well R, Shan J, Bol R, Burkart S, Jones D L and Wu D 2020 Rhizosphere processes in nitrate-rich barley soil tripled both  $N_2O$  and  $N_2$  losses due to enhanced bacterial and fungal denitrification *Plant Soil* **448** 509–22

Smerald A, Imhof H, Scheer C and Kiese R 2025 Nitrous oxide emissions and nitrogen budgets for German agricultural soils via process-based modelling *EGU General Assembly 2025 (Vienna, Austria, 27 April–2 May 2025)* EGU25-4034 (<https://doi.org/10.5194/egusphere-egu25-4034>)

Smith W, Grant B, Qi Z, He W, VanderZaag A, Drury C F and Helmers M 2020 Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: a comparative analysis with RZWQM2 *Environ. Model. Software* **123** 104577

Takeda N, Friedl J, Rowlings D, Haas E, Kraus D, Grace P and Scheer C 2024 *In-situ*  $N_2O$  and  $N_2$  data improved N budget simulation with APSIM and LandscapeDNDC in tropical sugarcane systems *Agric. Ecosyst. Environ.* **375** 109193

Thomas S M, Fraser P M, Hu W, Clough T J, van der Klei G, Wilson S, Tregurtha R and Baird D 2019 Tillage, compaction and wetting effects on  $NO_3$ ,  $N_2O$  and  $N_2$  losses *Soil Res.* **57** 670–88

van Cleemput O 1998 Subsoils: chemo-and biological denitrification,  $N_2O$  and  $N_2$  emissions *Nutr. Cycl. Agroecosyst.* **52** 187–94

Wang R, Pan Z, Zheng X, Ju X, Yao Z, Butterbach-Bahl K, Zhang C, Wei H and Huang B 2020 Using field-measured soil  $N_2O$  fluxes and laboratory scale parameterization of  $N_2O/(N_2O+N_2)$  ratios to quantify field-scale soil  $N_2$  emissions *Soil Biol. Biochem.* **148** 107904

Warner D I, Scheer C, Friedl J, Rowlings D W, Brunk C and Grace P R 2019 Mobile continuous-flow isotope-ratio mass spectrometer system for automated measurements of  $N_2$  and  $N_2O$  fluxes in fertilized cropping systems *Sci. Rep.* **9** 11097

Wei Z, Shan J, Well R, Yan X and Senbayram M 2022 Land use conversion and soil moisture affect the magnitude and pattern of soil-borne  $N_2$ ,  $NO$ , and  $N_2O$  emissions *Geoderma* **407** 115568

Weier K L, Doran J W, Power J F and Walters D T 1993 Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon and nitrate *Soil Sci. Soc. Am. J.* **57** 66–72

Well R, Maier M, Lewicka-Szczebak D, Köster J R and Ruoss N 2019 Underestimation of denitrification rates from field application of the  $^{15}N$  gas flux method and its correction by gas diffusion modelling *Biogeosciences* **16** 2233–46

Xia L, Li X, Ma Q, Lam S K, Wolf B, Kiese R, Butterbach-Bahl K, Chen D, Li Z and Yan X 2020 Simultaneous quantification of  $N_2$ ,  $NH_3$  and  $N_2O$  emissions from a flooded paddy field under different N fertilization regimes *Glob. Change Biol.* **26** 2292–303

Yankelzon I *et al* 2025a Lysimeter-based full fertilizer  $^{15}N$  balances corroborate direct dinitrogen emission measurements using the  $^{15}N$  gas flow method *Biol. Fertility Soils* **61** 437–54

Yankelzon I, Willibald G, Dannenmann M, Malique F, Ostler U, Scheer C and Butterbach-Bahl K 2025b A new incubation system to simultaneously measure  $N^2$  as well as  $N^2O$  and  $CO_2$  fluxes from plant-soil mesocosms *Biol. Fertility Soils* **61** 401–19

Zhang X *et al* 2021 Quantification of global and national nitrogen budgets for crop production *Nat. Food* **2** 529–40