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Abstract

Objectives. Carbon-ion radiotherapy is a cancer treatment modality with exceptional precision and
effectiveness compared to conventional x-ray therapy. Our goal is to support maintaining its pre-
cise dose administration throughout a multi-fractional radiation treatment by detecting possible
anatomical changes decremental to conformal dose deposition without the need for additional
imaging. To that end our work group has developed a custom detection system using TimePix3
trackers during treatment to detect the naturally occurring secondary charged particles, which
carry information about the irradiated region. This enables treatment-day accurate in-vivo mon-
itoring of patient anatomy without requiring additional imaging. Our goal is to provide a robust
and extensible methodological framework that allows us to extract relevant information sup-
porting clinical decision making. Approach. Comparing the measurements of different states of
the same patient, we aim to determine if an anatomical change is present and at what location it
occurred. Departing from solely utilizing statistical differences in local particle counts, the presen-
ted method exploits the spectral domain of the measurement differences. We perform a local-

ized spectral analysis and exploit joint localized frequency band variations to robustly identify the
location of changes between two measurement states. Main Results. We show the validity of our
approach, reporting the performance results of applying our method to measurements acquired
during irradiation experiments using polymethyl methacrylate head phantoms carried out at the
Heidelberg Ion Beam Therapy Center. Furthermore, we demonstrate the flexibility of our analysis
framework by showing the impact of applying filters or using alternative sub-modules in its multi-
stage processing pipeline. Significance. We provide a data-analytical framework as well as basic ana-
lytical methods required to extract evidence for the presence of anatomical changes from second-
ary charged particle measurements for subsequent clinical assessment. These represent essential
building blocks required to perform full 3D reconstruction of anatomical changes based solely on
secondary particles.

© 2025 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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1. Introduction

Carbon-ion radiotherapy (CIRT) (Amaldi and Kraft 2005, Tinganelli and Durante 2020) is a highly
effective and precise tumor treatment option with a multitude of desirable advantages (Mizoe et al 2012,
Mohamad et al 2018, Malouff et al 2019, Musha et al 2022) that make it an invaluable tool in radiation
oncology. Due to the finite range of the carbon ions in tissue, with the dose maximum at the end of
their range and only small lateral scattering, the dose distribution can be shaped more precisely to the
tumor region than in conventional radiotherapy. Additionally, carbon ions exhibit an increased biolo-
gical effectiveness as compared to protons and x-rays (Durante and Debus 2018). These advantages allow
treatment closer to critical anatomical structures and thereby extends radiation treatment to cases that
would not have been considered for treatment before. In general, its precision allows sparing healthy tis-
sue from being irradiated, since the dose distribution can be shaped more precisely to the target volume.

These advantages however, come at the cost of an increased sensitivity to changes of the internal tis-
sue structure of the patient, as well as patient positioning. The former can be caused by the treatment
itself e.g. when the targeted tumor changes in volume or when swelling occurs within the treated region,
or as the result of a patient’s weight gain or loss. Even seasonal infections can lead to geometric changes
relevant for the dose deposition, e.g. when cavities in the head and neck region fill with fluids. The con-
sequence of such changes throughout a multi-fractional treatment is the risk of delivering the radiation
dose at unintended locations. The reason is that the dose distribution depends on the (possibly chan-
ging) structure and density of the varying tissue types the beam traverses. Standard procedures followed
in CIRT vary among treatment facilities and are derived from balancing medical necessity and practical
feasibility and they do not generally include imaging for the purpose of anatomical change monitor-
ing. As a consequence, not all patients are prescribed a weekly follow-up CT, as imaging is decided at
the physicians’ discretion. Ideally, physicians would obtain sufficient and individual (patient and time
dependent) reason to trigger additional imaging.

Our goal, therefore, is to provide sufficient evidence for or against the presence of relevant ana-
tomical changes, in order to either justify the resource-intensive, time-consuming, and radiation-
bearing process of additional imaging or avoid it. To that end we seek to develop in-vivo monitoring
by means of measurements of secondary charged particle emissions, a naturally occurring by-product
of the irradiation process. These secondary charged particles are produced by nuclear interactions of
the primary carbon ions (projectile) with target nuclei which can lead to the fragmentation both of
the projectile and the target. Projectile fragments can thereby receive sufficient kinetic energy to escape
the patient (Gunzert-Marx et al 2008). The general approach developed in our work group is to detect
and exploit the paths of these charged nuclear fragments. Their distribution carries information about
the structure of the matter it traversed (Henriquet et al 2012, Schweins et al 2025). This non-invasive
monitoring approach does not interfere with the treatment process and can be integrated into the clin-
ical workflow more seamlessly than comparable in-vivo monitoring methods (Parodi and Polf 2018).
Obtaining secondary ion-track information in a clinical setting is made possible by employing the cus-
tom multi-tracker system developed by our group (Kelleter et al 2024a). In our group’s initial successful
feasibility study (Ghesquiere-Diérickx et al 2021), we investigated the influence of the detection angles
and showed that at angles around 30° the best compromise between detectability and localization accur-
acy in the spatial domain was observed and changes could be detected with high statistical significance.

Prior work on utilizing the secondary charged particle measurements for change detection were
focused on determining the locations of statistically relevant differences between the two analyzed meas-
urement sets. This meant that locations where the number of particles differed to a statistically sufficient
degree were assumed to indicate anatomical changes (Gwosch et al 2013, Gaa et al 2017, Reinhart et al
2017), an approach we consider the baseline for comparing our method’s performance. The small differ-
ence in particle amounts makes detection in this way challenging and very sensitive to the actual num-
ber of secondary charged particles measured at individual locations. Furthermore, the detected particle
amounts depend on a combination of factors with varying contributions between treatment fractions,
including clinical (tumor depth and position, prescribed fraction dose), particle-physical (multiple scat-
tering and energy loss of fragments), and detector setup-related (detector positioning, solid angle accept-
ance, and resolution) (Muraro et al 2016).

A more robust, flexible and extensible set of methods is therefore desirable when aiming for clin-
ical applications. To this end we need to (a) investigate and describe the structure of the measurement
data as well as (b) determine the limitations of what type and magnitude of changes can be detected and
localized by analyzing solely the measurement data and (c) identify and develop the basic data analyt-
ical building blocks and extend their capabilities in systematic increments. The results presented in this
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manuscript are aimed at contributing to all above mentioned points while using measurements acquired
during precisely controlled experimental setups with polymethyl methacrylate (PMMA) head phantoms.

The focus of this manuscript is to present a method for detecting and localizing the changes between
two sets of secondary charged particle measurements along the beam direction. The chosen setup is close
to the practical clinical scenario, where the measurements of two treatment fractions of the same patient
are analyzed to determine whether there are detectable anatomical changes between them. The exper-
iments were performed with a cylindrical head-sized homogeneous PMMA phantom with exchange-
able air-filled cavities irradiated with a realistic CIRT treatment plan. We determine the achieved depth-
detection accuracy over a set of well-defined experiments and analyze the method’s robustness to clinic-
ally relevant uncertainties. We provide essential computational procedure to be used as building blocks
for a future full 3D reconstruction.

2. Materials and methods

2.1. Data acquisition

2.1.1. Experimental setups

The experimental data used to validate our approach were collected at the Heidelberg Ion Beam Therapy
Center (HIT) facility throughout irradiation experiments conducted during the rigorous test and valida-
tion phase of our group’s detection system. We therefore have the advantage of being able to utilize data
that was specifically designed to assess the suitability of any analysis approach to be applied to measure-
ments of the now ongoing clinical study involving patients with tumors in the head and neck region.
The clinical changes between the fractions of a series of treatments are expected to be small and the
experimental setup therefore gradually approaches smaller changes represented by air cavities of decreas-
ing volume.

Experimental conditions are kept as close to the clinical reality as possible using the actual treat-
ment facility and the exact beam parameters used for patients with a clinically realistic treatment plan
designed for a spherical tumor of ~ 50 mm diameter located at the isocenter. The head in these experi-
mental setups is represented by a PMMA cylinder (see figure 1) with a diameter of 160mm and a height
of 90 mm with slots that allow differently sized air cavities to be created. The head phantom was placed
with its center aligned with the isocenter of the treatment room (as well as the irradiated region) and
the cavities were placed perpendicular to the treatment beam axis. The paths of secondary charged
particles were then measured using a mini tracker unit based on a Timepix3 detector. It was placed at
an angle of 30° with respect to the treatment axis outside the head phantom as depicted in figure 1(a)
and (b). The detection angle of 30° was chosen as based on the results of an involved experimental
procedure conducted in our work group (Ghesquiere-Diérickx et al 2021, 2022), identifying the best
compromise between detectability and depth localization. The detector was positioned at a distance of
12.0cm from the isocenter during the experiments with large cavities and at 20.7cm at the small cav-
ity measurements. Taking into account practical limitations including where a measurement device can
be placed in a clinical setting (Kelleter et al 2024a) and the maximum data rate of the detector readout
system (Turetek et al 2016).

Two sets of experimental setups were used in this work. The first consists of measurements of large
(slab-shaped) air cavities of 70mm x 70mm (transverse plane) with 2mm thickness which were placed
at four different depths of —40mm, —22mm,0mm, and +18mm along the beam axis (with respect to
the isocenter) (Ghesquiere-Diérickx et al 2021). The cavities cover the entire irradiated region as shown
in figure 1(d) on the right, with the consequence that all treatment particles will have to pass through it,
yielding the maximum amount of interaction with the change of material density present in its way. The
second set consists of measurements of coin-shaped cavities of 20 mm diameter (transverse plane) and
a thickness of 4mm placed at —40mm, —30mm, —20mm, —10mm,0mm and +10mm (Félix-Bautista
et al 2021), they cover only a fraction of the treatment beam see figure 1(c). Their volume however is
comparable to that of a change caused by blockages in clinical targets and therefore closer to the type of
changes expected in a real clinical setting.

For the experiments conducted in this work, a virtual spherical tumor of ~ 50 mm was positioned at
the center of the phantom, placed at the isocenter and a typical treatment of 60 Gy(RBE) in 20 fractions
was prescribed. This results in a fraction dose of 3 Gy(RBE), which was delivered using the raster scan-
ning technique with energies between 167 and 246MeVn ™. In the case of the experiments with large
(slab-shaped) cavities the treatment plan covered a planning target volume (PTV) of 70.06 cm®, which
was targeted with a single-field irradiation, consisting of 19 energy layers, 8356 pencil beam spots and
5.7 x 10® primary carbon ions. For the experiments with the small (coin-shaped) cavities a treatment
plan covering a PTV of 49.93cm’ was used. In this case an even more realistic irradiation with two
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Figure 1. (a) Photograph of detection setup; (b) Top-down view with treatment plan and experimental details of the small coin-
shaped cavity setups; (c) 3D rendering of experiment with head phantom, showing all large slab-shaped cavities at once; (c)
(right) Visualization of the slab-shaped cavity covering the entire irradiated region. (d) (left) same as (c)(left) with all small coin-
shaped cavities shown at once; (d) (right) Visualization of the irradiated region being much larger than the small air cavity.

opposing fields was chosen in the planning process, out of which one field was used for the experiments
presented here. This field contained 19 energy layers, 7437 pencil beam spots and 2.5 x 10® primary car-
bon ions.

2.1.2. Detection system
This work utilizes measurements acquired at different phases of our group’s effort to build a detection
system throughout ready for clinical use. Therefore, different experimental setups designed for system
and method validation were used. All measurements in this work were performed using two-layer mini-
tracker detection systems based on Timepix3 hybrid silicon pixel detectors developed by Advacam s.r.0.,
Prague, Czech Republic. These custom-built systems feature layered hybrid silicon pixel detectors with
front and back detection layers, forming a telescope setup that enables charged nuclear fragment track-
ing and vertex reconstruction (see figure 2(a)). The measurements on the experimental setups with large
cavities were carried out using a Timepix3 module with a single 256 x 256pixels with a sensitive area of
~ 1.96cm? and a silicon sensor thickness 300 um per layer, with layer distance 2.5cm. For the meas-
urements of small cavities, a customized AdvaPIX TPX3 Quad detector module with a total surface of
3.92cm? (arranged side-by-side as 512 x 256 pixels) with a silicon sensor thickness 500 ym and a layer
distance of 2.1 cm was used once it became available.

In both configurations, the detectors were operated in event-driven mode to optimize data through-
put and ensure the registration of individual particle events. The average number of detected particles
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Figure 2. (a) Principle of detecting secondary charged particles using a tracker setup (and an anthropomorphic head phantom).
(b) Dose delivery by pencil beam scanning: a large number of individual locations are irradiated along a pre-defined trajectory at
various energy levels that reach different depths.

per irradiation run was & 3.03 x 10° for the large cavity setup and ~ 1.81 x 10° for the small cavity
setup. Detailed descriptions and characterizations of the devices and the detection setup used can be
found in Ghesquiere-Diérickx et al (2022), Kelleter et al (2024a, 2024b).

2.2. Input for data analysis

2.2.1. Data properties and attributes

The raw data consists of per-pixel data records of the time of arrival (ToA) timestamp of the detection
event. The tracking principle is based on associating front- and back detector layer hits within a 150 ns
time window and building a track by constructing a 3D vector from them. It identifies the 3D point at
which the fragment path is closest (in terms of its Euclidean distance) to the pencil beam used in the
same time window. In this work we use the 3D coordinates of the fragment vertex originating within the
patient resulting from the estimation procedure described in Ghesquiere-Diérickx et al (2021, 2022).

The irradiation process carried out in the form of many consecutive pencil beams (see figure 2(b))
has a strong influence on the structure of the resulting measurement data. At this point, two basic para-
meters that significantly influence the structure of the measured data should be mentioned: first, the
positioning of the detector at an angle of 30° with respect to the beam axis in the coronal plane (top-
down view); and second, the non-symmetric placement of the detectors on one side, due to practical
constraints related to the irradiation process. The first parameter was found to be optimal for the detec-
tion task through rigorous experimental verification (Ghesquiere-Diérickx et al 2021). The second has
an effect on the distribution of particles along the transverse and coronal planes such that the number
of measurements increases with decreasing distance to the detector position. In addition, it results in
a skewing effect on the reconstruction accuracy since the particles have to traverse increasing distances
through matter before reaching the detector.

Further effects are caused by geometric structures outside the irradiated treatment field which the
secondary particles need to traverse before reaching the detector. Furthermore, these reproducible out-
of-field effects have been observed to have a systematic influence on particle distributions and are hereby
mentioned for the sake of completeness. However, these have not been fully described yet, but are under
active investigation due to their relevance for the monitoring effort. The pattern followed during the
dose application via pencil beam scanning process will be contained in the location distribution of the
secondary particle origins and therefore result in frequency contributions within the measurements.
Whether this property has adverse effects on change localizations will have to be the subject of further
investigations.

2.2.2. Track building

The post-processing starts by joining detections with a maximum time difference between consecutive
signals of 500ns to clusters. The sum of all individual energy depositions of connected pixels (includ-
ing diagonal pixels) in that time window make up a cluster, and its position is defined as the energy
deposition weighted centroid of its pixels. Similarly, the total deposited energy of a cluster is the sum
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of energy contributions by all of its pixels. The timestamp of the earliest detected pixel in the cluster is
defined as the cluster’s ToA. A fragment track is constructed from mapping the centroids of the front-
to the back detector clusters with the most similar ToA within a 150ns time window and extending the
magnitude of the vector between them.

2.2.3. Reconstruction of fragment origins

The reconstruction of secondary fragment origins as 3D coordinates makes use of the beam-record file,
which is produced as a quality assurance measure by the treatment system at HIT. It contains numerous
precise records of the beam properties throughout the entire treatment duration, including the location
on the transverse plane. The location at which a detected fragment originated is approximated using

a heuristic referred to as closest-distance projection algorithm described in Ghesquiére-Diérickx et al
(2021). It identifies the 3D point at which the reconstructed fragment track (the vector originating at the
back detector and passing through the front detector) passes closest (in terms of its Euclidean distance)
to the pencil beam used in the same time window. The 3D coordinate chosen as the reconstructed frag-
ment origin is located at the center of the line connecting that closest point perpendicular to the central
pencil beam axis.

2.2.4. Previous approach for data analysis

The data analysis approach previously developed by our group for detecting changes along the treatment
beam axis consisted of comparing the projections (depth-profile histograms) of two sets of reconstructed
fragment origins projected onto the beam axis. In the case of estimating the depth location of a single
cavity, the location at the minimum of the difference between the two histograms was assumed to be the
location of the cavity (Ghesquiere-Diérickx et al 2022).

2.3. New data analysis approach for change detection
2.3.1. Overview
In this section we present our method for detecting and localizing changes between two treatment deliv-
ery fractions. It is based on the fact that materials of different densities possess different stopping power
(Northdliffe and Schilling 1970). A carbon-ion beam passing through materials with sufficiently different
density therefore results in measurements with detectable differences in the number of generated sec-
ondary particles when comparing to a reference measurement. Air-filled regions will cause less nuclear
interactions and in effect, less secondary particles to be generated than the much denser PMMA material
surrounding it. Prior analysis of the measurement data compared local amounts of reconstructed sec-
ondary particle origins between two measurement sets to detect and localize changes based on statistical
differences (Reinhart et al 2017, Kelleter et al 2024b). These are particularly sensitive to local variations
in the detected number of particles which are a common occurrence in a measurement process based on
the detection of phenomena of a stochastic nature. Our approach focuses on exploiting a before unused
source of information contained in the data, namely their frequency structure. The underlying assump-
tion is that changing distributions of particle amounts, which are the consequence of changes in the
anatomy in the irradiated regions, are expected to result in discernible local variations in the frequency
composition of the reconstructed particle origins. These should be especially dominant at transitions
between different types of matter. The higher the density of particle origins, the more higher frequency
components are contained in the signal. In the case of analyzing the difference histogram of measure-
ments along the beam axis, this means that two different parameters contribute to the frequency com-
position at a specific location, (1) the difference in the number of particles at that location and (2) the
variation of that difference over a local neighborhood. Therefore, especially a rapid change between two
sufficiently different dense materials should be detectable as a shift in the frequency contributions.

We employ the procedure depicted in figure 3 using the data analysis methods described in the fol-
lowing sections along these main steps:

(i) Compute the difference histogram of the two measurements along the beam axis.
(ii) Compute the Gabor Spectrogram to obtain binned frequency spectra for individual locations.
(iii) Compute the correlation matrix of the binned spectra to obtain how similar frequency variations
are at different locations.
(iv) Accumulate the columns of the correlation matrix to identify regions of joint variational difference
to other locations.
(v) Detect the cavity location by analyzing the gradients of the accumulation function.
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Figure 3. Process diagram of the detection method showing the sequence, computational processes and intermediate data
products.

2.3.2. Fragment emission profile analysis

The initial step in the change detection procedure consists of determining the distributions of the z-
coordinates (in treatment beam direction) of the reconstructed secondary charged particle origins. The
histogram contains the absolute number of particles at each of N bins (location intervals) of equal size
along the beam axis. We require two sets of measurements to perform the detection procedure: (1) the
‘current’ - containing the cavity in our experiments and (2) the ‘reference’ - containing no cavity. In
the clinical process these would be two measurements of different treatment fractions with the reference
having been acquired at the earlier stage. To perform the depth detection of an anatomical change, as it
is the goal in this manuscript, we determine the difference histogram by bin-wise subtracting the ‘ref-
erence’ from the ‘current’ Up to this point, the procedure is the same as in our group’s previous data
analysis (see Kelleter ef al 2024a).

2.3.3. Analysis of fragment emission profiles in the spectral domain

The next step involves transferring the analysis into the spectral domain. This represents a major distinc-
tion to previous approaches, which estimated the cavity locations based on direct histogram comparison.
By analyzing the spectral domain, it is possible to identify patterns and trends in the measurements, that
may be difficult to uncover in the spatial domain. To obtain the spectral information of the difference
histogram, we perform Fourier Analysis (Attinger et al 1966, Nastar and Ayache 1996, Bracewell 2012),
the standard method for decomposing a signal into its frequency components. In this work we utilize
the discrete Fourier transform (see equation (1)) which allows the difference histogram to be expressed
in terms of a combination of orthogonal periodic basis functions. This means transforming a discrete
number of equidistant samples (in the spatial domain) into complex Fourier coefficients y[n], representing
the contribution of equally distributed frequency bins. The employed transformation creates frequency
bins such that the covered spectrum is provided in terms of the same number of values as the input sig-
nal, which preserves invertibility of the transform. Hence, these coefficients allow the original signal to
be recovered in an inverse procedure with only minimal loss. In the case of analyzing secondary charged
particle measurements the signal subjected to the Fourier transform is that of the difference histogram
h[n] between the two compared measurements of secondary charged particles along the beam axis:

i) = ylil e " =01, ,N-1 (1)

with:

h[n]: Output vector ofN values in the frequency domain,
y[i]: Input sequence of N samples in the spatial domain,
i: Location index,
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n: Frequency bin index (corresponds to the nth frequency component),

N: Number of location bins being transformed, (and therefore, also the number of discrete frequency
bins produced),

e i N in, Complex exponential term representing the sinusoidal basis functions,

j: Imaginary number, where j2 =-—1.

The output of a Fourier transform of a signal provides us with the composition of the frequencies
contained in that signal, in our case for the entire considered span of the beam axis. This means that it
will not allow us to determine which frequency composition was present at a specific location. Since in
this work our goal is to pinpoint particular ‘locations’ along the beam axis at which a distinguishable
composition of frequencies can be found we need to employ a method that is capable of providing this
information, namely the short time Fourier transform producing a Gabor Spectrogram (Gabor 1946). A
visualization is shown in figure 4(b) and a (left) as a schematic: a matrix where each of the M columns
represents the frequency content across N frequency ranges at a specific location along the beam axis. It
is computed by performing a series of Fourier transforms on a sliding window along the signal which
in our case is a difference histogram along the beam axis. However, this process requires an additional
filtering step since each time a small window (of length M) is cropped from the original signal, a dis-
continuity is introduced which leads to additional unwanted frequency contributions in the Fourier
transform which are not contained in the original signal. To mitigate this effect, window functions are
used to filter each of the cropped window contents prior to performing the Fourier transform. A vari-
ety of window functions are available to perform the filtering and a commonly used one, the Hanning
Window (Blackman and Tukey 1958) defined in equation (2) is the one we used for our analysis since its
frequency response yields a very low amount of undesirable additional frequency contributions:

2mn
w[n]zO.S—O.Scos(), n=0,1,...,N—1 (2)
N-—-1

with:

wiln]: Value of the window function at index n,
N: Total number of location bins in the window (window length),
n: Index of the current location bin, ranging from 0 to N — 1.

Our focus was to achieve high spatial resolution while maintaining sufficient frequency resolution to
preserve the key spectral features of interest. Taking into account the spatial uncertainties in the meas-
urements as well as the expected size of the cavities, we selected a window length that provides sufficient
resolution to capture the target spatial features. The window length was therefore chosen to be short
enough to resolve fine spatial details, but not so short that frequency resolution became inadequate.
Since the window length inherently represents a trade-off between spatial localization and frequency res-
olution, the chosen value reflects the targeted feature size along the beam axis, which is between 2mm
and 4mm in thickness. With the Hanning window applied, this corresponds to an attenuation of more
than 90% at the window edges. To ensure that these features are not under-sampled and thus aliased,
the stride was set in accordance with the Nyquist-Shannon sampling principle (Shannon 1949), to 1 mm
(half the spatial frequency of the smallest target structure), providing dense enough coverage to faithfully
represent spatial variations to the highest frequencies supported by the selected window length. The val-
ues of the resulting N x M matrix represent the difference signal as N frequency bands at M locations.
We use only the first half of the frequency bins, since the second half contains redundant (complex-
conjugate) information.

2.3.4. Exploiting joint variational frequency information
Since the Gabor Spectrogram provides an extended amount of information about each location along the
beam axis by providing its spectral composition, we are now able to exploit joint variational information
it contains. To this end we correlate (Schober et al 2018) the frequency band information of all possible
location combinations with each other and compute the normalized covariance matrix RIM*M} shown in
figure 4(c) and a (right) as a schematic.

This process takes the Gabor Spectrogram SIN*M} | with N frequency bins and M location bins
and produces a symmetric matrix R1M*M} of Pearson Product-moment Correlation Coefficients (see
equation (7)). Its relationship to the concept of covariance can be observed in equations (3) and (4).

8
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Figure 4. (a) Visualization of the correlation matrix generation process: the correlation of the two Gabor Spectrogram columns
(left); results in a single correlation matrix element (indicated by the two column colors on the right); the diagonal line represents
each column correlated with itself; correlating any depth location z with all other locations results in the column z, the inverse
results in the row z (right). (b) Gabor Spectrogram visualization. (c) Correlation matrix visualization,

The elements r;; of the correlation matrix are computed as follows:
G cOV( )

GG
g \/ Var Var( )

with the covariance C;; of columns i and j of input matrix S:

(3)

Cj= CoV( ; T) - ZQIZI (Ski _?) (Skj _STT> (4)

%S N-1
and:
Var (ST) _! EN: (sT —?)2 (5)
i N2 i i
and the sample mean s, s; of the ith column in S
S 1y
s = N;Ski (6)
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such that:
10 T T
5 k=1 <5ki —S; ) (Skj -S; )

ri =
’ | T\ i T\
52 k=1 (Ski_si ) A % 2ok=1 <5kj_sj )

{ 1, if i=j, -

rjj, otherwise

with:

S: Gabor Spectrogram,

rij: Correlation coefficient between columns 7 and j in S,
s; : ith column of a Gabor Spectrogram S,

k: Running index over elements of a column vector,

ski: kth element of the ith column,

s; : Mean of the ith column.

Each element in R; can be seen as the normalized covariance information between combinations
of frequency distributions. They represent the degree of linear relationship between the joint frequency
variations in different frequency bands of all possible column combinations. The matrix R can there-
fore be interpreted as a map of similarities and dissimilarities along the beam axis, revealing connected
regions of structural similarity in the spatial domain. The columns making up the local neighborhood
inside of a cavity will therefore show to be similar when compared to other locations. The analysis of R
therefore allows distinguishing between coherent regions that are sufficiently (dis-) similar to each other.
This analysis allows us to identify coherent regions of related change along the beam axis.

2.3.5. Correlation method alternative
The modularity of our approach allows exchanging the method used to compute each cell in the correla-
tion matrix. An alternative to fine-tune the approach is the Spearman Rank Correlation:

o, (R(sH) ~R(sf))
pi=1- NS

(8)
with:

pij: Spearman rank correlation coefficient, between the ith and jth columns of §,
S: Gabor Spectrogram,

N: Number of frequency bins in each column of S,

s; : ith column of S,

R(s{;): Rank of the kth frequency bin in the ith column of S,

R(s,—{;): Rank of the kth frequency bin in the jth column of S.

While the more commonly used Pearson Correlation measures the degree of a linear relationship
between the two compared Gabor Spectrogram columns, the Spearman Rank Correlation assesses how
well the monotonic relationship (consistently increasing or decreasing) between two variables can be
described using their ranked values, making it more robust to outliers and non-linear trends. A per-
formance comparison between the two methods is presented in section 3 and table 1. The results show
that even though the approach using Pearson correlation performs best overall, the localization approach
using the Spearman correlation outperforms it when no input signal filtering is applied.

2.3.6. Depth detection of changes using the correlation matrix

The detectability of changes depends on a multitude of factors such as their size and variational struc-
ture as well as the structure of the noise originating from measurement and post-processing uncertain-
ties. A variety of powerful methods are available from the image processing domain that are capable of
improving the signal-to-noise ratio to enhance the difference information contained in the correlation
matrix (see examples in figure 5). The structure of the information contained in the correlation mat-
rix naturally lends itself to enhancements by such image filtering methods. At this stage in the analysis
pipeline, they can be used to enhance the detectability of homogeneous zones of relative (dis-) similarity
that relate to regions of changes. With the goal of determining a single estimate for the cavity location
we analyze the gradients of the correlation matrix by first restricting the measurements to the region of

10
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Figure 5. Showcasing the effects of applying different image filters (and combinations of filters) to the correlation matrix in (a);
(b) Gaussian filter (see equation (10)) applied; (c) Bilateral median filter applied; (d) thresholding filter applied; (e) thresholding
after median filter.

the head phantom in beam direction. This is a reasonable constraint, since in a clinical setting the loca-
tion and dimensions of the patient will always be precisely known. We then accumulate the columns of
the correlation matrix into the 1D array a by determining the sum over all of its columns.

Alternatively, at this point we have the option to choose a different accumulation operator such as
the median, or mode (most common number) of the values in a column (see equation (9)). This accu-
mulation array now represents per location bin the joint degree of (dis-) similarity compared to all other
locations. In a final step we analyze the gradients of the resulting curve and determine the locations at
which the largest amount of joint change occurred in the frequency domain by identifying the location
of the steepest descent between the isocenter and the minimum of the curve. The resulting location we
consider the detected matter transition and cavity location:

N
Sum: Sum{rJT} => 1
i=1
UESE if n is odd
Median: Med{r,} = P . )
J (r[ﬂ]].—i—r[Hl] j) if n is even
Mode: Mode{r;' } = argminf(x)

x€r’

with:

R: Correlation matrix,
ro: jth column of correlation matrix R,
N: number of frequency bins in R,

f(x): determines the number of each value x in the matrix column s,

i

! S €exp <x2+y2> (10)

Glx.y) = 2w 202

with:

G(x, ): Gaussian weighting function at pixel location (x,),
o: Standard deviation of the Gaussian distribution.

2.4. Detectability quantification

One of the required building blocks of a full 3D reconstruction method is a way to determine when the
data sets are too similar to perform a detection. Especially when the change covers only a small frac-
tion of the irradiated space, the analysis needs to be able to provide some measure of detectability. Since
the localization principle is based on analyzing the gradients of accumulated column values consisting
of regions of varying similarity, the range of accumulated values (difference between their maximum
and minimum) can be interpreted as a measure of detectability. The range differences between differ-
ent measurements acquired with and without the presence of a cavity are shown in figure 6. In addition,
the gradients of the accumulation curve provide us with information about the matter transition it was
caused by.

11
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Figure 6. Accumulation arrays (column sums) and their respective range values derived from correlation matrices (using Pearson
correlation and no matrix filtering) of (a) large- and (b) small cavity measurements at different depths, as well as examples
without cavities, showing that the range values indicate detectability and hint at the presence or absence of a cavity.

2.5. Change localization
An important motivation for exploiting more features of the secondary particle measurements was the
unstable spatial correspondence between the minimum location of the difference histogram and the true
cavity location. Our approach therefore focuses on increasing the robustness by identifying difference
regions that can be distinguished from other regions with less dependence on the individual particle
amounts at and around the cavity location. This addresses effects observed when attempting to local-
ize a cavity at varying depths: particle amounts per location will decrease the more material had to be
traversed before a cavity was encountered as it is the case with deep seated tumors (Muraro et al 2016,
Ghesquiere-Diérickx et al 2022). Such depth-dependent particle count depletion will increase instabil-
ity when attempting to localize changes on the basis of the minimum due to higher uncertainties and a
decreased signal-to-noise ratio, as can be observed in the baseline results shown in figure 9(a).
Exploiting the variational space of the measurements in the spectral domain allows exploiting com-
mon characteristics based on a broader informational foundation which stabilizes the localization
performance. This can be observed in the consistency and absolute localization loss (we define as the
absolute distance between the location estimate and the true cavity location, outside the range it cov-
ers) when comparing the performance of presented method and the baseline method in figure 9(a).
Reaching these results requires a final step in our modular data analysis pipeline, which consists of solv-
ing the original depth estimation problem of localizing anatomical changes along the beam axis. The
best approach for this step may depend on the filtering applied earlier in the pipeline (see figure 5 for
different filtering results). Our implementation is designed to work well given our particular filtering
strategy and may need to be adapted if the structure of the intermediate data products is different.
This is a deliberate focus on modularity that guarantees adaptability to specific clinical circumstances.
Furthermore, at this point it would be possible to apply more advanced methods capable of utilizing
high-dimensional information contained in the correlation matrices to pinpoint the cavity location. The

12
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Figure 7. Visualization of the gradient based localization of a cavity at —22 mm using a weighted average of the extreme gradient
locations and the minimum between them. The respective weights w,_ , Winin, Wy . were obtained by optimizing the localization
loss over all available data sets.

regression approach used in this work is kept simple for the sake of generality and to maintain compar-
ability with the baseline method.

Considering that only the region traversed by the treatment beam can yield secondary particles, it is
reasonable to restrict the valid search space in positive beam direction (behind the target region). Given
the treatment plans used during the experiments in this work, with a treated region of up to £25mm
around the isocenter, we set it to 40mm. The localization process starts by utilizing the array of data
points computed by summing the columns of the correlation matrix (see accumulation in figures 8(a)—
(j)(bottom)). A fixed property of the measurement setup is the centering of the tumor at the isocenter
of the treatment room. All estimations will therefore be made relative to that location along the beam
axis. To constraint our analysis iteratively, we determine the joint accumulation value (area under the
curve) of the accumulation array before and after the isocenter separately and assume the cavity to be
located on the side with the lower value. This is motivated by the observation that the regions outside
of anatomical changes will be more likely to show positive correlation values among similar regions
and negative correlation values for the cavity region. The subsequent analysis will determine the loc-
ation of the steepest negative and positive gradients of the accumulation array restricted on that side.

In order to suppress strong local gradients, we applying a Gaussian smoothing filter with a standard
deviation of ¢ =2.0 to the accumulation value array. We estimate the cavity location ¢, by determin-
ing the weighted average between the location of the smallest gradient g, the largest gradient gm.x and
the location of the minimum value of the accumulation array fni, between the two extreme gradients
(see figure 7). These three features were chosen since they are consistently available as a result of the
preceding stages of the analysis pipeline and they are used to compensate for depth-dependent effects
that negatively affect the correspondence between the detectable difference and the cavity location. The
weights for these features were chosen such that they minimize the joint loss (the mean absolute distance
between the estimate and the actual cavity location) among the available datasets. They do not need to
be recomputed each time, because they reflect inherent properties of the detection setup. Within the cur-
rent scope, weights derived from a small number of experiments can already yield reliable results, even
though a larger database might improve them further.

3. Results

3.1. Depth detection of large and small air cavities

The results of estimating the depth location along the beam axis of analyzing measurements from irra-
diation experiments with large air cavities (70mm x 70mm on the x,y-axis of the transverse plane, with
2mm thickness along the beam axis) inside a PMMA head phantom are shown in figure 8. The four
datasets vary in the depth at which the cavity is inserted into the phantom. Irradiation was carried out
with a clinically realistic treatment plan designed for a spherical tumor at the isocenter, with a diameter
of 50mm. That means that the large cavities span the entire irradiated region while the small cavities
span only a fraction of that area, as depicted in figure 1(d). Since this work is focused on detecting the
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depth of an anatomical change along the beam axis, our goal was to enable a fair and unbiased assess-
ment of how our method would perform under varying conditions. In all cases we used the measure-
ments of multiple repetitions of irradiating the same treatment plan, which is done to ensure statistical
stability. The measurements of large and small cavities were performed under comparable experimental
conditions (see section 2.1.2 and figures 1(c) and (d) for details), which resulted in different numbers
of detected particles. For a fair comparison, we applied a stratified subsampling scheme that reduced
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Figure 8. (Continued.)

the number of measurements in large cavity datasets while preserving data density, resulting in similar
amounts of particle origins across all data sets. The subsampling method employed ensured that the
underlying particle distributions were not affected by removing a fraction of the data. Furthermore, to

ensure comparability, we performed our analysis on the same window located

at the center of the trans-

verse plane with a size of 41 mm x 41 mm which preserves the presence of a dominant amount of area
without a cavity in the window (= 77%). This allows investigating the effect of the additional noise con-

tribution this results in.
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Figure 8. (Continued.)

All results were repeated applying the same edge-preserving median filter (see equation (9)) to the
input signal (the difference histogram) to reduce noise in the signal while preserving as much of its rel-
evant variations and their frequency contributions. Even though our approach allows filtering at various
stages of the processing pipeline, for comparability, we restricted filtering to the input signal (the dif-
ference histogram) which is also directly used by the baseline detection method. The baseline detection
method estimates the depth along the beam axis in the spatial domain by determining the location of
the minimum of the difference histogram as proposed in Ghesquiére-Diérickx et al (2022).
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(h) Detection of a small cavity at —10mm along the beam axis. The resulting correlation
matrix is shown unfiltered (left) and after input signal filtering (right), the matrix column
accumulation function is shown at the bottom.

Figure 8. (Continued.)

Table 1 and figure 9(b) show that there is no improvement in the mean absolute localization loss
(see its definition in section 2.5) for the baseline method while using the same input signal filtering the
presented method improves in performance (see figures 9 and 8 (left vs. right)). To be able to validate
the presented method we utilize the gradients of the accumulated matrix columns to localize the cavity
along the beam axis as described in section 2.5.
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Figure 8. (Continued.)

3.2. Alternative correlation method results

As a demonstration of the modularity and flexibility of our approach, we report the results of an
analysis experiment using an alternative correlation method. We exchanged the Pearson Correlation
Coefficient computation with the Spearman rank coefficients, as described in section 2.3.5. In table 1
under the handle Pres. Method (1) its performance is listed because of its good performance in the
unfiltered setting. It shows the potential of the presented approach to be adapted to the challenges of
varying measurement conditions.

18



10P Publishing

Phys. Med. Biol. 70 (2025) 245009 P Schlegel et al

Table 1. Performance comparison between the baseline method (filtered and unfiltered for fair comparison) and the presented
approach using both correlation method variants (Pearson (}) and Spearman ($)), each with and without input median filtering. The
performance comparisons are based on the localization loss defined in section 2.5.

Method min loss (mm) maxloss (mm) loss SD* (mm) mean abs. loss (mm)
Baseline (unfiltered) 0.0 89.0 32.64 39.4
Baseline (median filtered) 0.0 75.0 30.59 30.3
Pres. Method (unfiltered)* 0.0 8.0 2.37 1.7
Pres. Method (median filtered) 0.0 4.0 1.22 1.1
Pres. Method (unfiltered)* 0.0 6.0 2.00 1.3
Pres. Method (median filtered)* 0.0 4.0 1.40 1.2

2 SD = standard deviation.
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Figure 9. (a) Comparing the individual depth detection performance between our method and the baseline method for each
dataset individually. (b) Comparing the mean localization loss and standard deviation of our method and the baseline method
both filtered and unfiltered respectively (using Pearson Correlation).

4. Discussion

Analyzing data originating from secondary particle measurements poses challenges originating from both
the measurement process as well as the stochastic nature of carbon-ion interaction processes with matter.
Despite these challenging signal-to-noise conditions under which we seek to detect and localize anatom-
ical changes between sets of measurements our presented method is capable of providing precise location
estimation.

In clinical practice, personalized distributions of the administered dose as well as the individual
structure of the treated regions will result in natural variations in the number of available particle ori-
gins per location. Therefore, a robustness to varying amounts of measured particles is a highly desir-
able property when aiming for the ability to generalize well. We demonstrate that the use of the spectral
domain improves detection and localization robustness, as it relies on analyzing density variations of
measurement sets and does not require locally stable particle counts across different measurements. In
addition, gaining access to the spectral domain allows us to mitigate effects inherent to the irradiation
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and measurement procedures. An example is the pencil beam scanning process depicted in figure 2(b),
which is comprised of discrete treatment beam steps, imprinted in the particle origin distribution. Our
method allows us to mitigate these types of decremental effects present in all data sets, due to focus-
ing on the variations of the spectral components along the beam axis. Since the density variations of
particle subsets directly relate to the interaction principles of ion-beams with matter, our approach and
its intermediate analysis steps allow it to be interpreted based on basic physical principles common to
the particle therapy domain. Transforming the spectral data back to a two-dimensional matrix with dis
cernible spatial regions, we enable the use of well-established methods from the signal- and image pro-
cessing domains, capable of enhancing structural signals in the presence of noise. This way we are able
to increase the spatial resolution of our approach since the expected anatomical differences between
consecutive treatment fractions are very small in clinical reality. Our method also provides a means of
determining the uncertainty of a depth estimate by exploiting variations in inter-locational similarities
and dissimilarities. Comparing our results with those of the baseline method, which detects changes
based solely on the maximal difference location between two histograms, we demonstrate much higher
localization precision and more consistent results across varying datasets. This higher accuracy is main-
tained even under more challenging experimental conditions, with smaller cavities that cover only a frac-
tion of the irradiated field and more closely approximate clinically realistic volumes.

So far, our framework has been validated on only a limited range of experimental data, which will
need to be extended as development progresses toward clinical applicability. Furthermore, only for the
most dominant anatomical change, a depth location estimate is provided. To address these limitations,
we intend to leverage the core design principle of our framework which was to provide reusable, flex-
ible building blocks to facilitate the design of complex analytical workflows. In fact, we can apply it in
this case in the same way we envisioned it to be used to achieve a full 3D reconstruction, by reusing
the presented depth detection method and apply it to subregions of the measurement set at varying
locations. In combination with our detectability quantification method, for which we are developing
a supporting spatial-domain extension, we can exclude regions without detectable anatomical changes
and precisely estimate those showing clear evidence of them. This allows us to iteratively build a 3D
reconstruction while clearly isolating and separating credible anatomical changes that are simultan-
eously present at different depths for precise individual localization estimates. Additionally, we intend
to provide physicians with detectability quantification values visually mapped onto the reconstructions,
allowing them to adjust their overall confidence in them. These approaches, however, will be extensions
for future work that can be constructed from the basic components provided in this manuscript.

5. Conclusion

The data analysis procedure presented in this manuscript provides an approach for detecting and loc-
alizing the depth of changes between carbon-ion radiation treatment fractions along the beam axis. As
part of a larger carbon-ion radiation therapy monitoring effort the presented procedure is designed

to provide flexible building blocks for a full 3D reconstruction approach for anatomical changes using
only secondary charged particle measurements. Approaching the subject in an incremental manner we
have shown that the presented method is capable of localizing changes along the beam axis with a mean
accuracy below 2mm over a set of 10 different experimental measurements with cavities of varying sizes
at varying depth locations. The presented method is flexible and robust and consists of components that
allow fine-tuning to meet the challenges of the more complex clinical measurements.
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