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The VE can then represent the dependencies be-
tween the actual measurand and the input quantities. 
In the linearised form, gradients can be calculated nu-
merically by varying the input quantities and repeating
the VE. SimOptDevice [2], a library for optical simula-
tions, is also able to output these gradients analytically
[4]. This is used to calculate the dependencies of op-
tical elements or element groups regarding input
quantities such as positioning or direction.

The basis for this is the change in the optical path
length 𝑂𝑂𝑂𝑂𝑂𝑂 with respect to the position of the surface
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 𝑛𝑛𝑜𝑜𝑒𝑒𝑜𝑜 − 𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖, where 𝑒𝑒𝑜𝑜,𝑒𝑒𝑖𝑖 are the direction vec-
tors of the beam and 𝑛𝑛𝑜𝑜, 𝑛𝑛𝑖𝑖 are the refractive indices
of the media before and after the surface, respectively
[4]. The chain rule could also be used here to analyse
dependencies on other quantities such as lens radii,
directions, etc. [4]. 

Linearisation of the VE
After exporting the above sensitivities for the meas-
urement, a linear model can be created:

𝑥𝑥 = 𝐺𝐺(𝑦𝑦, 𝑧𝑧, 𝜖𝜖) ≈ 𝐴𝐴𝑌𝑌𝑦𝑦 + 𝐴𝐴𝑍𝑍𝑧𝑧 + 𝜖𝜖 (1)

𝑥𝑥 is the measurement data generated by the virtual or
real experiment 𝐺𝐺(𝑦𝑦, 𝑧𝑧, 𝜖𝜖), 𝑦𝑦 is a value for the measur-
and 𝑌𝑌, and 𝜖𝜖 is a realization of observation noise, mod-
elled as multivariate Gaussian distributed with covari-
ance 𝜎𝜎2𝐼𝐼. The value 𝑧𝑧 of a quantity 𝑍𝑍 represents addi-
tional input quantities that affect the measurement.
With the TWI, 𝑥𝑥 corresponds to the optical path length
differences, which are simulated using the model or
calculated accordingly from the measurement data.

In the simplified model (1), the matrices 𝐴𝐴𝑌𝑌 and 𝐴𝐴𝑍𝑍 rep-
resent the linear dependence of the measured value
with respect to the measurand 𝑌𝑌 and the additional in-
put quantities 𝑍𝑍. In the simplified TWI, 𝑌𝑌 denotes the 
difference to the known design topography as well as
the lateral position of the specimen. 𝑍𝑍 contains, for ex-
ample, the positioning of the specimen along the opti-
cal axis and its tilt.

With consideration to (1), a possible approach for the
linear reconstruction of the measurand 𝑌𝑌 and for set-
ting up a measurement model according to GUM is as
follows:

𝑌𝑌 = 𝐴𝐴𝑌𝑌
−1(𝑋𝑋 − 𝐴𝐴𝑧𝑧𝑍𝑍) (2)

Uncertainty according to GUM using LPU
According to GUM, the covariance 𝑉𝑉 of the measur-
and 𝑌𝑌 can be determined with linear propagation using 
the following formula.

𝑉𝑉 = 𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇 (3)

Here, 𝐽𝐽 is the derivative of (2) with respect to 𝑋𝑋 and 𝑍𝑍,
such that

𝐽𝐽 = [𝐴𝐴𝑌𝑌
−1 −𝐴𝐴𝑌𝑌

−1𝐴𝐴𝑍𝑍] (4)

and U is set up as follows:

𝑈𝑈 = [𝑈𝑈𝑥𝑥 0
0 𝑈𝑈𝑍𝑍

] . (5)

Here, 𝑈𝑈𝑋𝑋 = 𝜎𝜎2𝐼𝐼 is the assumed covariance of the 
measurement data and 𝑈𝑈𝑍𝑍 denotes the covariance of
the additional quantities 𝑍𝑍.

Applying this method to the analogue setting from [1],
the point-wise standard uncertainty is obtained for the
greatly simplified TWI method. If this result is com-
pared with the corresponding case of the Bayesian
method [1], it becomes clear that the uncertainty eval-
uation method presented here adequately replicates
the Bayesian method. Furthermore, regarding compu-
tation time, the method presented here took signifi-
cantly less time to achieve adequate results, which
renders the usage in live applications much more fea-
sible.

Figure 3: Point-wise standard uncertainty for the inter-
mediate reconstruction step using the linearised 
model around the measured value.

Conclusion
We demonstrated for the example of the TWI that the 
uncertainty evaluation with a linear approximation of
the influence of the input quantities essentially corre-
sponds to that of a Bayesian reference method. The 
calculation of the linearised approach is significantly
less time-consuming as Monte Carlo analyses with
VEs are not required.
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Summary: A novel tracking algorithm for high-speed object tracking using event-based Vision (EBV) sensors and
binary frame representation is presented. The method transforms sparse event data into binary frames, enabling
precise and robust particle tracking at 2 kHz frequency by combining correlation-based matching and center of
gravity alignment.
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Introduction

This work is based on two key design elements:
the use of Event-Based Vision sensors for high-
speed tracking, and the representation of events
through binary frames.
Event-Based Vision (EBV) sensors represent a
promising new paradigm in the field of computer
vision, offering high temporal resolution and low
latency. These characteristics make EBV sen-
sors particularly well-suited for tracking rapid
movements. This paper presents a real-time, ro-
bust tracker that processes event data using bi-
nary frames, demonstrating its potential in appli-
cations such as bulk material sorting, where pre-
cise object tracking is crucial for pneumatic actu-
ator control.
The proposed tracker operates at 2 kHz, enabling
precise tracking of particle trajectories in real-
time. This performance level is challenging to
achieve with conventional frame-based camera
sensors due to limitations in costs, latency, and
algorithm runtime. For comparison, the work of
Maier et al. [1] utilizes conventional industrial-
grade frame cameras, achieving only a 93Hz
tracking frequency. By leveraging the properties
of EBV sensors, our approach overcomes these
constraints, offering a significant advancement in
high-speed object tracking. Moreover, there is
potential to further increase the sampling rate if
required for specific applications.
While existing event-based tracking literature,
exemplified by Barranco et al. [2], focuses on di-
rect sparse event processing, our work presents
a paradigm shift through binary frame repre-
sentation. The sparse spatio-temporal nature
of event data poses significant challenges for
classical computer vision algorithms, particularly
in real-time scenarios with time-dependent data
volumes. Our approach strikes a balance by
generating binary frames that efficiently cap-
ture relevant information. These binary frames
enable efficient morphological operations, sup-

port compression techniques like RLE and CSR,
and minimize storage requirements through their
boolean representation. This allows high frame
rates and therefore a small but inherent loss in
temporal resolution.

Method
Our tracking algorithm combines correlation-
based matching to estimate object displacement
with center of gravity alignment to refine track-
ing by maintaining the object’s position within the
reference frame. The method assumes a known
initial position ξt0,p and reference frame rt0,p con-
taining the tracking object, which in the context of
bulk material sorting can be determined when a
particle crosses a predefined boundary region in
the direction of motion. The algorithm operates
on binary frames accumulated over a fixed time
interval τ . This accumulation period also defines
the tracking frequency, as each new frame trig-
gers a new iteration. This dual-step process is
executed in parallel for each polarity p individu-
ally, providing shifts in both x and y directions.

Binary Frame Generation Binary frames are
generated through temporal accumulation of the
event stream. For each pixel location (x, y) and
polarity p ∈ {+,−}, events are accumulated
over a time window τ , resulting in binary frames
bt,p(x, y) defined as:

bt,p(x, y) =

{
1 if ∃e(x, y, t, p) in [t, t+ τ ]
0 otherwise (1)

where e(x, y, t, p) represents an event at posi-
tion (x, y) with polarity p at time t. This re-
sults in two separate binary frames bt,+(x, y)
and bt,−(x, y) for positive and negative events
respectively. The accumulation time τ is a crucial
parameter that needs to balance two competing
requirements: it should be large enough to cre-
ate coherent structures in the binary frames, yet
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small enough to maintain sufficient temporal res-
olution for the tracking task. In our implemen-
tation, we set τ = 500 µs to achieve a tracking
frequency of 2 kHz.

Correlation-based Shift We compute the cor-
relation map ct,p by correlating the reference
frame rt−1,p with a constrained region b̃t,p of
bt,p. This region is delimited around ξt−1,p, ex-
tending d pixels beyond the size of rt−1,p to cap-
ture the maximum expected particle displace-
ment during τ , thereby reducing computational
complexity significantly.

ct,p = rt−1,p ⋆ b̃t,p (2)

The correlation-based shift δcorrt,p is then deter-
mined by:

δcorrt,p = argmax(ct,p)− C(b̃t,p) (3)

where C represents the geometric center opera-
tion. Note, that C(b̃t,p) is equivalent to ξt−1,p but
referenced in the local coordinate system of b̃t,p

instead of the global coordinate system.

Center of Gravity Alignment Now, we extract
an expanded preliminary reference frame r̃t,p
centered at the shifted position ξt−1,p+δcorrt,p . The
second shift δgravt,p is computed as:

δgravt,p = CoG(r̃t,p)− C(r̃t,p) (4)

where CoG represents the center of gravity cal-
culation. The actual reference frame rt,p is then
cut out of r̃t,p w.r.t δgravt,p . This centering adjust-
ment maintains the tracked particle within the ref-
erence frame, enhancing robustness by prevent-
ing positional drift across iterations. Morpholog-
ical filtering of each reference frame enhances
robustness against noise.

Final Position Estimation The total shift per
iteration and polarity is δt,p = δcorrt,p + δgravt,p , yield-
ing the next point ξt,p = ξt−1,p+δt,p. Robustness
is enhanced further by independent processing
of positive and negative events, creating redun-
dancy in the tracking process. The final object
position is determined by ξt =

ξt,++ξt,−
2 where

ξt,+ and ξt,− represent the positions obtained
from positive and negative events, respectively.

Results
The proposed tracking algorithm has been tested
with numerous particle trajectories. Our experi-
ments demonstrate the method’s robustness and
real-time capability, with processing times of ap-
proximately 200 µs per iteration on a modern mid-
range desktop processor, significantly lower than

Fig. 1: Tracked particle trajectory with velocity
estimation. The background image outlines the swept
area of the particle during the flight.

Fig. 2: Tracked particle trajectory with velocity
estimation zoomed in at the interaction area between
particle and pneumatic system.

τ = 500µs required for binary frame accumu-
lation, posing the real time boundary. Fig-
ure 1 illustrates a representative tracking result,
while 2 zooms in in order to reveal more de-
tails. The trajectory includes post-processed ve-
locity estimations. More examples and videos
illustrating the results for various examples in
the context of bulk sorting can be found here:
https://github.com/uwupl/FT SMSI

Summary & Outlook
The tracking algorithm demonstrates significant
potential for further development and practical
implementation. Future work will focus on ex-
tending the method to track multiple objects si-
multaneously and incorporating rotational veloc-
ity estimation of the tracked objects. This exten-
sion would provide valuable information for more
precise control of sorting actuators.
For optimal industrial performance, we are ex-
ploring FPGA implementation options. This
hardware acceleration approach could signifi-
cantly reduce processing latency and enable
even higher tracking frequencies, making the
system more suitable for high-throughput sorting
applications.
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