KIT | KIT-Bibliothek | Impressum | Datenschutz

Rapid deep-learning-based optical measurement of printed linear structures

Polomoshnov, Maxim ORCID iD icon 1; MD Ashif, Nowab Reza; Reichert, Klaus-Martin 1; El Hariry, Aziza; Gengenbach, Ulrich 1; Sieber, Ingo ORCID iD icon 1; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Conventional optical measurement techniques are beneficial in automated manufacturing processes due to their fast and non-intrusive operation. However, they require sophisticated and expensive equipment as well as increased personnel qualification. While the integration of machine learning contributes to alleviating these requirements, it needs a time-consuming and tedious preparation of training datasets. We introduce a twin concept to conduct rapid measurement of various geometrical properties of printed lines using deep learning. For the first time, a tedious collection and assessment of training data is substituted by synthetic generation of digital samples, which enables flexible, fast, and precise data processing. A full-field analysis of a non-preprocessed image conducted by a neural network facilitates measurement of multiple geometrical properties of an object at once. Corresponding network architecture, workflows, and metrics are outlined. The application area of the concept is demonstrated, but not limited to the field of functional printing. The method can easily be tailored to a wide range of engineering fields.


Verlagsausgabe §
DOI: 10.5445/IR/1000189245
Veröffentlicht am 23.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.12.2026
Sprache Englisch
Identifikator ISSN: 1559-9612, 1559-9620
KITopen-ID: 1000189245
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in International Journal of Optomechatronics
Verlag Taylor & Francis Open Access
Band 20
Heft 1
Vorab online veröffentlicht am 17.12.2025
Schlagwörter Optical measurement, process automation, deep learning, machine learning, computer vision, neural network, quality assurance
Nachgewiesen in Web of Science
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page