KIT | KIT-Bibliothek | Impressum | Datenschutz

Mixed-integer programming models for mid-term production planning in integrated steel production

Saupe, Jonas ; Fath, Philipp; Sayah, David; Nickel, Stefan 1
1 Fakultät für Wirtschaftswissenschaften (WIWI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This work addresses a tactical planning problem at a German steel manufacturer within a hierarchical production planning system. Operations managers must align booked orders with limited capacities of multiple production facilities over a mid-term planning horizon. For each order, a single process plan and start period must be selected, adhering to time-dependent capacities and no-wait constraints. The goal is to meet associated due windows (e.g. for intermediate milestones and final delivery) as closely as possible, aligning with just-in-time scheduling problems. We propose two mixed-integer programming models: a job shop-based model and a more compact knapsack-type model. We prove that the problem is strongly NP-hard. Experimental results using benchmark instances derived from the literature and a standard solver demonstrate that the knapsack-type formulation consistently outperforms the job shop-based one in terms of optimal solutions and average optimality gap. Additionally, structural experiments offer practical insights into how resource profile choices impact workload distribution across resources and time.


Zugehörige Institution(en) am KIT Fakultät für Wirtschaftswissenschaften (WIWI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0020-7543, 1366-588X
KITopen-ID: 1000189269
Erschienen in International Journal of Production Research
Verlag Taylor and Francis
Seiten 1–16
Vorab online veröffentlicht am 09.12.2025
Schlagwörter Mixed-integer linear programming, production planning, make-to-order, steel industry, just-in-time scheduling
Nachgewiesen in Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page