KIT | KIT-Bibliothek | Impressum | Datenschutz

A New Approach to the BHEP Tests for Multivariate Normality

Henze, Norbert ORCID iD icon 1; Wagner, Thorsten
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Let X$_1$, …, X$_n$ be i.i.d. random d-vectors, d⩾1, with sample mean X and sample covariance matrix S. For testing the hypothesis H$_d$ that the law of X$_1$ is some nondegenerate normal distribution, there is a whole class of practicable affine invariant and universally consistent tests. These procedures are based on weighted integrals of the squared modulus of the difference between the empirical characteristic function of the scaled residuals Y$_j$=S$^{−1/2}$(X$_j$−X) and its almost sure pointwise limit exp(−‖t‖$^2$/2) under H$_d$. The test statistics have an alternative interpretation in terms of L$^2$-distances between a nonparametric kernel density estimator and the parametric density estimator underHd, applied to Y$_1$, …, Y$_n$. By working in the Fréchet space of continuous functions on R$^d$, we obtain a new representation of the limiting null distributions of the test statistics and show that the tests have asymptotic power against sequences of contiguous alternatives converging to H$_d$ at the rate n$^{−1/2}$, independent of d.


Originalveröffentlichung
DOI: 10.1006/jmva.1997.1684
Scopus
Zitationen: 133
Web of Science
Zitationen: 128
Dimensions
Zitationen: 141
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2002
Sprache Englisch
Identifikator ISSN: 0047-259X
KITopen-ID: 1000189288
Erschienen in Journal of Multivariate Analysis
Verlag Academic Press
Band 62
Heft 1
Seiten 1–23
Vorab online veröffentlicht am 15.05.2002
Schlagwörter test for multivariate normality, empirical characteristic function, Gaussian process, contiguous alternatives
Nachgewiesen in Scopus
Dimensions
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page