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Abstract

The global energy transition towards renewable energy sources (RES) poses chal-
lenges due to their inherent uncertainty, which reduces the energy system’s flexibility
and stability. Battery energy storage systems (BESS) offer a solution by increasing
flexibility and making aggregated RES and loads dispatchable, enabling them to
meet day-ahead dispatch schedules communicated with the grid through effective
BESS management. This concept is implemented in a so-called dispatchable feeder
(DF), which represents a system consisting of RES generation, loads, and a BESS,
working together as a single controllable unit. The operation of the DF is formulated
as a stochastic optimisation problem (OP) using forecasts of RES generation and
loads as inputs. This thesis focuses on two main aspects affecting the performance
of the DF: the forecasts and the mathematical formulation of the OP. In the first half
of this thesis, the impact of different point forecasts with different characteristics on
the performance of the DF via the so-called forecast value is investigated. Using a
dataset of 300 residential buildings, the results show that the forecast characteristics
affect the performance of the DF depending on problem-specific parameters. Based
on these results, a meta-learning framework is proposed that automates the selection
of the value-oriented forecast for the DF. The evaluation shows that the proposed
framework outperforms existing forecast method selection heuristics in performance
and accuracy. Additionally, it achieves comparable results to a manual selection with
noticeably lower computational effort. In the second half of this thesis, probabilistic
forecasts with different characteristics are evaluated with respect to the forecast
value for the DF, showing again that the forecast characteristics in combination with
the problem-specific parameters affect the performance of the DF. Additionally, a
head-to-head performance comparison is made between the DF considering point
forecasts and the DF considering probabilistic forecasts. This evaluation is carried
out using both standard and the best value-oriented forecasts resulting from the
aforementioned forecast evaluations. This allows for a comprehensive analysis of
the impact of the forecast characteristics and the integration of the uncertainty of
the RES generation and loads on the DF’s performance. Finally, a modification to the
mathematical formulation of the DF considering probabilistic forecasts is introduced,
incorporating a line restriction to prevent line overloads in low-voltage distribution
grids. Evaluations show that the modified DF can improve line usage and mitigate
grid overloads.
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Motivation





Introduction 1
The global energy transition towards a more sustainable and low-carbon-emissions
energy system transforms the existing energy landscape. One such transformation is
the massive integration of distributed renewable energy sources (RES) such as PV
power generation. For example, the German government aims to achieve at least
80% share of RES by 2050 [25]. The challenge of such a massive integration is the
uncertainty of generation inherent in the RES, which increases the inflexibility of the
energy system. To counteract the inflexibility and thus maintain the energy system’s
stability, measures providing flexibility are necessary.

Flexibility in the energy system thereby refers to its ability to adapt and respond to
changes in supply and demand, grid constraints, and market signals [45]. Different
services provided by flexibility include frequency regulation, voltage support, and
peak shaving, with various sources contributing to these services, such as demand-
side management and battery energy storage systems (BESS) [66, 74]. With respect
to the integration of RES, BESSs in particular become more and more relevant
because of their strongly decreasing costs and fast improving efficiency [71, 81].
A promising way in which BESSs can contribute to a better integration of RES is
by making systems containing aggregated RES and loads dispatchable through a
proper BESS operation [12]. Dispatchability is thereby a subtype of flexibility and
refers to the ability of a system to strictly follow a day-ahead dispatch schedule
[149]. As renewable energy sources are not dispatchable per se due to their inherent
uncertainty, the flexibility of the BESS enables following the dispatch schedule. Such
a commitment to a dispatch schedule leads to a better reliability for the energy system
operator and thus a better integration into the existing market, allowing the energy
system operator to plan the energy supply and communicate with the consumer
primarily through price signals. This idea is implemented in virtual power plants
and microgrids [12, 104], which aggregate various distributed RESs and BESSs into
a single dispatchable system. However, both virtual power plants and microgrids
face limitations, such as the complexity of coordinating all system components and
thus the need for advanced control systems. By focusing on the dispatch of active
power only, this thesis aims to simplify the control and coordination challenges.
In accordance with [8, 126] such a concept is referred to as dispatchable feeder
(DF).
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The DF operates hierarchically on multiple time scales, starting with the computation
of the day-ahead dispatch schedule. This can be followed by an intra-day reschedul-
ing via model predictive control (MPC) based on current information. Finally, the
actual dispatch is calculated based on the actual data in real time. Mathematically,
this hierarchical operation is formulated as a stochastic optimisation problem, which
uses forecasts of the RES and the loads as input for a proper operation. Consequently,
the forecasts have a direct impact on the performance of the stochastic optimisation
problem, which is referred to as the value of the forecast. How the forecasts influ-
ence the performance depends, inter alia, on the integration of the uncertainty in
the mathematical formulation of the stochastic optimisation problem. While a math-
ematical formulation considering probabilistic forecasts such as in [8] can account
for the uncertainty, a mathematical formulation considering point forecasts does
not include this uncertainty. Additionally, the mathematical formulation determines,
which physical aspects of the real world are taken into account. Thus, both the used
mathematical formulation of the stochastic optimisation problem and the forecasts
are two important aspects for the dispatchable feeder and are central focuses of this
thesis.

The remainder of this Part I is structured as follows. First, Chapter 2 provides
the foundation of forecasting in Section 2.1, the foundation of optimisation in
Section 2.2, the foundation of the dispatchable feeder in Section 2.3, and the
experimental setup for the experiments in this thesis in Section 2.4. Finally, Chapter 3
specifies the research questions addressed in Section 3.1 and the further structure of
this thesis in Section 3.2.

4 Chapter 1 Introduction



Forecasting and Optimisation
for Dispatchable Feeder

2
This chapter provides the foundations relevant for this thesis. This includes the
foundation of forecasting, the foundation of optimisation, and the foundation of the
dispatchable feeder. Finally, the experimental setup is described.

2.1 Foundation of Forecasting

As forecasts are essential for the dispatchable feeder, this section presents the
foundation of forecasting. First, forecasting is introduced. Second, different types of
time series forecasts are described, which are particularly relevant as the dispatchable
feeder relies on such forecasts. Finally, different aspects of the evaluation of forecasts
are explained.

2.1.1 Introduction to Forecasting

The general task in forecasting is to predict uncertain future quantities based
on knowledge that may affect the future [70]. While the difficulty of accurate
forecasting depends on the target being forecasted and the knowledge in the form
of data, an exact forecast and thus the elimination of the future’s uncertainty can
not be expected in relevant tasks [107]. Instead, forecasting aims to quantify
this uncertainty by determining statistical quantities sZ ∈ Rn, n ∈ N, of the to be
forecasted target variable Z [49], such as the mean. The result is a forecast

ŝZ = f(x; θ̂) (2.1)

of Z using knowledge in the form of data x, called features. Note that throughout
this thesis, the symbol ·̂ is used to indicate a forecast. To approximate the relationship
between the statistical quantity of Z and x, typically a parameterised function f

with parameters θ from an assumed function space F and parameter set Θ is used.
During training, the parameters are then estimated, denoted as θ̂, with respect to
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the chosen forecasting specifications. In this thesis, we consider forecasting in the
context of real-valued time series.

A time series is, mathematically, a sequence of random variables on a common
probability space, also called a stochastic process, over equidistant time indices,
i.e.

Y = {Yt}t∈T (2.2)

with random variables Yt and time index set1 T = Z, see [22, 83]. In practice,
one observes data of the time series yt−k = (yt−k+1, yt−k+2, ..., yt), t ∈ T , of length
k ∈ N, which are considered as realisations of the random variables. In time
series forecasting, the target variables are then the future realisations of the time
series [56]. Because the future realisations of the time series are influenced by
both historical realisations of the time series and exogenous factors, typical features
consist of both. The forecast of Yt+h = (Yt+1, Yt+2, ..., Yt+h) with forecast horizon
h ∈ N can then be written as

ŝYt+h
= f(yt−k, {Y exog

t′ }t′∈T ; θ̂) (2.3)

with the time series of the exogenous factors2 {Y exog
t′ }t′∈T .

2.1.2 Types of Time Series Forecasts

Because of the huge interest in forecasting the future, there is a wide variety of
forecasts and ways to generate them to meet different needs. These forecasts can be
grouped according to different aspects, some of which are outlined below3.

Statistical Quantity Forecasts can be grouped according to the type of statistical
quantity they forecast, namely as point forecasts or probabilistic forecasts. A point
forecast is a single-valued forecast for each time step. In doing so, typically centre-
oriented statistical quantities, often called location, such as the mean or the median

1A time series can also be defined with T = N0. However, the definition with T = Z is more common.
2Note that the time indices of yt−k and {Y exog

t′ }t′∈T do not have to be the same, as indicated by the
usage of t′

3This section provides an introduction to key terms relevant to this thesis and does not aim to provide
a comprehensive overview of all types. For an in-depth exploration, see [56].
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are considered [56]. For the mean ȳt+h = E[Yt+h], Equation (2.3) can be written
as

ŝYt+h
= ˆ̄yt+h = Ê[Yt+h|yt−k, {Y exog

t′ }t′∈T ; f, θ̂]. (2.4)

In contrast, a probabilistic forecast aims for the full information of the uncertainty
[99]. While several statistical quantities fulfil this property, the following statistical
quantities are relevant for this thesis:

• Distribution forecast: A distribution forecast attempts to forecast the probability
density function (PDF) fYt+h

: Rh → R≥0, h ∈ N, or cumulative distribution
function (CDF) FYt+h

: Rh → [0, 1] in its entirety [99]. The result is a forecasted
conditional PDF or CDF, which is denoted as f̂Yt+h

and F̂Yt+h
. However,

this approach can be computationally expensive. One strategy to overcome
this challenge is to discretise the distribution, often using methods such as
quantiles.

• Quantile forecast: The quantile qYt+h
: (0, 1) → Rh, h ∈ N, for the CDF FYt+h

and probability p ∈ (0, 1) is defined as [123]

qYt+h
(p) = inf{z ∈ Rh : FYt+h

(z) ≥ p}. (2.5)

If the inverse of the CDF exists, the quantile can be written as qYt+h
(p) =

F −1
Yt+h

(p). The resulting forecast is written as q̂Yt+h
(p). While a single quantile

forecast is a (biased) point forecast, with the quantile at p = 0.5 representing
the median, multiple quantile forecasts with different probabilities can contain
sufficient information to derive the PDF and CDF [108].

Probabilistic forecasts, although beneficial for modeling uncertainty, present chal-
lenges as they are more computationally expensive and not straightforward to
incorporate into applications.
In between probabilistic and point forecasts, further approaches exist, such as sce-
nario forecasts. These forecasts consist of multiple point forecasts of possible time
trajectories to capture the uncertainty of future outcomes [36]. Each time trajectory
can be equipped with a weight, in some cases corresponding to probabilities. The
time trajectories can be generated using various approaches, including scenario
trees, sampling from pre-generated ensembles (often obtained using the Monte-
Carlo method), and directly sampling out of distribution or quantile forecasts. In
contrast to probabilistic forecasts, scenario forecasts can easily incorporate consider-
ations of correlations between timestamps and other random variables. This can be
particularly beneficial for multivariate forecasts.
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Tab. 2.1.: The suitability to forecast different types of statistical quantities, the required
dataset size, and the computational effort for training of common machine
learning methods in time series forecasting [9, 33, 52, 61, 62, 63, 70, 109, 120,
135]. Note that this comparison is intended to provide a general understanding
rather than absolute validity, as the determination of the required dataset size
and the computational effort for training depends heavily on the specific data
and application.

Method Point
Probabilistic Non- Dataset Computational

Distribution Quantiles parametric size effort

Linear regression ✓ ✗ ✗ ✗
Small to
medium Low

XGBoost ✓ ✗ ✓ ✗
Medium
to large

Medium
to high

General NNs ✓ ✗ ✓ ✓
Small
to large

High to
very high

Transformers ✓ ✗ ✓ ✓ Large Very high
DeepAR ✓4 ✓ ✓ ✗ Medium High
Invertible NNs ✓ ✗ ✓ ✓ Large High

Further categorisations, especially for probabilistic forecasts, are parametric or
non-parametric. Parametric approaches assume that the distribution of a random
variable belongs to a specific parametric family of functions such as the normal
distribution [56]. The parameters uniquely define the distribution and are unknown,
but may be forecasted [107]. In contrast, non-parametric approaches forecast the
statistical quantity without making assumptions about the underlying distribution,
relying solely on the available data. This makes non-parametric approaches less
restrictive but more computationally expensive, as the forecasting of the distribution
is not limited to the forecasting of the distribution’s parameters [32].

Forecast Method Forecasts are often categorised according to the method used.
While there are many forecast methods, they can be divided into statistical and
machine learning methods. More specifically, statistical methods assume a fixed
dependency structure and make use of statistical models. Their results are easy to
interpret and fast to compute. In time series forecasting, typical statistical methods
are moving average (MA) [150], exponential smoothing (ES) [23, 65], and autore-
gressive integrated moving average (ARIMA) [20]. On the other hand, machine
learning methods use algorithms and computing power to identify complex patterns
and relationships in data [61]. As such, they operate without the assumption of a
fixed dependency structure and their learning may not be easy to understand. Due
to advances in hardware and the exponential growth of available data, machine
learning methods are becoming increasingly important. Commonly used machine

4DeepAR is primarily a method for probabilistic forecasting. However, point forecasts can be derived
from the probabilistic forecasts.
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learning methods include linear regression, XGBoost [33] and neural networks (NN).
For NNs, advanced methods have been developed under the term deep learning
[88], which involves NNs with many layers. Examples of deep learning methods
are transformers [135], DeepAR [120], and invertible neural networks [42]. These
advanced methods can effectively describe complex patterns in large amounts of
data. However, they can perform worse than simpler methods when less data is
available due to overfitting and the high computational effort required for training. A
comparison of the forecast methods mentioned, including their suitability to forecast
the statistical quantities described above, their dataset size requirements, and their
computational effort for training, can be found in Table 2.1.

2.1.3 Forecast Evaluation

When evaluating forecasts, there are many aspects [98] that form the basis for the
selection of the forecast method, its hyperparameters and features. Two of these
aspects are described below.

Data Data is the foundation of all time series forecasting. When working with
real-world data, a pre-processing of the data with a comprehensive inspection and
analysis is essential. This includes the detection and handling of anomalies [132]
and missing values [142]. Depending on the forecast method and the data’s nature,
transformation and normalisation may prove beneficial. For example, the lognormal
transformation adapts the data to the assumption of a normal distribution. Common
normalisation approaches include the min-max scaler, which normalises the data to
a range between 0 and 1, and the standard scaler, which scales the data to have a
mean of 0 and a variance of 1. Once the data is clear and prepared, the choice of the
data for training, validation, and testing the forecast method is important to avoid
over-fitting to the training data and to enable reliable forecasts on new, unseen data.
While simple data splitting produces single training, validation, and testing sets,
cross-validation involves iterative training and testing over different subsets of the
data, called folds. This process often eliminates the need for a separate validation
set.

Forecast Evaluation Metric The forecast evaluation metric defines what constitutes
a “good” forecast and is thus a key aspect in forecast evaluation. According to
[100], forecasts can be evaluated based on their quality as well as their value they
provide. The forecast quality assesses the forecast solely from the perspective of
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accurate forecasting, neglecting its further usage. Consequently, the forecast quality
depends on the to be forecasted statistical quantity. For point forecasts, quality is
often expressed in terms of the forecast error, i.e.

fem(ŝ, y) = 1
(m − l + 1) · h

m∑
j=l

h∑
i=1

err(ytj+i − ŝYtj +h,i) (2.6)

for the forecasts ŝ = (ŝYtl+h
, ŝYtl+1+h

, ..., ŝYtm+h
), h ∈ N, tl < tl+1 < ... < tm ∈ T , l <

m ∈ N, the actual realisations y = (ytl+h, ytl+1+h, ..., ytm+h), ŝYtj +h,i the ith entry of
ŝYtj +h

, and the function err : R → R determining how the forecast error is measured.
This function can be tailored to give different weighting to different characteristics.
Typical point forecast evaluation metrics are the mean squared error (MSE) with

err(z) = z2 (2.7)

and the mean absolute error (MAE) with

err(z) = |z|. (2.8)

While the first weights larger absolute forecast errors stronger, the latter weights
all forecast errors equally. Other point forecast evaluation metrics take a composite
approach through a piecewise error function, such as the Huber metric [69], which
is defined as

err(z; δ) =


1
2 · z2, for |z| < δ

δ · (|z| − 1
2δ), otherwise

(2.9)

for δ > 0. The Huber metric is equal to the MSE for absolute forecast errors smaller
to δ, and otherwise a function based on the absolute forecast error. In contrast,
probabilistic forecasts require metrics considering different characteristics than the
forecast error, such as calibration and sharpness. Calibration refers to the alignment
of the forecasted distribution with their true values ensuring the reflection of the true
likelihood. A common metric for calibration is the coverage rate. It is the proportion
of times that the true values fall within a forecasted interval. In contrast, sharpness
measures the spread of the forecasted distribution, focusing on the uncertainty
inherent in the forecast itself, without considering the actual realisations. A metric
for sharpness is the interquartile range and the interdecile range. The interquartile
range is the difference between the quantile forecast at p = 0.75 and the quantile
forecast at p = 0.25, while the interdecile range is the difference between the
quantile forecast at p = 0.9 and the quantile forecast at p = 0.1. A metric that
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considers both calibration and sharpness is the continuous ranked probability score
(CRPS) [49], which is defined as

CRPS(F̂, y) = 1
(m − l + 1) · h

m∑
j=l

h∑
i=1

∫
R

(F̂Ytj +h,i(u) − 1{u≤ytj +i})2du (2.10)

with CDF forecast F̂ = (F̂Ytl+h
, F̂Ytl+1+h

, ..., F̂Ytm+h
), h ∈ N, tl < tl+1 < ... < tm ∈

T , l < m ∈ N, the actual realisations y = (ytl+h, ytl+1+h, ..., ytm+h), F̂Ytj +h,i the ith

entry5 of F̂Ytj +h
, and indicator function 1. The last probabilistic forecast metric we

want to mention is the pinball loss. It evaluates the probabilistic forecast point-wise
and can be written in the form of Equation (2.6) with

err(z) = max{τ · z, (τ − 1) · z} (2.11)

for a τ ∈ (0, 1). It is typically used as loss function to forecast quantiles of probability
τ . If a CDF forecast is evaluated with the pinball loss, ŝ specifies to F̂(τ). Additionally,
the pinball loss can be calculated over several τ values and then average over all τ

values.
As opposed to the forecast quality, the forecast value considers the benefit that the
forecast provides when used for a downstream application, as the forecast may affect
the performance of the downstream application [100]. Given the broad range of
downstream applications, the performance of the downstream application, and thus
the forecast value, can be measured in several ways. A typical metric for evaluating
the performance of the downstream application is economic cost [107]. While
the consideration of the forecast value can be important when using forecasts in
downstream applications, forecast quality metrics dominate both the literature and
practice.

2.2 Foundation of Optimisation

Optimisation plays a crucial role for the dispatchable feeder as its operation is
formulated as a stochastic optimisation problem. Therefore, this section first intro-
duces optimisation in general and then presents different categories of optimisation
problems. Afterwards, stochastic optimisation problems and their challenges are
explained and finally, how to solve optimisation problems is described.

5Note that this formulation implies that the forecast for Ytj +h consists of h marginal CDFs for each
time step. However, it is also possible to forecast one multivariate CDF, particularly when the
random variables in Ytj +h are correlated.
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2.2.1 Introduction to Optimisation

In optimisation, one aims to minimise an objective function over a given region of
feasible solutions [46]. The general form can be expressed as

min
x∈S

c(x; ξ)

s.t. h(x; ξ) ≤ 0

g(x; ξ) = 0

(2.12)

with the original set S ⊂ Rn, n ∈ N0, the objective function6 c : Rn → R, the vector
of decision variables x ∈ Rn, the vector of parameters ξ ∈ Ru, u ∈ N0, the vector of
inequality constraints h(x; ξ) ≤ 0 given ξ with h : Rn → Rv, v ∈ N0, the vector of
equality constraints g(x; ξ) = 0 given ξ with g : Rn → Rw, w ∈ N0, and the feasible
region R = {x ∈ S : h(x; ξ) ≤ 0, g(x; ξ) = 0}. Based on specifications such as
the nature of the functions and the feasible region, the optimisation problem (OP)
can be categorised into different categories. This category influences the solution
approach, leading to either local or global solutions. While the former minimises
the objective function only in its local neighbourhood within the feasible region,
the latter represents a point within the feasible region where the objective function
reaches its minimum over all other points.

2.2.2 Categories of Optimisation Problems

Optimisation problems come in various forms. To derive theoretical statements
and develop fitting solution approaches, OPs can be categorised based on different
aspects, some of which are outlined below.

Decision Variable OPs can be categorised according to the nature of the decision
variables, namely as continuous or discrete. In continuous optimisation, the feasible
region is uncountable, allowing the decision variables to take on any real value
within a given range. On the other hand, in discrete optimisation, the feasible
region must be countable, leading to problems commonly referred to as integer OPs.
There is also a hybrid category known as mixed-integer OPs, where some decision
variables are restricted to integer values while others are not.

6This formulation addresses commonly considered single-criteria optimisation problems, unlike
multi-criteria optimisation problems with objective function c : Rn → Rm, m ∈ N.
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Objective Function and Constraints An important categorisation of OPs is based
on the nature of the objective function and the constraints. Common categories are
linear, non-linear, convex, and non-convex. An OP is linear if both the objective
function and the functions describing the constraints are linear, otherwise it is non-
linear. Further, if the objective function is convex and the constraints describe a
feasible region that forms a convex set, the OP is convex, otherwise it is non-convex.
A notable advantage of convex OPs is that every local minimum is a global minimum,
which is exploited during solving. While the theoretical complexity lies between
convex and non-convex OPs, the practical complexity can already lie between linear
and non-linear OPs as there is no universal solution approach for non-linear OPs
[54].

Structure While a simple structure of an OP can be formulated using the general
form in Equation (2.12), many real-world problems have a more complex structure,
such as hierarchical OPs. A hierarchical OP consists of multiple nested OPs [134].
Each of these nested OPs, called levels, can have its own objective function, decision
variables and constraints. To solve a hierarchical OP, each level must be solved
iteratively, respecting the hierarchy.

Parameters To formulate an OP, various parameters must be defined, some of
which may not be known in advance. Such OPs are subject to uncertainty and are
called stochastic OPs. In contrast, in deterministic OPs all parameters are known
in advance.

2.2.3 Stochastic Optimisation Problems

In many real-world OPs, not all parameters can be defined in advance. Stochastic OPs
deal with this aspect by modelling these parameters as random variables, introducing
uncertainty and potentially making decision variables random. However, a random
decision variable is counterintuitive. For better understanding, the concept of stages
is introduced [68]. The idea is to break down the OP into stages, each referring
to a different point in time when new information arises and decisions are made
[36, 78]. I.e., within each stage, a subset of decision variables and parameters
become deterministic, while others remain random. Decisions associated with
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the deterministic variables are made at that specific stage. The general form in
Equation (2.12) can then be written as

min
xdet∈S′

Xrand

c(xdet, Xrand; ξdet, Ξrand)

s.t. h(xdet, Xrand; ξdet, Ξrand) ≤ 0

g(xdet, Xrand; ξdet, Ξrand) = 0

(2.13)

with the subset of the original set S′ ⊂ Rn1 , n1 ∈ N0, the vector of the deter-
ministic decision variables xdet ∈ Rn1 , the vector of the deterministic parameters
ξdet ∈ Ru1 , u1 ∈ N0, the vector of the random decision variables Xrand : Ω → Rn−n1

with sample space Ω, and the vector of the random parameters Ξrand : Ω → Ru−u1 .
However, this formulation is not well defined as the minimum operator over a
random variable and the inequality constraints involving random variables are not
clear and therefore require interpretation [72]. Moreover, a random variable with in-
finite support potentially leads to an infinite-dimensional OP that is computationally
intractable [7]. However, it is important to note that even a random variable with
finite support can lead to an infinite-dimensional OP, depending on the structure of
the OP. Therefore, a reformulation into a deterministic OP that can be solved with
numerical algorithms is necessary. In doing so, several approaches exist that can
be categorised as sampling-based and non-sampling-based. In the following, we
further describe existing approaches within these two categories and explain their
interpretation and how they achieve computational tractability.

Sampling-Based One common approach is to restrict the random variables to a
finite number of possible realisations [29]. Therefore, samples ξ̂j = Ξrand(ω̂j) and
x̂j = Xrand(ω̂j) with ω̂j ∈ Ω, j = 1, ..., N ∈ N are generated, assigned with a weight
wj . The benefit of this approach is that no extensive reformulation of the OP is
needed:

min
xdet∈S′

N∑
j=1

wj · c(xdet, x̂j ; ξdet, ξ̂j)

s.t. for all j = 1, ..., N

h(xdet, x̂j ; ξdet, ξ̂j) ≤ 0

g(xdet, x̂j ; ξdet, ξ̂j) = 0

(2.14)

As samples, typically scenario forecasts are used.

14 Chapter 2 Forecasting and Optimisation for Dispatchable Feeder



Non-Sampling-Based In non-sampling-based approaches, the OP is reformulated
using statistical quantities of the random variables such as moments, quantiles,
and CDFs. These statistical quantities are then usually forecasted with suitable
forecasting specifications. Because the reformulations depend on many aspects
such as the problem-specific structure and the modelling choice, a standard way
is not given. In the following, some existing approaches for the reformulation are
presented.
The first is the reformulation of the OP using single moments of the random variable.
The simplest yet often used specification is to use the first moment – the mean – only.
The resulting OP shows similarity to Equation (2.14) with N = 1. This reformulation
can be extended by the consideration of other moments such as the variance [8, 10].
Using single moments limits the inclusion of the random variable to single points
neglecting the uncertainty.
To include the uncertainty, the OP can be reformulated using (full) information on the
uncertainty. Such a reformulation is not straightforward and must be well thought
out. One widely used reformulation for inequality constraints is the interpretation
as chance constraint [31]. This interpretation ensures that the inequality constraints
are met with a predetermined probability, often referred to as security level, thus
introducing a probabilistic perspective. To achieve computational tractability, the
chance constraint can be reformulated under certain conditions via the CDF or
quantile of the random variable H = h(xdet, Xrand; ξdet, Ξrand):

PH(H ≤ 0) ≥ 1 − ϵ

⇒ FH(0) ≥ 1 − ϵ (2.15)

⇒ qH(1 − ϵ) ≤ 0

with probability measure PH , CDF FH , and quantile qH of random variable H and
security level parameter ϵ ∈ (0, 1). If the distribution of the random variable H is
assumed to follow a parametric distribution, the chance constraints can be further
reformulated using the parameters of this distribution. A probabilistic interpretation
is also achievable for the objective function with the (conditional) value at risk
[10].

2.2.4 Solving Optimisation Problems

Depending on the category of the OP, theoretical statements and solution approaches,
often implemented as numerical algorithms, exist for solving it. Therefore, it is cru-
cial to formulate the OP appropriately according to its category, ensuring reasonable
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PCC
Grid

Inflexible component

Flexible, but energy-
constrained component

Dispatchable feeder (DF)

Fig. 2.1.: The dispatchable feeder combines inflexible generation – as PV power generation
– and load with a flexible, but energy constrained component – as a BESS. These
two components are connected to the grid via one bus at the point of common
coupling (PCC) (adapted from [8] and [17]).

theoretical statements and available stable numerical algorithms [54]. Because even
if an OP can be solved analytically, the solution is often found numerically due to
the low computational effort. The variety of such numerical algorithms is large and
can be divided into exact and approximate. The first category describes algorithms
that find the exact global minimum by exploring the entire feasible region, e.g.
branch-and-bound algorithm [86]. However, exploring the entire feasible region
is not computationally tractable for most OP categories. Therefore, approximate
algorithms efficiently provide solutions close to the optimal solution. Subcategories
of such approximate algorithms are heuristic algorithms, e.g. interior-point method
[75] and particle swarm optimisation [76], and meta-heuristic algorithms, e.g. evo-
lutionary algorithm [117].
For implementation, various numerical solvers supporting commonly used pro-
gramming languages are available that implement these numerical algorithms, e.g.
Ipopt [137], Gurobi, and CPLEX. Additionally, these solvers and other optimisation-
relevant features are supported in modelling languages such as Pyomo [27, 59],
CasADi [6], YALMIP [92], and JuMP [93].

2.3 Foundation of Dispatchable Feeder

This section describes the foundation of the dispatchable feeder, starting with an
introduction. Afterwards, the different aspects of the optimisation problem for the
dispatchable feeder are described, followed by the forecasting for the dispatchable
feeder. Finally, the framework of the dispatchable feeder is presented.
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2.3.1 Introduction to Dispatchable Feeder

Numerous studies investigate the concept of coupling inflexible renewable generation
with a flexible battery energy storage system (BESS) to provide ancillary services
to the grid, e.g. [2, 8, 37, 55, 73, 87, 102, 103, 126, 146, 148, 157]. In this thesis,
we focus on the day-ahead scheduling of portions of active power exchange, called
dispatch, between the grid and a coupled system consisting of inflexible renewable
generation and load and a flexible, but energy-constrained BESS, as illustrated in
Figure 2.1. Within this framework, we introduce the term prosumption, defined
as load minus renewable generation. The aim of the day-ahead scheduling is to
achieve dispatchability of the inflexible prosumption with the help of the flexible
BESS. We denote such a coupled system with the aim of following a day-ahead
dispatch schedule (DS) as a dispatchable feeder (DF) [8, 126]. The operation
of the DF is hierarchical, beginning with the computation of the day-ahead DS
based on prosumption forecasts and concluding with the calculation of actual
dispatch considering the actual prosumption data. This hierarchical operation can
be formulated as stochastic OP. Depending on the setting specifications, such as the
ownership of the BESS, this operation can be performed by either the grid operator
or the prosumption producer. To facilitate its operation, the DF utilises a smart
grid infrastructure enabled by the Internet of Things (IoT), which communicates
through information and communication technology (ICT) [41]. In this setup, smart
meters ensure the collection and transmission of necessary real-time data to enable
the management of necessary information flows. More precisely, externally, the DF
receives a price signal from the grid operator, such as from a time-of-use price tariff
[138], influencing the DS [80]. This DS is then communicated back to the grid
operator. Additionally, the actual dispatch is coordinated between the grid operator
and the DF. Internally, the DF manages information flows between its components,
including monitoring of renewable generation and the BESS.

2.3.2 Optimisation Problem for Dispatchable Feeder

Having introduced the concept of the DF, a closer look is taken at how it is achieved.
Therefore, a mathematical model of the DF and its operation is required. Such a
mathematical model is typically formulated - as is common for scheduling problems
[26, 115] - as a stochastic OP. Therefore, the operation of the DF is discretised
with time intervals of duration ∆t ∈ R indexed by k ∈ N. When formulating the
stochastic OP, relevant physical aspects of the real world should be considered while
maintaining the ability to be efficiently solvable. Among others, three aspects are
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Fig. 2.2.: The hierarchical operation of the dispatchable feeder with three levels: the day-
ahead computation of the dispatch schedule, the rescheduling via MPC, and the
calculation of the actual dispatch. The dispatch schedule is denoted as pgDS

, the
rescheduled dispatch as pgreDS

, an the actual dispatch as pg (adapted from [8]).

important for the DF: One is how to set up the scheduling framework. Another
is how to model the electrical system components. And finally, how to interpret
the stochastic OP and reformulate it deterministically. Despite the interconnec-
tion between these aspects, we look further into each of them separately in the
following.

Scheduling Framework The scheduling framework refers to all the characteristics
of the scheduling. In this thesis, we refer to the scheduling as the process from the
computation of the DS until the calculation of the actual dispatch. Thereby, each of
the task in this process defines a new level in the hierarchical optimisation problem,
see Subsection 2.2.2. The computation of the DS is the first level and the calculation
of the actual dispatch is the last level. Between these two levels, another level can
be added that adjusts the DS via model predictive control (MPC) as illustrated in
Figure 2.2 [8, 85, 126]. We refer to these two approaches as two-level DF and
three-level DF.
Other relevant characteristics of the scheduling relate to temporal specifications as
illustrated in Figure 2.3. These include the time setting, i.e. when a task is to be
performed, and the temporal resolution, i.e. the duration of the time interval ∆t.
Thereby, the concept of the DF can be found in the literature for the medium- or long-
term control at temporal resolutions of a few minutes to hours, compared to primary
control approaches that operate at temporal resolutions of milliseconds to seconds
[148]. More precisely, the temporal resolution can vary between the different levels,
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Fig. 2.3.: The temporal scheme of the hierarchical operation of a three-level dispatchable
feeder including the time interval index of the dispatch schedule computation
k0 ∈ N, the time interval index of the start of the dispatch schedule kb ∈ N,
the number of time intervals for the dispatch schedule extension s ∈ N, the
discrete rescheduling horizon KMPC, the discrete scheduling horizon K and the
duration of the time interval ∆t (adapted from [7]). Note that the figure shows
the temporal scheme resulting in a one-day dispatch. For a multi-day dispatch,
the time intervals overlap.

with values found in the literature ranging from five minutes [103, 126, 127] to 15
minutes [87, 128], and up to one hour [7, 82, 85] for the computation of the DS.
Additionally, efforts are being made to extend the DF for primary control [7, 127]

Electrotechnical System Components For the DF, two important electrotechnical
system components are the grid and the BESS. With respect to the grid, there are a
variety of grid models with different levels of detail to represent the components,
such as buses and lines, and the electrotechnical quantities, including power, voltage,
and current, of the grid. Commonly used grid models are formulated as AC power
flow and DC power flow. While the former involves the consideration of AC power
flows in the grid including reactive power and all losses, the latter approximates the
AC power flows by e.g. neglecting the reactive power and assuming constant voltage
magnitudes. Additionally, even simpler grid models exist, concentrating solely on
active power. For the DF, a simple grid model is used in several works, such as [7,
82, 85, 87, 103, 126, 127], while [128] considers AC power flows. Additionally, in
[126], the grid model varies betwenn the levels, using a simple grid model for the
computation of the DS and a DC power flow for the rescheduling via MPC and the
calculation of the actual dispatch.
The BESS can be modelled including electrical, thermal, and aging aspects [121,
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122]. Thereby, the BESS model has to be tailored to the specific hardware used.
From the electrical aspect, the discharge and charge characteristics of the BESS are
described by its power input and a quantity related to its energy. This can be the
state of energy (SoE) or state of charge (SoC). To model the transformation of the
power input into the energy quantity of interest, there are several models whose
parameters can be specified using look-up tables for the specific hardware used,
or estimated using data-driven methods. For this transformation, the thermal and
aging aspects play a role.

Deterministic Reformulation Different ways to reformulate a stochastic OP into a
deterministic OP are described in Subsection 2.2.3, some of which are approached
in the literature for the DF. For example, for the computation of the DS, [87, 126]
use sampling-based reformulations. While [126] considers worst-case scenario
forecasts, [87] generates scenario forecasts via the Monte-Carlo method. A simple
non-sampling-based reformulation is done in [82, 85], which uses mean forecasts.
In contrast, [7] approaches a non-sampling-based reformulation that takes the
uncertainty into account and reformulates the OP in several steps. This includes the
consideration of the mean and the deviation from the mean of the random decision
variables and random parameters, as well as the use of chance constraints, which
are reformulated using quantiles and CDFs.

2.3.3 Forecasting for Dispatchable Feeder

Once the OP has its final mathematical formulation, the forecasting can be set up.
This involves the evaluation steps in Subsection 2.1.3. As the forecasts have a direct
impact on the performance of the OP, the selection of the forecasting specifications
should be carefully considered. In the literature, different forecasting specifications
can be found including machine learning methods [8], statistical methods [87],
parametric approaches [82], and non-parametric approaches [8, 87, 126]. However,
an extensive evaluation of the resulting forecasts especially with respect to the
forecast value for the DF is lacking.

2.3.4 Framework of Dispatchable Feeder

The use of the DF is encapsulated in a general framework illustrated in Figure 2.4,
which includes forecasting, stochastic optimisation, and all the necessary data
flows. More precisely, data is used to generate forecasts. Using these forecasts
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Fig. 2.4.: The general framework for the dispatchable feeder, which is applicable to a variety
of downstream applications.

and additional data, the OP of the DF is solved to obtain the results detailed in
Figure 2.2.

2.4 Experimental Setup

The following section describes the basic experimental setup that is based on previous
works found in the literature and used throughout this thesis. More precisely, we
take a close look at the considered dispatchable feeder specifications, the used data,
and the used hard- and software. Further specifications, which include novelty such
as the forecasting specifications, are described in the respective chapters.

2.4.1 Dispatchable Feeder Specifications

We position the DF at the low-voltage distribution grid level, a specification resulting
from the scope of this thesis rather than a limitation. Furthermore, our focus extends
to residential buildings with rooftop photovoltaic (PV) panels and a residential BESS.
The building’s prosumption then consists of the residential load and the PV power
generation. Additionally, we consider each building separately in a single-building
scenario, thus omitting potential correlations that are apparent in neighbourhoods.
This simplification allows for a better interpretation of the results.
For the mathematical formulation, we consider the OP adapted from the works [7, 8],
which enables the use of non-parametric probabilistic forecasts. In this formulation,
chance constraints are used to ensure that the BESS keeps power and energy reserves
for the prosumption power and energy uncertainty. These chance constraints are
reformulated using quantiles and CDFs7. They show that the integration of the

7Note that the reformulation of the chance constraint using CDFs allows a more flexible satisfaction
of the chance constraint, allowing the considered uncertainty to be asymmetric with respect to its
mean [7].

2.4 Experimental Setup 21



uncertainty can lead to a higher reliability of the DS and lower costs compared
to using point forecasts via a single moment reformulation and scenario forecasts
via a sample-based reformulation. Therefore, even when the OP is simplified by
considering point forecasts, we stay with this general formulation for consistency.
This general formulation has the following specifications:

• Scheduling framework:

– Levels: two or three

– Time setting: at 12 PM computation of the DS starting at 12 AM of the
next day

– Temporal resolution: ∆t = 1 h

• Electrotechnical system components:

– BESS:

* active power input Ps(k) ∈ [pmin
s , pmax

s ] with power capacity pmin
s ∈

R<0, pmax
s ∈ R>0

* SoE Es(k) ∈ [emin
s , emax

s ] with energy capacity emin
s , emax

s ∈ R≥0

* simple transformation of active power input to SoE neglecting ther-
mal and aging aspects via8

Es(k + 1) = Es(k) + ∆t ·
(
Ps(k) − µ|Ps(k)|

)
(2.16)

with loss coefficient µ ≥ 0

* Grid: active power only with lossless connections, i.e. the net power
exchange between the grid and the DF is the sum of the prosumption
and the BESS’ active power input

• Deterministic reformulation:

– Computation of DS: mean (referred to as considering point forecasts)
or mean, quantiles and CDF (referred to as considering probabilistic
forecasts)

– Rescheduling: mean

8For computational reasons, Equation (2.16) is rewritten as Es(k + 1) = Es(k) + ∆t ·
(
Ps(k) −

µPs(k)+ +µPs(k)−)
with positive and negative directions of the BESS’ active power input P +

s (k) ∈
R≥0 and P −

s (k) ∈ R≤0 fulfilling Ps(k) = P +
s (k) + P −

s (k) and P +
s (k) · P −

s (k) ≥ −ζ with ζ ≥ 0,
ζ ≈ 0.
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Next, we describe the mathematical formulations of the OPs for each level and all
considered deterministic reformulations in detail, namely the computation of the
DS considering point forecasts, the computation of the DS considering probabilistic
forecasts, the rescheduling via MPC, and the calculation of the actual dispatch.
All of these OPs are continuous and non-convex9. Further, as described above,
the computation of the DS and the rescheduling via MPC are stochastic OPs with
non-sampling based deterministic reformulation. In contrast, the calculation of the
actual dispatch is a deterministic OP. The specifications of the parameters used can
be found in Appendix A.2, unless otherwise specified.

Computation of the DS Starting with the computation of the DS, the OP computes
the day-ahead DS pgDS (k) ∈ R with respect to minimising the energy cost for the
following day making pgDS (k) a deterministic decision variable. Thereby, the energy
cost is

cDS

(
p+

gDS
(k), p−

gDS
(k)

)
= c+

quad · (p+
gDS

(k) · ∆t)2 + c+
lin · p+

gDS
(k) · ∆t

+ c−
quad · (p−

gDS
(k) · ∆t)2 + c−

lin · p−
gDS

(k) · ∆t,
(2.17)

with positive and negative directions of the DS p+
gDS

(k) ∈ R≥0 and p−
gDS

(k) ∈ R≤0,
pgDS (k) = p+

gDS
(k) + p−

gDS
(k), and cost coefficients c+

quad, c+
lin, c−

quad, c−
lin ∈ R≥0. The

energy cost takes into account both self-consumption and peak shaving. In contrast
to the DS, the uncertain active power of the prosumption Pl(k) ∈ R, modelled as
random parameter, makes the decision variables for the BESS’ power input Ps(k)
and the SoE Es(k) uncertain. In the computation of the DS considering probabilistic
forecasts, the random variables are represented by their mean, denoted as ·̄, and
their deviation from the mean, denoted as ∆, as follows:

Pl(k) = p̄l(k) + ∆Pl(k), (2.18)

Ps(k) = p̄s(k) + ∆Ps(k), (2.19)

Es(k) = ēs(k) + ∆Es(k) (2.20)

Additionally, to take into account the temporal correlation of the prosumption power,
the prosumption energy El(k + 1) ∈ R is considered. Specifically, for this random
parameter, the deviation from its mean ∆El(k + 1) is considered, which is expressed
as

∆El(k + 1) = ∆t
k∑

i=k0

∆Pl(i), (2.21)

9 See Appendix A.1 for further details on how to deal with the non-convexity.
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∆El(k0) = 0 (2.22)

with the time index of the DS computation k0 ∈ N. To reformulate the OP determin-
istically, chance constraints are employed, see [8] for a detailed description of the
reformulation. In contrast, the computation of the DS considering point forecasts
uses only the means p̄l(k), p̄s(k), and ēs(k).
Next, we formulate10 the OP for the computation the DS considering point fore-
casts as

min
{x(k)}k∈K

∑
k∈K

cDS

(
p+

gDS
(k), p−

gDS
(k)

)
s.t. for all k ∈ K

ēs(k + 1) = ēs(k) + ∆t ·
(
p̄s(k) − µp̄+

s (k) + µp̄−
s (k)

)
ēs(kb) = ēkb

s

pgDS (k) = p̄s(k) + p̄l(k)

pgDS (k) = p+
gDS

(k) + p−
gDS

(k)

p+
gDS

(k) ≥ 0 (2.23)

p−
gDS

(k) ≤ 0

p̄s(k) = p̄+
s (k) + p̄−

s (k)

p̄+
s (k) ≥ 0

p̄−
s (k) ≤ 0

p̄+
s (k) · p̄−

s (k) ≥ −ζ

pmin
s ≤p̄s(k) ≤ pmax

s

emin
s ≤ēs(k + 1) ≤ emax

s

with discrete scheduling horizon K, decision vector11

x(k) =
(
pgDS (k), p+

gDS
(k), p−

gDS
(k), ēs(k + 1), p̄s(k), p̄+

s (k), p̄−
s (k)

)T

and parameters ēkb
s , pmin

s , pmax
s , emin

s , emax
s , ζ. The prosumption is forecasted as mean

point forecast ˆ̄pl(k).

10Note that it is not necessary to include the constraint p+
gDS

(k) · p−
gDS

(k) ≥ −ζ with ζ ≥ 0, ζ ≈ 0
as the minimisation of the energy cost in Equation (2.17) already ensures that either p+

gDS
(k) or

p−
gDS

(k) is almost zero.
11 Note that not all decision variables are free, but are determined by equality constraints. For the

implementation, however, we use all specified decision variables as the number of decision variables
is not critical in our case for the numerical solving. The free decision variables are p+

gDS
(k) and

p−
gDS

(k).
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In contrast, the computation of the DS considering probabilistic forecasts is
formulated as

min
{x(k)}k∈K

∑
k∈K

cDS

(
p+

gDS
(k), p−

gDS
(k)

)
+ cfix · ϵfix(k) + cvar(k) · ϵvar(k)

s.t. for all k ∈ K

ēs(k + 1) = ēs(k) + ∆t ·
(
p̄s(k) − µp̄+

s (k) + µp̄−
s (k)

)
ēs(kb) = ēkb

s

pgDS (k) = p̄s(k) + p̄l(k)

pgDS (k) = p+
gDS

(k) + p−
gDS

(k)

p+
gDS

(k) ≥ 0

p−
gDS

(k) ≤ 0

p̄s(k) = p̄+
s (k) + p̄−

s (k) (2.24)

p̄+
s (k) ≥ 0

p̄−
s (k) ≤ 0

p̄+
s (k) · p̄−

s (k) ≥ −ζ

pgDS (k) − pmax
s ≤ qPl(k)(0.5 − 0.5 · (1 − ϵP ))

pgDS (k) − pmin
s ≥ qPl(k)(0.5 + 0.5 · (1 − ϵP ))

1 − ϵE − ϵfix(k) − ϵvar(k) ≤ F∆El(k+1)
(
ēs(k + 1) − emin

s

)
−

F∆El(k+1) (ēs(k + 1) − emax
s )

ϵfix(k) ≥ 0

ϵvar(k) ≥ 0

with discrete scheduling horizon K, decision vector12

x(k) =
(
pgDS (k), p+

gDS
(k), p−

gDS
(k), ēs(k + 1), p̄s(k), p̄+

s (k), p̄−
s (k), ζ, ϵfix(k), ϵvar(k)

)T

and parameters ēkb
s , pmin

s , pmax
s , emin

s , emax
s , cfix, cvar(k), ϵP , ϵE . The latter two param-

eters are security level parameters of the reformulated power and energy chance
constraints13. The security level of the energy chance constraint can be relaxed via
the decision variables ϵfix(k) and ϵvar(k). In accordance with the reformulation of the
chance constraints, the prosumption is forecasted as probabilistic forecasts in forms

12Note that not all decision variables are free, but are determined by equality constraints. For the
implementation, however, we use all specified decision variables as the number of decision variables
is not critical in our case for the numerical solving. The free decision variables are p+

gDS
(k), p−

gDS
(k),

ϵfix(k) and ϵvar(k).
13There are other approaches that include the prosumption power uncertainty in the objective function

such as [112]
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of power quantile forecasts q̂Pl(k)(0.5 + 0.5 · (1 − ϵP )) and q̂Pl(k)(0.5 − 0.5 · (1 − ϵP ))
for Pl(k) and energy CDF forecasts F̂∆El(k+1) for ∆El(k + 1).
Note that in both OPs it is necessary to estimate ēkb

s , the SoE at the time index
of the start of the DS kb ∈ N. This estimation is done with the OP described in
Appendix A.3.

Rescheduling via MPC In the rescheduling via MPC, we iteratively adjust the pre-
computed DS pgDS (k) online just before the calculation of the actual dispatch at
each time step k ∈ N, with the aim to minimise the deviations from the DS. While
only the rescheduled dispatch pgreDS (k) ∈ R in k is utilised in the subsequent level,
the rescheduling process considers the horizon KMPC = {k, k + 1, ..., k + m}, m ∈ N,
which is a typical characteristic of MPC problems. Thus, besides the deterministic
decision variables pgreDS (j), j ∈ KMPC, the OP consists of the uncertain prosumption
power Pl(j), modelled as random parameter, and the BESS’ power input Ps(j) and
SoE Es(j), modelled as random decision variables, except for the known SoE in k,
which is a deterministic parameter. For the rescheduling via MPC, we reformulate
the random variables using the mean denoted with p̄l(j), p̄s(j), and ēs(j). The OP
for the rescheduling via MPC is then formulated as

min
{x(j)}j∈KMPC

∑
j∈KMPC

(
pgDS (j) − pgreDS (j)

)2

s.t. for all j ∈ KMPC

ēs(j + 1) = ēs(j) + ∆t ·
(
p̄s(j) − µp̄+

s (j) + µp̄−
s (j)

)
ēs(k) = es(k)

pgreDS (j) = p̄s(j) + p̄l(j)

p̄s(j) = p̄+
s (j) + p̄−

s (j) (2.25)

p̄+
s (j) ≥ 0

p̄−
s (j) ≤ 0

p̄+
s (j) · p̄−

s (j) ≥ −ζ

pmin
s ≤p̄s(j) ≤ pmax

s

emin
s ≤ēs(j + 1) ≤ emax

s

with discrete rescheduling horizon KMPC, decision vector14

x(j) =
(
pgreDS (j), ēs(j + 1), p̄s(j), p̄+

s (j), p̄−
s (j)

)T

14Note that not all decision variables are free, but are determined by equality constraints. For the
implementation, however, we use all specified decision variables as the number of decision variables
is not critical in our case for the numerical solving. The free decision variable is pgreDS (j).
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and parameters pgDS (j), es(k), pmin
s , pmax

s , emin
s , emax

s , ζ. The prosumption is fore-
casted as mean point forecast ˆ̄pl(j) based on new information.

Calculation of Actual Dispatch The objective during the calculation of the actual
dispatch pg(k) ∈ R is to minimise the deviation ∆pg(k) ∈ R to a reference schedule
pgref(k), taking into account the actual prosumption pl(k) ∈ R and the technical
constraints of the BESS. The reference schedule is the DS, i.e.

pgref(k) = pgDS (k),

in the two-level framework and the rescheduled dispatch, i.e.

pgref(k) = pgreDS (k),

in the three-level framework. Since all parameters are known, this OP is determinis-
tic. We formulate the calculation of the actual dispatch then as

min
x(k)

(
∆pg(k)

)2

es(k + 1) = es(k) + ∆t ·
(
ps(k) − µp+

s (k) + µp−
s (k)

)
pg(k) = ps(k) + pl(k)

pg(k) = pgref(k) + ∆pg(k)

ps(k) = p+
s (k) + p−

s (k) (2.26)

p+
s (k) ≥ 0

p−
s (k) ≤ 0

p+
s (k) · p−

s (k) ≥ −ζ

pmin
s ≤ps(k) ≤ pmax

s

emin
s ≤es(k + 1) ≤ emax

s

with decision vector15

x(k) =
(
∆pg(k), pg(k), es(k + 1), ps(k), p+

s (k), p−
s (k)

)T

and parameters pgref(k), pl(k), es(k), pmin
s , pmax

s , emin
s , emax

s , ζ.

15Note that not all decision variables are free, but are determined by equality constraints. For the
implementation, however, we use all specified decision variables as the number of decision variables
is not critical in our case for the numerical solving. The free decision variable is ∆pg(k).
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Tab. 2.2.: The hardware specification of different servers used for the evaluations.

Server 1 Server 2 Server 3

CPU cores 12 76 96
CPU base clock rate 2.1GHz 2.4 GHz 1.5 GHz
CPU maximum clock rate 4.7 GHz 4.0 GHz 2.8 GHz
RAM 32 GB 512 GB 128 GB

GPU
Inter(R) Iris(R) 4x NVIDIA ASPEED Graphics

Xe Graphics A100-40 Family

2.4.2 Data

For all our evaluations, we use the “Ausgrid - Solar home electricity data” set [116].
This dataset contains real-world load and PV power generation data from 300
residential buildings located in New South Wales, Australia, over the period from 1st
July 2010 to 30th June 2013 in a 30-minute resolution. As we consider a duration
of the time interval ∆t of one hour, the data is adjusted to an hourly temporal
resolution. Due to missing values in the dataset for buildings 2, 68, 95, 161, 187,
248, 272, 284, 289, 293, and 294, we exclude these buildings. We also exclude
building 138, which has long periods of 0 values and is therefore anomalous, and
buildings 75 and 157, for which the optimisation has convergence problems. For the
remaining 286 buildings, the prosumption of time interval k is calculated by

pl(k) = βload · pload(k) − βPV · pPV(k). (2.27)

with load pload(k) ∈ R≥0, PV power generation pPV(k) ∈ R≥0, and factors βload, βPV ∈
R≥0. Unless otherwise specified, we set βload = 1, βPV = 1 as in the dataset.
Furthermore, this dataset does not contain BESS data. Therefore, we consider a
BESS with the specifications comparable to [17], i.e. pmin

s = −5 kW, pmax
s = 5 kW,

emin
s = 0 kWh, and emax

s = 19.5 kWh, unless otherwise specified.
In addition, when presenting detailed results for a single building, we use the
building 109 in accordance with [7, 8].

2.4.3 Hardware and Software

The evaluations are performed on servers with different hardware specifications,
depending on the scope of the evaluation and the computational effort required.
The hardware specifications are provided in Table 2.2.
With respect to the software, the evaluations are implemented in Python and multiple
Python libraries. For data handling, we specially make use of NumPy [58] and Pandas
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[97]. The forecasts are generated with PyTorch [105] and Scikit-learn [106]. To
implement and solve the OPs, we use Pyomo [27, 59] with Ipopt [137] as solver as
interior point methods are effective in solving non-linear OPs, including non-convex
ones [13, 19]. For tracking our evaluations, we log the results with Weights and
Biases16.

16https://www.wandb.com/ [accessed: 2024-07-25]
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Thesis Focus 3
This chapter describes the focus of this thesis. Therefore, we first formulate the
considered research questions, and finally present the outline of this thesis.

3.1 Research Questions

This section describes the five research questions addressed in this thesis, see
Figure 3.1 for an overview. The description of these research questions is as follows.
First, the respective context is introduced. Second, the existing literature in this
context is presented. Finally, the resulting research question is formulated.

3.1.1 Evaluation of Forecast Value for Dispatchable Feeder

Forecasts play a crucial role in the performance of the DF as they serve as input to
the stochastic OP. The impact of these forecasts can be quantified by a representative
forecast value that measures the performance of the OP, e.g. economic costs.
Therefore, an extensive evaluation of the forecasts especially with respect to the
forecast value is of interest.

Related Work1 Several works examine the difference between forecast value and
forecast quality for different OPs, such as [18, 35, 39, 114]. While [39, 114] show
that the forecast value does not directly correspond to the forecast quality, [18, 35]
show that the forecast value depends not only on the forecast error but also on
problem-specific factors. Therefore, [18] analyses the impact of different forecasts
on the forecast value for different system viewpoints.
In addition, while the aforementioned works consider point forecasts, there are
several works that evaluate different probabilistic forecasts with respect to their
forecast value for different OPs, such as [24, 28, 90, 94, 111, 156]. Among these,
[90, 94, 111] focus on the renewable energy sector. More specifically, they consider

1This paragraph is adapted from [144].
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the market trading of renewable generation, with [90] focusing specifically on
forecasts of aggregated renewable generation. Additionally, several works compare
the forecast value between point forecasts and probabilistic forecasts, such as [4, 91,
101]. Of these, [4, 91] consider OPs in a comparable context to the DF, but use a
sample-based approach via scenario forecasts and do not consider different forecast
characteristics.

Research Question An extensive evaluation of different forecast characteristics
with respect to the forecast value in the context of DFs, covering both point forecasts
and probabilistic forecasts, is lacking. This includes exploring the impact of problem-
specific parameters. The resulting research questions are:

RQ1: How do different point forecast characteristics influence the forecast value for
the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

RQ2: How do different probabilistic forecast characteristics influence the forecast value
for the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

3.1.2 Automated Value-Oriented Forecast Method Selection by
Meta-Learning

To generate forecasts for the DF, a tremendous amount of forecast methods exists.
Commonly, the selection of the forecast method is based on the forecast quality,
which does not include the performance of the DF based on the resulting forecasts.
In addition, since the selection of the forecast method can be computationally
expensive, the consideration of the computational effort required for the forecast
method selection is crucial for a real-world implementation. Therefore, the selection
of the forecast method with respect to the forecast value for the DF with low
computational effort is of interest.

Related Work2 In the literature, several works exist that either focus on the design
of forecast methods for a specific OP or approach the selection of forecast methods
with low computational effort with respect to the forecast quality. In the following,
we present works within these two categories.

2This paragraph is adapted from [16] and [143].
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One approach to designing forecast methods for a specific OP is to incorporate
information from the OP into the forecasting. In the context of machine learning,
there are several works that address such an end-to-end training of forecasting and
optimisation known under the term decision-focused learning [95, 119]. This end-
to-end learning necessitates differentiation through the OP, which poses challenges.
Although analytical approaches exist, these are tailored to specific categories of OPs.
For instance, [5, 43, 153, 154] focus on strongly convex and quadratic OPs. To avoid
the differentiation through the OP, further approaches use differentiable surrogate
loss functions [11, 34, 44, 124, 125, 152, 155]. In more detail, while [44] approxi-
mates the analytical description for linear OPs, several other works rely on specific
parametric loss function families. These approaches learn the parameters of these
loss function families based on the forecast value, e.g. [11, 34, 124, 125]. Among
the parametric loss function families is the cost-oriented loss function [53, 77, 89,
141, 152]. The cost-oriented loss function is a piecewise function assigning different
weights to forecast errors, introducing bias into the forecasts. While [77, 89] require
the explicit form of the cost-oriented loss function, [141, 152] approximate it in a
computationally expensive manner. However, for complex OPs such as the DF, the
forecast value is not solely determined by the forecast error. The strategy of tailoring
the loss function to fit the specific OP is also explored in [1, 57]. However, these
approaches are tailored to specific OPs and are not readily applicable for generating
forecasts with a high forecast value for other OPs.
While the above presented decision-focused learning approaches can be compu-
tationally expensive, meta-learning approaches for the forecast method selection
can reduce this computational effort. However, in literature such a meta-learning
forecast method selection can only be found based on the forecast quality [129, 139,
140]. Another approach in [30] is to use meta-learning to forecast the RMSE of a
forecast. Summarising, these meta-learning approaches lack the consideration of
the performance of the OP based on the forecast.

Research Question While decision-focused learning approaches are computation-
ally expensive and make restrictive assumptions such as the category of the OP
or the parametric loss function family, a meta-learning approach for selecting the
forecast method is solely approached with respect to the forecast quality. Therefore,
a solution to automatically select the forecast method with respect to the forecast
value using meta-learning is lacking. The respective research question is:

RQ3: How to automatically select the forecast method with respect to the forecast value
with low computational effort using meta-learning?
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3.1.3 Comparison of Dispatchable Feeder Considering Point and
Probabilistic forecasts

As both the integration of the prosumption uncertainty in the mathematical formula-
tion of the OP and the forecasts play a crucial role for the performance of the DF,
an evaluation comparing the DF considering point forecasts and the DF considering
probabilistic forecasts with different forecast characteristics is of interest.

Related Work Several studies evaluate the integration of the prosumption uncer-
tainty for the DF, including [7, 8, 87, 126]. Of these, [7] evaluates the performance
of the DF considering point forecasts and the DF considering probabilistic forecasts.
However, this study is limited to a single building and considers quality-oriented
forecasts. Other works compare the forecast value between point forecasts and
probabilistic forecasts for an OP in a comparable context, using a sample-based
approach with scenario forecasts, such as [4, 91]. These works use quality-oriented
forecasts.

Research Question A comparative evaluation of the DF considering point forecasts
and the DF considering probabilistic forecasts with different forecast characteristics
is lacking. This includes the evaluation on several buildings. In this context, it is of
interest whether the consideration of value-oriented point forecasts can compensate
for the lack of integration of the prosumption uncertainty. The corresponding
research question is:

RQ4: How does the performance of the dispatchable feeder considering point forecasts
compare to the performance of the dispatchable feeder considering probabilistic
forecasts for difference forecast characteristics?

3.1.4 Line Restriction for Dispatchable Feeder considering
Probabilistic Forecasts

Addressing the technical restrictions imposed by the electrotechnical system compo-
nents is essential for a seamless real-world implementation of the DF. In particular,
the inclusion of the line restriction becomes crucial as the energy transition increases
both the residential load and the distributed renewable generation. With such a
high power exchange between the grid and the DF, it is important to consider the
technical restrictions of the line to mitigate line overloadings.
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Related Work3 In the following, works within two categories are presented. First,
DFs considering the line restriction are reviewed, and afterwards, works approaching
the line overloadings during PV power generation hours are explained.
The mathematical formulations for the DF from [87, 126] consider the line restric-
tion. For this mathematical formulation, both works use scenario forecasts as input.
However, as can be seen in [8], the mathematical formulation of the DF considering
probabilistic forecasts as input in the computation of the DS significantly enhance
the dispatchability of the DF. For this mathematical formulation, the inclusion of the
line restriction is lacking.
The motivation to mitigate line overloadings is discussed in [55, 73, 102, 146]. In
response to this challenge, [55, 73, 102] propose an MPC problem for residential
buildings using point forecasts as input. However, all three works do not consider
the scheduling level and thus do not aim for the dispatchability of their considered
systems. Instead of using residential BESSs, [146] propose the usage of a community
BESS. However, while community BESSs offer a promising solution, they introduce
new challenges such as optimal placement and may not fully address line overloads
within the community.

Research Question A mathematical formulation of the DF that takes into account
both probabilistic forecasts and the restriction of the power exchange between the
grid and the DF imposed by the technical constraints of the line is lacking. The
resulting research question is:

RQ5: How to consider the line restriction and mitigate line overloadings for the dis-
patchable feeder considering probabilistic forecasts?

3.2 Outline

Based on the research questions reported in Section 3.1, the remainder of this
thesis is structured as follows. In Part II, point forecasts are evaluated for the DF
considering point forecasts with respect to the forecast value in Chapter 4 (RQ1),
and an automated value-oriented forecast method selection using meta-learning
is presented in Chapter 5 (RQ3). These research questions extend the general
framework in Figure 2.4 to Figure 3.1a and Figure 3.1b respectively, with the
novelty marked in orange. In Part III, probabilistic forecasts are evaluated for the DF
considering probabilistic forecasts with respect to the forecast value in Chapter 6

3This paragraph is adapted from [145].
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(a) The specified framework for Chapter 4 addressing research question RQ1 and Chapter 6 addressing
research question RQ2 of this thesis. Different forecasts are used and the performance of the
dispatchable feeder for each forecast is evaluated.

Data Forecasting

Different
forecast methods
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(b) The specified framework for Chapter 5 addressing research question RQ3 of this thesis. An auto-
mated forecast method selection is proposed with respect to the performance of the dispatchable
feeder.

Data Forecasting Dispatchable
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Line
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Results

Data

Forecasts

(c) The specified framework for Chapter 8 addressing research question RQ5 of this thesis. The
mathematical formulation of the optimisation problem for the dispatchable feeder is modified.

Fig. 3.1.: The specific frameworks of Figure 2.4 considered in the different chapters of this
thesis, with the addressed research question specified and the novelty marked in
orange.

(RQ2). While the structure of this chapter and the specific framework in Figure 3.1a
is the same as in Chapter 4, the difference lies in the mathematical formulation of
the OP for the DF and the consideration of probabilistic forecasts. Additionally, in
Chapter 7, the DF considering point forecasts and the DF considering probabilistic
forecasts are evaluated with both value-oriented and standard forecasts and it
is assessed whether value-oriented point forecasts can compensate for the lack
of integration of the prosumption uncertainty (RQ4). Further, in Chapter 8, the
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mathematical formulation of the OP for the DF considering probabilistic forecasts is
modified by including a line restriction (RQ5) resulting in the specific framework
shown in Figure 3.1c.
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Feeder Considering Point Forecasts





Point Forecast Evaluation 4
This chapter evaluates point forecasts with respect to the forecast value for the
two-level dispatchable feeder (DF) considering point forecasts1. For this evaluation,
different point forecasts with different characteristics are considered. More precisely,
they are generated to have different locations, i.e. we intentionally introduce bias.
For these different forecasts, we analyse the relation between the considered forecast
value and the considered forecast quality. Additionally, we evaluate the forecast value
for the different forecasts depending on problem-specific parameters. Therefore, this
chapter deals with the research question:

RQ1: How do different point forecast characteristics influence the forecast value for
the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

The chapter is structured as follows. First, Section 4.1 describes the approach. Sec-
ond, Subsection 4.2.1 presents the experimental setup. This includes the description
of the generation of the point forecasts with different characteristics and the con-
sidered forecast value and the considered forecast quality. Then, Subsection 4.2.2
presents the results of the evaluation. Finally, Section 4.3 discusses the results.

4.1 Approach

In this section, an overview of the evaluation of prosumption point forecasts p̂l(k)
with different characteristics with respect to the forecast value for the DF is given,
see Figure 4.1. This evaluation involves the following steps for each set of forecasts:
First, the point forecasts are generated. Then, based on these forecasts, the day-
ahead dispatch schedule is computed by solving the first level optimisation problem
(OP). Afterwards, the actual dispatch is calculated using the actual prosumption val-
ues by solving the second level OP, which aims to minimise the deviations from the
dispatch schedule. Finally, the forecast value for the DF is measured and compared

1The content of this chapter is based on [144]. While the concept of the evaluation is the same, the
experimental setup differs, including the forecasting specifications, the used prosumption data, and
the used BESS energy capacity.
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Fig. 4.1.: The framework to evaluate point forecasts with different characteristics with
respect to the forecast quality and the forecast value (marked in blue) for the
two-level dispatchable feeder considering point forecasts. The point forecasts with
different characteristics are generated via neural networks (NN) with different loss
functions (marked in orange). Additionally, varying problem-specific parameters,
namely the prosumption data and the BESS energy capacity, are considered
(marked in green).

with the forecast values of other point forecasts.
For the generation of the point forecasts, we use a non-parametric machine learning
method, namely a neural network (NN). The reason for this choice is that machine
learning methods are well established for power forecasting [67] and we do not
want to make any assumptions about the distribution or the statistical model. Such
assumptions are necessary for statistical methods and would need to be validated,
which would require a large computational effort given the scale of this evalua-
tion. Additionally, compared to other machine learning methods in Table 2.1, the
complexity of the NN architecture can be tailored to the application considered.
Therefore, NNs can be designed to perform adequately with smaller dataset sizes
and to be computationally efficient, both of which are valuable characteristics for
this evaluation. Note that since our focus is on evaluating the impact of different
forecast characteristics on the performance of the DF, we chose not to compare point
forecasts generated by different machine learning methods, but only to use NNs to
generate point forecasts with different characteristics.
To achieve these different characteristics, we employ different loss functions in-
side the NN. The choice of the loss function plays a crucial role in shaping the
characteristics of the resulting forecast as the loss function evaluates how well the
forecast aligns with the actual value. During training of the NN, the loss function
is minimised so that the NN generates forecasts reflecting the characteristic of the
chosen loss function, see Figure 4.2. Commonly used loss functions are the MSE in
Equation (2.7) and MAE in Equation (2.8). Both loss functions produce unbiased
forecasts. While the former weights larger absolute forecast errors stronger, the
latter weights all forecast errors equally. Besides these two loss functions, we further
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Fig. 4.2.: The actual prosumption pl and the prosumption point forecasts of pl with different
characteristics, generated with different loss functions inside the neural network,
namely pinball 0.25, MSE, and pinball 0.9, for the prosumption data original
(βload = 1, βPV = 1) and an exemplary week.

consider the Huber metric in Equation (2.9) with δ = 1. This loss function is a
mixture between MSE and MAE. To generate biased forecasts, we use the pinball
loss function in Equation (2.11) with different τ values of 0.1, 0.25, 0.75, and
0.9. If τ is smaller than 0.5, the forecasts are expected to be smaller than forecasts
generated with centre-oriented loss functions such as the MSE and MAE. Therefore,
the prosumption is what we call underestimated. In contrast, if τ is greater than 0.5,
the prosumption is overestimated, i.e. the forecasts are expected to be greater than
forecasts generated with centre-oriented loss functions.
The point forecasts with different characteristics generated at 12 PM are then used
for the computation of the dispatch schedule (DS) at 12 AM. To estimate the state
of energy (SoE) of the BESS at 12 AM, we use the MSE point forecast generated at
12 PM, unlike in [144], where the point forecasts with different characteristics are
also used to estimate the BESS’ SoE. This allows us to focus our evaluation on the
impact of different point forecasts on the forecast value, rather than on the impact
of different estimates of the SoE at 12 AM.
In order to evaluate the forecast value for a specific forecast characteristic, it is
important to consider other problem-specific parameters that may affect this perfor-
mance and thus the forecast value. For the DF, one such parameter is a building’s
prosumption data, i.e. the scale and fluctuation of the building’s prosumption. As
the prosumption data in the considered Ausgrid dataset is limited and does not
include future scenarios, we synthetically extend the dataset by using different
ratios of load and PV power generation via βload and βPV in Equation (2.27). More
specifically, to account for the increase in load and PV power generation due to
the energy transition, we consider load5 with βload = 5, βPV = 1, and PV5 with
βload = 1, βPV = 5. To account for energy efficient buildings with lower loads, we
extend the dataset by load1/2 with βload = 1

2 , βPV = 1. In addition to the prosump-

4.1 Approach 43



Tab. 4.1.: The general and detailed neural network architectures to generate the point
forecasts. Note that the forecast horizon is 42 hours.

(a) The general architecture of the used neural networks.

Input features Architecture Output

historical data3

calendar features,
weather features10

Mean ˆ̄pl(k),
k = k0, ..., k0 + 41three-layer NN

(b) The detailed architecture of the used three-layer neural network.

Layer Activation function Layer size

Input Linear 267

Hidden
ReLU 20
ReLU 50

Output Linear 42

tion data, the problem-specific parameter of the BESS energy capacity emax
s may

also influence the forecast value. As the BESS is added to the Ausgrid dataset, we
use different BESS energy capacities to account for differences in installed BESS.
Specifically, we consider the BESS energy capacities emax

s of 3, 6, 13.52, and 19.5
kWh to account for the increase in affordable BESSs.
With these specifications, we aim to analyse whether the expectation that point
forecasts with higher forecast quality lead to a higher forecast value for the DF holds
true across all considered forecast values and all problem-specific parameters.

4.2 Evaluation

This section evaluates the forecast value for the two-level DF considering point
forecasts described in Subsection 2.4.1. Therefore, Subsection 4.2.1 describes
the further experimental setup beyond the specifications in Section 2.4, while
Subsection 4.2.2 presents the results.

4.2.1 Experimental Setup

The following two aspects are relevant for the evaluation and are presented in the
remainder. First, the generation of the point forecasts with different characteristics is
explained. Second, the considered forecast value and forecast quality are outlined.

2https://www.tesla.com/support/energy/powerwall/documents/documents [accessed: 2024-05-15]
3This input feature is scaled with SKLearn’s min-max scaler [106].
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Forecast Method In the following, we first describe the used forecast specifications
and the NN architecture. Afterwards, the considered input features and the splitting
of the data in training, validation, and testing are described.
Regarding the forecasting specifications, we forecast the prosumption directly, as
opposed to [8], which forecasts the load and the PV power generation separately.
The reason for our choice is that we aim for the same NN architecture throughout
this thesis. While a simple subtraction of the separate load and PV power generation
point forecasts yields the prosumption point forecasts, a convolution4 is necessary
when considering probabilistic forecasts. A first analysis shows that this extra step
can be time consuming, while leading to a negligible increase in forecast quality.
Therefore, we directly forecast the prosumption.
Regarding the NN architecture, we use a fully connected three-layer NN, see Ta-
ble 4.1. In both hidden layers, we use a ReLU [3] activation function, and in the
input and output layer a linear activation function. Additionally, we use a batch size
of 512 and the Adam optimiser [79].
As input features we consider the historical prosumption of the last seven days and
calendar features, namely the month, the day of the week and a boolean feature
indicating a holiday. Additionally, we incorporate actual weather data, namely
the surface short-wave (solar) radiation downwards and two-metre temperature
from the European Centre for Medium-Range Weather Forecasts (ECMWF) [64], as
weather forecasts covering the Ausgrid dataset are not available. However, as the
Ausgrid dataset does not specify the exact location of the buildings and the ECMWF
grid point resolution of 0.25° is rather coarse, we use a broad approximation for
the area covering the majority of the buildings, in particular Sydney and Newcastle.
To achieve this, we average the values from several locations with the following
longitude/latitude pairs: -34°/151°, -34°/151.25°, -33.75°/151°, -33.75°/151.25°,
-33°/151.75°, -33°/151.5°, -32.75°/151.75°. These averaged values are used as
weather features for all buildings. Furthermore, we scale the historical data and the
weather data with SKLearn’s min-max scaler [106] and encode the calendar features
of the month and the holiday with sine-cosine encoding.
With respect to the data splitting, we split the three years of data from the Ausgrid
dataset for training, validation, and testing as follows. We use the first year for
training, the second year for validation to apply early stopping, and the last year for
testing.

4Convolution is only adequate under the assumption of independence between the load and the PV
power generation, which is typically not the case. To account for the correlation, copulas must be
considered, which can be not straightforward to use, see [15].

4.2 Evaluation 45



Evaluation Metrics The point forecasts with different characteristics are evaluated
with respect to both the forecast quality and the forecast value. As evaluation metric
for the forecast quality, the MSE described in Subsection 2.1.3 is used. As the MSE
measures the deviation of the forecast from the actual value, a lower MSE implies a
higher forecast quality. To evaluate the forecast value for the DF, the cost resulting
from the performance of the DF based on the forecast is used. We consider three
average daily costs, namely the average daily DS cost, the average daily imbalance
cost and the average daily total cost, with lower costs implying a higher forecast
value. More precisely, the DS cost are the energy costs of the computed DS. We
use the same DS cost for evaluation as during the computation of the DS, see
Equation (2.17). Further, the imbalance cost result from the difference of the actual
dispatch pg(k) and the DS pgDS(k) and are calculated after the execution of the OP
via

cimb(pgDS (k), pg(k)) = c∆
quad · ((pgDS (k) − pg(k)) · ∆t)2+

c∆
lin · |(pgDS (k) − pg(k)) · ∆t|

(4.1)

with cost coefficients c∆
quad, c∆

lin ∈ R≥0. We set these coefficients equal to c+
quad, c+

lin

respectively. Finally, the total cost takes into account both of these costs and is
defined as

ctotal(p+
gDS

(k), p−
gDS

(k), pg(k)) = cDS(p+
gDS

(k), p−
gDS

(k))+

α · cimb(pgDS (k), pg(k))
(4.2)

with imbalance cost factor α ∈ R≥0. For the average daily costs of each of the
introduced cost, we first calculate the daily cost by aggregating the hourly cost.
Then, we average the daily cost over all considered days.
Additionally, for a better comparison between buildings with different prosumption
scales, we calculate the wins of each forecast. More precisely, for each building, we
calculate which forecast results in the minimal average daily cost. The corresponding
forecasts then achieve a win. To measure the clarity of the win, we further consider
the 5% win range. Specifically, for each building and each set of forecasts, we
calculate the percentage difference 2·|c−cmin|

|c+cmin| ·100 between the resulting average daily
cost c of the forecasts and the minimal average daily cost cmin of the forecasts that
achieve the win for that building. If this percentage difference is less than 5%, then
the corresponding forecasts achieve an occurrence within the 5% win range.
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Fig. 4.3.: The MSE against the average daily dispatch schedule cost (upper left), the average
daily imbalance cost (upper right), the average daily total cost with imbalance
cost factor α = 2 (lower left) and the average daily total cost with imbalance cost
factor α = 10 (lower right) for the considered loss functions. For this plot, we use
the prosumption data original (βload = 1, βPV = 1) and the BESS energy capacity
emax

s = 19.5 kWh. Note that for both the average daily costs and the MSE lower
values are better.

4.2.2 Results

In this section, we evaluate point forecasts with different characteristics with respect
to their forecast value for the two-level DF considering point forecasts. Since these
different point forecasts are generated using NNs with different loss functions,
we present the results according to the respective loss function’s name. For this
evaluation, we consider three aspects. First, we examine the relationship between
forecast quality and forecast value. Second, we explore the forecast value for varying
prosumption data. Lastly, we assess the forecast value for varying BESS energy
capacities.
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(d) PV5

Fig. 4.4.: The wins and the occurrences within the 5% win range for the considered average
daily cost, i.e. the dispatch schedule cost (left), the imbalance cost (middle),
and the total cost with imbalance cost factor α = 2 (right) and the prosumption
data load5 (βload = 5, βPV = 1) (a), original (βload = 1, βPV = 1) (b), load1/2
(βload = 1/2, βPV = 1) (c), and PV5 (βload = 1, βPV = 5) (d) for the considered loss
functions. Further, we consider the BESS energy capacity emax

s = 19.5 kWh. Note
that more wins and more occurrences within the 5% win range are better.
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Relation between Forecast Quality and Forecast Value

For this evaluation, we relate the MSE as forecast quality and the average daily costs
as forecast value for the original data and the BESS energy capacity emax

s = 19.5
kWh in the scatter plots in Figure 4.3. In these plots, the forecast quality and the
forecast value are averaged over all buildings considered.
For three average daily costs, we observe that the forecast resulting in the best
forecast quality does not result in the best forecast value. Further, the relation
between the forecast quality and value is not clearly deducible.
More precisely, for the DS cost, pinball 0.1 and pinball 0.25 achieve the best and
second-best forecast value (1.00 and 1.93 respectively), but the sixth-best and fifth-
best forecast quality (0.79 and 0.59 respectively).
For the imbalance cost, pinball 0.75 results in the best forecast value (0.65) and the
fourth-best forecast quality (0.57).
For the total cost with imbalance cost factor α = 2, Huber achieves the best forecast
value (5.16) followed by MSE (5.18), which have the best forecast quality (0.45
both). For the total cost with imbalance cost factor α = 10, the best forecast value is
achieved with pinball 0.75 (10.55).

Comparison of different Loss Functions regarding varying Prosumption Data

In this subsection, we quantitatively and qualitatively compare the performance of
different loss functions for varying prosumption data and the BESS energy capacity
emax

s = 19.5 kWh. For the quantitative comparison, we consider the wins and the
occurrences within the 5% win range for three average daily costs, namely the DS
cost, the imbalance cost, and the total cost with imbalance cost factor α = 2, for all
buildings, as well as the prosumption data load5, original, load1/2, and PV5. For
the qualitative comparison, we have a closer look on building 109. More precisely,
we look at two average daily costs, namely the DS cost and the imbalance cost, for
the prosumption data load5, original, load1/2, and PV5 and the results of the DF for
an exemplary week and selected loss functions for the prosumption data original
and PV5.

Quantitative Comparison Figure 4.4 shows the results of the quantitative compari-
son, which we describe for each average daily cost in the following. Starting with
the DS cost, we observe that pinball 0.1 achieves almost all wins for load5, original,
and load1/2. For PV5, pinball 0.1 achieves the most wins (181), but the remaining
wins are spread over all considered loss functions. Regarding the clarity of the wins,
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Fig. 4.5.: The dispatch schedule pgDS
, the actual dispatch pg, the prosumption forecast p̂l,

the actual prosumption pl, the scheduled BESS’ SoE and the actual BESS’ SoE
resulting from the usage of pinball 0.1 and pinball 0.75 for the prosumption data
original (βload = 1, βPV = 1) and the BESS energy capacity emax

s = 19.5 kWh for
an exemplary week.
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Tab. 4.2.: The considered average daily costs in C, i.e. the dispatch schedule cost and
the imbalance cost, of building 109 and the prosumption data load5 (βload =
5, βPV = 1), original (βload = 1, βPV = 1), load1/2 (βload = 1/2, βPV = 1), and
PV5 (βload = 1, βPV = 5) for all considered loss functions. Additionally, we use
the BESS energy capacity emax

s = 19.5 kWh. Note that for the average daily costs
lower values are better.

Load5 Original Load1/2 PV5
DS Imbalance DS Imbalance DS Imbalance DS Imbalance

Pinball 0.1 35.42 34.92 1.62 4.17 -0.30 1.96 34.86 20.69
Pinball 0.25 50.47 22.32 2.51 2.78 -0.02 1.14 23.70 10.83
MAE 68.63 11.86 3.63 1.44 0.22 0.50 14.86 9.79
MSE 79.83 10.28 4.07 0.99 0.22 0.41 14.93 9.96
Huber 74.26 10.32 3.91 1.12 0.20 0.45 16.80 8.87
Pinball 0.75 93.21 12.44 4.95 0.78 0.37 0.39 8.69 15.03
Pinball 0.9 131.53 28.77 6.82 2.41 1.45 2.37 4.67 57.40

we observe that for load5, original, and load1/2 no other loss function achieves
occurrences within the 5% win range except pinball 0.25 for load5 (3).
For the imbalance cost, we observe that a loss function’s wins depend on the pro-
sumption data. For original, the overestimating loss functions pinball 0.75 and
pinball 0.9 achieve the most and second most wins (197 and 59 respectively). For
load1/2, more wins are shifted to pinball 0.9, resulting in a dominance of wins
(174), followed by pinball 0.75 (115). In contrast, for load5 and PV5, we observe
that overestimation is less beneficial for the wins. More precisely, for load5, Huber
achieves the most wins (99), while Pinball 0.75 achieves the fourth most wins (46).
For PV5, MAE (91) achieves the most wins. Regarding the clarity of the wins, we
observe for original and load1/2 that the occurrences within the 5% win range are
almost equal to the number of wins for all loss functions indicating clear wins. On
the other hand, for load5 and PV5, the number of occurrences within the 5% win
range is higher than the number of wins, indicating that the average daily cost can
be similar for different loss functions.
For the total cost with imbalance cost factor α = 2, we observe for all prosumption
data that the wins are more spread over the loss functions. More precisely, for load5,
all loss functions except pinball 0.9 achieve wins with MAE achieving the most
(159). For original, similar to the imbalance cost, pinball 0.75 (157) achieves the
most wins. Also in consistency with the results of the imbalance cost, pinball 0.75
(143) and pinball 0.9 (130) achieve the most and second most wins for load1/2,
while MAE (124) achieves the most wins for PV5. Regarding the clarity of the
wins, the occurrences within the 5% win range are higher for all loss functions and
prosumption data compared to the DS cost and imbalance cost.
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Fig. 4.6.: The dispatch schedule pgDS
, the actual dispatch pg, the prosumption forecast

p̂l, the actual prosumption pl, the scheduled BESS’ SoE and the actual BESS’
SoE resulting from the usage of Huber and pinball 0.9 for the prosumption data
PV5 (βload = 1, βPV = 5) and the BESS energy capacity emax

s = 19.5 kWh for an
exemplary week of building 109.
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Qualitative Comparison Starting with the average daily costs, Table 4.2 shows the
DS cost and the imbalance cost for building 109, where we make two observations.
First, we observe that the DS cost and the imbalance cost can vary greatly depending
on the loss function. Second, we observe that while there is one loss function that
leads by far to the minimal DS cost, several loss functions can lead to imbalance costs
similar to the minimal imbalance cost. More precisely, for the DS cost, consistent
with the quantitative comparison, we observe that pinball 0.1 achieves by far the
minimal DS cost for load5, original, and load1/2. For PV5, pinball 0.9 achieves
clearly the minimal DS cost. In contrast, for the imbalance cost, we observe for load5
that MSE and Huber lead to similar imbalance costs. The same holds for original
and load1/2 with pinball 0.75, MSE, and Huber. For PV5, Huber, MAE, and MSE
lead to similar imbalance costs.
The results of the DF for an exemplary week are shown in Figure 4.5 for original and
in Figure 4.6 for PV5. Both figures show the results of two loss functions, namely
the loss functions leading to the minimal DS cost and the minimal imbalance cost,
i.e. pinball 0.1 and pinball 0.75 for original and pinball 0.9 and Huber for PV5.
Starting with original, we see that the DS with pinball 0.1 is smaller than the DS
with pinball 0.75 for almost the whole week. However, while the DS and the actual
dispatch with pinball 0.75 match at most hours, there are many imbalances with
pinball 0.1. With respect to the SoE, we observe that the actual SoE with pinball
0.75 is higher than the actual SoE with pinball 0.1, which is at its lower BESS energy
capacity emin

s = 0 kWh at the start and the end of the day. For PV5, we observe that
the DS with Huber is during the PV power generation hours clearly negative and the
absolute value of the DS is greater than the DS with pinball 0.9. Additionally, we
observe that imbalances occur during the end of the PV power generation hours with
Huber and pinball 0.9, while the imbalances occur earlier with pinball 0.9. During
these hours, the actual SoE with Huber and pinball 0.9 is at its upper BESS energy
capacity emax

s = 19.5 kWh.

Comparison of different Loss Functions regarding varying BESS Energy Capacities

For this comparison, we quantitatively and qualitatively compare the performance of
different loss functions for varying BESS energy capacities and the prosumption data
original. For the quantitative comparison, we consider the wins and the occurrences
within the 5% win range for three average daily costs, namely the DS cost, the
imbalance cost, and the total cost with imbalance cost factor α = 2, the BESS energy
capacities emax

s of 3 kWh, 6 kWh, 13.5 kWh, and 19.5 kWh, and all buildings. For
the qualitative comparison, we focus on building 109 and look at two average daily
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Fig. 4.7.: The wins and the occurrences within the 5% win range for the considered average
daily costs, i.e. the dispatch schedule cost (left), the imbalance cost (middle), the
total costs with imbalance cost factor α = 2 (right) and the BESS energy capacities
emax

s = 3 kWh (a), emax
s = 6 kWh (b), emax

s = 13.5 kWh (c), and emax
s = 19.5 kWh

(d) for the considered loss functions. Further, we consider the prosumption data
original (βload = 1, βPV = 1). Note that higher win values and higher occurrences
within the 5% win range are better.
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costs, namely the DS cost and the imbalance cost, for the BESS energy capacities
emax

s of 3 kWh, 6 kWh, 13.5 kWh, and 19.5 kWh. Further, we evaluate the results
of the DF for an exemplary week and selected loss functions for the BESS energy
capacity emax

s = 13.5 kWh.

Quantitative Comparison Figure 4.7 displays the results of the quantitative compar-
ison for the considered average daily costs. Starting with the DS cost, we see a clear
dominance of pinball 0.1, which achieves all wins for all BESS energy capacities and
no other loss function achieves occurrences within the 5% win range.
For the imbalance cost, we observe that the smaller the BESS energy capacity, the
more wins are shifted from the overestimating loss functions pinball 0.75 and pinball
0.9 to the loss functions MSE, Huber, and MAE. More precisely, for BESS energy
capacity of 19.5 kWh, pinball 0.75 (197) achieves the most wins, followed by pinball
0.9 (59), and for BESS energy capacity of 13.5 kWh, pinball 0.75 (173) achieves the
most wins. In contrast, for the BESS energy capacity of 6 kWh, Huber (94) achieves
the most wins, while for the smallest considered BESS energy capacity of 3 kWh,
MAE (139) achieves the most wins. Regarding the clarity of the wins, we observe
especially for a BESS energy capacity of 3 kWh and 6 kWh that MSE, Huber, and
MAE have more occurrences within the 5% win range than wins.
For the total cost with imbalance cost factor α = 2, the difference between the
occurrences within the 5% win range and the number of wins is big. More precisely,
for a BESS energy capacity of 3 kWh and 6 kWh, MAE achieves the most wins
(169 and 167 respectively) and occurrences within the 5% win range (214 and 224
respectively). For a BESS energy capacity of 13.5 kWh, pinball 0.75 (90) achieves
the most wins. In contrast, MSE (211) and Huber (210) achieve more occurrences
within the 5% win range than pinball 0.75 (135). For a BESS energy capacity of
19.5 kWh, pinball 0.75 (157) can increase his lead over Huber (53). This is also
reflected in the occurrences within the 5% win range of pinball 0.75 (200) and
Huber (158).

Qualitative Comparison The DS cost and the imbalance cost for building 109 are
shown in Table 4.3 and lead to two observations. First, we observe that both average
daily costs decrease as the BESS energy capacity increases. Second, we make the
same observations as in the qualitative comparison with varying prosumption data,
i.e. that both costs can vary greatly depending on the loss function, and that while
pinball 0.1 leads to by far the minimal DS cost, several loss functions lead to similarly
low imbalance costs.
Next, the results of the DF for an exemplary week are shown in Figure 4.8 for
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Fig. 4.8.: The dispatch schedule pgDS
, the actual dispatch pg, the prosumption forecast p̂l,

the actual prosumption pl, the scheduled BESS’ SoE and the actual BESS’ SoE
resulting from the usage of MSE and pinball 0.75 for the BESS energy capacity
emax

s = 13.5 kWh and prosumption data original (βload = 1, βPV = 1) for an
exemplary week of building 109.
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Tab. 4.3.: The considered average daily costs in C, i.e. the dispatch schedule cost and the
imbalance cost, of building 109 and the BESS energy capacities emax

s = 3 kWh,
emax

s = 6 kWh, emax
s = 13.5 kWh, and emax

s = 19.5 kWh for all considered loss
functions. Additionally, we use the prosumption data original (βload = 1, βPV = 1).
Note that for the average daily costs lower values are better.

3 kWh 6 kWh 13.5 kWh 19.5 kWh
DS Imbalance DS Imbalance DS Imbalance DS Imbalance

Pinball 0.1 2.30 5.67 1.88 5.15 1.61 4.25 1.62 4.17
Pinball 0.25 3.26 4.22 2.87 3.72 2.53 2.90 2.51 2.78
MAE 4.97 2.50 4.34 2.28 3.73 1.63 3.63 1.44
MSE 5.65 2.49 5.10 2.19 4.25 1.30 4.07 0.99
Huber 5.43 2.31 4.79 2.06 4.08 1.36 3.91 1.12
Pinball 0.75 7.47 3.20 6.79 2.93 5.54 1.56 4.95 0.78
Pinball 0.9 10.67 6.23 9.69 5.58 8.05 3.80 6.82 2.41

the BESS energy capacity of 13.5 kWh and the loss functions MSE and pinball
0.75. These are the loss functions that lead to the minimal imbalance cost for this
BESS energy capacity (MSE) and to the minimal imbalance cost for the next bigger
BESS energy capacity (pinball 0.75), whose DF results are displayed in Figure 4.5.
Comparing the DF results between MSE and pinball 0.75 shows that while the DS
with pinball 0.75 is only slightly higher than the DS with MSE, the imbalances
especially during the PV power generation hours are higher with pinball 0.75. In
these hours, we observe that the actual SoE with pinball 0.75 is often at its upper
BESS energy capacity emax

s = 13.5 kWh.

4.3 Discussion

This section discusses the findings of the evaluation, the limitations and further
research.

4.3.1 Findings

The discussion of the findings focuses on three aspects. First, we discuss the relation
between the forecast quality and the forecast value. Second, we discuss the influence
of the forecast characteristics on the forecast value. Finally, we revisit the research
question posed in this chapter and assess whether the findings provide a satisfactory
answer.
First, regarding the relation between the forecast quality and forecast value, the
results in Subsection 4.2.2 show that the relation between the considered forecast
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quality, namely the MSE, and the considered forecast values for the DF, namely
the average daily costs, is non-monotonic. This means that improving the forecast
quality does not necessarily improve the forecast value for the DF and can even lead
to higher average daily costs. This result indicates that it may be beneficial for the
performance of the DF to consider not only the forecast quality but also the forecast
value when generating the required point forecast.
Second, regarding the forecast characteristics’ influence on the forecast value, the
results demonstrate that the forecast characteristics affect highly the considered
forecast value for the DF. When aiming for the best forecast value one might want to
look beyond the usual forecast characteristics determined by standard loss functions.
How the forecast characteristics affect the considered forecast value depends on
the prosumption data and the BESS energy capacity. Furthermore, we observe that
this impact varies for each forecast value. Thus, we further discuss this impact
for each considered forecast value, namely the average daily costs, separately.
For the DS cost, the results indicate that underestimating the prosumption leads
by far to the minimal cost for all BESS energy capacities and prosumption data
except for PV5. A possible reason why an underestimation of the prosumption is
beneficial in most cases is that this leads to an underestimation of the load and an
overestimation of the PV power generation. Thus, hardly any power is imported
from the grid according to the resulting DS. As consequence, the cost associated
with the DS are low. However, when the PV power generation is scaled with 5 a
strong underestimation becomes disadvantageous. A possible reason, therefore,
is that the building generates already so much PV power that an underestimation
of the prosumption and thus an overestimation of the PV power generation can
not be consumed by the building. Consequently, more PV power is fed into the
grid which raises cost due to the specified cost coefficients taking into account self-
consumption and peak shaving, see Appendix A.2. With respect to the imbalance cost,
we observe that the preferred forecast characteristics depend on the prosumption
data and the BESS energy capacity. We observe that overestimation becomes more
beneficial the smaller the load factor and the bigger the BESS energy capacity
indicating asymmetric imbalance cost. In the following, we aim to provide a possible
explanation of this behaviour. If the prosumption is overestimated, the DS is
calculated assuming that the building consumes more and generates less energy
than it actually does. Thus, in the second level, the BESS then charges if possible
to mitigate imbalances. As a result, the BESS has energy reserves for unexpected
high prosumption. This behaviour is beneficial if the BESS is not fully charged
and thus can still balance out unexpected low prosumption. For a higher load/PV
power generation factor or a smaller BESS energy capacity, the BESS reaches its
limit faster. As a result, imbalances become more likely. As the total cost is the
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weighted sum of the DS cost and the imbalance cost, the performance of the forecast
characteristics with respect to the two latter costs impacts the performance of the
forecast characteristics with respect to the total cost. Thereby, the imbalance cost
factor determines the impact of each cost. For both imbalance cost factors, we
observe that an overestimation can be beneficial depending on the prosumption
data and the BESS energy capacity. More specifically, for imbalance cost factor 10,
the imbalance cost makes up the largest share of the total cost. As consequence,
we observe the same results as for the imbalance cost, see Figure 4.3. On the other
hand, for the imbalance cost factor α = 2, the impact of the imbalance cost is less
dominant. Therefore, the impact of the DS cost becomes more important and the
results appear to be a combination of the results for both costs.
Finally, regarding the research question

RQ1: How do different point forecast characteristics influence the forecast value for
the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

we can conclude that the forecast characteristics influence the forecast value for
the two-level DF considering point forecasts and that this influence depends on the
prosumption data and the BESS energy capacity.

4.3.2 Limitations and Further Research

The main limitations of this evaluation are the chosen specifications, including
the forecast method used, the loss functions considered, and the DF specifications.
Therefore, the potential for further research lies in extending these specifications. In
particular, forecasts generated by different methods could be explored. Additionally,
more complex loss functions resulting in diverse forecast characteristics could be
examined, such as [57]. Regarding the DF specifications, further problem-specific
parameters could be evaluated, such as the cost coefficients, and extending the DF to
three levels could be of interest. Finally, other forecast values could be considered.
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Value-Oriented Forecast
Method Selection

5
As the evaluation of Chapter 4 shows, the forecast and its associated forecast method
have a huge impact on the forecast value for the dispatchable feeder (DF). This
impact depends on problem-specific parameters, namely the prosumption data and
the BESS energy capacity. Based on this finding, this chapter presents a framework
to select the best forecast method with respect to the forecast value1. While the
forecast method may be found by a manual selection, the proposed framework
aims to reduce the computational effort by using meta-learning. Therefore, the
selection task is treated as a classification problem and a classifier is trained to select
the forecast method leading to the forecast with the highest forecast value using
a building’s metadata as input. While the proposed framework is applicable to a
variety of downstream applications, we evaluate it on the two-level DF considering
point forecasts, illustrated in Figure 5.1. The research question addressed is:

RQ3: How to automatically select the forecast method with respect to the forecast value
with low computational effort using meta-learning?

The remainder of this chapter is structured as follows. First, Section 5.1 presents
the proposed framework. Then, Section 5.2 describes the experimental setup
for evaluating the proposed framework on the two-level DF considering point
forecasts in Subsection 5.2.1 and presents the results in Subsection 5.2.2. Afterwards,
Section 5.3 discusses the results.

5.1 Proposed Framework

This section proposes a framework for selecting the forecast method leading to
forecasts with a high forecast value. While this selection may be found by a com-
putationally expensive manual search, the proposed framework aims to reduce this

1The content of this chapter is based on [143], licensed under a Creative Commons “Attribution 4.0
International” License (CC BY 4.0). While the concept is the same, the experimental setup differs,
including the used classifiers, the forecasting specifications, the used prosumption data, and the
used BESS energy capacity.
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Fig. 5.1.: The schematic representation of the proposed framework with the novelty marked
in blue, taken from [143] and licensed under CC BY 4.0. In step (1), a classifier
is trained using the buildings’ metadata and the buildings’ label of the forecast
method leading to the forecast with the highest forecast value. In step (2),
the trained classifier can be operated to generate forecasts with a high forecast
value for a new building utilising its metadata (marked in green). Then, the
dispatchable feeder can be executed.

computational effort while achieving comparable results. Despite the evaluation on
the DF in this thesis, the proposed framework is applicable to various downstream
applications that require forecasts as input. Therefore, the following description is
formulated for a general downstream application. Additionally, the consideration of
buildings is generalised to instances.
Mathematically, the forecast method leading to the forecast with the highest forecast
value for the downstream application a and for instance i ∈ I can be expressed as

m⋆
i = argmax

m∈M
Value

(
a, Di, m

)
(5.1)

with the set of forecast methods M and the instance’s data Di, which includes the
relevant data for the forecast method and additional instance-specific data required
for the downstream application such as the BESS energy capacity in the case of the
DF. This data has a crucial impact on the forecast value. The forecast method m∗

i is
hereafter referred to as the best forecast method and is the target of the selection
task. The proposed framework treats this selection task as a classification problem.
The following subsections describe the components of the proposed framework in
Subsection 5.1.1 and the usage of the proposed framework in Subsection 5.1.2.

5.1.1 Components of the Proposed Framework

The proposed framework consists of a classifier that uses the instance’s metadata to
forecast the best forecast method for the considered downstream application. There-
fore, the relevant components of the proposed framework are the set of forecasts
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methods M, the downstream application a, the metadata extraction component,
and the classifier c. These components are described in the following:

• Set of forecast methods M: This set contains all considered forecast methods.
To handle the influence of the data Di from different instances i ∈ I on which
is the best forecast method, we need the set to be sufficiently diverse.

• Downstream application a: The downstream application must require a forecast
as input for execution. The performance of the downstream application’s
execution determines the forecast value and must therefore be measurable.

• Metadata extraction component: This component extracts relevant metadata
mdi from the data Di that is used as input for the classifier. In general, meta-
data provides details and characteristics of data and can come in various types
[118]. For the proposed framework, the metadata must contain information to
classify the best forecast method for the considered downstream application.

• Classifier c: Since we interpret the selection task in Equation (5.1) as a classifi-
cation problem, the classifier and its performance are crucial for the proposed
framework. In general, classification involves the approximation of a parame-
terised function c to forecast either one class label, which represents a discrete
outcome of a qualitative variable, or probabilities for each class, which repre-
sent the likelihood of each possible outcome, based on input features. As such,
it is a type of supervised learning [60]. The approximation of the function
c can be achieved by different classification algorithms based on different
strategies. Examples are tree-based strategies (e.g. decision tree, XGBoost
classifier [21]), distance-based strategies (e.g. k-nearest neighbour classifier
[38]), support vector-based strategies (e.g. support vector classifier [113]),
neural network-based strategies (e.g. multi-layer perceptron), and probabilis-
tic strategies (e.g. naive Bayes classifier [151]). The choice of the classifier
depends on the to be approximated function and the considered data. In the
proposed framework, the classifier has to select the forecast method leading
to the forecast with the highest forecast value in the considered downstream
application. In doing so, each forecast method m ∈ M represents a distinct
a class, into which each instance i is classified. The target variable of the
classifier is then m⋆

i , and its output m̂⋆
i = c(mdi) can take one of two forms:

either one forecast method, when forecasting a discrete outcome, or a vector of
probabilities for each forecast method, when forecasting the likelihood of each
possible outcome. Note that while the latter is a selection of the probabilities
for each forecast method rather than a direct selection of the forecast method,
we refer for simplicity to both forms as a selection of the forecast method.

5.1 Proposed Framework 63



Train
forecast method

Apply
forecast method

Extract
metadata

Data Di

Execute
downstream
application

Select best forecast
method

Best forecast
method m⋆

i

Metadata
mdi

Train
classifier c

for each
m ∈ M

for each
i ∈ I

(a) To train the proposed framework, the training data needs to be created. Therefore, for each
instance i ∈ I and its data Di, the forecast value for each forecast method m ∈ M in the
downstream application is calculated. Based on this information, the best forecast method
m⋆

i for this instance is determined. Afterwards, m⋆
i is used as target variable together with

the metadata mdi as input data to train the classifier c.

Data Dinew
Extract
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Apply

classifier
Output m̂⋆

inew
mdinew

(b) To operate the proposed framework, the metadata mdinew from the data Dinew of the new
instance inew is extracted. Based on this information, the classifier outputs m̂⋆

inew , which is
either a forecast method or probabilities for each forecast method. In the former case, the
forecast method is trained, and its forecast is provided to the downstream application a. In
the latter case, each forecast method is trained, and an ensemble forecast is generated as a
weighted sum of the resulting forecasts, with the probabilities as weights, and this ensemble
forecast is provided to the downstream application a.

Fig. 5.2.: The usage of the proposed framework, taken from [143] and licensed under CC
BY 4.0. (a) In the first step, the framework needs to be trained. (b) Afterwards,
the framework can be operated.

5.1.2 Usage of the Proposed Framework

To be able to use the proposed framework, two steps are necessary, as illustrated in
Figure 5.2. First, the framework needs to be trained. Second, the framework can
be operated to forecast either the forecast method leading to forecasts with a high
forecast value or probabilities for each forecast method for a new instance. These
two steps are described in more detail below.
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Step 1: Training The training of the proposed framework consists of the training
of the classifier, which requires the input features and the target variables. We first
describe the creation of the input features and the target variables and then present
the training of the classifier.
To create the input features and the target variables, the following steps are done
for each instance i ∈ I of the training set. First, we extract the metadata mdi of the
data Di corresponding to the input features, which includes key information of the
data Di. In the case of the DF, this metadata could include the building size, BESS
capacity, and statistical features such as the mean, variance, standard deviation,
minimum, maximum, or quantiles of the prosumption, load, or PV power generation.
To obtain the target variables, we first train each forecast method m ∈ M using
the data Di. Then, the forecasts generated by each forecast method are fed into
the downstream application. After execution, the performance of the downstream
application is evaluated and each forecast method is assigned its respective forecast
value. Finally, the forecast method leading to the forecast with the highest forecast
value is labelled with m⋆

i , which corresponds to the target variable.
The classifier c is then trained using the input features and the target variables over
all instances i ∈ I of the training set.

Step 2: Operation After training, the proposed framework uses the metadata
extracted from the data of a new instance Dinew and outputs m̂⋆

inew
, which is either a

forecast method or probabilities for each forecast method m ∈ M. Based on this
output, the forecasts can be generated. More precisely, if the output is one forecast
method, this forecast method is trained and the forecast is generated. If the output
is probabilities for each forecast method, each forecast method is trained, and their
resulting forecasts are combined into an ensemble forecast, using the probabilities
as weights in a weighted sum. Finally, the resulting forecasts can be used as input to
the downstream application a.

5.2 Evaluation

In this section, we evaluate the proposed framework on the two-level DF considering
point forecasts as downstream application. Therefore, Subsection 5.2.1 describes
the experimental setup, while Subsection 5.2.2 presents the results.
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5.2.1 Experimental Setup

The following describes the application of the proposed framework to the DF, the
used data, the generation of the point forecasts, the considered benchmarks for
comparing the performance, and the evaluation metrics.

Application to Dispatchable Feeder We apply the proposed framework to the two-
level DF considering point forecasts as the downstream application a. The aim is to
select for each building the forecast method for the prosumption point forecasts that
leads to the highest forecast value. Therefore, an instance i is a building. In line with
Chapter 4, we consider the average daily total cost in Equation (4.2) as the forecast
value, with a lower average daily total cost indicating a higher forecast value. For
the imbalance cost factor α we chose 2 and 10, which means that the proposed
framework is trained and evaluated twice with identical component specifications,
differing only in the target variable. In the following, the remaining components of
the proposed framework are specified, namely the set of forecast methods M, the
metadata extraction component, and the classifier c.
As set of forecast methods M, we consider the different prosumption point forecasts
generated by a neural network (NN) with seven different loss functions described in
Section 4.1 and Subsection 4.2.1. That is, we have seven classes associated with the
mean squared error (MSE), the mean absolute error (MAE), the Huber metric, and
the pinball loss with τ values of 0.1, 0.25, 0.75, and 0.9.
The metadata extraction component extracts relevant metadata mdi that captures
relevant information of the building and its prosumption time series as input features
for the classifier. Thus, as metadata mdi, we consider a set of statistical features
of the prosumption time series as input features. More precisely, we first scale the
prosumption time series with Scikit-learn’s standard scaler and then calculate the
mean, standard deviation, minimum, 0.25 quantile, median, 0.75 quantile, and
maximum. We also include the mean, minimum, and maximum of each day2.
Regarding the classifier c, we evaluate the proposed framework with six differ-
ent classifiers3 to cover a broad range of classification approaches including tree-,

2A cross-validation with five folds on the training buildings shows that these input features are
sufficient to provide relevant information for the classifier to perform well, and thus, incorporating
additional input features does not result in a noticeable increase in performance. The six additional
input features considered are the average daily prosumption profile (i.e. the average over all
considered days for each hour), the mean over all days of minimum and maximum for each day,
the strength of seasonality and the strength of trend of the prosumption time series [70], the
skewness and kurtosis of the prosumption time series, and the autocorrelation of the prosumption
time series.

3To implement the classifiers, we use the implementations provided by SKLearn [106] except for
XGBoost. For this classifier, we use the XGBoost library [33].
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distance-, support vector-, and neural network-based classifiers. While five classifiers
are used to forecast one class label, one classifier is used for both forecasting one
class label and forecasting probabilities for each class. The different classifiers are
briefly described in the following. The first classifier is the support vector classifier
(SVC) [113], which is used for both forecasting one class label and forecasting
probabilities for each class. The SVC determines the classes by dividing the input
feature space with a line or hyperplane [133]. While SVC is typically used for binary
classification, we apply it to our multi-class problem using the one-vs-one strategy.
This strategy trains a classifier for each pair of classes. While the output probabili-
ties are the percentages of votes received from all pairwise classifiers, the output
class label is determined by the class that receives the most votes from all pairwise
classifiers. To distinguish between the two classifiers, we refer to the SVC outputting
probabilities as ensemble SVC. The second classifier is k-nearest neighbours (kNN)
[38]. It determines the k nearest neighbours for each set of input features in the
test data using a given distance metric. The output class label is then the class label
of the majority of the k nearest neighbours. The third classifier is a decision tree
(DT) [21]. The DT constructs a model by recursively splitting the input feature
space based on the input feature values, creating a tree-like structure. Each internal
node represents a check on an input feature, branches represent the outcome of
the check, and leaf nodes represent the class labels. The output class label is then
determined by traversing the tree from the root to a leaf, based on the input feature
values. The fourth classifier is XGBoost [33]. XGBoost uses gradient tree boosting,
where multiple decision trees, serving as weak learners, are trained iteratively. Each
tree corrects the errors of its predecessor, and thus improving the performance. The
fifth classifier is the multi-layer perceptron (MLP). The MLP is a NN consisting of
one or more hidden layers of fully connected neurons with non-linear activation
functions. In the output layer, where each neuron corresponds to one class, the
softmax function is used as the activation function. The output is a probability for
each class and the output class label is then the class with the highest probability.
The sixth classifier is the naive Bayes (NB) [151]. NB is a probabilistic classifier
based on Bayes’ theorem, which assumes that the input features are conditionally
independent given the class label. The classifier calculates the posterior probability
of each class given the input features by combining the prior probability of each
class with the conditional probabilities of the input features. The output class label
is then the class with the highest posterior probability.

Data As prosumption data, we extend the original Ausgrid dataset by considering
further ratios of load and PV power generation. More precisely, we use the same
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prosumption data as in Section 4.1, i.e. we consider load5 with βload = 5, βPV = 1,
original with βload = 1, βPV = 1, load1/2 with βload = 1

2 , βPV = 1, and PV5 with
βload = 1, βPV = 5 in Equation (2.27). This results in a total of 1144 buildings. Of
these, we use 764 buildings, i.e. for each ratio of load and PV power generation the
buildings with IDs smaller than 200, to select the hyperparameters of the classifiers
through cross-validation with five folds and to train the classifiers. To test the
proposed framework, we use the remaining 380 buildings, i.e. for each ratio of
load and PV power generation the buildings with IDs greater than or equal to 200.
Additionally, for all buildings, we extract the metadata based on the first two years
and consider the output labels based on the last year.
For the BESS, we use the BESS energy capacity emax

s of 19.5 kWh.

Forecast Method As describes above, we use the same point forecasts generated
for the evaluation in Chapter 4. Therefore, the reader is referred to Subsection 4.2.1
for the description of the forecast specifications, the input features, the splitting of
the data in training, validation, and testing, and the neural network architecture.
Here we recall that the testing data for the forecasting is the last year.

Benchmarks To evaluate the performance of our proposed framework, we compare
it to two benchmarks. The first benchmark is the one loss function benchmark. As
the name suggests, this benchmark applies one forecast method to all considered
buildings. More precisely, we use the same loss function for all considered buildings
for the last year of data. As second benchmark, we consider a manually selected
loss function for each building. In this benchmark, we calculate which loss function
is cost-minimal for each considered building based on the second year of data. We
then apply this cost-minimal loss function for each considered building for the last
year.

Evaluation Metrics For the evaluation, we use four metrics. The first metric is the
F1 score as an accuracy measure for the classification. The F1 score is defined as

F1 = 2 · TP
2 · TP + FP + FN , (5.2)

with TP being the true positives, FP being the false positives, and FN being the
false negatives. In our multi-class problem, we consider the micro-average F1 score
from SKLearn [106], which aggregates the total number of TP, FP, and FN across all
classes. For each class, the TP consist then of the buildings for which the proposed
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framework correctly selects the class if the class is cost-minimal. The FP consist
of the buildings for which the proposed framework does not select the class even
though it is the cost-minimal class and the FN consist of the buildings for which the
proposed framework selects the class even though it is not the cost-minimal class.
For the one loss function benchmark, the F1 score corresponds to the percentage of
buildings for which the loss function is cost-minimal. Additionally, since the F1 is
calculated on discrete class labels, the F1 of the proposed framework with ensemble
SVC is calculated using the class labels with the highest probabilities. As a result,
it corresponds to the F1 of the proposed framework with SVC. Second, to measure
the forecast value of the forecast resulting from the selected forecast method, we
calculate the forecast value of the selection task, i.e. the average daily total cost
with imbalance cost factor either α = 2 or α = 10, averaged over the last year and
all considered test buildings. Third, to measure the difference in average daily total
cost averaged over last year between the proposed framework and the benchmarks
for each building, we calculate the percentage difference

%diffbenchmark = cbenchmark − cframework

cbenchmark · 100. (5.3)

A positive percentage difference indicates that the proposed framework achieves a
lower average daily total cost compared to the benchmark. Fourth, we measure the
computational effort by recording the average computation time of each component
of the proposed framework and the benchmarks in seconds, and calculate based on
this the average forecast method selection time in seconds. The latter consists of
the time required to select the forecast method and to generate the forecast. The
computational effort is calculated on Server 2 in Table 2.2.

5.2.2 Results

In this section, we evaluate the performance of the proposed framework. First, we
compare the average daily total costs and the accuracy of the proposed framework
with the two benchmarks. Then, we evaluate the impact of different classifiers
on the performance of the forecast method selection, and, finally, we address the
computational effort. Note that, we use the specification of the imbalance cost factor
to distinguish between the results of the two forecast method selections.
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Tab. 5.1.: The average daily total costs in C and the F1 scores of the one loss function
benchmark, the manually selected loss function benchmark, and the proposed
framework for imbalance cost factor α of 2 and 10. The metrics are calculated for
the testing data with the last year of data and for the buildings with IDs greater
than or equal to 200. Note that for the average daily total costs lower values are
better and for the F1 scores higher values.

α = 2 α = 10
Approach Total cost F1 score Total cost F1 score

One loss function with
Pinball 0.1 26.71 0.01 119.17 0.00
Pinball 0.25 22.01 0.06 84.61 0.03
MAE 19.70 0.26 57.63 0.18
MSE 20.85 0.14 56.25 0.15
Huber 20.87 0.13 56.42 0.14
Pinball 0.75 26.54 0.27 69.17 0.32
Pinball 0.9 54.36 0.13 158.18 0.18

Manually selected loss function 19.15 0.76 53.52 0.74
Proposed framework (ensemble SVC) 18.95 0.58 53.10 0.59

Benchmarking

For this evaluation, we compare the performance of the proposed framework and
the two benchmarks in aggregate and in detail. For the aggregate comparison,
we compare the average daily total costs averaged over the last year and the test
buildings and the F1 scores of our framework with the two benchmarks for imbalance
cost factor α of 2 and 10. For the detailed comparison, we evaluate the percentage
difference of the proposed framework and the two benchmarks for each building for
imbalance cost factor α of 2 and 10.

Aggregate Comparison Table 5.1 shows the results of the aggregate comparison,
which we describe below for each imbalance cost factor. Starting with imbalance
cost factor α = 2, we observe for the one loss function benchmark that the selected
loss function has a noticeable impact on the average daily total cost and the accuracy.
This benchmark achieves the lowest average daily cost (19.70) when MAE is used
as loss function. However, similar average daily costs are obtained when using
MSE (20.85) and Huber (20.87). The corresponding accuracy with MAE, MSE, and
Huber is 0.26, 0.14, and 0.13 respectively. In contrast, pinball 0.75 results in an
average daily cost of 26.54 despite being the cost-minimal forecast method for the
most buildings (namely 27%). In comparison, the manually selected loss function
benchmark has average daily total cost of 19.15 and an accuracy of 0.76. In contrast,
the proposed framework with ensemble SVC reduces the average daily total cost
of both the one loss function benchmark and the manually selected loss function
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benchmark by at least 9.11% and by 1.04% respectively. However, the accuracy of
the proposed framework with ensemble SVC is with 0.58 considerably lower than
the accuracy of the manually selected loss function.
For imbalance cost factor α = 10, the one loss function benchmark reaches its lowest
average daily total cost (56.25) with MSE. Using Huber and MAE leads to similar
average daily total costs of 56.42 and 57.63 respectively. The corresponding accuracy
is 0.18 with MAE, 0.15 with MSE, and 0.14 with Huber. In contrast, pinball 0.9
leads to accuracy of 0.18 while resulting in average daily total cost of 158.18. The
highest accuracy of 0.32 is achieved with pinball 0.75. In comparison, the manually
selected loss function benchmark achieves an average daily total cost of 53.52 and
an accuracy of 0.74. In contrast, the proposed framework with ensemble SVC, again,
reduces the average daily total cost of both the one loss function benchmark and
the manually selected loss function benchmark by at least 5.60% and by 0.78%
respectively to 53.10. The accuracy of the proposed framework with ensemble SVC
is with 0.59 again lower than the accuracy of the manually selected loss function
benchmark.

Detailed Comparison Figure 5.3 shows the results of the detailed comparison,
which we describe below for each benchmark. Note that for the one loss function
benchmark, we consider the loss function that achieves the lowest average daily
total cost, i.e. MAE for imbalance cost factor α = 2 and MSE for imbalance cost
factor α = 10.
Compared to the one loss function benchmark, we observe for both imbalance cost
factors that the percentage differences are positive for most buildings This positive
skew is stronger for imbalance cost factor α = 10.
Compared to the manually selected loss function benchmark, we observe a strong
concentration of percentage differences around zero for both imbalance cost factors,
with the majority of percentage differences falling within a range of 25% or 50%.
However, there is a slight tendency towards positive percentage differences.

Impact of Classifier

To investigate the impact of the classifier, we compare the performance of the
proposed framework with the seven classifiers. Based on the results for the imbalance
cost factors α of 2 and 10 in Table 5.2, we present three observations.
First, starting with imbalance cost factor α = 2, we observe that the proposed
framework achieves the lowest average daily total cost of 18.95 with ensemble SVC.
The second lowest average daily total cost of 19.43 is achieved with SVC, which is
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Fig. 5.3.: The percentage differences in the average daily total cost with imbalance cost
factor α of 2 (a) and 10 (b), are compared between the proposed framework with
ensemble SVC and the two benchmarks: the one loss function benchmark with
MAE (upper left), the one loss function benchmark with MSE (lower left) and the
manually selected loss function benchmark (right), for each building. Note that
positive percentage differences indicate that the proposed framework achieves a
lower average daily total cost. Additionally, the plots show a range between -100
and 100.
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Fig. 5.4.: The standard deviation of the prosumption time series against the maximum of
the prosumption time series with the colour indicating the loss function achieving
the minimal average daily total cost with imbalance cost factor α of 2 (left) and
the minimal average daily total cost with imbalance cost factor α of 10 (right) for
each building.

2.47% higher than the lowest average daily total cost. The classifiers DT and kNN
lead to average daily total cost of 19.45, and 19.50 respectively. With respect to the
accuracy, the classifiers ensemble SVC, SVC, kNN, DT, and XGBoost have similar
accuracies. In contrast, NB achieves the highest average daily total cost with 21.49
and the lowest accuracy with 0.38.
Second, for imbalance cost factor α = 10, again, ensemble SVC achieves the lowest
average daily total cost with 53.10, followed by SVC with 54.17 resulting in an
increase of 1.98%. These classifiers achieve the highest accuracy with 0.59. The
classifiers XGBoost, DT, and kNN follow with average daily total cost of 54.42,
54.52, and 54.64 respectively and accuracies of 0.56, 0.55, and 0.56 respectively. In
consistency with the results for imbalance cost factor α = 2, NB achieves the highest
average daily total cost with 81.39 and the lowest accuracy with 0.41.
Finally, we provide a third observation based on Figure 5.4, which shows the values
of the two most important input features for the tree-based classifiers, namely the
standard deviation and the maximum of the prosumption time series, and the label
of the target variable of the classification for imbalance cost factor α = 2 and α = 10
for each building. This figure shows that, while buildings with a high standard
deviation and maximum do not show a clear relationship between input and target
variables, a pattern emerges for buildings with a standard deviation below about
1 kW and a maximum below about 6 kW. More specifically, we observe that for
standard deviations close to 1 kW, the target variables are primarily MAE, MSE, and
Huber. As the standard deviation decreases further, the target variable for most
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Tab. 5.2.: The average daily total costs in C and the F1 scores of the proposed framework
using different classifiers for imbalance cost factor α of 2 and 10. The metrics
are calculated for the test data set with the last year of data and for the buildings
with IDs greater than or equal to 200. Thereby, we calculate the mean over five
runs with the values in the brackets being the minimum and maximum for the
stochastic classifiers decision tree and multi-layer perceptron. Note that for the
average daily total costs lower values are better and for the F1 scores higher
values.

α = 2 α = 10
Classifier Total cost F1 score Total cost F1 score

Ensemble SVC 18.95 0.58 53.10 0.59
SVC 19.43 0.58 54.17 0.59
kNN 19.50 0.59 54.64 0.56
DT 19.45 (19.44, 19.45) 0.59 (0.58, 0.59) 54.52 (54.46, 54.57) 0.55 (0.54, 0.56)
XGBoost 19.60 0.59 54.42 0.56
MLP 19.74 (19.62, 19.82) 0.55 (0.54, 0.56) 56.67 (55.69, 59.50) 0.53 (0.51, 0.54)
NB 21.49 0.38 81.39 0.41

buildings first shifts to pinball 0.75, and at the smallest standard deviations, it is
mostly pinball 0.9.

Computational Effort

To evaluate the computational effort, we first measure the computation time of each
component of the proposed framework and the considered benchmarks. Afterwards,
we calculate the forecast method selection time of the proposed framework and the
benchmarks to select the forecast method for a new building.
For each component, Table 5.3a provides the average computation time in seconds
per building. By far the most time-intensive component is the OP’s run time on the
second year of data, followed by the NN’s training time. The other components
require a negligible amount of time.
Based on the measured times of the components, we can estimate the forecast
method selection time of the proposed framework and the two benchmarks for a
new building. For the one loss function benchmark, the NN with the considered loss
function must be trained on the first two years of the new building’s data and the
forecast must be generated. For the manually selected loss function benchmark, we
need to train NNs for each loss function, generate forecasts with the trained NNs
and solve the optimisation problem with the resulting forecasts for the second year.
For the proposed framework, we must first extract the metadata based on the first
two years, then run the classifier. For SVC, which outputs one forecast method, the
NN with the selected loss function must be trained once. For ensemble SVC, we
need to train NNs for each loss function, generate the forecasts, and then generate
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Tab. 5.3.: The average computation time in seconds of each component and the average
forecast method selection time in seconds of the one loss function benchmark,
the manually selected loss function benchmark, the proposed framework with
ensemble SVC, and the proposed framework with SVC for a new building. Note
that the times do not depend on the considered imbalance cost factor and are
measured on Server 2 in Table 2.2.

(a) Average computation time of the components

Component Computation time

Classifier inference time
Ensemble SVC 0.023
SVC 0.023
kNN 0.045
DT 0.001
XGBoost 0.003
MLP 0.004
NB 0.001

Metadata generation time 0.004
Ensemble generation time 0.028
Forecasting NN training time 0.431
Forecasting NN inference time 0.003
Optimisation problem run time 382.741

(b) Average forecast method selection time of the proposed framework and the considered benchmarks
for a new building.

Approach
Forecast method

selection time

One loss function 0.434
Manually selected loss function 2682.225
Proposed framework (ensemble SVC) 3.070
Proposed framework (SVC) 0.438

the ensemble forecast. Table 5.3b shows the resulting forecast method selection
times. In this table, we make two observations. First, the manually selected loss
function benchmark has, noticeably, the highest forecast method selection time with
2682.225 seconds. The one loss function benchmark and our proposed framework
require notably less time. Second, we observe that despite using a meta-learning
approach the forecast method selection time of the proposed framework with SVC
is only slightly higher than that of the one loss function benchmark. The proposed
framework with ensemble SVC has a higher forecast method selection time due to
the training of the NNs for each loss function and the generation of the ensemble
forecast.
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5.3 Discussion

This section discusses the findings of the evaluation, the limitations and further
research.

5.3.1 Findings

We discuss the findings with respect to five aspects. First, the results show that the
classifier ensemble SVC clearly achieves the lowest average daily total costs over all
considered classifiers, followed by the classifiers SVC, kNN, DT, and XGBoost, which
achieve similar average daily total costs. In contrast, for this downstream application,
the use of the MLP and the NB classifiers is not recommended. A possible explana-
tion for the superior performance of the classifier ensemble SVC could be that the
resulting ensemble forecast can exploit the strengths of each forecast with different
characteristics, which is particularly advantageous given the limited number of loss
functions considered. Consequently, the ensemble SVC may compensate for this
limitation by generating a forecast with characteristics that are not fully captured by
the individual loss functions [16].
Second, the results indicate that the proposed framework reduces the average daily
total costs and improves the accuracy compared to the one loss function benchmark.
Furthermore, the performance of the proposed framework with respect to the aver-
age daily total costs is comparable to the performance of the manually selected loss
function benchmark. However, there is still potential for further improvement of our
framework, especially with respect to the accuracy. For example, more advanced
classification methods could be applied.
Third, we observe a non-monotonic, non-linear relation between the average daily
total costs and the accuracy. More precisely, improving the accuracy does not neces-
sarily lead to lower average daily total cost. For the one loss function benchmark,
this means that the cost-minimal loss function for most buildings is not necessarily
the cost-minimal loss function for the whole data set. This observation can be
explained by largely high average daily total costs for the remaining buildings, and
highlights the complexity of selecting the loss function with respect to the forecast
value in the downstream application.
Fourth, the results show that the proposed framework reduces the computational
effort compared to the manually selected loss function benchmark by 99%. That
makes the proposed framework particularly interesting for downstream applications
for which scalability is essential. For example, in the considered application of the
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DF scalability and low computational effort could be important when multiple build-
ings are involved. Additionally, in contrast to the manually selected loss function
benchmark, the computational effort of the proposed framework increases negligibly
when the set of forecasting methods is expanded to include different forecasting
methods. Finally, regarding the research question

RQ3: How to automatically select the forecast method with respect to the forecast value
with low computational effort using meta-learning?

we can say that interpreting this selection task as a classification problem using a
building’s metadata as input results in a lower average daily total cost compared
to using the same loss function for each building, and a lower computational
effort compared to a manual selection. In particular, using the classifier to predict
probabilities for each considered forecast method and generating an ensemble
forecast based on these probabilities is more beneficial with respect to the average
daily costs than using the classifier to select the forecast method with the highest
forecasted probability.

5.3.2 Limitations and Further Research

With regard to the limitations of the proposed framework, we discuss three aspects.
First, despite the encouraging results, it should be noted that the proposed frame-
work has been evaluated on one downstream application only and that it adds a
small computational effort to the forecasting task itself. However, the additional
computational effort is small compared to the overall forecast method selection
time.
Second, the proposed framework uses two years of historical data to generate the
metadata input features. Further evaluation needs to consider whether using less
data still leads to promising results. A first analysis shows a comparable performance
when using one year of metadata.
Third, the proposed framework selects the forecast method once for each building.
Further research could extend the framework to an online setting that continually
re-classifies each building based on current information. This extension is espe-
cially motivated by the results of the manually selected loss function benchmark,
which only achieves an accuracy of 0.76 or 0.74, suggesting that the forecast value
of a forecast method may change over time. However, a first analysis of a daily
re-classification shows no improvement in performance. A possible explanation is
that we did not include weather forecasts as input features, which could influence
the forecast quality in addition to the usage of different loss functions [50]. The
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classifier could be learning the effect of missing weather forecasts rather than fo-
cusing on the effect of different loss functions. While this may average out in a
one-time classification, it could persist in a daily re-classification. Therefore, we
recommend considering weather forecasts as input features for the forecast methods
when approaching a continuous re-classification.
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Probabilistic Forecast
Evaluation

6
This chapter evaluates probabilistic forecasts with respect to the forecast value
for the two-level dispatchable feeder (DF) considering probabilistic forecasts. For
this evaluation, different probabilistic forecasts with different characteristics are
considered. More precisely, we modify the probabilistic forecasts to have a different
dispersion or a different location, thus a bias. For these different forecasts, we analyse
the relation between the considered forecast value and the considered forecast
quality. Additionally, we evaluate the forecast value for the different forecasts
depending on problem-specific parameters. Therefore, the addressed research
question is:

RQ2: How do different probabilistic forecast characteristics influence the forecast value
for the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

The structure of this chapter is as follows. First, Section 6.1 describes the approach,
how forecasts with different characteristics are obtained, and how the probabilistic
forecasts are generated. Second, Subsection 6.2.1 outlines the experimental setup.
Then, Subsection 6.2.2 presents the results of the evaluation. Finally, Section 6.3
discusses the findings.

6.1 Approach

The evaluation conducted in this chapter is inspired by the concept of post-processing
probabilistic forecasts via recalibration, as discussed in the literature, e.g. [84]. The
idea of such a recalibration is to adjust probabilistic forecasts, which may suffer
from biases [110] and inaccuracies depending on the forecast specifications, so that
the forecasted probabilities align with the true outcomes. While such recalibration
focuses on the forecast quality, our idea is to adjust the probabilistic forecasts with
respect to the forecast value. Before we can proceed with such a value-oriented
recalibration, we take a step back and start by evaluating the impact of different
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(a) The framework to evaluate probabilistic forecasts with different characteristics with respect
to the forecast quality and the forecast value (marked in blue) for the two-level dispatchable
feeder considering probabilistic forecasts. The probabilistic forecasts with different character-
istics are generated via a nested neural network and modified to have different dispersions
or biases (marked in orange). Additionally, varying problem-specific parameters, namely
the security level parameters for the reformulated power and energy chance constraint, are
considered (marked in green).
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(b) The specification of the forecasting. The probabilistic forecasts are generated via a nested neural
network. The resulting quantile energy forecasts q̂El(k+1) are further transformed to obtain the
required CDF forecasts F̂∆El(k+1). Finally, the power or energy forecasts are modified to have
different dispersions or biases (marked in orange).

Fig. 6.1.: The framework to evaluate probabilistic forecasts with different characteristics for
the two-level dispatchable feeder considering probabilistic forecasts (a) and the
specification of the forecasting to generate probabilistic forecasts with different
characteristics (b).

probabilistic forecasts for the prosumption power quantiles qPl(k) and the cumulative
distribution function (CDF) of the deviation from the mean of the prosumption
energy F∆El(k+1), which are used for the reformulated power and energy chance
constraints in the computation of the dispatch schedule (DS). The evaluation of
these forecasts focuses on the influence of different forecast characteristics on the
forecast value for the two-level DF considering probabilistic forecasts as illustrated
in Figure 6.1a. This evaluation follows the same steps as outlined in Section 4.1.
More precisely, it involves generating the probabilistic forecasts, computing the
day-ahead DS via the first-level optimisation problem (OP) based on these forecasts,
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determining the actual dispatch by minimising the deviations from the DS in the
second-level OP based on the actual prosumption values, and measuring the forecast
value of the probabilistic forecasts.
To generate these probabilistic forecasts, we use in alignment with Chapter 4 a neural
network (NN), see Figure 6.1b. More precisely, we use a nested NN that generates 99
quantile forecasts of qPl(k)(p) and qEl(k+1)(p) for p = 0.01, ..., 0.99 using the pinball
loss in Equation (2.11) with τ values of 0.01, ...0.99 as loss function. The nested
NN operates in three stages: the first NN forecasts the power quantile forecasts
of qPl(k)(p) based on the input features. The second NN acts as an encoder of the
power quantile forecasts. Finally, the third NN forecasts the energy quantiles of
qEl(k+1)(p) based on the encoded power quantile forecasts. The quantile forecasts of
qEl(k+1)(p) are then transformed to obtain the input of the DF, i.e. the CDF forecasts
of F∆El(k+1), which is further described in Subsection 6.1.1. To obtain forecasts with
different characteristics, we take a different approach compared to the evaluation
of point forecasts in Chapter 4. While the different characteristics for the point
forecasts are achieved by using different loss functions within the NN, we modify the
probabilistic forecasts generated with the pinball loss1. The modification is such that
the forecasted distribution has either a bias or a different degree of variability in the
forecasted values, often referred to as dispersion2. While the motivation for different
biases comes from the results presented in Chapter 4, the motivation for different
dispersions is that it is an important characteristic influencing the performance of
the DF considering probabilistic forecasts. More precisely, unlike the DF considering
point forecasts, the DF considering probabilistic forecasts holds BESS reserves for
the power and energy uncertainty of the prosumption via the reformulated power
and energy chance constraints

pgDS (k) − pmax
s ≤ q̂Pl(k)(0.5 − 0.5 · (1 − ϵP ))

pgDS (k) − pmin
s ≥ q̂Pl(k)(0.5 + 0.5 · (1 − ϵP ))

(6.1)

1 − ϵE − ϵfix(k) − ϵvar(k) ≤ F̂∆El(k+1)
(
ēs(k + 1) − emin

s

)
− F̂∆El(k+1) (ēs(k + 1) − emax

s )
(6.2)

in Equation (2.24). The extent of these reserves is thereby determined by the
dispersion of the forecasts q̂Pl(k) and F̂∆El(k+1), the security level parameters ϵP

and ϵE , and the BESS power and energy capacities pmin
s , pmax

s , emin
s , and emax

s . The
importance of the dispersion is further underlined by the fact that both the forecast

1The modification of the generated probabilistic forecasts eliminates the need to generate new ones
and thus reduces the computational effort.

2We use the term dispersion instead of sharpness to specifically refer to changes in the variability
of the forecasted values, whereas sharpness typically describes the concentration around the
centre-oriented forecast.
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method3 and its hyperparameters can influence the dispersion of the resulting
probabilistic forecasts [96].
The modified probabilistic forecasts are used for the computation of the DS. Equally
to Chapter 4, we use the unmodified median forecasts for the estimation of the SoE
at 12 AM.
Additionally, we evaluate the performance of the DF considering probabilistic forecast
by assessing the impact of further problem-specific parameters that may affect
this performance. In addition to the technical parameters for the two-level DF
considering point forecasts, the two-level DF considering probabilistic forecasts has
operational parameters, namely the security level parameters ϵP and ϵE for the
reformulated power and energy chance constraints described above. Therefore, in
contrast to the problem-specific parameters of the prosumption data and the BESS
energy capacity considered in Chapter 4, we evaluate the performance of the DF
considering probabilistic forecasts based on the forecast value depending on the
problem-specific parameters of the security level parameters ϵP and ϵE .
In this context, it is important to mention an effect that can occur in the computation
of the DS depending on the security level parameter ϵP , the power forecasts, and
the BESS capacities. Unlike the security level for the reformulated energy chance
constraint, the security level for the reformulated power chance constraint can
not be relaxed. As a consequence, the OP for the computation of the DS may be
infeasible. A simple possible scenario where the OP is infeasible is when pmax

s −pmin
s <

qPl(k)(0.5 + 0.5 · (1 − ϵP )) − qPl(k)(0.5 − 0.5 · (1 − ϵP )) for any k. In this scenario,
the reformulated power chance constraint can not be satisfied for the security level
1 − ϵP . This effect is especially relevant for modified power forecasts with large
dispersion. While this infeasibility is interesting but not critical for the evaluation
performed in this chapter, it may be critical for a real-world implementation. To
mitigate the infeasibility, the security level of the power chance constraint could be
reduced, i.e. a higher security level parameter ϵP could be used, or a relaxation
similar to the relaxation for the reformulated energy chance constraint could be
included in the mathematical formulation for the computation of the DS. However,
in this evaluation, we limit the consideration of this effect by reporting on the
infeasible cases.
With these specifications, we aim to analyse whether the relationship between
forecast quality and forecast value is monotone. Additionally, we seek to explore
how the security level parameters and the characteristics of the probabilistic forecasts
interact and influence the forecast value.

3We would like to highlight that probabilistic forecasts generated using NNs can have greater
dispersion compared to those generated by other forecast methods due to the emphasis on good
calibration [48].
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In the following, we further describe how we transform the quantile forecasts
q̂El(k+1) to obtain the required CDF forecasts F̂∆El(k+1) in Subsection 6.1.1 and how
modify the probabilistic forecasts in Subsection 6.1.2.

6.1.1 Transformation of Energy Quantile Forecasts

The following describes the transformation of the energy quantile forecasts q̂El(k+1)

into the input for the DF using probabilistic forecasts, namely the CDF forecasts
F̂∆El(k+1). This transformation consists of two steps. First, the median forecast
q̂El(k+1)(0.5) is subtracted from all quantile forecasts to obtain the quantile forecasts
q̂∆El(k+1). Second, the quantile forecasts q̂∆El(k+1) are transformed to obtain the CDF
forecasts F̂∆El(k+1). Since this CDF has to meet the requirements of Pyomo, it has to
be described in closed form, as the piecewise implementation from Pyomo’s piecewise
function library does not give the expected results. Using a closed form turns the
non-parametric quantile forecasts into a parametric CDF forecast. Therefore, the
choice of the closed form affects the performance of the DF and thus the forecast
value. In order to make a reasonable choice of this transformation, we evaluate
different transformation approaches with respect to the forecast value for the two-
level DF using probabilistic forecasts in a preliminary analysis. Therefore, we first
describe the considered transformation approaches, and then present the results.
Finally, we summarise the preliminary analysis.

Transformation Approaches

Following [8], we compare three transformation approaches, all based on the basic
idea of using general logistic functions as closed form.
The first approach one log fits the quantile forecasts via least squares to a general
logistic function, i.e.

F̂∆El(k+1)(q) = w0
1 + exp(−w1(q − w2))

with weights w0, w1, w2 ∈ R. This general logistic function is symmetric around w2

and equivalent to a logistic distribution with mean w2 and scale 1
w1

. Consequently,
the weights are mostly pre-defined with

w0 = 1

w1 > 0

w2 = q̂∆El(k+1)(0.5).
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In the second approach two log, two fittings via least squares are performed, namely
to one general logistic function as in the one log approach and to the sum of two
general logistic functions, i.e.

F̂∆El(k+1)(q) = w0
1 + exp(−w1(q − w2)) + w3

1 + exp(−w4(q − w5))

with weights w0, w1, w2, w3, w4, w5 ∈ R. The two log approach then selects the
logistic function with the smallest MSE if the solver finds solutions for both least
square fittings within the predefined error bounds. In contrast to one general logistic
function, the sum of two general logistic functions does not have to be symmetric
and can account for skewness. The weights are mostly free with

w0 + w3 = 1.

However, unlike the one log approach, additional constraints must be added to
guarantee the properties of a CDF, namely that it is monotonically increasing, that it
only takes values in [0, 1], and that it has the limits

lim
q→−∞

F̂∆El(k+1)(q) = 0

lim
q→∞

F̂∆El(k+1)(q) = 1.

For the monotony, we add the constraints

F̂ ′
∆El(k+1)(q) = w0 · w1 · exp(−w1 · (q − w2))

(1 + exp(−w1 · (q − w2)))2 + w3 · w4 · exp(−w4 · (q − w5))
(1 + exp(−w4 · (q − w5)))2 ≥ 0

for q ∈ {−50, −49, ..., 49, 50}. Additionally, to achieve values large than or equal to
zero, we add the constraints

F̂∆El(k+1)(q) = w0
1 + exp(−w1(q − w2)) + w3

1 + exp(−w4(q − w5)) ≥ 0

for q ∈ {−50, −49, ..., 49, 50}. Regarding the limits, it is not straightforward to state
constraints. Therefore, we adjust the least squares fitting by adding the tuples

(q̂∆El(k+1)(0.01) − i · (q̂∆El(k+1)(0.1) − q̂∆El(k+1)(0.09)), 0) for i = 1, ..., 50

(q̂∆El(k+1)(0.99) + i · (q̂∆El(k+1)(0.1) − q̂∆El(k+1)(0.09)), 1) for i = 1, ..., 50

to the data, see Figure 6.2. Additionally, as the used implementation of the ex-
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Fig. 6.2.: The quantile forecasts q̂El(k+1) and the transformed CDF forecast F̂∆El(k+1) via
the two log without adding tuples and with adding tuples to achieve the limits of
a CDF exemplarily for building 110 These forecasts are for 2012-07-16 at 7 PM
and are generated on 2012-07-15 at 12 PM.

ponential function gets overflow issues for values bigger than 700, we add the
constraints

−w1 · (max
p

q̂∆El(k+1)(p) − w2) ≤ 700

−w1 · (min
p

q̂∆El(k+1)(p) − w2) ≤ 700

−w4 · (max
p

q̂∆El(k+1)(p) − w5) ≤ 700

−w4 · (min
p

q̂∆El(k+1)(p) − w5) ≤ 700.

All these constraints can not formally guarantee the characteristics of the CDF. How-
ever, to be able to guarantee the characteristics of the CDF, conservative constraints
would have to be added, which may restrict a proper fitting.
The third approach weighted two log is similar to the two log approach, but with
a weighted least squares fitting for the fitting of the sum of two logistic functions.
That is, the objective function is

∑
i=1,...,99

pi · (F̂∆El(k+1)(pi) − q̂El(k+1)(pi))2

for p = (p1, ..., p99) = (0.01, ..., 0.99). The motivation for this weighting is the obser-
vation of a positive skewness of ∆El(k + 1) in the quantile forecasts. The weights pi

emphasize the right tail, enabling the fitting to better capture the skewness.
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Fig. 6.3.: The quantile forecasts q̂El(k+1) and the transformed CDF forecast F̂∆El(k+1) via
the one log, two log, and weighted two log approach for buildings 109 and 110.
These forecasts are for 2012-07-13 at 4 AM (left) and 2012-07-12 at 12 PM (right)
and are generated on 2012-07-12 at 12 PM.
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Tab. 6.1.: The average time per transformation in seconds and the average daily costs
in C for security level parameters ϵP = 0.1 and ϵE = 0.3 over the test data
and buildings 109 and 110. Note that the average time per transformation is
measured on Server 2 in Table 2.2.

Building One log Two log Weighted two log

109

DS cost 4.70 4.71 4.71
Imbalance cost 0.78 0.78 0.77
Total cost α = 2 6.25 6.26 6.25
Total cost α = 10 12.45 12.47 12.39
Time 0.07 0.41 0.39

110

DS cost 0.92 0.94 0.94
Imbalance cost 0.69 0.67 0.66
Total cost α = 2 2.29 2.27 2.26
Total cost α = 10 7.78 7.60 7.54
Time 0.07 0.47 0.46

Results

In the following, we quantitatively compare the different transformation approaches
described above with respect to the forecast value, i.e. the four average daily costs
described in Subsection 4.2.1, and the average time per transformation exemplarily
for the buildings 109 and 110. Additionally, we qualitatively compare the transfor-
mation approaches visually, exemplarily for two hours of buildings 109 and 110.
Starting with the quantitative comparison, Table 6.1 shows the average time per
transformation and the average daily costs averaged over the last year for security
level parameters ϵP = 0.1 and ϵE = 0.3. For both buildings we observe that almost
all average daily costs are lowest with the weighted two log approach. However,
the differences in the average daily costs are small. In contrast, the average time
per transformation varies with the average time of the two log approach and the
weighted two log approach being more than 5.5 times higher than the average time
of the one log approach.
For the qualitative comparison, Figure 6.3 shows two hours of quantile forecasts
q̂∆El(k+1) generated at 12 PM on 2012-07-12 and the transformed CDF forecasts
F̂∆El(k+1) for the considered approaches of building 109 and 110 respectively. For
building 109, we observe that the transformed CDFs of all considered approaches
are almost equal. In contrast, for building 110, we observe differences in the
transformed CDFs at the right tail. More specifically, for 4 AM, the weighted two
log approach matches the quantile forecasts better than the one log and two log
approaches, while for 12 PM, both the two log and the weighted two log approach
match the quantile forecasts better than the one log approach.
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Fig. 6.4.: The probabilistic power forecasts q̂Pl(k) (left) and energy forecasts F̂∆El(k+1)
(right) with different characteristics, generated with different biases and different
dispersions, for building 109 and the exemplary hour 2012-08-10 0 AM.

Summary

The preliminary analysis shows that while the weighted two log approach results
in the lowest average daily costs, the difference for the considered transformation
approaches is small. This is true for both buildings, although the quantile forecasts
for building 109 appear to follow the logistic distribution and the quantile forecasts
for building 110 may be positively skewed. Furthermore, the average time per
transformation is at least 5.5 times higher for the two log and the weighted two log
approach than for the one log approach. The reason for this difference is that two
transformations are performed for the two log and the weighted two log approach.
As the subsequent evaluation of the probabilistic forecasts with respect to the average
daily costs is carried out on 286 buildings with different problem-specific parameters,
the two log and weighted two log approach would require an immense amount of
computational effort and can be expected to improve the average daily costs only
slightly. We therefore use the one log approach in the following evaluation.

6.1.2 Modification of Probabilistic Forecasts

In the following, we further describe the two types of modification, namely the
modification for a bias and the modification of dispersion, and how we obtain the
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corresponding probabilistic forecasts, see Figure 6.4. Note that we only modify either
the forecasts q̂Pl(k) or the forecasts F̂∆El(k+1) in order to evaluate the impact of the
modification on each forecast separately4. For simplicity, we refer to the forecasts
q̂Pl(k) as power forecasts and to the forecasts F̂∆El(k+1) as energy forecasts5. Starting
with the modification for a bias, we use

q̂mod,bias
Pl(k) (p) = q̂Pl(k)(p) + dbias,Pl (6.3)

F̂ mod,bias
∆El(k+1)(x) = F̂∆El(k+1)(x − dbias,∆El) (6.4)

with dbias,Pl , dbias,∆El ∈ R. These modifications6 can be understood as modifying a
random variable Z via

Zmod,bias = Z + dbias (6.5)

resulting in

E[Zmod,bias] = E[Z] + dbias (6.6)

Var[Zmod,bias] = Var[Z] (6.7)

with dbias = 0 resulting in the unmodified random variable. To obtain modifications,
which are comparable to Chapter 4, we set

dbias,Pl = q̂Pl(k)(τ) − q̂Pl(k)(0.5) (6.8)

dbias,∆El = q̂∆El(k+1)(τ) (6.9)

for τ ∈ (0, 1). In this way, the location of the power or energy7 forecasts is shifted
towards lower values, if τ is smaller than 0.5, similar to an underestimation in
Section 4.1. If τ is greater than 0.5, the location of the power or energy fore-
casts is shifted towards higher values, similar to an overestimation in Section 4.1.
Specifically, we consider the following modifications for a bias: power_bias_0.1,
power_bias_0.25, power_bias_0.75, power_bias_0.9 for the modification of the
power forecasts in Equation (6.8) with τ of 0.1, 0.25, 0.75, and 0.9 respectively, and
energy_bias_0.1, energy_bias_0.25, energy_bias_0.75, energy_bias_0.9 for the
modification of the energy forecasts in Equation (6.9) with τ of 0.1, 0.25, 0.75, and

4In this way we neglect the physical relation between the two forecasts.
5Note that while El(k + 1) is actually the prosumption energy, ∆El(k + 1) is the deviation from the

mean of El(k + 1).
6Note that dbias corresponds to dbias,Pl when modifying the power forecasts and to dbias,∆El when

modifying the energy forecasts.
7Note that ∆El(k + 1), as the deviation from the mean, is a random variable with a mean of zero.

Consequently, modifying for a bias of the energy forecasts F̂∆El(k+1) effectively introduces an
anticipated systematic offset.
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0.9 respectively.
For the modification for a different dispersion, we consider

q̂mod,dis
Pl(k) (p) =

√
ddis,Pl · q̂Pl(k)(p) + (1 −

√
ddis,Pl) · q̂Pl(k)(0.5) (6.10)

F̂ mod,dis
∆El(k+1)(x) = F̂∆El(k+1)(

x√
ddis,∆El

) (6.11)

with ddis,Pl , ddis,∆El ∈ R+. These modifications8 can be understood as modifying a
random variable Z via

Zmod,dis =
√

ddis · Z + (1 −
√

ddis) · qZ(0.5). (6.12)

The modified random variable Zmod,dis has then the following mean and variance:

E[Zmod,dis] =
√

ddis · E[Z] + (1 −
√

ddis) · qZ(0.5) (6.13)

Var[Zmod,dis] = ddis · Var[Z] (6.14)

with ddis = 1 resulting in the unmodified random variable. In cases where the
median9 qZ(0.5) is close to the mean E[Z], it holds

E[Zmod,dis] ≈ E[Z]. (6.15)

Specifically, we consider the following modifications of dispersion: power_dis_0.1,
power_dis_2, power_dis_4 for the modification of the power forecasts in Equa-
tion (6.10) with ddis,Pl of 0.1, 2, 4 respectively, and energy_dis_0.1, energy_dis_2,
energy_dis_4, energy_dis_10, energy_dis_20 for the modification of the energy
forecasts in Equation (6.11) with ddis,∆El of 0.1, 2, 4, 10, 20 respectively.

6.2 Evaluation

In this section, we evaluate the different probabilistic forecasts with respect to the
forecast value for the two-level DF considering probabilistic forecasts described in
Subsection 2.4.1. Therefore, Subsection 6.2.1 describes the experimental setup and
Subsection 6.2.2 presents the results of the evaluation.

8Note that ddis corresponds to ddis,Pl when modifying the power forecasts and to ddis,∆El when
modifying the energy forecasts.

9Note that instead of the median qZ(0.5), the mean E[Z] could be used. Then it holds E[Zmod,dis] =
E[Z]. However, since we generate the median forecast, we use the median instead of the mean.
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Tab. 6.2.: The general and detailed neural network architectures to generate the proba-
bilistic forecasts. Note that the forecast horizon is 42 hours and the number of
quantile forecasts for each hour is 99.

(a) The general architecture of the used neural networks.

Input features Architecture Output

historical data,10

calendar features,
weather features10

three nested three-layer NN
Power - Encoder - Energy

Quantiles q̂Pl(k)(p) and q̂El(k+1)(p),
k = k0, ..., k0 + 41; p = 0.01, ..., 0.99

(b) The detailed architecture of the used three-layer neural networks. Note that the layer size of the
input layer is 267 for the power NN, 42·99 for the encoder NN, and 50 for the energy NN, and the
layer size of the output layer is 42·99 for the power NN, 50 for the encoder NN, and 42·99 for the

energy NN.

Layer Activation function Layer size

Input Linear 267/42·99/50

Hidden
ReLU 20
ReLU 50

Output Linear 42·99/50

6.2.1 Experimental Setup

In the following, we describe the used data, how we generate the necessary proba-
bilistic forecasts and present the evaluation metrics used for the forecast quality and
the forecast value.

Data We use the prosumption data original with βload = 1 and βPV = 1 in Equa-
tion (2.27) and a BESS energy capacity emax

s of 19.5 kWh. As problem-specific
parameters, we consider the combinations of the security levels (ϵP , ϵE) of (0.1, 0.1),
(0.1, 0.3), (0.3, 0.3), and (0.1, 0.7).

Forecast Method While the forecast specifications, input features, and the splitting
of the data in training, validation, and testing to generate the probabilistic forecasts
are identical to the generation of the point forecasts described in Subsection 4.2.1,
the NN architecture differs. More precisely, we use three nested NNs as displayed in
Figure 6.1b. The further architecture specifications are specified in Table 6.2. All
three NNs are fully connected with three layers with a ReLU [3] activation function
in both hidden layers and a linear activation function in the input and output layer.
The nested NN is trained end-to-end by using a weighted sum of the power NN and

10This input feature is scaled with SKLearn’s min-max scaler [106].
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energy NN losses as the overall training loss, which is backpropagated through all
preceding NNs. Furthermore, training is performed using a batch size of 512 and
the Adam optimizer [79]. Finally, to ensure that the quantile forecasts are strictly
monotonically increasing, we sort them in ascending order for each forecasted hour.

Evaluation Metrics The probabilistic forecasts with different characteristics are
evaluated both with respect to the forecast quality and the forecast value. We use
the same forecast values as in Subsection 4.2.1, i.e. the four average daily costs,
namely the average daily DS cost, the average daily imbalance cost, the average
daily total cost with imbalance cost factor α = 2, and the average daily total cost
with imbalance cost factor α = 10. For these costs, lower values imply a higher
forecast value. Additionally, for a better comparison between the buildings with
different prosumption scales, we calculate the wins and the occurrences within the
5% win range for each forecast described in Subsection 4.2.1. For the wins and
the occurrences within the 5% win range, we set each average daily cost for the
building, forecast, and security level parameters to infinity if the OP is infeasible.
This way, the forecast can not achieve a win and an occurrence within the 5% win
range for that combination of building and security level parameters.
To measure the forecast quality, we use an evaluation metric specifically designed
for probabilistic forecasts, namely the continuous ranked probability score (CRPS)
described in Equation (2.10) with lower values implying a higher forecast quality.
Furthermore, to report the infeasible OPs, we consider the percentage of infeasible
cases

%IC = |Cinfeasible|
|C|

· 100 (6.16)

with C referring to the set of all considered cases, namely the energy security level
parameters ϵE and the buildings, for a specific security level parameter ϵP and a
specified subset of forecasts, and Cinfeasible referring to the subset of C with infeasible
OPs. Additionally, we consider the percentage of infeasible buildings

%IB =
∑

b∈B 1∃c∈Cinfeasible:building(c)=b

|B|
· 100 (6.17)

with B referring to the set of all considered buildings and the indicator function 1.
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Tab. 6.3.: The percentage of infeasible cases %IC and the percentage of infeasible buildings
%IB for the power security level parameter ϵP of 0.1 and 0.3 and several forecast
conditions. For ϵP = 0.1, the set of cases consist of all considered buildings
and the energy security level parameters ϵE of 0.1, 0.3, 0.5, and 0.7, while for
ϵP = 0.3 the set of cases consists of all considered buildings and the energy
security level parameter ϵE = 0.3. Note that higher percentages indicate more
infeasible optimisation problems.

Forecast condition
ϵP = 0.1 ϵP = 0.3

%IC %IB %IC %IB

Overall 11.58 75.52 2.55 29.02
Unmodified 7.78 10.14 0.70 0.70
Power forecasts modified 17.00 64.34 5.04 25.52
Energy forecasts modified 7.80 29.02 0.82 4.55
Bias 8.14 30.42 0.83 3.85
Underestimation 7.63 15.38 0.61 1.40
Overestimation 8.10 32.17 0.82 4.29
Modification dispersion 15.50 67.83 4.50 26.57
Smaller dispersion 4.90 17.13 1.75 3.50
Greater dispersion 19.04 63.99 5.42 23.78

6.2.2 Results

In this section, we evaluate probabilistic forecasts with different characteristics with
respect to their forecast value for the two-level DF considering probabilistic forecasts.
Since these different probabilistic forecasts are obtained via modifying the dispersion
or introducing bias, we present the results according to the respective modification’s
name. For this evaluation, we consider five aspects. First, we analyse the number
of infeasible OPs. Second, we investigate the relationship between the forecast
quality and the forecast value. Third, we examine the forecast value for varying
security level parameters of the reformulated power and energy chance constraints
for forecasts with different biases. Fourth, we evaluate the forecast value for varying
security level parameters of the reformulated power and energy chance constraints
for forecasts with different dispersions. Finally, we compare the overall performance
of the DF considering probabilistic forecasts over several forecasts and security level
parameters.

Analysis of Infeasible Optimisation Problems

For the analysis of the infeasible OPs, we calculate the percentage of infeasible cases
and the percentage of infeasible buildings for ϵP = 0.1 and ϵP = 0.3 depending on
multiple forecast conditions in Table 6.3. In this table, we make three observations.
First, we see that the percentage of infeasible cases and the percentage of infeasible
buildings are higher for ϵP = 0.1 compared to ϵP = 0.3.
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Fig. 6.5.: The CRPS against the average daily costs, namely the DS cost (upper left), the
imbalance cost (upper right), the total cost with imbalance cost factor α = 2
(lower left) and the total cost with imbalance cost factor α = 10 (lower right) for
the considered power forecasts. For this plot, we use the security level parameters
ϵP = 0.3, ϵE = 0.3 and exclude the combination of forecast and building resulting
in an infeasible optimisation problem. Note that for both the average daily costs
and the CRPS lower values are better.

Second, the percentage of infeasible cases and the percentage of infeasible buildings
are higher for modified forecasts. In particular, the modification of the dispersion and
the modification of the power forecasts results in a higher percentage of infeasible
cases and percentage of infeasible buildings than the modification for a bias and
the modification of the energy forecasts. Furthermore, we observe that while the
differences in the percentage of infeasible cases and the percentage of infeasible
buildings are only slightly higher for overestimation than for underestimation,
we observe that a greater dispersion leads to higher percentages than a smaller
dispersion.
Finally, we see that the percentage of infeasible cases is lower than the percentage
of infeasible buildings for all considered conditions.
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Relation between Forecast Quality and Forecast Value

For this evaluation, we relate the CRPS as forecast quality and the average daily
costs as forecast values for the different power forecasts q̂Pl(k) for security level
parameters ϵP = 0.3, ϵE = 0.3 in Figure 6.5. In these plots, the forecast quality and
the forecast value is averaged over all buildings considered. Note that this evaluation
is not carried out for the energy forecasts F̂∆El(k+1), as it is not possible to calculate
the CRPS, since ∆El(k + 1) corresponds to the deviation from the mean.
For all costs, we can not deduce a clear relation between the forecast quality and the
forecast value. However, we observe for the total costs that the forecast resulting
in the best forecast quality does result in the best forecast value. More precisely,
power_bias_0.1 achieves the best forecast value (1.66) and the seventh-best forecast
quality (0.41) for the DS cost. For the imbalance cost, power_bias_0.75 results in
the best forecast value (0.72) and the six-best forecast quality (0.39). For both total
cost, the best forecast value is achieved with power_dis_4 (4.53 for for α = 2 and
10.67 for α = 10), which results together with power_dis_2 and the unmodified
forecasts in the best forecast quality (0.29).

Comparison of Biases regarding varying Security Levels

We quantitatively and qualitatively compare the performance of different biases for
varying security level parameters ϵP and ϵE . For the quantitative comparison, we
report the wins and the occurrences within the 5% win range for three average daily
costs, namely the DS cost, the imbalance cost, and the total cost with imbalance
cost factor α = 2 for all buildings and the security level parameter combinations
(ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3), and (0.1, 0.7). For the qualitative comparison, we
have a closer look at building 109. More precisely, we look at two average daily
costs, namely the DS cost and the imbalance cost, for the security level parameter
combinations (ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3), and (0.1, 0.7). Additionally, we look at
the results of the DF for an exemplary week, selected forecasts, and selected security
level parameters.

Quantitative Comparison Figure 6.6 shows the results for different biases for each
considered average daily cost. Starting with the DS cost, the results show that
power_bias_0.1 achieves the most wins for all security level parameters. While this
dominance is clear for the combinations of security level parameters (0.3, 0.3) and
(0.1, 0.7), we observe for (0.1, 0.1) that energy_bias_0.1 achieves more than the half
of the wins of power_bias_0.1. Additionally, we observe that for ϵP = 0.1 each
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(b) ϵP = 0.3, ϵE = 0.3
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(c) ϵP = 0.1, ϵE = 0.7

Fig. 6.6.: The wins and the occurrences within the 5% win range for the considered average
daily cost, i.e. the dispatch schedule cost (left), the imbalance cost (middle),
and the total cost with imbalance cost factor α = 2 (right) and the security level
parameter combinations (ϵP , ϵE) of (0.1, 0.1) (a), (0.3, 0.3) (b), and (0.1, 0.7) (c)
for the considered biases. Note that more wins and more occurrences within the
5% win range are better.
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Tab. 6.4.: The considered average daily costs in C, i.e. the dispatch schedule cost and the
imbalance cost, of building 109 for all considered biases and the combinations
of security level parameters (ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3), and (0.1, 0.7). Note
that for the average daily costs lower values are better.

(0.1, 0.1) (0.3, 0.3) (0.1, 0.7)
DS Imbalance DS Imbalance DS Imbalance

power_bias_0.1 5.41 4.27 2.29 4.20 0.70 5.78
energy_bias_0.1 5.62 1.40 4.11 1.37 3.84 1.21
power_bias_0.25 6.51 1.38 3.76 1.51 2.25 2.95
energy_bias_0.25 6.02 0.90 3.98 1.12 3.84 1.21
unmodified 6.06 0.53 4.70 0.78 3.84 1.21
power_bias_0.75 6.71 1.03 6.06 1.48 5.14 1.00
energy_bias_0.75 6.55 0.57 5.33 0.90 4.08 1.05
power_bias_0.9 10.16 4.25 9.13 4.52 7.48 3.09
energy_bias_0.9 6.73 0.98 5.76 1.04 4.81 0.81

modification achieves at least 17 wins. In contrast, for ϵP = 0.3, the wins are mostly
concentrated on power_bias_0.1 and energy_bias_0.1.
For the imbalance cost, we observe that the overestimating modifications achieve
the most wins. While overestimating the energy forecasts with energy_bias_0.75
and energy_bias_0.9 achieves the most and second most wins for the security level
parameters (0.1, 0.1) and (0.3, 0.3), the overestimation of the power forecasts with
power_bias_0.75 achieves the most wins for (0.1, 0.7). Similar to the DS cost, we
observe for ϵP = 0.1 that each modification achieves at least 17 wins.
For the total cost, the results show that for the security level parameters (0.1, 0.1)
and (0.3, 0.3) the most wins are achieved for the unmodified forecasts, followed
by energy_bias_0.9. For the security level parameters (0.1, 0.7), power_bias_0.75
achieves the most wins. Regarding the clarity of the wins, we observe that the
occurrences within the 5% win range are noticeable higher than the wins for the
unmodified forecasts and the overestimating modifications.

Qualitative Comparison Starting with the average daily costs, Table 6.4 shows the
DS cost and the imbalance cost for building 109, where we make three observations.
First, we observe that the greater the location of the forecast, the higher the DS cost.
This is true for both the power and energy forecasts, although the increase in DS
cost for the energy forecasts is not as large as for the power forecasts. Second, we
observe that the imbalance cost is lowest for a specific forecast and increases in both
directions of under- and overestimation, with a stronger increase for underestimation.
More precisely, for the security level parameters (0.1, 0.1) and (0.3, 0.3), the lowest
imbalance cost is achieved with the unmodified forecasts, and for (0.1, 0.7) with
energy_bias_0.9. Third, while the DS cost is higher for a smaller ϵE for all forecasts,
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Fig. 6.7.: The dispatch schedule pgDS
, the actual dispatch pg, the prosumption power

forecast p̂l as q̂Pl(k)(0.5), the actual prosumption pl, the scheduled BESS’ SoE
and the actual BESS’ SoE resulting from the usage of power_bias_0.9 and the
unmodified forecasts for the security level parameters ϵP = 0.1, ϵE = 0.7 for an
exemplary week of building 109.
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the relation between ϵE and the imbalance cost is not directly deducible and depends
on the forecasts.
The results of the DF for an exemplary week are shown in Figure 6.7 for ϵP = 0.1,
ϵE = 0.7. This figure shows the results of two forecasts, namely the forecasts leading
to the minimal imbalance cost, i.e. energy_bias_0.9, and the unmodified forecasts.
Comparing the DS, we observe that the DS with unmodified forecasts is slightly lower
than the DS with energy_bias_0.9 at most hours. The consideration of different
forecasts also leads to different actual dispatches and imbalances. More precisely,
while the imbalances with both forecasts occur mainly in the evening hours with
higher load values, the imbalances with unmodified forecasts occur earlier. During
these hours, we observe that the actual SoE with the unmodified forecasts is at its
lower BESS energy capacity emin

s = 0 kWh.

Comparison of Dispersions regarding varying Security Levels

In this subsection, we quantitatively and qualitatively compare the performance of
different modifications of the dispersion for varying security level parameters ϵP

and ϵE . For the quantitative comparison, we report the wins and the occurrences
within the 5% win range for three average daily costs, namely the DS cost, the
imbalance cost, and the total cost with imbalance cost factor α = 2 for all buildings
and the security level parameter combinations (ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3), and
(0.1, 0.7). For the qualitative comparison, we focus on building 109 and look at two
average daily costs, namely the DS cost and the imbalance cost, for the security level
parameter combinations (ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3), and (0.1, 0.7). Further, we
evaluate the results of the DF for an exemplary week, selected modifications of the
dispersion, and selected security level parameters.

Quantitative Comparison Figure 6.8 displays the results for the different disper-
sions for each considered average daily cost. Starting with the DS cost, we observe
that for the combination of the security level parameters (0.1, 0.1) and (0.3, 0.3),
energy_dis_0.1 achieves by far the most wins. In contrast, for (0.1, 0.7), many modi-
fications achieve many wins. The most wins are achieved with power_dis_0.1 and
energy_dis_0.1 and the unmodified forecasts.
For the imbalance cost, the results show that the modifications leading to greater
dispersion of the energy forecasts achieve the most wins. More precisely, while the
most wins are achieved with energy_dis_4 for the combination of security level pa-
rameters (0.1, 0.1), energy_dis_10 achieves the most wins for (0.3, 0.3). For (0.1, 0.7),
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(b) ϵP = 0.3, ϵE = 0.3
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(c) ϵP = 0.1, ϵE = 0.7

Fig. 6.8.: The wins and the occurrences within the 5% win range for the considered average
daily cost, i.e. the dispatch schedule cost (left), the imbalance cost (middle),
and the total cost with imbalance cost factor α = 2 (right) and the security level
parameter combinations (ϵP , ϵE) of (0.1, 0.1) (a), (0.3, 0.3) (b), and (0.1, 0.7) (c)
for the considered modifications of the dispersion. Note that more wins and more
occurrences within the 5% win range are better.
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Tab. 6.5.: The considered average daily costs in C, i.e. the dispatch schedule cost and the
imbalance cost, of building 109 for all considered modifications of dispersion
and the combinations of security level parameters (ϵP , ϵE) of (0.1, 0.1), (0.3, 0.3),
and (0.1, 0.7). Note that for the average daily costs lower values are better.

(0.1, 0.1) (0.3, 0.3) (0.1, 0.7)
DS Imbalance DS Imbalance DS Imbalance

power_dis_0.1 6.06 0.53 4.70 0.78 3.84 1.21
energy_dis_0.1 4.35 0.91 4.04 1.07 3.84 1.21
unmodified 6.06 0.53 4.70 0.78 3.84 1.21
power_dis_2 6.06 0.53 4.70 0.78 3.84 1.21
energy_dis_2 6.68 0.50 5.22 0.60 3.84 1.21
power_dis_4 5.52 0.45 4.70 0.78 3.28 1.17
energy_dis_4 6.61 0.51 6.16 0.53 3.86 1.19
energy_dis_10 6.06 0.57 6.06 0.57 4.46 0.84
energy_dis_20 5.49 0.73 5.49 0.73 4.57 0.82

energy_dis_20 achieves the most wins, and all other modifications achieve compara-
ble wins.
For the total cost, we observe for the combination of security level parameters
(0.1, 0.1) that the most wins are achieved with power_dis_0.1, followed by the un-
modified forecasts. For (0.3, 0.3), the modifications leading to greater dispersion
achieve the most wins, with energy_dis_4 achieving the most. For (0.1, 0.7) we
observe similar results as for the imbalance cost, i.e. energy_dis_20 clearly achieves
the most wins, while all other modifications achieve similar wins. With regard to the
clarity of the wins, we see that the many modifications achieve occurrences within
the 5% win range clearly above 100 for all security level parameters.

Qualitative Comparison The DS cost and the imbalance costs for building 109 are
shown in Table 6.5, which leads to three observations. First, modifying the dispersion
of the power forecasts has little or no impact on the DS and imbalance costs for all
security level parameters except for the security level parameters (0.1, 0.1). For these
security level parameters we observe the lowest imbalance cost with power_dis_4.
In contrast, modifying the dispersion of the energy forecasts has an impact on both
costs. Second, for the DS cost, we see that for almost all modifications, the lower
the dispersion of the energy forecasts, the lower the cost. In contrast, similar to
the results for the bias, the imbalance cost is lowest for a specific energy forecast
and increases in both directions of higher and lower dispersion. In this context we
make a third observation, namely that the higher ϵE , the higher the dispersion of
the forecast that leads to the lowest imbalance cost.
The results of the DF for an exemplary week are shown in Figure 6.9 for ϵP = 0.1,
ϵE = 0.7. This figure shows the results of the modification leading to the minimal
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Fig. 6.9.: The dispatch schedule pgDS
, the actual dispatch pg, the prosumption energy

forecasts q̂∆El(k+1) for p = 0.1 and p = 0.9, the scheduled BESS’ SoE and the
actual BESS’ SoE resulting from the usage of energy_dis_20 and the unmodified
forecasts for the security level parameters ϵP = 0.1, ϵE = 0.7 for an exemplary
week of building 109.
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imbalance cost, i.e. energy_dis_20, and the unmodified forecasts. In this figure we
can see that the DS with the unmodified forecasts is smoother than the DS with
energy_dis_20. The corresponding scheduled SoE with the unmodified forecasts
is lower than the SoE with energy_dis_20. As for the imbalances, we observe
higher and more imbalances with the unmodified forecasts, while the imbalances
of energy_dis_20 often occur during hours of imbalances with the unmodified
forecasts.

Overall Comparison

For the overall comparison, we quantitatively compare the performance of different
combinations of security level parameters and modifications. As combinations, we
choose those that lead to the most wins in Figure 6.6 and Figure 6.8, resulting in a
total of eighteen combinations. For this comparison, we look at the wins and the
occurrences within the 5% win range for the four average daily costs, namely the
DS cost, the imbalance cost, the total cost with imbalance cost factor α = 2, and
the total cost with imbalance cost factor α = 10 for all buildings. The results are
displayed in Figure 6.10, which we describe below for each average daily cost.
Starting with the DS cost, the combination of the highest energy security level
parameter ϵE = 0.7 and the modification power_bias_0.1 achieves by far the most
wins (264). No other combination achieves wins and occurrences within the 5% win
range, except the combination of ϵP = 0.3, ϵE = 0.3 and power_bias_0.1 (21 both).
For the imbalance cost, we observe that either modifications overestimating the
energy forecasts or energy forecasts with a greater dispersion achieve the most
wins. More precisely, the combination ϵP = 0.1, ϵE = 0.1 and energy_dis_4 achieves
the most wins (130), followed by the combination ϵP = 0.1, ϵE = 0.1 and en-
ergy_bias_0.75 (103).
For the total cost with imbalance cost factor α = 2, the wins are spread across
the combinations, with more wins achieved by overestimating modifications and
modifications with a greater dispersion. In addition, we observe a high number of
occurrences within the 5% win range for the combinations achieving wins, with
eight combinations achieving around or more than 150 occurrences within the 5%
win range.
Finally, for the total cost with imbalance cost factor α = 10, we observe similar
results to those for the imbalance cost. More precisely, almost the same combinations
achieve wins as the combination that achieve wins for the imbalance cost. However,
the clarity of the wins is reduced as the occurrences within the 5% win range are
clearly higher than the wins.
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Fig. 6.10.: The wins and the occurrences within the 5% win range for the considered
average daily cost, i.e. the dispatch schedule cost (upper left), the imbalance
cost (upper right), the total cost with imbalance cost factor α = 2 (lower
left), and the total cost with imbalance cost factor α = 10 (lower right) for
different security level parameters and modifications written as „(ϵP , ϵE), name
of modification“. Note that more wins and more occurrences within the 5% win
range are better.
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6.3 Discussion

In this section, we discuss the findings of the evaluation and identify limitations and
further research.

6.3.1 Findings

The discussion of the findings focuses on four aspects. First, we discuss the issue of
infeasible OPs for the DF considering probabilistic forecasts. Second, we discuss the
relation between the forecast quality and the forecast value for the power forecasts.
Third, we discuss the influence of the forecast characteristics on the forecast value.
Finally, we address whether the findings provide a sufficient answer to the addressed
research question.
First, regarding the infeasibility of the OPs for the DF considering probabilistic fore-
casts, the results show that the infeasibility depends on the security level parameter
of the reformulated power chance constraint ϵP and the probabilistic forecasts, given
fixed BESS capacities. This infeasibility is evident for several buildings, suggesting
that it may be a critical effect for a real-world DF implementation. To address this, a
coordination of the security level parameter ϵP , the forecasts, and available BESS
capacities may be required. Alternatively, introducing a relaxation of the power
chance constraint in the mathematical formulation of the OP could mitigate the
infeasibility.
Second, regarding the relation between the forecast quality and the forecast value,
the results show that for the power forecasts the relation between the considered
forecast quality, namely the CRPS, and the considered forecast value, namely the
average daily costs, is non-monotonic. Similar to the evaluation of the point forecasts
in Chapter 4, this indicates that improving the forecast quality does not necessarily
lead to a higher forecast value for the DF. However, two aspects should be noted.
First, for both total costs, the forecast with the highest forecast quality results in the
highest forecast value. Second, the performance of the DF considering probabilistic
forecasts depends not only on the power forecasts but also on the energy forecasts,
which limits the interpretation of the relation between the forecast quality and
forecast value.
Third, regarding the influence of the forecast characteristics on the forecast value
for the DF, the results show that the forecast characteristics affect the forecast value
for the DF and that this influence depends on the security level parameter ϵE . In
contrast, the security level parameter ϵP has only a small effect, see Appendix A.4.
In the following, we discuss the findings for each conducted comparison, i.e. the
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modification for a bias, the modification of the dispersion, and the overall compari-
son, in more detail.
Starting with the modification for a bias, the results are comparable to the results in
Chapter 4 for each average daily cost. More precisely, for the DS cost, the results
indicate that underestimating the power forecasts leads to lower cost for all security
level parameters. A possible explanation for the lower DS cost when power forecasts
are underestimated is equivalent to the finding in Section 4.3: an underestimation
of load and an overestimation of PV power generation leads to lower grid imports
and thus lower DS cost. For the imbalance cost, the results indicate that overestima-
tion is beneficial, although which forecast should be overestimated depends on the
security level parameter ϵE . While overestimating energy forecasts leads to lower
imbalance cost for smaller ϵE , overestimating power forecasts is more advantageous
for ϵE = 0.7. A possible explanation for the former could be that these energy
forecasts are shifted to be centred around a positive value, rather than being centred
around zero. As a result, the BESS is scheduled to keep a higher reserve for these
higher energy forecasts, and thus has more energy reserves for unexpectedly high
prosumption values. This effect may not be as strong for ϵE = 0.7. For this security
level, the DF considering probabilistic forecasts behaves more like the DF consid-
ering point forecasts in the way that the BESS energy reserve for the prosumption
energy uncertainty is reduced. As a consequence, it may be beneficial to increase
the BESS energy reserve operationally imposed by the energy chance constraint by
overestimating the power forecasts as follows: since the DS is calculated assuming
that the building consumes more and generates less PV power, the BESS charges
in the second level if possible to mitigate imbalances, resulting in a higher energy
reserve for unexpectedly high prosumption values. Finally, the results of the total
cost indicate that the combined effects of both DS and imbalance costs tend to cancel
each other out. Consequently, the unmodified forecasts give the lowest total cost
when ϵE is small and the imbalance cost factor is set to α = 2.
For the modification of the dispersion, the results reflect the strong relation between
the dispersion of the forecasts and the security level parameters via the reformulated
power and energy chance constraints in Equation (6.1) and Equation (6.2). More
precisely, for the DS cost, a smaller dispersion, especially for the energy forecasts, is
associated with lower costs, especially for a lower energy security level parameter
ϵE . For ϵE = 0.7 several forecasts lead to similar costs. A possible explanation for the
former could be that due to the lower dispersion of the energy forecasts, the BESS
energy reserve held for the prosumption energy uncertainty is reduced, allowing
more BESS reserve to be allocated to minimise the DS cost. This effect can also be
achieved by increasing the energy security level parameter ϵE , which may explain
the similar performance of several forecast characteristics for ϵE = 0.7. For the
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imbalance cost, the results indicate that a greater dispersion of the energy forecasts
reduces the cost, with a greater dispersion being more beneficial for a higher ϵE .
Both a greater dispersion of the energy forecasts and a higher ϵE result in more
BESS energy reserves for the prosumption energy uncertainty and thus potentially
to smaller imbalances. Thus, if the security level parameter ϵE is reduced, a greater
dispersion of the energy forecasts may counteract the reduction of the BESS energy
reserves and provide a similar level of security against imbalances.
For the overall comparison, the results show that the underestimation of the power
forecasts in combination with the security level parameter, which results in the
lowest BESS energy reserve for the prosumption energy uncertainty, results in the
lowest DS cost for almost all buildings. In contrast, for the imbalance cost, the
modification of the energy forecasts, namely an overestimation or the increase of
the dispersion, results in lower costs for most buildings. This suggests that the cause
of imbalances is more likely to be the uncertainty of the prosumption energy than
the uncertainty of the prosumption power. Furthermore, while for the total cost
with imbalance cost factor α = 2 several combinations of forecasts and security level
parameters perform similarly, the results for the total cost with imbalance cost factor
α = 10 are similar to the results for the imbalance cost, highlighting the strong
influence of the imbalance cost.
Finally, regarding the research question

RQ2: How do different probabilistic forecast characteristics influence the forecast value
for the dispatchable feeder, and how does this influence depend on problem-specific
parameters?

we can conclude that the forecast characteristics can influence the forecast value for
the two-level DF considering probabilistic forecasts and that this influence depends
on the security level of the reformulated chance constraints. In particular, with
respect to the dispersion of the probabilistic forecast, it is beneficial to coordinate
the dispersion and the security level parameters for the reformulated power and
energy chance constraints.

6.3.2 Limitations and Further Research

The main limitations of this evaluation are related to the chosen specifications. These
include the considered problem-specific parameters and the modifications used. In
particular, for a broader scope of the evaluation, the prosumption data and the
BESS energy capacity could be considered as further problem-specific parameters
motivated by the results of Chapter 4. Additionally, as we do not approach the
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infeasibility of the OPs due to the reformulated power chance constraint introduced
in Section 6.1, a forecast evaluation including the relaxation of the reformulated
power chance constraint in the mathematical formulation for the computation of
the DS could be interesting. Finally, with the results of the conducted forecast
evaluation, a value-oriented recalibration of the probabilistic forecasts for the DF
could be approached.

110 Chapter 6 Probabilistic Forecast Evaluation



Comparison of Dispatchable
Feeder Considering Point and
Probabilistic Forecasts

7

This chapter compares the performance between the two-level dispatchable feeder
(DF) considering point forecasts and the two-level dispatchable feeder consider-
ing probabilistic forecasts. For this comparison, we evaluate both value-oriented
forecasts and standard forecasts. In doing so, we examine how the forecast charac-
teristics and the integration of the prosumption uncertainty affect the performance
of the DF. Additionally, we analyse whether value-oriented point forecasts can com-
pensate for the lack of integration of the prosumption uncertainty. The research
question addressed is:

RQ4: How does the performance of the dispatchable feeder considering point forecasts
compare to the performance of the dispatchable feeder considering probabilistic
forecasts for difference forecast characteristics?

The remainder of this chapter is structured as follows. First, Section 7.1 describes
the approach. Second, Section 7.2 presents the evaluation with Subsection 7.2.1
describing the experimental setup and Subsection 7.2.2 presenting the results of the
evaluation. Finally, Section 7.3 discusses the results.

7.1 Approach

This section provides an overview of the comparison between the performance of
the two-level DF considering point forecasts and the performance of the two-level
DF considering probabilistic forecasts. For this comparison, we use forecasts with
a high forecast value and standard forecasts. This means that instead of only com-
paring the performance of both DFs for a single building, as done in [7], and only
comparing different forecast characteristics with respect to the forecast value for
each DF separately, as done in Chapter 4 and Chapter 6, this chapter evaluates
the effect of both the integration of the prosumption uncertainty and the forecast
characteristics on the performance of the DF. Although such an evaluation can be
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Tab. 7.1.: The selected value-oriented forecasts (a) and the considered dispatchable feeder
specifications (b).

(a) The selected value-oriented point and probabilistic forecasts from Chapter 4 and Chapter 6
respectively, for the dispatchable feeder considering point forecasts and the dispatchable feeder
considering probabilistic forecasts respectively, and the security level parameters ϵP and ϵE for
the dispatchable feeder considering probabilistic forecasts. The considered forecast value is the
average daily total cost with either imbalance cost factor α = 2 or imbalance cost factor α = 10.

Forecast value Point forecast Probabilistic forecast Security level parameters

Total cost α = 2 Pinball 0.75 energy_bias_0.9 ϵP = 0.3, ϵE = 0.3
Total cost α = 10 Pinball 0.75 energy_bias_0.75 ϵP = 0.1, ϵE = 0.1

(b) The used point forecasts for the different dispatchable feeders considering point forecasts, i.e. the
DFv-o point and the DFMSE point, and the used probabilistic forecasts and security level parameters
ϵP and ϵE for the different dispatchable feeder considering probabilistic forecasts, i.e. the
DFv-o prob,total 2, the DFv-o prob,total 10, the DFunmod prob,total 2, and the DFunmod prob,total 10.

DF Forecast Security level parameters

DFv-o point Pinball 0.75 –
DFv-o prob,total 2 energy_bias_0.9 ϵP = 0.3, ϵE = 0.3
DFv-o prob,total 10 energy_bias_0.75 ϵP = 0.1, ϵE = 0.1
DFMSE point MSE –
DFunmod prob,total 2 unmodified ϵP = 0.3, ϵE = 0.3
DFunmod prob,total 10 unmodified ϵP = 0.1, ϵE = 0.1

seen as a forecast evaluation with respect to the forecast value for the DF, similar
to Chapter 4 and Chapter 6, we present it here as a performance comparison of
different DFs. In this way, we highlight both the differences in the mathematical
formulations of the DFs to consider the prosumption uncertainty and the differences
in the parameter specifications for the DF considering probabilistic forecasts, in
particular the security level parameters ϵP and ϵE for the reformulated power and
energy chance constraints.
In order to select the value-oriented forecasts for this evaluation, we could ideally
apply the value-oriented forecast method selection described in Chapter 5, which
would result in a forecast with a high forecast value for each building and each
considered forecast value. However, as we have not yet applied the value-oriented
forecast method selection to the DF considering probabilistic forecasts, we pro-
ceed as follows. For each forecast value and each DF, we evaluate which forecast
characteristic achieves the highest wins, described in Subsection 4.2.1, among the
buildings1 with IDs smaller than or equal to 200. This forecast is then used for the
remaining buildings for the corresponding forecast value and DF. As set of potential
forecast characteristics we use those considered in Chapter 4 and Chapter 6. More
precisely, the set of potential point forecasts consists of the seven point forecasts

1We exclude building 109, as we use this building for the qualitative comparisons.
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obtained by using different loss functions in the neural network. As set of potential
probabilistic forecasts, we use the eighteen combinations of security level param-
eters ϵP and ϵE and the probabilistic forecasts obtained by introducing a bias or
modifying the dispersion in Subsection 6.2.2. In doing so, not only the probabilistic
forecast but also the problem-specific parameters of the security level, which are
not given by technical constraints, are selected in a value-oriented manner. The
resulting forecasts are displayed in Table 7.1a with the average daily total costs
with imbalance cost factor α = 2 or α = 10 from Equation (4.2) as the forecast
value. In the following, we refer to the DFs with these value-oriented forecasts as
follows, see Table 7.1b. Since the value-oriented point forecasts are identical for both
considered forecast values, we use the term DF using value-oriented point forecasts,
or DFv-o point for short. For the probabilistic forecasts, we distinguish between the
DF considering value-oriented probabilistic forecasts based on the total cost with
imbalance cost factor α = 2 and α = 10. These are referred to as DFv-o prob,total 2

and DFv-o prob,total 10, respectively.
In addition to the three DFs considering value-oriented forecasts, we use three other
DFs considering standard forecasts, namely the DF considering MSE point forecasts,
or DFMSE point for short, the DF considering unmodified probabilistic forecasts with
security level parameters based on the total cost with imbalance cost factor α = 2, or
DFunmod prob,total 2 for short, the DF considering unmodified probabilistic forecasts
with security level parameters based on the total cost with imbalance cost factor
α = 10, or DFunmod prob,total 10 for short, see Table 7.1b. As the name implies, the
DF considering MSE point forecasts uses the point forecasts generated with the
mean squared error (MSE) described in Equation (2.7) as loss function and thus
corresponding to a standard loss function used when generating point forecasts.
Similarly, the DF considering unmodified probabilistic forecasts uses the probabilis-
tic forecasts generated from the nested NN described in Subsection 6.2.1 without
modification. The security level parameters ϵP and ϵE are those resulting from the
value-oriented selection reported in Table 7.1a, i.e. ϵP = 0.3, ϵE = 0.3 for the total
cost with imbalance cost factor α = 2 and ϵP = 0.1, ϵE = 0.1 for the total cost with
imbalance cost factor α = 10. In this way, it is possible to compare the sole effect of
the probabilistic forecast on the performance of the DF.
The aim of this evaluation is to compare, for several buildings, how forecasts with
different characteristics and the integration of the prosumption uncertainty affect the
performance of the DF, and whether value-oriented point forecasts can compensate
for the lack of integration of the prosumption uncertainty.
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7.2 Evaluation

In this section, we compare the performance of the different DFs. Therefore, Sub-
section 7.2.1 presents the experimental setup and Subsection 7.2.2 reports the
results.

7.2.1 Experimental Setup

In the following, we describe the used data, the used forecast methods to generate
the point and probabilistic forecasts, and the used evaluation metrics.

Data As the evaluation in Chapter 6 is done for the problem-specific parameters
of the prosumption data original with βload = 1 and βPV = 1 in Equation (2.27)
and the BESS energy capacity emax

s of 19.5 kWh, we restrict this evaluation to these
problem-specific parameters.
In addition, the evaluation is carried out on buildings with IDs greater than 200,
from which ten buildings are excluded for which the OPs of the DFs considering
probabilistic forecasts are infeasible.

Forecast Method We use the same point forecasts and probabilistic forecasts gen-
erated for the evaluations in Chapter 4 and Chapter 6 respectively. Therefore, the
reader is referred to Subsection 4.2.1 and Subsection 6.2.1 for the description of
the forecast specifications, the input features, the splitting of the data in training,
validation, and testing, and the neural network architecture.

Evaluation Metrics We use the two average daily total costs with imbalance cost
factor α = 2 and α = 10, explained in Equation (4.2), averaged over the last year, as
evaluation metrics. For these costs, lower values are better. In addition, to measure
the difference in average daily cost between the DF considering point forecasts
and the DF considering probabilistic forecasts for each building, we calculate the
percentage difference of a given total cost

%diff = cDFpoint − cDFprob

cDFpoint
· 100 (7.1)

with cDFpoint and cDFprob being the total cost for the DF considering point forecasts
and the DF considering probabilistic forecasts respectively. A positive percentage
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Tab. 7.2.: The average daily total costs in C for the DFv-o point, the DFv-o prob,total 2, the
DFv-o prob,total 10, the DFMSE point, the DFunmod prob,total 2, and the DFunmod prob,total 10.
The average daily costs are averaged over the last year and over all buildings
with IDs greater than 200. For the average daily total costs, lower values are
better. Further average daily costs are displayed in Appendix A.5.

Approach Total cost α = 2 Total cost α = 10

DFv-o point 5.04 9.73
DFv-o prob,total 2 5.26 9.51
DFv-o prob,total 10 5.14 8.81
DFMSE point 4.89 11.31
DFunmod prob,total 2 4.96 11.37
DFunmod prob,total 10 4.90 9.16

difference indicates that the DF considering probabilistic forecasts achieves a lower
average daily cost compared to the DF considering point forecasts.

7.2.2 Results

To present the results of the comparison, we first quantitatively compare the perfor-
mances of the DFs over all buildings with IDs greater than 200 and the last year of
data. Afterwards, we qualitatively compare the performances for building 109.

Quantitative Comparison over all Buildings For this evaluation, we compare the
performance of the DFs on the buildings with IDs greater than 200. Therefore, we
first aggregate each average daily cost over the last year and over all buildings,
and then look at the differences in each total cost in more detail by looking at the
percentage differences of both total costs for selected DFs.
Starting with the aggregated average daily costs, the results are presented in Ta-
ble 7.2. In this table, we make three observations. First, we observe that the total
cost with imbalance cost factor α = 2 is lowest for the DFMSE point. However, the
difference in total cost between the different DFs is small. For the cost with imbal-
ance cost factor α = 10, DFv-o prob,total 10 achieves the lowest cost, while DFMSE point

and DFunmod prob,total 2 achieve the second highest and highest cost. Second, when
comparing the value-oriented forecasts with the standard forecasts, we observe
lower total cost with imbalance cost factor α = 10 for the DFv-o point compared to the
DFMSE point. With a smaller difference in cost, this is also true when comparing the
DFv-o prob,total 10 and the DFunmod prob,total 10. In contrast, for the total cost with imbal-
ance cost factor α = 2, we observe higher cost for the DFv-o point compared to the
DFMSE point as well as when comparing the DFv-o prob,total 2 and the DFunmod prob,total 2.
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(a) Total cost with imbalance cost factor α = 2
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Fig. 7.1.: The percentage differences of the total cost with imbalance cost factor α = 2 (a)
between the DFMSE point and the DFv-o prob,total 2 (left) and between the DFMSE point
and the DFunmod prob,total 2 (right) and the percentage differences of the total
cost with imbalance cost factor α = 10 (b) between the DFv-o point and the
DFunmod prob,total 10 (left) and between the DFMSE point and the DFunmod prob,total 10
(right). Note that positive percentage differences indicate lower cost for the
dispatchable feeder considering probabilistic forecasts. Additionally, the plots
show a range between -100 and 100.
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Tab. 7.3.: The average daily total costs in C for the DFv-o point, the DFv-o prob,total 2, the
DFv-o prob,total 10, the DFMSE point, the DFunmod prob,total 2, and the DFunmod prob,total 10.
The average daily costs are averaged over the last year of building 109. For the
average daily total costs, lower values are better.

Approach Total cost α = 2 Total cost α = 10

DFv-o point 6.51 12.77
DFv-o prob,total 2 7.84 16.20
DFv-o prob,total 10 7.70 12.29
DFMSE point 6.04 13.92
DFunmod prob,total 2 6.25 12.45
DFunmod prob,total 10 7.12 11.35

Third, if we compare the DFv-o point with DFunmod prob,total 10, we observe that the dif-
ference in total cost with imbalance cost factor α = 10 is smaller than the difference
in this cost between DFMSE point and DFunmod prob,total 10.
The results of the more detailed percentage differences are shown in Figure 7.1
for both total costs. Specifically, we consider for the percentage differences of the
total cost with imbalance cost factor α = 2 the DFMSE point and the DFv-o prob,total 2

as well as the DFMSE point and the DFunmod prob,total 2 to evaluate the difference be-
tween the best performing point forecasts and both probabilistic forecasts. For
the percentage differences of the total cost with imbalance cost factor α = 10, we
compare the DFv-o point and the DFunmod prob,total 10 as well as the DFMSE point and
the DFunmod prob,total 10 to evaluate whether value-oriented point forecasts can com-
pensate for the lack of this integration. Based on the percentage differences of
the total cost with imbalance cost factor α = 2 between the DFMSE point and the
DFv-o prob,total 2, we observe that the percentage differences are centred around zero
with more spreads for values less than zero. For the percentage differences of
the total cost with imbalance cost factor α = 2 between the DFMSE point and the
DFunmod prob,total 2, we observe that the percentage differences are strongly centred
around zero, with more percentage differences being negative. Regarding the per-
centage differences of the total cost with imbalance cost factor α = 10 between
the DFMSE point and the DFunmod prob,total 10, we observe that the majority of the per-
centage differences are positive. Additionally, while the percentage differences of
the total cost with imbalance cost factor α = 10 between the DFv-o point and the
DFunmod prob,total 10 are also positive for most buildings, we observe that they are
more symmetrical around zero with a greater spread towards negative values.

Qualitative Comparison on Building 109 For this evaluation, we compare the per-
formance of the DFs on building 109. Therefore, we first look at the average daily
cost and, then present the results for an exemplarily week of the DFv-o point and the
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Fig. 7.2.: The dispatch schedule pgDS
, the actual dispatch pg, the scheduled BESS’ SoE and

the actual BESS’ SoE of the DFv-o point and the DFv-o prob,total 10, for an exemplary
week of building 109.

DFv-o prob,total 10.
Starting with the average daily costs, Table 7.3 shows the results, where we make
two observations. First, we observe that the total cost with imbalance cost fac-
tor α = 2 is lowest for the DFMSE point. While similar costs are obtained with
DFunmod prob,total 2 and DFv-o point, the DFv-o prob,total 2 results in the highest cost. For
the cost with imbalance cost factor α = 10, DFunmod prob,total 10 has the lowest cost,
followed by DFv-o prob,total 10, DFunmod prob,total 2, and DFv-o point, which have compara-
ble costs. Second, when comparing the value-oriented forecasts with the standard
forecasts, we observe that the DFv-o point results in lower total cost with imbalance
cost factor α = 10 compared to the DFMSE point, while the DFMSE point achieves lower
total cost with imbalance cost factor α = 2. Similarly, for the probabilistic fore-
casts, we observe that the total cost with imbalance cost factor α = 2 is lower for
DFunmod prob,total 2. Additionally, the total cost with imbalance cost factor α = 10 is
lower for the DFunmod prob,total 10 compared to DFv-o prob,total 10.
The results of an example week are shown in Figure 7.2. This figure shows that the
DS of the DFv-o point is much smoother than the DS of the DFv-o prob,total 10, whose SoE
is scheduled to be higher. This results in fewer imbalances for the DFv-o prob,total 10,
especially in the first four days, where the DFv-o point causes imbalances.
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7.3 Discussion

In the following, we discuss the results presented above by reporting the findings
and specifying limitations and further research.

7.3.1 Findings

In discussing the results, we focus on four aspects. First, we compare the perfor-
mance of all considered DFs and discuss whether the integration of the prosumption
uncertainty is beneficial. Second, we discuss the impact of the value-oriented fore-
casts. Third, we discuss whether the consideration of value-oriented point forecasts
can compensate for the lack of integration of prosumption uncertainty. Finally, we
review the stated research question and address whether the findings provide a
satisfactory answer to it.
First, the results show that the DFv-o prob,total 10 achieves the lowest total cost with im-
balance cost factor α = 10 averaged over all buildings, followed by DFunmod prob,total 10

and DFv-o prob,total 2. This result indicates that it is beneficial to consider the prosump-
tion uncertainty to avoid imbalances. In contrast, for the total cost with imbalance
cost factor α = 2, DFMSE point has the lowest cost both averaged over all buildings
and for building 109 specifically. However, the costs of the other DFs are comparable.
For this total cost, the proportions of the DS cost and the imbalance cost are similar,
so the trade-off between reducing the DS cost and reducing the imbalance cost is
not clear. As a result, the integration of the prosumption uncertainty to reduce the
imbalance cost is less beneficial, leading to similar performances of the different
DFs.
Second, regarding the impact of value-oriented forecasts, the results show that
these forecasts can reduce the total costs when the imbalance cost factor is α = 10,
especially for point forecasts. However, the results for building 109 show that the
benefit of value-oriented forecasts for this cost is building-dependent. Addition-
ally, for α = 2, standard forecasts are more beneficial averaged over all buildings.
The results in Appendix A.5 show that DFs considering value-oriented forecasts
tend to achieve lower imbalance costs but incur higher DS costs compared to DFs
considering standard forecasts averaged over all buildings. This suggests that the
value-oriented forecasts may over-prioritise the reduction of the imbalance cost,
resulting in a conservative BESS operation, and thus higher DS costs. This implies
that the choice of the value-oriented forecast based on the total cost with imbalance
cost factor α = 2 may be suboptimal. As the results in Chapter 4 and Chapter 6 show,
it is not clear which point and probabilistic forecast leads to the lowest total cost
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with imbalance cost factor α = 2 and that it may be building-dependent. Therefore,
the value-oriented selection approach used, which results in the same choice of
value-oriented forecasts for each building, may not take this variability into account.
Third, regarding the compensation for the lack of integration of prosumption un-
certainty by using value-oriented point forecasts, the results show that the differ-
ences in the total cost with imbalance cost factor α = 10 between the DFv-o point

and the DFunmod prob,total 10 are noticeably smaller than the differences between the
DFMSE point and the DFunmod prob,total 10. This suggests that a value-oriented selection
of the point forecasts can compensate to some extent, if not completely, for the lack
of integration of prosumption uncertainty for this total cost, for which the imbalance
cost has a high impact.
Finally, regarding the research question

RQ4: How does the performance of the dispatchable feeder considering point forecasts
compare to the performance of the dispatchable feeder considering probabilistic
forecasts for difference forecast characteristics?

we can conclude that the consideration of probabilistic forecasts, in particular value-
oriented forecasts, performs best with respect to the total cost that heavily weights
imbalances, i.e. with an imbalance cost factor α = 10. For this total cost, the use of
value-oriented forecasts is more beneficial than standard forecasts. In particular, the
consideration of value-oriented point forecasts can compensate to some extent, if
not completely, for the lack of integration of prosumption uncertainty. In contrast,
for the total cost with imbalance cost factor α = 2, the DFs with different forecasts
perform comparably when averaged over all buildings, and the best performing DF
may depend on the specific building.

7.3.2 Limitations and Further Research

With regard to the limitations of the conducted comparison, we discuss two aspects.
First, the approach used to select the value-oriented forecasts could be improved.
One possible improvement would be to make the data splitting cleaner. In particular,
instead of calculating the performance of the DF on the testing data of the forecasting,
i.e. the last year of data, and selecting the value-oriented forecasts based on
these results, the selection could be based on the performance of the DF on the
training and validation data of the forecasting, i.e. the first two years of data. A
further improvement could be to apply the value-oriented forecast method selection
introduced in Chapter 5 for an improved value-oriented forecast selection for each
building individually. This refinement could improve the performance of both the DF
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using value-oriented point forecasts and the DF using value-oriented probabilistic
forecasts.
Second, the scope of the comparison could be broadened. This includes incorporating
additional forecast characteristics for both point and probabilistic forecasts, and
introducing problem-specific parameters, such as prosumption data and BESS energy
capacity, to increase the robustness and generalisability of the results.
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Line-Restricted Dispatchable
Feeder

8
This chapter introduces the technical power flow restriction on the line connecting
the dispatchable feeder (DF) to the grid into the mathematical formulation of the
three-level DF considering probabilistic forecasts1 described in Subsection 2.4.1,
which we refer to as the line-restricted dispatchable feeder (LRDF). Furthermore,
we evaluate the ability of the LRDF to mitigate line overloadings. In doing so, we
compare the performance of the LRDF with five benchmarks. The research question
addressed is:

RQ5: How to consider the line restriction and mitigate line overloadings for the dis-
patchable feeder considering probabilistic forecasts?

The remainder of this chapter is structured as follows. First, Section 8.1 introduces
the line restriction. Then, Section 8.2 describes the experimental setup to evaluate
the LRDF in Subsection 8.2.1 and presents the results in Subsection 8.2.2. Finally,
Section 8.3 discusses the results.

8.1 Introduction Line Restriction

In order to mitigate the line overloadings in the low-voltage distribution grid coming
from the rising electrical energy demand and the massive integration of distributed
renewable energy sources, we propose to model each building as a three-level line-
restricted dispatchable feeder considering probabilistic forecasts (LRDF). The LRDF
differs from the three-level dispatchable feeder (DF) considering probabilistic fore-
casts by adding the technical restriction of the line in the mathematical formulation
of the optimisation problem (OP). In contrast to market-based mechanisms that
aim to comply with line restrictions through price signals, e.g. [47], we implement
the line restriction as a fixed, time-independent technical restriction within the
OP. As we stay in the single-building scenario, the line restriction corresponds to a

1The content of this chapter is based on [145]. While the concept is the same, the experimental setup
differs, including the forecasting specification, the used prosumption data, and the used BESS
energy capacity.
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single building’s share on the street line. As a result, the line restriction reflects the
individual building’s contribution to potential line overloadings without considering
potential load-shifting or balancing effects between neighbouring buildings. This
line restriction is added in all considered levels, i.e.

p
gDS

≤pgDS (k) ≤ pgDS
(1. Level)

p
greDS

≤pgreDS (k) ≤ pgreDS
(2. Level) (8.1)

p
g

≤pg(k) ≤ pg (3. Level)

with lower and upper limits p
gDS

≤ pgDS
∈ R, p

greDS
≤ pgreDS

∈ R, and p
g

≤ pg ∈ R.
In this thesis, we use the same lower and upper limits in all levels, i.e. p

gDS
= p

greDS

= p
g

and pgDS
= pgreDS

= pg, and set −p
g

= pg =: p∗.
The consequences of the line restriction are twofold: First, the power exchange
between the LRDF and the grid is limited, which, together with the technical
power capacity pmax

s and energy capacity emax
s of the battery energy storage system

(BESS), results in a potentially infeasible OP. As the LRDF holds power and energy
reserves for the uncertainty of the prosumption via the reformulated power and
energy chance constraints in the computation of the dispatch schedule (DS) in
Equation (2.24), the BESS’ effective power and energy capacity are further reduced.
While this reduction is fixed by the security level parameter ϵP for the power chance
constraint, the security level of the energy chance constraint can be relaxed by the
relaxation parameters ϵfix(k) and ϵvar(k). This leads to the second consequence,
namely that the line restriction in the first level OP for the computation of the DS
can lead to relaxed security levels of the reformulated energy chance constraint via
the relaxation parameters ϵfix(k) and ϵvar(k) and thus to a lower reserve of the BESS
for the energy uncertainty of the prosumption. As a consequence, more imbalances
may occur.
These consequences show that it is important to coordinate the line restriction
p∗, the technical BESS’ power capacity pmax

s and energy capacity emax
s , and the

power and energy reserves held for the uncertainty of the prosumption via the
security level parameters ϵP and ϵE . In cases where this coordination is not possible,
additional flexibility providing measures, such as demand-side management, could
be considered to overcome the infeasibility of the OP.
With the inclusion of the line restriction, we aim to analyse the feasibility of the
OP for the LRDF with different line restrictions and thus the ability to mitigate line
overloadings. Additionally, we evaluate how the problem-specific parameters of
the BESS energy capacity emax

s and the security level parameters ϵP and ϵE for the
reformulated power and energy chance constraints influence the feasibility.
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8.2 Evaluation

This section evaluates the line-restricted dispatchable feeder (LRDF). Consequently,
Subsection 8.2.1 presents the experimental setup, whereas Subsection 8.2.2 shows
the results.

8.2.1 Experimental Setup

The following describes the used data, how the probabilistic forecasts are gener-
ated, the benchmarks for comparison of the LRDF, and the considered evaluation
metrics.

Data To address the efficiency increase and the broader expansion of PV panels
since 2013, we scale the PV power generation with a factor of three, i.e. we use
βPV = 3 in Equation (2.27). Due to the computational effort2 to generate the results
for the LRDF and the comparison with several benchmarks, we limit the evaluation
to building 109. In addition, we choose twelve weeks, namely the days from the 9th
to the 15th for the months from July 2012 to June 2013.
For the BESS, we use the BESS energy capacity emax

s of 19.5 kWh. When analysing
the influence of the BESS energy capacity, we further consider emax

s of 13.5, 16.5,
and 22.5 kWh.
For the security level parameters ϵP and ϵE for the reformulated power and energy
chance constraint, we perform the evaluation for multiple parameters, namely for
ϵP of 0.25, 0.40, 0.55, 0.70, 0.85 and ϵE of 0.10, 0.25, 0.40, 0.55, 0.70, 0.85. Then,
we chose two combinations of security level parameters. First, we chose for each
week the combination that results in the best performance of the LRDF. The specific
security level parameters chosen each week are given in Appendix A.6. These weekly
selections represent optimal parameters, which could potentially be predicted in
practice based on calendar features, the optimal parameters from the previous week,
or forecasted weather uncertainty. Second, we identify a single set of security level
parameters that performs well across the initial three weeks and apply this fixed
combination to all subsequent weeks. For this fixed parameter approach, we use

2To generate the results of the LRDF for one week, one building, and one combination of security
level parameters ϵP and ϵE , the required forecasts must be generated and the OP must be calcu-
lated. For the generation of the forecasts, the transformation of the energy forecasts is the most
time consuming task, see Subsection 6.1.1. The approximate time needed for the total of 252
transformations for one week is 98.28 seconds. Additionally, the OP runtime for one week and one
combination of security level parameters ϵP and ϵE is approximately 107.44 seconds.
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ϵP = 0.55 and ϵE = 0.7. To differentiate the results from these two approaches, we
refer to the LRDF with weekly optimal security level parameters as LRDFopt and to
the LRDF with fixed security level parameters ϵP = 0.55 and ϵE = 0.7 as LRDFfix.

Forecast Method The LRDF requires the probabilistic forecasts of qPl(k) and F∆El(k+1)

generated at 12 PM for the computation of the DS and the point forecasts of pl(k) for
each hour for the rescheduling via MPC. Therefore, we train 24 NNs, one for each
hour of the day. While the NN generating the forecasts at 12 PM has the same speci-
fications as described in Subsection 6.2.1, the NNs for all other hours only output
the quantile forecasts of qPl(k) and qEl(k) for the next eight hours, using the median
forecast of qPl(k) as the point forecast of pl(k). The reason for shortening the forecast
horizon is to improve the forecast quality of the forecasts for these hours, while still
covering the necessary hours for the rescheduling via MPC. For a detailed description
of the forecast specifications, the input features, the splitting of the data in training,
validation, and testing, and the neural network architecture, the reader is referred to
Subsection 4.2.1 and Subsection 6.2.1. Additionally, as described in Subsection 6.1.1,
the quantile forecasts of qEl(k+1) have to be transformed into the input for the LRDF,
namely the CDF forecasts of F∆El(k+1). This involves transforming the quantile
forecasts into a closed-form CDF. While in Subsection 6.2.2 this transformation is
done via the one log approach, we use the weighted two log approach described
in Subsection 6.1.1 to account for the skewness of the CDF forecasts of F∆El(k+1).
This approach is computationally affordable in the subsequent evaluation due to the
limitation to building 109.
Finally, as NNs are inherently stochastic forecast methods, meaning their forecasts
can vary with each training run, we generate five sets of forecasts for each hour.
While we present the results of one set of forecasts in this chapter, a summary of
the results across all sets of forecasts is provided in Appendix A.7 to give a more
comprehensive view of the overall performance and variability.

Benchmarks We compare the LRDF against five benchmarks evaluating three
aspects. First, to evaluate the LRDF’s hierarchical operation, we use two benchmarks,
namely no BESS and simple BESS operation. In the benchmark no BESS, no BESS
exists. Hence, the prosumption is not shaved and the actual prosumption equals the
actual dispatch. Thus, the maximum absolute value of the actual prosumption is
crucial for respecting the line restriction. In the benchmark simple BESS operation,
we use the simple BESS operation from the PowerFactory library [51]. More precisely,
the BESS charges as much power as possible if the PV power generation exceeds the
load. The other way around, if the load exceeds the PV power generation, the BESS
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discharges as much power as possible.
Second, to evaluate the impact of considering the line restriction in the mathematical
formulation, we compare the LRDF with the three-level DF considering probabilistic
forecasts without the line restriction, which we refer to as no LR.
Finally, to evaluate the sensitivity of the considered uncertainty, we use the LRDF
considering perfect forecasts LRDFperf and considering point forecasts LRDFpoint.
For the LRDF considering perfect forecasts, perfect knowledge of future prosumption
eliminates the need for forecasts, reducing the hierarchical OP to the first level. The
solution of this benchmark equals the best possible solution for the LRDF. For the
LRDF considering point forecasts, the line restriction is added to the three-level DF
considering point forecasts described in Subsection 2.4.1. For better comparability,
we use the median forecasts q̂Pl(k)(0.5) as point forecasts.

Evaluation Metrics As we consider the single-building scenario, the line restriction
corresponds to a single building’s share on the street line. Therefore, the lower
the line restriction can be set, the lower the chance of line overloadings and the
more buildings can be served via the same street line. Thus, for evaluation of the
LRDF, we consider the minimum possible line restriction (MPLR). It corresponds
to the minimum value of p∗, for which the OP is still feasible. To obtain the MPLR
for the LRDF, we first calculate the maximum absolute value of the actual dispatch
within the considered week of the three-level DF considering probabilistic forecasts
without the line restriction, i.e. the benchmark no LR. Then, we successively reduce
p∗ by 0.1 kW and solve the OP until it is infeasible. The same procedure is done
for the benchmarks LRDFperf and LRDFpoint. For the benchmark no BESS, the MPLR
corresponds to the maximum absolute value of the actual prosumption and for the
benchmark simple BESS operation the MPLR corresponds to the maximum absolute
value of the actual dispatch.
Furthermore, we consider six further evaluation metrics. First, to assess the ability
to shave the peaks of the maximum absolute value of the actual prosumption, i.e.
the MPLR of the benchmark no BESS, we consider the percentage of peak shaving

%PSno BESS =
MPLRno BESS − MPLRapproach

MPLRno BESS
· 100. (8.2)

Second, to assess the impact of adding the line restriction in the mathematical
formulation, we consider the percentage of differences in MPLR relative to the
benchmark no LR

%diffno LR = 1
|C|

∑
i∈C

1{MPLRno LR(i)>MPLRLRDF(i)} (8.3)

8.2 Evaluation 127



with C referring to the set of all considered cases, namely the weeks and the security
level parameters ϵP , for a specific energy security level parameter ϵE , and indicator
function 1. This metric considers only the number of differences and not the height
of the differences in MPLR. To assess the height of the differences in MPLR relative
to the benchmark no LR, we calculate the minimum, average, and maximum of the
differences over all cases, in which we observe a difference, i.e.

min{diff}no LR = min
i∈C

{diffi}, (8.4)

average{diff}no LR =
∑

i∈C diffi∑
i∈C 1{MPLRno LR(i)>MPLRLRDF(i)}

, (8.5)

max{diff}no LR = max
i∈C

{diffi} (8.6)

with diffi = (MPLRno LR(i) − MPLRLRDF(i)) · 1{MPLRno LR(i)>MPLRLRDF(i)}. Finally, to
assess the sensitivity of the considered uncertainty, we compare the percentage share
of the MPLR relative to the MPLR using the benchmark LRDFperf, i.e.

%shareperf =
MPLRLRDFperf

MPLRapproach
· 100. (8.7)

The higher the percentage of MPLR relative to the MPLR using the benchmark
LRDFperf, the closer the MPLR to the best possible solution.

8.2.2 Results

We evaluate the line-restricted dispatchable feeder (LRDF) with respect to four
aspects. First, we assess the hierarchical operation of the LRDF. Second, we analyse
the impact of adding the line restriction in the mathematical formulation of the three-
level DF considering probabilistic forecasts. Third, we investigate the sensitivity of
the considered uncertainty of the prosumption. Finally, we evaluate the impact of
problem-specific parameters, namely the BESS energy capacity emax

s and the security
level parameters ϵP and ϵE .

Benchmarking the BESS Operation

In this subsection, we qualitatively and quantitatively compare the hierarchical
operation of the LRDF with the benchmark no BESS and the benchmark simple BESS
operation. For the qualitative comparison, we examine the actual dispatch and the
corresponding SoE of the BESS for week 2. For the quantitative comparison, we
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Fig. 8.1.: The actual dispatch and the corresponding BESS’ state of energy of the benchmark
no BESS, the benchmark simple BESS operation, and the LRDFopt for week 2 with
the minimum possible line restriction of the benchmark no BESS in dashed blue
(6.85 kW), of the benchmark simple BESS operation in dashed orange (5.38 kW),
and of the LRDFopt in dashed green (3.07 kW)

compare the MPLR and the percentage of peak shaving relative to the benchmark
no BESS for all weeks.

Qualitative Comparison Figure 8.1 shows the actual dispatch and the correspond-
ing BESS’ SoE for both benchmarks and the LRDFopt exemplary for week 2. For
the LRDFopt, we set the line restriction to the MPLR of week 2, i.e. 3.07 kW. In
this figure, we make two observations. First, we see that while the benchmark no
BESS does not shave the actual prosumption, the benchmark simple BESS operation
achieves some improvement. In contrast, the LRDFopt noticeably reduces the nega-
tive peaks. This difference in peak shaving is reflected in the MPLRs. The MPLR of
the benchmark no BESS is 6.85 kW and of the benchmark simple BESS operation
is 5.38 kW. In correspondence to the first observation, we, secondly, observe differ-
ences in the BESS’ SoE for the LRDFopt and the benchmark simple BESS operation.
The benchmark simple BESS operation charges the BESS in the first hours of PV
power overgeneration to its full capacity at the first and the fifth day. In contrast,
the LRDFopt operates the BESS leaving reserves for the whole period of PV power
overgeneration.
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Tab. 8.1.: The minimum possible line restriction in kW of the benchmark no BESS, the
benchmark simple BESS operation, the LRDFfix, and the LRDFopt, and the percent-
age of peak shaving relative to the benchmark no BESS in % of the benchmark
simple BESS operation, the LRDFfix, and the LRDFopt for all considered weeks.

Week No BESS Simple BESS operation LRDFfix LRDFopt

MPLR MPLR %PSno BESS MPLR %PSno BESS MPLR %PSno BESS

1 6.11 4.69 23.24 3.63 40.59 3.37 44.84
2 6.85 5.38 21.46 3.07 55.18 3.07 55.18
3 9.16 8.83 3.60 5.54 39.52 5.54 39.52
4 10.50 10.50 0.00 7.14 32.00 6.52 37.90
5 11.36 11.36 0.00 9.09 19.98 8.10 28.70
6 6.63 6.58 0.75 4.72 28.81 4.49 31.76
7 11.01 8.77 20.35 7.47 32.15 7.20 34.60
8 11.18 11.18 0.00 7.24 35.24 6.30 43.65
9 9.81 9.81 0.00 5.67 42.20 5.65 42.40

10 7.96 7.89 0.88 5.66 28.89 5.66 28.89
11 6.54 5.40 17.43 3.90 40.37 3.30 49.54
12 5.55 2.55 54.05 3.05 45.05 2.60 53.15

Quantitative Comparison For all weeks, Table 8.1 shows the MPLR and %PSno BESS.
In this table we observe that the benchmark no BESS and simple BESS operation
achieve similar MPLR in seven weeks. In contrast, both LRDFs clearly enable a lower
MPLR compared to the benchmark no BESS achieving a peak shaving by at least
19.98% for LRDFfix and 28.70% for LRDFopt for all weeks. The comparison of the
benchmark simple BESS operation and the LRDFs shows that the LRDFs achieve a
lower MPLR and a higher peak shaving for almost all weeks. Outstanding is week
12, in which the benchmark simple BESS operation achieves a smaller MPLR and
thus a higher peak shaving than the LRDFs. When comparing the LRDFopt with the
LRDFfix, we observe a lower MPLR and a higher peak shaving for the LRDFopt in
eight weeks. Further, we observe that the MPLR highly depends on the considered
week for the LRDFs and both benchmarks.

Impact of Line Restriction

To assess the impact of the line restriction in the mathematical formulation, we
qualitatively and quantitatively compare the LRDF with the benchmark no LR. For
the qualitative comparison, we analyse the dispatches and the corresponding BESS’
SoE of the first and third level for week 5. For the quantitative comparison, we
evaluate the percentage of differences in MPLR relative to the benchmark no LR,
and the minimum, average, and maximum of the differences in the MPLR relative to
the benchmark no LR.
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(a) The DS pgDS and the corresponding SoE.
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(b) The actual dispatch pg and the corresponding SoE.

Fig. 8.2.: The dispatches and the corresponding BESS’ state of energy for the first (a) and
third level (b) of the benchmark no LR and the LRDFopt for week 5 with the
minimum possible line restriction of the benchmark no LR in dashed orange
(10.03 kW) and of the LRDF in dashed green (8.10 kW).
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Tab. 8.2.: The percentage of differences in the minimum possible line restriction in %, the
minimum, the average, and the maximum of the differences in the minimum
possible line restriction in kW of the LRDF relative to the benchmark no LR over
all considered weeks and security level parameters ϵP .

ϵE %diffno LR min{diff}no LR average{diff}no LR max{diff}no LR

0.10 90% 0.22 1.51 4.07
0.25 92% 0.09 1.53 4.05
0.40 67% 0.15 0.91 1.68
0.55 10% 0.12 0.31 0.40
0.70 8% 0.05 0.35 0.66
0.85 8% 0.05 0.35 0.66

Qualitative Comparison Figure 8.2 shows the results for week 5 of the benchmark
no LR and the LRDFopt. The line restriction of the LRDFopt is set to the MPLR, i.e.
8.10 kW. The MPLR of the benchmark no LR and thus the maximum absolute value
of the actual prosumption is 10.03 kW. For days 1, 2, 3, 4, and 5, we see a difference
in the DS and the BESS’ SoE. These differences are particularly visible during hours
of high PV power generation, where the BESS’ SoE of the LRDFopt charges slightly
more and thus shaves the peaks of the DS and the actual dispatch more compared
to the benchmark no LR. During some of these hours, we observe slightly higher
values of the relaxation parameter ϵfix for the LRDFopt.

Quantitative Comparison Table 8.2 shows %diffno LR, minimum{diff}no LR,
average{diff}no LR, and maximum{diff}no LR over all weeks and security level pa-
rameters ϵP for all considered security level parameters ϵE . In this table we can see
that taking the line restriction into account reduces the maximum absolute value of
the actual prosumption in at least 90% of the considered cases with an average of at
least 1.51 kW for ϵE of 0.10 and 0.25. While considering the line restriction still has
an impact for the majority of cases for ϵE of 0.40, this impact is reduced to at most
10% of cases for a greater ϵE . For these ϵE , we observe that the average reduction
of the maximum absolute value of the actual prosumption is around 0.30 kW.

Sensitivity to Considered Uncertainty

In this subsection, we qualitatively and quantitatively investigate the sensitivity of
the considered uncertainty. Therefore, we compare the LRDF with the benchmarks
LRDFperf and LRDFpoint. For the qualitative comparison, we examine the dispatches
and the corresponding SoEs of the BESS of the first and third level for week 11. For
the quantitative comparison, we compare the MPLR and the percentage share of
MPLR relative to the benchmark LRDFperf for all weeks.
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(a) The DS pgDS and the corresponding SoE.
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(b) The actual dispatch pg and the corresponding SoE.

Fig. 8.3.: The dispatches and the corresponding BESS’ state of energy for the first (a) and
third level (b) of the benchmark LRDFperf, the benchmark LRDFpoint, and the
LRDFopt for week 11. The minimum possible line restriction of the benchmark
LRDFperf in dashed blue (1.94 kW), of the benchmark LRDFpoint in dashed orange
(3.90 kW), and of the LRDFopt in dashed green (3.30 kW)
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Tab. 8.3.: The minimum possible line restriction in kW of the benchmark LRDFperf, the
benchmark LRDFpoint, the LRDFfix, and the LRDFopt, and the percentage share
of minimum possible line restriction relative to the benchmark LRDFperf in % of
the benchmark LRDFpoint, the LRDFfix, and the LRDFopt for all considered weeks.
Note that the higher the percentage of minimum possible line restriction relative
to the benchmark LRDFperf, the closer the minimum possible line restriction to
the best possible solution.

Week LRDFperf LRDFpoint LRDFfix LRDFopt

MPLR MPLR %shareperf MPLR %shareperf MPLR %shareperf

1 1.61 3.71 43.40 3.63 44.35 3.37 47.77
2 2.27 3.15 72.06 3.07 73.94 3.07 73.94
3 4.57 5.70 80.18 5.54 82.49 5.54 82.49
4 5.93 7.14 83.05 7.14 83.05 6.52 90.95
5 6.67 9.11 73.22 9.09 73.38 8.10 82.35
6 3.01 4.49 67.04 4.72 63.77 4.49 67.04
7 6.05 7.48 80.88 7.47 81.00 7.20 84.03
8 6.18 7.27 85.00 7.24 85.36 6.30 98.10
9 5.07 5.68 89.26 5.67 89.42 5.65 89.73
10 3.15 5.73 54.97 5.66 55.65 5.66 55.65
11 1.94 3.90 49.74 3.90 49.74 3.30 58.79
12 1.03 3.05 33.77 3.05 33.77 2.60 39.62

Qualitative Comparison Figure 8.3 shows the dispatches and the corresponding
BESS’ SoE for the two benchmarks and the LRDFopt exemplary for week 11. The line
restrictions are set to the respective MPLR, i.e. 1.94 kW for the benchmark LRDFperf,
3.90 kW for the benchmark LRDFpoint, and 3.30 kW for the LRDFopt. In the first level,
we see that the BESS of the LRDFopt is never fully charged or discharged. In contrast,
the BESS of the benchmark LRDFperf and the benchmark LRDFpoint reach the upper
and lower BESS energy capacity limit on several hours. This results in a lower
maximum absolute value of the DS for both benchmarks compared to the LRDFopt.
However, while the LRDFopt can almost maintain the maximum absolute value of the
DS with the actual dispatch, the benchmark LRDFpoint deviates especially during the
PV power generation hours from its DS, resulting in a higher MPLR. Compared to
the benchmark LRDFperf, the actual SoE of the benchmark LRDFpoint is similar, with
one crucial difference, namely that the BESS is charged to its upper limit emax

s = 19.5
earlier during the PV power generation hours.

Quantitative Comparison Table 8.3 shows the MPLR and %shareperf for all weeks.
We describe three observations. First, we see that the LRDFopt achieves a MPLR
and thus a percentage share at least as well as the benchmark LRDFpoint for all
weeks. However, there are no or only small differences between the LRDFopt and
the benchmark LRDFpoint in weeks 2, 6, 9, and 10. Second, we observe that the
LRDFfix performs inferior than the LRDFopt in eight weeks. Additionally, the LRDFfix

134 Chapter 8 Line-Restricted Dispatchable Feeder



13.5 16.5 19.5 22.5

6

7

8

emax
s (kW)

M
PL

R
(k

W
)

ϵE = 0.10 ϵE = 0.25 ϵE = 0.40
ϵE = 0.55 ϵE = 0.70 ϵE = 0.85

(a) Week 3

13.5 16.5 19.5 22.5

6.5

7

7.5

8

emax
s (kWh)

M
PL

R
(k

W
)

(b) Week 8

Fig. 8.4.: The minimal possible line restriction for different BESS energy capacities emax
s

and different security level parameter ϵE for week 3 and 8. Note that ϵP is set to
0.25.

performs inferior compared to the benchmark LRDFpoint in week 6. Finally, we
observe that the percentage shares vary in the considered weeks. Outstanding are
weeks 1 and 12, which result in low percentage shares for both the LRDFs and the
benchmark LRDFpoint.

8.2 Evaluation 135



Impact of Problem-Specific Parameters

While in the analyses above, the BESS energy capacity emax
s and the security level

parameters ϵP and ϵE are set to specific values, we analyse in this subsection the
impact of these parameters on the MPLR. Figure 8.4 shows the MPLR of the LRDF for
different BESS energy capacities emax

s and security level parameters ϵE for weeks 3
and 8. We make three observations. First, we observe that the choice of the security
level parameter ϵE can have an impact on the MPLR depending on the week. In
contrast, the security level parameter ϵP has less impact on the MPLR, which is why
we do not explicitly show the results. Second, the MPLR for most ϵE is decreasing
with an increasing BESS energy capacity in both weeks. Third, the relation between
BESS energy capacity and ϵE with respect to the best MPLR is not clear. While in
week 3, there is a clear tendency for a bigger ϵE , such a clear tendency is not visible
in week 8. In this week, we observe that a medium ϵE is beneficial with respect to
the MPLR with a tendency to a smaller ϵE for a bigger BESS energy capacity.

8.3 Discussion

In this section, we discuss the findings of the results above, the limitations and
further research.

8.3.1 Findings

We discuss the evaluation of the LRDF focusing on five aspects. First, we discuss the
performance of the LRDF using a hierarchical OP for BESS operation. Second, we
discuss the impact of considering the line restriction in the mathematical formulation.
Third, we discuss the impact of using probabilistic forecasts. Fourth, we discuss the
impact of the BESS energy capacity and the security level parameters. Finally, we
return to the research question posed in this chapter and assess how the findings
contribute to answering it.
First, regarding the performance of LRDF as hierarchical OP, the results show
that including a scheduling and rescheduling level reduces the MPLR and thus
increases the number of buildings a street line can serve. More specifically, compared
to the benchmark simple BESS operation, the LRDF is beneficial because of the
consideration of prosumption forecasts in addition to the actual prosumption values.
Thus, the LRDF leaves BESS reserves to shave peaks for the whole period of PV
power overgeneration. However, we also observe that the MPLR is dependent on
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the week. These fluctuations may be caused by the varying prosumption profiles
and the quality of the forecasts.
Second, regarding the impact of the line restriction in the mathematical formulation,
the results show that the DS, the actual dispatch, and the corresponding SoEs can
vary when considering the line restriction. Notably, negative peaks are shaved as a
full PV power feed-in would violate the line restriction. This peak shaving comes with
a slightly stronger relaxed security level 1 − ϵE over ϵfix. However, the assumption
in Section 8.1 of more imbalances is not reflected in the cost. More precisely, the
average daily imbalance cost for the LRDF are lower or negligibly higher than for
the benchmark no LR for all weeks and security levels considered. Together with the
lower average daily DS cost for the LRDF due to less power exchange with the grid,
the LRDF results in lower average daily total cost compared to the benchmark no LR.
In the single-building scenario, these results demonstrate that the LRDF can respect
and adapt to a line restriction. Since the single-building scenario is analogous to a
multiple-building scenario with a fixed share of the street line capacity, these results
can be generalised accordingly. Furthermore, the results show that the smaller
the security level parameter ϵE , the greater the impact of the line restriction. This
can be explained as follows: The smaller the security level parameter ϵE and thus
the higher the reserve held for the prosumption energy uncertainty, the less the
BESS can be used for peak shaving and thus the higher the potential for reducing
the exchange with the grid. However, simply reducing the reserve held for the
prosumption uncertainty may not result in a lower maximum absolute value of the
actual dispatch, as actual prosumption values that deviate from its point forecast,
especially at the end of PV power generation hours, may result in high peaks.
Third, regarding the impact of using probabilistic forecasts, the results indicate that
considering probabilistic forecasts in the mathematical formulation of the three-level
DF considering probabilistic forecasts can reduce line overloadings compared to point
forecasts. However, the LRDF does not reach the MPLR of the DF considering perfect
forecasts, which is an upper but unrealistic bound for the given setup. Furthermore,
we observe different performances of the LRDF within the considered weeks. In
eight out of twelve weeks the LRDF achieves a MPLR over 60% of the best possible
solution. In the remaining weeks, which fall in the Australian winter months, we
observe an underconfidence in calibration, particularly for the quantile forecasts
of qEl(k+1), while maintaining a similar sharpness to the quantile forecasts of other
weeks. This suggests that the forecasts may be too conservative, overestimating the
uncertainty. As a consequence, the LRDF may hold more reserve for the prosumption
energy uncertainty in the BESS preventing a reduction of the MPLR.
Fourth, regarding the impact of the BESS energy capacity and the security level
parameters, we observe that a higher BESS energy capacity results in a lower
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MPLR, which makes sense because a higher BESS energy capacity can reduce the
exchange between the LRDF and the grid. For the security level parameter ϵE , there
is a trade-off for the operation of the BESS between reserve for the prosumption
energy uncertainty and usage to reduce the MPLR. Therefore, a higher security
level parameter ϵE may result in a lower MPLR. However, this strongly depends
on the characteristics of the probabilistic forecasts of F∆El(k+1). More precisely, if
the actual values align with the probabilistic forecasts, it may be beneficial to use
a bigger ϵE . This is the case for week 3, which has a good calibration, sharpness,
and CRPS. However, no such interpretable explanation can be found for week 8.
These results imply that choosing the security level parameter ϵE for a specific BESS
energy capacity with respect to the MPLR can be complex and should not be based
solely on forecast quality metrics such as the CRPS. Additional weeks with more
complex metrics could be evaluated to further understand the relationship. The
impact of the security level parameters is further highlighted by the differences in
performance between the LRDF with weekly optimal security level parameters and
the LRDF with fixed security level parameters over all weeks. The results show that
an inappropriate choice of security level parameters can lead to lower performance
of the LRDF and even lower performance than when considering point forecasts.
This highlights the critical role of a good choice of the security level parameters.
Finally, regarding the research question

RQ5: How to consider the line restriction and mitigate line overloadings for the dis-
patchable feeder considering probabilistic forecasts?

we can say that adding a fixed, time-independent technical restriction in the math-
ematical formulation of the three-level DF considering probabilistic forecasts can
reduce line overloadings in the single-building scenario. Both the three-level opera-
tion and the consideration of probabilistic forecasts can be beneficial with respect
to the MPLR. The extent of these benefits depends on the characteristics of the
forecasts, the BESS energy capacity, and the security level parameters.

8.3.2 Limitations and Further Research

In the following, we examine the limitations and suggest directions for further
research considering four aspects.
First, since our results highlight the critical role of the forecasts, further research
could explore the impact of different forecasts on the MPLR. In this context, the
choice of the security level parameter ϵE depending on the forecast could be elabo-
rated.
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Second, our evaluation is conducted on a weekly basis, which could be extended to
a full year, including extreme cases, to obtain a more generalisable MPLR.
Third, the evaluation of the LRDF is limited to a single building with a fixed share
of the street line. Future research could extend this scenario to include multiple
buildings with a flexible share via the joint optimisation of the buildings coupled
by the line restriction. This could include distributed optimisation to ensure data
privacy, and individual cost functions for each building to take into account for
individual objectives [40].
Finally, while we circumvent the infeasibility of the OP as explained in Section 8.1 by
using the MPLR, further investigation is required when using a technical restriction
of the street line, such as the choice of the BESS energy capacity and additional
flexibility providing measures.
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Conclusion 9
This thesis focuses on the dispatchable feeder (DF), which is a concept for making
aggregated renewable energy sources (RES) and loads dispatchable using battery
energy storage systems (BESS). As such, it is formulated as a stochastic optimisation
problem using forecasts of the RES generation and loads as inputs. Consequently,
both the forecasts and the mathematical formulation of the optimisation problem
have an impact on the performance of the DF. Therefore, this thesis considers both
aspects.
More precisely, in Chapter 4, we evaluate the DF’s performance based on point
forecasts with different characteristics obtained using different loss functions on a
dataset of 300 residential buildings. As evaluation metrics we consider the average
daily costs of the dispatch schedule, the imbalances, and the weighted sum of both.
The results show that the forecast characteristics influence the forecast value for the
DF and that this influence depends on the BESS energy capacity and the prosump-
tion data. Thus, to improve the performance of the DF, it is beneficial to carefully
consider the forecast characteristics, taking into account the considered forecast
value, the BESS energy capacity, and the prosumption data. Moreover, achieving the
best forecast value may require looking beyond the typical forecast characteristics
determined by standard loss functions.
In Chapter 5, we introduce a framework to automatically select the forecast method
with respect to the forecast value for the DF considering point forecasts based on
meta-learning. The selection task is treated as a classification problem and a clas-
sifier is trained based on labels referring to the forecast method generating the
forecast with the highest forecast value for the DF. This classifier outputs either
the label of one forecast method or probabilities for each forecast method, which
are used to generate an ensemble forecast. The results show that our framework
reduces the average daily total cost and improves the accuracy compared to selecting
the same forecast method for each building. Compared to manually selecting the
forecasting method for each building, the proposed framework leads to a similar
average daily total cost requiring noticeably less computational effort. In particular,
using the classifier to generate ensemble forecasts is more beneficial with respect to
the average daily total cost than using the classifier to select one forecast method.
In Chapter 6, we evaluate the DF’s performance based on probabilistic forecasts
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with different characteristics. Specifically, we modify the probabilistic forecasts
to have either a bias or a different dispersion. Equivalent to the point forecast
evaluation, we consider several average daily costs as forecast value. The results
show that the forecast characteristics can influence the forecast value. Additionally,
the results underline the strong relation between the security level parameters for
the reformulated power and energy chance constraints and the dispersion of the
forecast, and suggest that a coordination of the three leads to lower average daily
cost.
In Chapter 7, we compare the performance of the DF considering point forecasts
and the DF considering probabilistic forecasts over several buildings, using forecasts
with different characteristics. More specifically, we consider both point forecasts and
the probabilistic forecasts from Chapter 4 and Chapter 6 respectively, which lead to
a high forecast value for the DF, as well as standard point and probabilistic forecasts.
The results show that while the DF considering value-oriented probabilistic forecasts
achieves the lowest total cost with imbalance cost factor α = 10, the total cost
with imbalance cost factor α = 2 is comparable for all considered DFs. For this
total cost, the best performing DF depends on the specific building. Additionally,
the consideration of value-oriented point forecasts can result in total costs with
imbalance cost factor α = 10 that are similar to unmodified probabilistic forecasts,
indicating that value-oriented point forecasts can compensate to some extent for the
lack of integration of the prosumption uncertainty in the mathematical formulation.
Finally, in Chapter 8, we extend the mathematical formulation of the DF considering
probabilistic forecasts to include the technical restriction of the street line, which we
call line-restricted dispatchable feeder (LRDF). For the single-building scenario, the
results on a selected building show that the LRDF can reduce line overloadings com-
pared to a simple BESS management and DF without line restriction. Additionally,
the results show that the consideration of probabilistic forecasts can be more benefi-
cial in reducing line overloadings than the consideration of point forecasts. Thereby,
the performance depends on the probabilistic forecast and the chosen security level
parameters of the reformulated power and energy chance constraints.
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Future Work 10
In addressing the research questions set out in Section 3.1 with the evaluations and
frameworks presented, potential for future work emerged. Although some of these
ideas for future work are mentioned in the individual chapters, these suggestions
are expanded upon here. What follows is an overview of these ideas, grouped into
three main categories.

Extension of the Forecast Evaluation and Forecast Method Selection

In order to broaden the application and robustness of the forecast evaluations and
the proposed forecast method selection, several extensions could be made. These
could include:

• Further forecast values, such as the minimum possible line restriction, and
additional problem-specific parameters, such as the energy cost function param-
eters used in the computation of the dispatch schedule, could be considered.

• Both the forecast evaluation and the value-oriented forecast method selection
could be extended and applied to other stochastic OPs.

• An online value-oriented forecast method selection could be developed, that
continuously reclassifies the best forecast method based on current informa-
tion.

• A value-oriented recalibration of probabilistic forecasts could be developed
with respect to the performance of the DF considering probabilistic forecasts.

• Forecast methods could be specifically trained to generate forecasts with high
forecast value for the DF, as demonstrated in [16].

• The forecast evaluation could be extended to advanced machine learning
methods, such as foundation models and other approaches to generate the
cumulative distribution function forecasts could be considered [136].
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Extension of Mathematical Formulation of the Dispatchable Feeder

The mathematical formulation of the DF could be extended to include additional
uncertainties and aspects. These could include:

• Uncertainty could be incorporated into the OP for rescheduling via model
predictive control [130] and into the energy cost function used for the compu-
tation of the dispatch schedule.

• Additional aspects, such as demand-side management, a dynamic energy
cost function, and more realistic models of the BESS and the grid, could be
integrated into the formulation.

• Additional devices, such as heat pumps and electric vehicles, could be incorpo-
rated into the mathematical formulation.

• The mathematical formulation could be extended to multi-objective optimisa-
tion to handle multiple conflicting objectives, such as minimising energy cost
while also minimising imbalance cost or maximising BESS efficiency [147].

• A multi-building scenario, i.e. multiple buildings sharing the same point of
common coupling to the grid, could be considered to account for inter-building
effects, to explore the achievement of collective objectives such as peak shaving
[131], and to assess the scalability of the DF.

Further Extensions

In addition to extending the forecasting and the mathematical formulation, other
extensions could be made. These could include:

• The real-world implementation of the DF, as discussed in [17], could be
carried out to assess its performance in practice, taking into account temporal
resolutions of seconds to minutes to address rapid fluctuations and real-time
operational needs.

• The security level parameters for the reformulated power and energy chance
constraints of the DF considering probabilistic forecasts could be optimally
selected.

• An optimal sizing of the BESS power and energy capacity could be developed
to ensure proper operation of the DF.
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Appendix A
A.1 Dealing with Non-Convexity

While the non-convexity in the computation of the DS considering point forecasts,
the rescheduling via MPC, and the calculation of the actual dispatch comes solely
from the complementarity constraint of the BESS active power input

p̄+
s (k) · p̄−

s (k) ≥ −ζ,

the reformulated energy chance constraint

1 − ϵE − ϵfix(k) − ϵvar(k) ≤ F∆El(k+1)
(
ēs(k + 1) − emin

s

)
−

F∆El(k+1) (ēs(k + 1) − emax
s )

additionally introduces non-convexity in the computation of the DS considering
probabilistic forecasts. As a global minimum for non-convex OPs can not be guaran-
teed, it is important to pay awareness and potentially conduct further analysis for
trustworthy solutions. In our case, we conduct the following analysis on selected
data:

• Computation of DS considering point forecast / Rescheduling via MPC: We
exclude the complementarity constraint, which results in a convex OP. For the
selected data, the convex OP yields the same solutions as the original OP. This
suggests that the original OP could be reformulated as a convex problem.

• Computation of DS considering probabilistic forecasts: We run the OP with
different initial values with the same solutions as a result. However, this
consistency of solutions does not ensure convergence to the global minimum,
which can not be proved. Furthermore, we exclude the complementarity
constraint, which leads to the same solutions as the original OP.

• Calculation of actual dispatch: The OP can be rewritten to a rule-based ap-
proach via

If emin
s ≤ es(k) + pgref(k) − pl(k) − µ · |pgref(k) − pl(k)| ≤ emax

s and
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pmin
s ≤ pgref(k) − pl(k) ≤ pmax

s :

ps(k) = pgref(k) − pl(k)

elif pgref(k) − pl(k) > 0 :

ps(k) = min
{

pmax
s ,

emax
s − es(k)

1 − µ

}
elif pgref(k) − pl(k) < 0 :

ps(k) = max
{

pmin
s , −emin

s − es(k)
1 + µ

}
.

The comparison of the solutions of the rule-based approach and the OP shows
that the OP returns the global minimum. For formatting consistency within
the implementation, we use the formulation as OP. Note that the exclusion of
the complementarity constraint of the BESS active power input results in a
different solution.
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A.2 Parameter Specifications of the Optimisation
Problems for the Dispatchable Feeder

Tab. A.1.: The parameter specifications of the optimisation problems for the dispatchable
feeder in Equation (2.23), Equation (2.24), Equation (2.25) and Equation (2.26)
if not specified otherwise.

Parameter Value

∆t 1 (hour)
k0 index of time interval starting at 12 PM
kb index of time interval starting at 12 AM
m 6 (hour)
K {kb, ..., kb + 29}
c+

quad 0.05 (C/kWh2)

c+
lin 0.3 (C/kWh)

c−
quad 0.05 (C/kWh2)

c−
lin 0.15 (C/kWh)

pmin
s −5 (kW)

pmax
s 5 (kW)

emin
s 0 (kWh)

emax
s 19.5 (kWh)

µ 0.05
ēkb

s day 1: emax
s
2 (kWh)

all other days: estimated1

γ 1e-8
cfix 50
cvar [0.1, 0.2, 0.4, 1000000,...,100000]

A.3 Estimation of State of Energy at kb

For the day-ahead computation of the DS, an estimate of the SoE at kb is required.
Therefore, as in [8], this SoE is estimated based on the current SoE at k0 and the
prosumption forecasts. For this estimation, the same OP as in Equation (2.26) is run
for each time index between k0 and kb, i.e. twelve times with the specifications in
Table A.1, using the mean prosumption forecasts ˆ̄pl(k) generated at k0 instead of
the actual prosumption values pl(k).

1The initial state of energy ē
kb
s for all other days is estimated as described in Appendix A.3.

A.2 Parameter Specifications of the Optimisation Problems for the
Dispatchable Feeder
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A.4 Comparison of Modification for Bias and of
Dispersion for Security Level Parameters ϵP = 0.1,
ϵE = 0.3
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(b) Modification of dispersion

Fig. A.1.: The wins and the occurrences within the 5% win range for the considered average
daily cost, i.e. the dispatch schedule cost (left), the imbalance cost (middle),
and the total cost with imbalance cost factor α = 2 (right) and the security level
parameters ϵP = 0.1, ϵE = 0.3 for the considered modifications for a bias (a)
and the considered modifications of the dispersion (b). Note that more wins and
more occurrences within the 5% win range are better.
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A.5 The Dispatch Schedule Costs and the Imbalance
Costs for the Comparison of Different Dispatchable
Feeders

Tab. A.2.: The average daily dispatch schedule costs and the average daily imbalance costs
in C for the DFv-o point, the DFv-o prob,total 2, the DFv-o prob,total 10, the DFMSE point,
the DFunmod prob,total 2, and the DFunmod prob,total 10. The average daily costs are
averaged over the last year and over all buildings with IDs greater than 200. For
the average daily costs, lower values are better. Further average daily costs are
displayed in Table 7.2.

Approaches DS Imbalance

DFv-o point 3.87 0.59
DFv-o prob,total 2 4.20 0.53
DFv-o prob,total 10 4.23 0.46
DFMSE point 3.29 0.80
DFunmod prob,total 2 3.36 0.80
DFunmod prob,total 10 3.83 0.53

A.6 Security Level Parameter Specifications for the
Line-Restricted Dispatchable Feeder

Tab. A.3.: The security level parameters ϵP and ϵE used in Chapter 8 for each considered
week.

Week ϵP ϵE

1 0.40 0.55
2 0.55 0.70
3 0.55 0.70
4 0.40 0.55
5 0.40 0.10
6 0.70 0.70
7 0.40 0.25
8 0.25 0.40
9 0.40 0.70

10 0.40 0.55
11 0.25 0.40
12 0.25 0.70

A.5 The Dispatch Schedule Costs and the Imbalance Costs for the
Comparison of Different Dispatchable Feeders
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A.7 Evaluation of the Line-Restricted Dispatchable
Feeder for Different Sets of Forecasts

Tab. A.4.: The minimum possible line restriction in kW and the percentage share of min-
imum possible line restriction relative to the benchmark LRDFperf in % of the
benchmark LRDFpoint, the LRDFfix, and the LRDFopt and the percentage of peak
shaving relative to the benchmark no BESS in % of the LRDFfix and the LRDFopt

for all considered weeks and the four additional generated set of forecasts.

(a) Set 1

Week LRDFpoint LRDFfix LRDFopt

MPLR %shareperf MPLR %PSno BESS %shareperf MPLR %PSno BESS %shareperf

1 3.53 45.61 3.51 42.55 45.87 3.51 42.55 45.87
2 3.82 59.42 3.82 44.23 59.42 3.12 54.45 72.76
3 5.94 76.94 5.95 35.04 76.81 5.94 35.15 76.97
4 7.01 84.59 7.01 33.24 84.59 6.90 34.29 85.94
5 8.13 82.04 8.11 28.61 82.24 8.11 28.61 82.24
6 4.96 60.69 4.96 25.19 60.69 4.96 25.19 60.69
7 9.49 63.75 9.57 13.08 63.22 9.49 13.81 63.75
8 6.84 90.35 7.00 37.39 88.29 6.60 40.97 93.64
9 6.40 79.22 6.40 34.76 79.22 6.40 34.76 79.22

10 6.84 46.05 6.70 15.83 47.01 6.10 23.37 51.64
11 3.66 53.01 3.64 44.34 53.30 2.30 64.83 84.35
12 3.00 34.33 3.00 45.95 34.33 2.70 51.35 38.15

(b) Set 2

Week LRDFpoint LRDFfix LRDFopt

MPLR %shareperf MPLR %PSno BESS %shareperf MPLR %PSno BESS %shareperf

1 3.84 41.93 3.74 38.79 43.05 3.74 38.79 43.05
2 3.67 61.85 3.17 53.72 71.61 3.07 55.18 73.94
3 6.20 73.71 5.90 35.59 77.46 5.90 35.59 77.46
4 7.18 82.59 7.08 32.57 83.76 6.80 35.24 87.21
5 9.10 73.30 9.10 19.8 73.30 9.10 19.8 73.30
6 4.66 64.59 4.43 33.18 67.95 4.43 33.18 67.95
7 8.97 67.45 8.97 18.53 67.45 10.10 8.27 59.90
8 7.31 84.54 7.50 32.92 82.40 7.30 34.70 84.66
9 6.43 78.85 6.61 32.62 76.70 6.40 34.76 79.22

10 5.66 55.65 5.66 28.89 55.65 5.66 28.89 55.65
11 3.93 49.36 3.90 40.37 49.74 3.90 40.37 49.74
12 3.21 32.09 3.08 44.50 33.44 2.40 56.76 42.92
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(c) Set 3

Week LRDFpoint LRDFfix LRDFopt

MPLR %shareperf MPLR %PSno BESS %shareperf MPLR %PSno BESS %shareperf

1 5.26 30.61 5.08 16.86 31.69 5.08 16.86 31.69
2 3.45 65.80 2.96 56.79 76.69 2.96 56.79 76.69
3 5.74 79.62 5.59 38.97 81.75 5.59 38.97 81.75
4 7.25 81.79 7.14 32.00 83.05 7.10 32.38 83.52
5 8.49 78.56 8.38 26.23 79.59 8.11 28.61 82.24
6 5.15 58.45 4.65 29.86 64.73 4.65 29.86 64.73
7 8.77 68.99 9.69 11.99 62.44 8.77 20.35 68.99
8 7.40 83.51 7.30 34.70 84.66 7.10 36.49 87.04
9 7.01 72.33 7.03 28.34 72.12 6.58 32.93 77.05
10 5.67 55.56 5.66 28.89 55.65 5.66 28.89 55.65
11 3.90 49.74 3.69 43.58 52.57 3.69 43.58 52.57
12 3.42 30.12 3.12 43.78 33.01 3.00 45.95 34.33

(d) Set 4

Week LRDFpoint LRDFfix LRDFopt

MPLR %shareperf MPLR %PSno BESS %shareperf MPLR %PSno BESS %shareperf

1 4.64 34.70 4.26 30.28 37.79 4.26 30.28 37.79
2 3.77 60.21 3.63 47.01 62.53 2.90 57.66 78.28
3 6.03 75.79 6.06 33.84 75.41 5.90 35.59 77.46
4 7.27 81.57 7.05 32.86 84.11 6.90 34.29 85.94
5 8.11 82.24 8.11 28.61 82.24 8.11 28.61 82.24
6 4.78 62.97 5.13 22.62 58.67 4.71 28.96 63.91
7 8.17 74.05 8.49 22.89 71.26 8.17 25.79 74.05
8 6.96 88.79 6.77 39.45 91.29 6.69 40.16 92.38
9 6.02 84.22 6.50 33.74 78.00 5.92 39.65 85.64
10 5.66 55.65 5.66 28.89 55.65 5.66 28.89 55.65
11 3.90 49.74 3.90 40.37 49.74 3.59 45.11 54.04
12 3.29 31.31 3.15 43.24 32.70 2.60 53.15 39.62

A.7 Evaluation of the Line-Restricted Dispatchable Feeder for
Different Sets of Forecasts
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