KIT | KIT-Bibliothek | Impressum | Datenschutz

Design and Implementation of an Adaptive Synchronous Reference Frame Phase-Locked Loop Based on a Recurrent Neural Network

Kießling, Paul; Braeckle, Dennis; Carne, Giovanni De ORCID iD icon 1
1 Institut für Technische Physik (ITEP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

An adaptive self-tuned synchronous reference frame phase-locked loop (PLL) for a grid-following voltage source converter (VSC) is presented. The adaptation is conducted by a recurrent neural network (RNN) that predicts the optimized control parameter online based solely on already existent timeseries data. The resulting configuration adjusts its behaviour according to changing environmental conditions. An offline platform employs a genetic algorithm (GA) to extract the optimized control parameters for various operation points, which are then used to train the RNN model. The design goal for the optimization combines the damping of the PLL output with efficient frequency tracking. The conducted simulative case study demonstrates that the proposed implementation outperforms the conventional PLL in terms of robustness to varying conditions, such as alternating grid strength and load steps at weak grid scenarios. The approach is further validated through experimental measurements on a prototype laboratory setup demonstrating the real-time capability of the concept.


Download
Originalveröffentlichung
DOI: 10.1109/ECCE-Europe62795.2025.11238944
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Institut für Technische Physik (ITEP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-6753-8
KITopen-ID: 1000189297
HGF-Programm 37.12.03 (POF IV, LK 01) Smart Areas and Research Platforms
Erschienen in 2025 Energy Conversion Congress & Expo Europe (ECCE Europe); Birmingham, Vereinigtes Königreich, 31.08.-04.09.2025
Veranstaltung Energy Conversion Congress and Expo Europe (ECCE Europe 2025), Birmingham, Vereinigtes Königreich, 31.08.2025 – 04.09.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Schlagwörter adaptive SRF-PLL, grid synchronization, recurrent neural network, supervised learning
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page