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Abstract
Extended Reality (XR) technologies are becoming integral to daily life. However, password-based authentication in XR
disrupts immersion due to poor usability, as entering credentials with XR controllers is cumbersome and error-prone. This
leads users to choose weaker passwords, compromising security. To improve both usability and security, we introduce a
multimodal biometric authentication system that combines eye movements and brainwave patterns using consumer-grade
sensors that can be integrated into XR devices. Our prototype, developed and evaluated with 30 participants, achieves an
Equal Error Rate (EER) of 0.298%, outperforming eye movement (1.820%) and brainwave (4.920%) modalities alone, as
well as state-of-the-art biometric alternatives (EERs between 2.5% and 7%). Furthermore, this system enables seamless
authentication through visual stimuli without complex interaction.

Keywords Biometric authentication · EEG authentication · Eye movement authentication · Multimodal authentication

Introduction

Extended reality (XR) is a collective term that encompasses
Virtual Reality (VR), Augmented Reality (AR), and Mixed
Reality (MR), combining real and virtual environments for
interactive user experiences [1–3]. XR is increasingly used
across domains such as education [4], healthcare [5], and
entertainment [6]. Its immersive 3D environments and real-
time interactivity enhance user engagement, but conventional
authentication methods like passwords disrupt this experi-
ence. This highlights the need for authenticationmechanisms
that ensure security while integrating seamlessly into XR,
with biometric systems offering a promising alternative [7].
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Biometric authentication systems employ unique behav-
ioral or physiological traits to identify individuals. However,
methods widely used on smartphones and desktops, such as
facial recognition, fingerprint scanning, or keystroke logging,
are less compatible with XR, as they often require external
hardware and disrupt immersion.Meanwhile, XRdevices are
equipped with multiple sensors, including outward-facing
cameras for environment-tracking and inward-facing cam-
eras for eye tracking to enhance user experience. Prior work
has demonstrated the potential of eye movements for user
authentication [8–12], emphasizing their non-intrusive and
hands-free nature. However, performance has been shown to
decline at the low frame rates common in consumer-grade
devices [8, 11].

In this paper, to improve the reliability of unimodal
authentication systems based on eyemovements, we adopted
a multimodal approach that augments eye movement by
measuring brainwave patterns as well. Multimodality has
generally been shown to significantly improve authentica-
tion accuracy [13, 14], and brainwave patterns, in particular,
are a biometric which is unique to each individual and
consequently resistant to spoofing, difficult to duplicate,
and hands-free [15]. Since brainwave capturing is naturally
hands-free, it is as suited to the XR setting as eye tracking;
however, the brainwave modality suffers from similar draw-
backs as eyemovement.Brainwaves are sensitive to noise and
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artifacts, especially in consumer-grade devices where perfor-
mance is unreliable [16, 17]. Therefore, we hypothesize that
the integration of eye movement and brainwave modalities
will yield a secure, robust, and user-friendly authentication
mechanism that is fully compatible with XR environments.

To validate our multimodal authentication approach in
XR, we conducted a lab study with 30 participants using
consumer-grade equipment to record synchronized brain-
waves and eye movements. Based on this dataset, we
developed a twin neural network system employing an inter-
active dot stimulus [11] and evaluated multiple feature and
score fusion strategies. Since some studies include pupil
diameter as a feature [10, 18] while others omit it [8, 11], we
also examined its impact on authentication performance. Our
results demonstrate the effectiveness of the proposed multi-
modal system, and we summarize the main contributions as
follows:

• Innovation in Multimodal Authentication Our authenti-
cation system is the first to combine synchronized eye
movement and brainwaves. Thus, we offer a novel mul-
timodal authentication solution tailored for XR.

• Substantial Improvement in Accuracy We provide exper-
imental confirmation that a multimodal authentication is
more effective than a unimodal authentication in the XR
context. Our authentication via eye movement shows a
notable 81%–83% reduction in EER when augmented
with brainwave data.

• Insight into Pupil Diameter We investigate the impact
of pupil diameter on authentication, offering additional
depth to the understanding of eye movement results. The
findings serve as a guide for feature selection in the
authentication system based on eye movement.

Authentication in XR

Authentication in XR can be categorized into knowledge-
based [19, 20] (e.g., passwords), possession-based [21] (e.g.,
hardware tokens), and inherence-based (biometric) meth-
ods [10, 22, 23]. Knowledge-based credentials are hard to
recall and input, and possession-based pose availability and
security issues [7]. However, Biometrics remove such bur-
dens and benefit from XR’s growing sensor integration [7].

While biometrics offer clear usability advantages, there
remain challenges related to performance and accuracy. A
promising approach is multimodal biometric authentication,
particularly combining eyemovement andbrainwave signals.
These modalities are hands-free, difficult to spoof, and have
applications beyond authentication [11, 17]. Their combina-
tion could mitigate accuracy issues while retaining usability.
For a biometric system to be viable, the underlying trait must

be universal (present in all individuals), permanent (stable
over time), unique, quantifiable, revocable by the user, and
resistant to forgery. In addition, sensing must be affordable,
and the system must deliver reliable performance.

Studies have demonstrated the temporal stability of brain-
wave and eye movement-based biometric authentication
methods. Maiorana [24] conducted a year-long study, con-
firming the viability of brainwave authentication. Similarly,
Lohr et al. [8] established that eye movement based authen-
tication remains effective over a period of three years. While
static biometrics, such as fingerprints or iris scans, cannot be
altered if compromised. Lin et al. [25] provided empirical
data suggesting that brainwave passwords can be modified
by assigning a different task. In terms of usability, several
studies have indicated a general willingness among people to
adopt eye movement and brainwave authentication methods,
although privacy concerns still remain to be addressed [26–
28]. Overall, we acknowledge the need for further research
to examine other aspects of biometric authentication, but the
specific aim of our work is to achieve reliable performance
using sensors compatible with XR devices.

The reliability and performance of eye movement and
brainwave authentication systems depend heavily on the
quality of the recorded data. For instance, Lohr et al. [8]
demonstrated that when the sampling rate of an eye-tracker
decreases from 1000 to 31Hz, the EER increases from
3.66% to 23.37%. Moreover, in eye movement authentica-
tion, Sluganovic et al. observed that a reduction in sampling
rate from 500 to 50Hz resulted in an 11% increase in
the EER. Similarly, in brainwave authentication systems,
Arias-Cabarcos et al. [17] compared the performance of
two different datasets: a consumer-grade dataset with a
256Hz sampling rate and a medical-grade dataset with a
1024Hz sampling rate. Using the same machine learning
pipeline for both datasets, they found EERs of 8.5% for
the consumer-grade dataset and 1.9% for the medical-grade
dataset. Therefore, to effectively utilize brainwaves or eye
movement for authentication, it is essential to enhance the
performance of authentication systems in consumer-grade
devices.

Experimental design and procedures

Our research aims to achieve robust and reliable authen-
tication in XR, specifically focusing on achieving high
performance with consumer-grade devices. Since biometric
authentication using just single modalities like eye move-
ment [8, 11] and brainwaves [16, 17] have been shown to
be unreliable, we investigate the efficacy of combining eye
movement and brainwave data. Therefore, we formulate our
central research questions as follows: Can synchronized eye
movement and brainwave data improve performance com-

123



Complex & Intelligent Systems            (2026) 12:39 Page 3 of 19    39 

pared with a unimodal? Which modality is more reliable?
What fusion strategy yields the best results? And, what
impact does the feature of pupil diameter have on outcomes?
To answer these questions, we have designed a set of exper-
iments that is described in detail in this section.

Technological andmethodological blueprint

This section outlines the methodologies, software, and tools
employed to implement multimodal authentication through
the synchronized integration of eye movement and brain-
waves in our experimental design (Fig. 1a):

Authentication task—reflexive saccadic responses

Building on the methodology proposed by Sluganovic et
al. [11], we focused on measuring reflexive saccades due
to their inherent stability and low susceptibility to tempo-
rary changes in mental or emotional conditions, such as
attention, mood, or stress—referred to as transient cogni-
tive states. Unlike voluntary saccades, reflexive saccades are
driven by automatic mechanisms, making them more reli-
able for authentication. Our stimulus involved presenting a
dot on the screen. When the participant’s gaze fixated on
the dot, it would disappear, and a new dot would appear
in a random position. This sequence was repeated 25 times
per round [11], with participants completing 36 rounds. The
number of rounds was determined based on the experiment’s
25-min time limit. To prevent fatigue and maintain focus, we
included a 15-s rest interval between rounds. Previous studies
by Sluganovic et al. [11] have demonstrated that this interac-
tive dot task resists replay attacks effectively, as participants
must respond to new random dot positions in real-time.

Task implementation—PsychoPy

The authentication task was designed and executed using
PsychoPy, a platform commonly used in neuroscience and
psychology for creating complex visual and auditory stimuli
[29]. This choice was motivated by two key factors: first, its
compatibility with our eye tracker enabled the development
of an interactive task that dynamically adjusts to the user’s
gaze position; second, its native Python support facilitated
sending event markers to manage synchronized recording of
our experiment.

Synchronization—Lab Streaming Layer (LSL)

Given the significance of millisecond-level precision in
brainwave [30] and eyemovement data [31], synchronization
is crucial. We employed the Lab Streaming Layer (LSL),1

1 https://github.com/sccn/labstreaminglayer.

which is already used in literature for synchronized multi-
modal recording of brainwave and eye movement data [32].
LSL is a system designed for unified time series data col-
lection in research settings. We utilized LSL to achieve
synchronized recording of brainwave and eye movement
data, along with timestamps streams.

Equipment

In linewith our objective to develop an authentication system
for XR environments, we decided against using medical-
grade EEG recorders or high-resolution desktop eye trackers
commonly employed in other research [10, 11, 33, 34].
Instead, we selected an eyeglass based eye tracker and a neu-
roheadset tailored for general use. Our aimwas to investigate
the reliability of these devices for authentication tasks. The
following section provides a technical overview of the equip-
ment used (Fig. 1b):

• Neuroheadset—Emotiv EPOC X The Emotiv EPOC
X neuroheadset,2 equipped with 14 EEG electrodes,
records brainwave data at a sampling rate of 256Hz.
The accompanying Emotiv software provides connectiv-
ity and quality metrics. The connectivity refers to how
well the device connects to the head of the subject, while
signal quality provides a summary measure that con-
siders various factors such as movement, noise, signal
amplitude, and other parameters. According to Emotiv’s
guidelines, optimal electrode contact with the scalp can
yield a 100% connectivity score. Nonetheless, achieving
high-quality data can be challenging for individuals with
long or thick hair.

• Eye tracker—Pupil Core For an XR-like experience, we
chose the Pupil Core,3 as an eye tracker. The Pupil Core
includes one world camera, which records the surround-
ing environment and the participant’s field of view, and
two eye cameras, which simultaneously record the partic-
ipant’s eyes and capture detailed information about gaze
direction, pupil diameter, and eye movement at up to
200Hz. To calibrate the eye tracker, participants were
asked to focus on a sequence of five dots on the screen
using the Pupil Capture. The procedure was repeated as
needed, and calibration was considered successful when
the 3D Gaze Mapping alignment visually matched the
target points with an estimated accuracy of 1.5◦–2.5◦, as
recommended by Pupil Labs. However, recent advance-
ments in calibration-free eye-tracking systems, such as
Pupil Invisible andTobiiGlassesX, suggest a shift toward
reducing or eliminating per-user calibration in the near
future.

2 https://www.emotiv.com/epoc-x/.
3 https://pupil-labs.com/products/core/.
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Fig. 1 Overview of the
synchronization setup and
equipment used during data
collection

Participants and ethical considerations

Our study included 30 participants, 11 women and 19
men. These participants were predominantly young adults
(average age 24) affiliated with the university, either as
undergraduate, master’s, or PhD candidates or as research
assistants. The only requirement for participation was that
individuals be aged 18 or above.

The university’s official social media channels were used
to recruit such a cohort.Weemphasized that participationwas
entirely voluntary, and participants had the freedom to with-
draw from the study at any stage without any consequences.
Participants were reimbursed 15 Euros per hour upon study
completion as compensation for their time and contribution.

This study adheres to responsible research practices by
maintaining ethical integrity. All procedures, methodologies,
consent form, and tools underwent rigorous scrutiny and
were approvedbyour university’s InstitutionalReviewBoard
(IRB). Additionally, for Fig. 1b, we obtained the subject’s
consent to use her photograph in the paper.

Data collection process

Before participating in an experiment, each subjectmust read
and sign an informed consent form that explains the purposes
of the experiment, the types of data to be collected, and how
the data will be used. The preparatory step to the experiment
itself is the equipment setup. The participating subjects first
wear the Pupil Core eye tracker recorder, and next, they wear
the Emotiv EPOC X EEG headset. The two devices are then
adjusted for each subject, that is, the electrodes of the Emo-
tiv EPOC X are placed to enhance data quality, and the Pupil
Core eye tracker is calibrated to achieve precise measure-
ments of gaze points on the screen. To record data, we used
the software Emotiv Pro to stream brainwave data and the
software Pupil Player to stream eyemovement data. Next, we

launched the experiment script in PsychoPy to present stim-
uli and also to manage the event marking stream. Finally, we
used the Lab Streaming Layer (LSL) to record data streams
from the brainwave recorder, the eye tracker, and PsychoPy
(Fig. 1a). Upon completion of the experiment, all devices are
carefully removed from the participants, and compensation
is provided in accordance with the informed consent agree-
ment.

Authentication architecture

Here, we describe our authentication system architecture and
fusion methods employed in the study.

Authentication approach overview

A biometric system consists of four core components: acqui-
sition, preprocessing, recognition, and comparison. These
elements are common to all biometric modalities and form
the foundation of any biometric authentication system.

1. Acquisition Module The initial step involves capturing
the user’s biometric data through specialized sensors.
This phase is essential for collecting the raw information
that will be analyzed and compared in subsequent stages.
As detailed in the “Experimental Design and Procedures”
(“Experimental design and procedures” section), the data
acquisition phase involves the collection of user’s data
through specific sensors, tailored to the biometric trait
being analyzed.

2. Pre-processing Module The acquired data undergoes a
series of preprocessing steps to enhance its quality and
make data ready for the next steps. This includes the
extraction of relevant time series, filtering, interpolation,
and standardization.
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3. Recognition Module At this stage, the system identi-
fies and extracts specific characteristics or features from
the pre-processed data. These features are the unique
attributes that distinguish one individual from another.
The effectiveness of this step is paramount in ensuring
that the system can accurately match the input data with
stored templates.We used a twin neural network, inspired
by BrainNet4 [33], to extract biometric features. The net-
work’s architecture, guided by a triplet loss function,
effectively reduces the dimensionality of the data while
preserving individual characteristics.

4. Comparison Module The extracted features are then
compared to stored biometric templates. We used the

Euclidean distance d =
√∑n

i=1(ei − vi )2 to compute
the distance between enrollment and verification sam-
ples, and defined the similarity score as s = −d so that
higher values indicate greater similarity. Authentication
is accepted if s ≥ τ , where τ is the decision threshold
determined during system calibration.

Preprocessing

The raw data includes multiple time series recorded during
the experiment. In order to prepare input for our recognition
module, we extract a segment of raw data known as a sample.
This sample should consist of recorded biometric data when
the subject is exposed to stimuli—in our case, a dot displayed
on the screen. We extract these samples based on timestamps
where the subject’s gaze aligns with the dot’s position on the
screen.

1. Data Extraction We extracted relevant time series data
for brain, eye, and event timestamps from raw .xdf files,
the output format of the Lab Streaming Layer (LSL).
Specifically, for brain activity,we extracted 14 time series
corresponding to 14EEGelectrodes. For eyemovements,
we extracted 12 time series related to the x and y coordi-
nates of both the pupil and gaze point. We excluded time
series related to the z-coordinate and gaze confidence, as
they could introduce session-specific learning due to the
fixed screen-to-user distance, which may vary based on
the user’s height and dependence of confidence on envi-
ronmental factors and calibration. Also, we extracted 4
time series related to pupil diameter to investigate authen-
tication with pupil diameter features.

2. Sample Extraction Brainwave and eye movement sam-
ples were extracted based on the timestamps correspond-
ing to the last hit of the eye-gaze with the dots. We select
a duration of 0.4 s for samples, which encompass 0.1 s

4 The hyperparameters: Adam optimizer (learning rate = 0.001), batch
size = 128, and 250 epochs.

before the event and extending 0.3 s after it. This dura-
tion is chosen to provide data between the dot hit moving
to another dot. If a longer durationwere selected, it would
result in the inclusion of data from multiple dots within
each sample, thereby complicating the analysis.

3. Standardization: We needed to have a fixed sample size
as input for our recognition system. Therefore, through
resampling, we achieved a consistent count of 256 data
points per second across the dataset for both eye move-
ment and brainwave data.

4. Data integrity and reliability: In the eye movement
data, we had NaN values caused by blinking. We fil-
tered samples abundant in NaN values to retain only
high-quality samples. For the remaining eye movement
samples containing NaN values, interpolation techniques
were applied solely within the sample to prevent infor-
mation leakage. Unlike eye data, the brain data didn’t
require this step, as the brainwave recorder software has
a built-in interpolation mechanism.

Feature extraction: Twin Neural Network

To authenticate subjects, we extract unique individual infor-
mation from eye movement and brainwave signals, which
often include noise. We employed a Twin Neural Network
(TNN) with a triplet loss function as the core of our feature
extraction module. A TNN is a specialized neural network
architecture consisting of two ormore identical sub-networks
connected in parallel. The triplet loss function ensures that
embeddings from the same identity are close, while embed-
dings from different identities are far apart [35]. The triplet
loss function L is defined as the Euclidean distance:

L(A, P, N ) = max
(
‖( f (A) − f (P))‖2

−‖( f (A) − f (N ))‖2 + α, 0
)

. (1)

Here, f (·) denotes the embedding function that maps an
input sample to its feature representation, A represents an
anchor input, P is a positive input (sample from the same
subject as A), and N is a negative input from a different
subject. The parameter α serves as a margin that enforces a
minimum level of dissimilarity between positive and negative
pairs, thereby enhancing the differentiation of samples. Let
M denote the number of triplets. Theobjective is tominimize:

M∑
i=1

‖ f (Ai ) − f (Pi )‖2 − ‖ f (Ai ) − f (Ni )‖2 + α. (2)

The indices i correspond to the individual triplet inputs
utilized during training. The selection of triplets adheres to a
strategy inspired by FaceNet, employing semi-hard negative
mining to promote efficient convergence in learning [35].
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Weemployed aCNN for our sub-network architecture due
to its demonstrated effectiveness in various brainwave and
eye movement authentication studies [8, 24, 33, 36], specif-
ically using the CNN architecture proposed in the BrainNet
paper [33].

Comparison in verificationmode

The next step is to make an authentication decision. The
decision-making process can either consider each pair of
verification and enrollment samples independently or use
a group of them collectively. The number of enrollment
samples used can impact data acquisition and performance.
Specifically, using fewer samples leads to quicker data acqui-
sition times but compromises the accuracy of the system and
vice versa. We explored various scenarios to gain deeper
insights into these trade-offs.

• Fixed Threshold-One Sample (S1): Fastest query time
but potentially least reliable. For this scenario, we use
one sample as verification and one sample as enrollment.

• Fixed Threshold-Best Match (S2): In most cases, mul-
tiple enrollment samples are available for each subject,
and the bestmatch between the verification and all enroll-
ment samples is chosen for decision-making. This aims
to enhance the system’s performance by leveraging mul-
tiple enrollment samples.

• User-specific Threshold (S3): Alternatively, setting an
individualized threshold for each user may yield more
accurate results tailored to the unique behavioral char-
acteristics of each individual. This strategy is in line
with many existing authentication systems that train a
user-specific model [17, 33, 37]. While this method is
expected to achieve higher performance, it necessitates
an initial calibration phase for each newly enrolled user to
determine the optimal threshold in the real-world imple-
mentation.

Fusion

In our biometric authentication system, fusion plays a piv-
otal role in integrating information from the two modalities
we employ. We implement fusion at two different levels: at
the feature and at the score levels. These fusion levels are
designed to enhance the robustness and accuracy of the sys-
tem by leveraging the complementary information present in
both modalities. Below we detail the specific methods and
considerations for each fusion level.

Score fusion

To implement score fusion for multimodal biometric authen-
tication, we trained separate twin neural networks for two
distinctmodalities: eyemovement and brainwave data. These
networks generate similarity scores that serve as the basis
for subsequent fusion techniques. We use several established
strategies to combine the similarity scores of eye movement
andbrainwavedata pairs in the evaluation phase. Score fusion
occurs in the Comparison Module of the authentication
system after similarity calculation for each modality. Specif-
ically, the Max method computes the maximum score across
each corresponding pair, symbolized as max(seye, sbrain),
where seye and sbrain represent the scores for eye and brain
data, respectively. Conversely, the Min method calculates
the minimum score using min(seye, sbrain). The Average

method takes themean of both scores, expressed as
seye+sbrain

2 .
Finally, the product approach multiplies the scores, resulting
in seye ·sbrain. We employ these different fusion techniques to
generate the final similarity score, thus making our authenti-
cation system more robust.

Feature Fusion

As depicted in Fig. 2, we employed two separate convolu-
tional neural networks (CNNs) as subnetworks within a twin
neural network for the purpose of feature fusion. In this way,
we accommodate the different characteristics of brainwave
and eye movement data. In Architecture A, each of these
CNN networks ends in a 16-dimensional dense layer. Subse-
quently, these two 16-dimensional layers are concatenated,
resulting in a subject-representative layer comprising 32 val-
ues. On account of this structure, the feature fusion process
is dynamically guided by the loss function, thus ensuring
an integrated representation which accentuates the distinct
attributes of both modalities. Moreover, in Architecture B,
to enhance the efficacy of the feature fusion process, we
explored an alternative configuration that incorporates an
additional 32-dimensional dense layer. This supplementary
layer aims to facilitate a more complex integration of fea-
tures, which, in its own right, will reduce total dependence
on the loss function for effective fusion.

Results and testbed

This section delineates the experimental settings of the
testbed and presents the outcomes across various metrics for
different comparison strategies.
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Fig. 2 Twin sub-network
architectures (A, & B) for eye
movement and brainwave
feature fusion
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Testbed and evaluationmetrics

For a robust evaluation, we structured the dataset to seg-
regate training and testing subjects. We employed sixfold
cross-validation, where each fold contained 25 subjects for
training and an additional 5 unseen subjects for testing. Also,
during each fold of the cross-validation process, we fit a nor-
malization function5 on the training data and applied it to
both training and test.

The evaluation data were analyzed using the compari-
son scenarios detailed in “Comparison in verification mode”
section. To ensure the integrity of the evaluation, samples
originating from the same experimental round as the veri-
fication samples were excluded. Consequently, enrollment
and verification samples were consistently derived from two
separate rounds of the experiment.

Metrics

The Equal Error Rate (EER) served as a summary metric,
indicating the point where the False Acceptance Rate (FAR)
and the False Rejection Rate (FRR) are equal. Additionally,
we report FRR at specific FAR thresholds of 1%, 0.1%, and
0.01%. The FAR represents the success rate of an attacker in
a zero-effort attack, and the goal is to achieve a lower FAR
while maintaining a reasonable FRR. Moreover, high FRR
may lead to additional verification attempts, which can harm
the device’s usability. Therefore, a balance must be main-
tained between these two metrics to ensure robust security
without compromising the user experience.

TheEER serves as a useful comparisonmetric across stud-
ies but is not directly practical for real-world applications.
Notably, NIST (2023)/ISO6 and the European Border Guard
AgencyFrontex7 specify that biometric systemsmust operate
at FAR ≤ 0.1%. Meanwhile, FIDO8 and the updated NIST

5 https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html.
6 https://pages.nist.gov/800-63-3/sp800-63b.html.
7 https://www.frontex.europa.eu/assets/Publications/Research/
Best_Practice_Technical_Guidelines_ABC.pdf.
8 https://fidoalliance.org/specs/biometric/requirements/Biometrics-
Requirements-v4.1-fd-20250106.pdf.

(August 2024)/ISO standards9 recommend an even stricter
FAR ≤ 0.01%. Additionally, FIDO and late NIST/ISO stan-
dards propose an FRR ≤ 5%, ensuring 19 successful logins
out of 20 attempts for legitimate users.

Threat model

In alignment with the methodology of Zhang et al. [38],
we consider an adversary whose goal is to access sensi-
tive personal information—such as user accounts, photos, or
financial data—or to perform unauthorized actions like initi-
ating payments or installing malware on a user’s XR device.
We assume that the adversary is knowledgeable about the
authentication dot task and has physical access to the user’s
XR headset. Given these assumptions and the adversary’s
available techniques, we classify the following attacks:

Blind attack

The adversary has no prior knowledge of the legitimate
user’s eye movement and brainwave patterns. To execute the
attack, the attacker wears the user’s XR headset and attempts
authentication with their own biometric samples. However,
since the attacker cannot gain any advantage from observ-
ing the subject during authentication—due to brainwave data
being completely resistant to observation and eye movement
data requiring specialized devices—this attack is effectively
equivalent to a mimic attack. In the mimic attack scenario,
other threatmodels consider observerswithout any additional
capabilities (unaided eye) [38].

Random input attack

We consider an adversary capable of circumventing the XR
interface to gain access to the API of our biometric system,
enabling them to input arbitrary feature vectors. The adver-
sary’s goal is to find a feature vector that is close to the
genuine user’s feature vector. Following Zhao et al. [39], we
assume that the feature vectors are normalized and that the
number of features is publicly known, with values between
0 and 1. To implement the attack, we generate 1 million

9 https://pages.nist.gov/800-63-4/sp800-63b.html.
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Table 1 This table displays the
EER of our biometric
authentication system based on
three approaches: single
modality, score fusion, and
feature fusion

The columns represent different authentication strategies (“Comparison in verification mode” section)

samples with 32 values randomly selected from a uniform
distribution between 0 and 1. Then, we compare them with
the normalized feature vector of the legitimate users.

Overall results

From our data collection, we obtained a total of 22,688 dot
samples for analysis. Next, we trained the twin network
(“Testbed and evaluation metrics” section). The network was
trained separately for brain and eye movement data. For the
eye movement, we trained once including pupil diameter
and once excluding it. For both brain and eye data, we also
applied two different feature fusion architectures (“Fusion”
section). The training and evaluation were conducted under
the conditions specified in our testbed (5.1). The outcomes,
particularly the Equal Error Rates (EER), are summarized in
Table 1.

Fixed threshold-best match versus user-specific threshold

Our results clearly show that increasing the number of enroll-
ment samples enhances the system’s performance. However,
the impact of different threshold strategies becomes evi-
dent when we focus on the scenarios which employ multiple
enrollment samples, that is, the Fixed Threshold-Best Match
scenario (S2) and the User-specific Threshold scenario (S3).
For instance, using brainwaves, the EER drops from 5.560%
in the S2 to 4.920% in the S3. This comparative analysis
reveals that S3 consistently outperforms S2 under the same

conditions involving multiple enrollment samples. More-
over, the advantages of using a User-specific Threshold
strategy become increasingly apparent when fusion methods
are considered; for example, in Score Fusion methods, such
as the product with pupil diameter, the EER improves from
0.429% in S2 to 0.298% in S3, indicating a 30% reduction
in error.

Single biometrics versus fusion approaches

Table 1 reveals a consistent advantage for FusionApproaches
over Single Biometrics across various scenarios, particularly
in the most advanced scenario (S3). For Single Biomet-
rics, Eye tracking with pupil diameter registers the lowest
EER, achieving 1.820%. However, this is significantly out-
performed by Score Fusion methods, such as the product
with pupil diameter, which exhibits an EER of just 0.298%.
Likewise, Feature Fusion’sArchitectureAwith pupil demon-
strates superior performance with an EER of 0.802%. These
results confirm that Fusion Approaches markedly outshine
Single Biometrics.

Score fusion versus feature fusion

Score fusion generally outperforms feature fusion across
multiple comparison scenarios. Within score fusion, the
mean and product strategies demonstrate amarked advantage
over the min and max approaches in reducing the EER. On
the feature fusion front, Architecture A consistently yields

123



Complex & Intelligent Systems            (2026) 12:39 Page 9 of 19    39 

Table 2 FRR (%) at FAR levels of 1%, 0.1%, and 0.01% for single-biometric, score-fusion, and feature-fusion methods across three evaluation
scenarios (S1–S3)

Approach Biometric FRR at FAR = 1% FRR at FAR = 0.1% FRR at FAR = 0.01%
S1 S2 S3 S1 S2 S3 S1 S2 S3

Single biometric Brainwaves 59.47 28.86 21.45 83.64 61.22 49.09 94.43 86.92 67.99

Eye tracking with pupil 52.85 8.15 6.85 74.89 23.25 16.44 86.17 42.08 25.00

Eye tracking without pupil 68.73 17.10 17.97 88.06 44.86 38.81 96.08 66.33 52.80

Score fusion Mean with pupil 25.29 0.346 0.356 45.15 2.10 1.61 62.71 6.21 3.79

Product with pupil 21.88 0.236 0.239 42.96 1.79 1.23 60.99 7.00 3.79

Mean without pupil 35.39 0.990 0.873 59.03 5.86 5.44 76.60 19.04 11.61

Product without pupil 35.27 1.123 0.965 59.45 6.85 5.96 77.20 18.72 12.36

Feature fusion Architecture A with pupil 26.29 1.066 1.101 48.99 6.06 5.26 68.25 20.69 14.69

Architecture A without pupil 41.16 3.549 3.008 65.98 15.58 10.80 81.94 27.10 20.74

better results than Architecture B, although neither matches
the high performance of score fusion techniques employing
mean or product strategies.

Influence of pupil diameter

Table 1 clearly illustrates the role of pupil diameter in
enhancing authentication performance.When comparing eye
tracking methods with and without pupil diameter, there’s
a consistent improvement in EER across all examined sce-
narios. For instance, in the S3 scenario, eye tracking with
pupil diameter data yields an EER of 1.820%, whereas the
approach without pupil diameter data results in a higher EER
of 3.639%.

False acceptance rate (FAR) insights

In practical applications, EER is often not the main metric
of focus. Instead, the practical usage needs to minimize FAR
to bolster system security against zero-effort attacks while
maintaining a reasonable FRR To elucidate the trade-offs
between these metrics, we present data in Table 2. A com-
parison between FAR at 0.01%, 0.1%, and 1% reveals that
single-biometric approaches suffer from high FRRs, particu-
larly in stringent security settings with low FARs (0.1% and
0.01%). For instance, in the S3 scenariowith a FARof 0.01%,
FRRs for single-biometric approaches like Brainwaves and
eye trackingwith pupil are 67%and 25%, respectively. These
high FRRs indicate that single-biometric methods could be
impractical for high-security applications. In contrast, mul-
timodal methods, especially those utilizing score fusion,
significantly alleviate this issue. For example, theMeanScore
Fusion with and without pupil diameter method result in a
much lower FRR of 3.79% and 11.61% at a 0.01% FAR,
showcasing its effectiveness in balancing security and usabil-
ity.

Fig. 3 Density distribution of brainwave similarity scores for legitimate
users, human attackers, and random features (similar for eye movement
and fusion)

Insight into subject-level EER

Figure 4 reveals distinct patterns in user-level EER, with val-
ues ranging from 0 to 2.77% On average, the EER stands at
0.686, but a relatively high variance of 0.397 suggests notable
differences in authentication performance across subjects.
Specifically, about eight subjects exhibit EERs that are close
to zero, underlining the system’s effectiveness for these indi-
viduals.Conversely, five subjectsmanifestEERsnearly twice
the average, accounting for the high variance and indicating
that the system may require optimization for these cases. In
terms of cross-validation rounds, somemodels appear to per-
form better than others, or certain subjects may have noise in
their data samples. Interestingly, evenwithin rounds that have
a higher average EER, some subjects still achieve low EER
values. This suggests that the higher error rates are likely not
a result of model inefficiency but rather may stem from noise
in the data samples for specific subjects.

Random input attack

The density distance plot (Fig. 3) demonstrates that the dis-
tances between randomly generated features and legitimate
users are significantly greater than those between human
attackers and legitimate users. This observation confirms
that distance-based recognition systems are robust against
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Fig. 4 Bar plot of test subjects’ EER using Mean Score Fusion without
pupil. Background shades denote cross-validation rounds, and dashed
blue lines mark mean EER for each group of five subjects

random feature input attacks [39, 40], suggesting that such
attacks are less effective than blind attacker scenarios.

Correlation betweenmodalities

To investigate the correlation between synchronized eye
movements and brainwaves, we applied the Pearson correla-
tion coefficient [41] for time domain analysis andmagnitude-
squared coherence, calculated using Welch’s method [42],
for frequency domain analysis. We explored correlations
between: (1) different channels of eye movement and brain-
wave data separately; (2) synchronized brainwave and eye
movement data; (3) brainwave and eyemovement data across
different times of the experiment; and (4) brainwave and
eye movement data from different subjects. The analysis
revealed a consistent trend in both the time and frequency
domains, demonstrating a strong10 correlation within the eye
movement data and within the brainwave data (1). However,
cross-modality correlations between eye movements and
brainwaves were generally weak.11 Notably, the correlation
of synchronized data from the same subject (2) was approxi-
mately 1.5 times stronger than that observed in cross-subject
and time comparisons (3–4). The synchronized correlations
demonstrated a more significant association between x-axis
eye movement features and the frontal lobe region of the
brain, particularly in the right hemisphere.

In summary, theweak correlation in synchronizeddata and
strong correlationwithinmodalities explainwhy the fusionof
brainwave and eyemovement data significantly improves the
performance of our authentication system. Thus, we see our
hypothesis confirmed that multimodal authentication based
on eye movement and brainwaves substantially enhances the
reliability of authenticationusing consumer-grade equipment
with low sample recorder rates.

10 Higher than 0.6.
11 Lower than 0.1.

Technical feasibility of XR integration and
usability aspects

To effectively integrate multimodal authentication into real-
world applications, it is essential to consider both technical
feasibility, usability, and privacy. These three aspects are
crucial for ensuring successful implementation and user
acceptance. In the following, we discuss feasibility, based on
the current and projected technological landscape; usability,
and privacy, grounded on previous empirical studies eval-
uating similar interfaces. We also discuss revocability and
resistance to coercion.

Technical feasibility of XR integration

While our multimodal authentication system is not immedi-
ately deployable in current XR platforms due to the limited
availability of integrated EEG sensors, we believe it can be
seamlessly adopted in the near future as consumer-grade XR
headsets begin to incorporate such capabilities. This belief
is supported by four factors: (a) our system is developed
using separate but technically integrable consumer-grade
devices (b) we use a simple interactive dot task for implicit,
hands-free authentication, (c) we have selected two biomet-
ric modalities which are well suited for use in XR, and (d)
themodel is lightweight and compatiblewithmobile devices,
including XR headsets.

Consumer-grade devices

We aim to enhance the potential of consumer-grade devices
for use in XR.We pursue this aim by employing only devices
that are designed to operate at consumer-grade sampling
rates.

For eye-tracking, we used the Pupil Core device with a
200Hz sample rate in our experiments. Prior research by Pas-
tel et al. [43] demonstrates the viability of integrating such
technology in XR, citing 38 papers that used eye-trackers
integrated with head-mounted displays (HMD). Moreover,
companies like Pupil Labs and Tobii offer eye-tracking solu-
tions designed for AR andVR devices .12 Additionally, Varjo
provides a VR headset with an integrated eye-tracker oper-
ating at a 200Hz sample rate, aligning with our hardware
specifications.13

Similarly, for brainwave recording, we employed the
Emotiv EPOC X, a consumer-grade device with a sampling
rate of 256 Hz. Recently, Li et al. [44] demonstrated that
EEG sponge electrodes can be seamlessly integrated into
VR headsets. Additionally, dry EEG electrodes have been

12 https://www.tobii.com/products/integration/xr-headsets.
13 https://varjo.com/products/vr-3/.
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developed and are commercially available14, 15 and some of
these electrodes are already incorporated into VR devices.16

Soon there will be VR headsets available that incorporate
both EEG and eye-tracking capabilities.17

Dot task

To facilitate implicit authentication, we implemented an
interactive dot task as the stimulus in our system. In a dot
task, subjects are instructed to follow a dot displayed on the
screen. This task offers high technical feasibility because it
is simple and adaptable, thereby making it easy to integrate
into daily routines or workflows. Consequently, our interac-
tive dot task is well-suited for implicit authentication in the
XR environment.

Broad applications

Weselected eyemovement andbrainwavedata as our biomet-
ricmodalities due to their extensive applications beyondmere
authentication. These twomodalities are suitable for enhanc-
ing human-computer interactions in XR, as supported by
existing studies [45, 46]. The tracking of eye movements and
brainwave patterns is also applicable in specialized entertain-
ment contexts [47, 48]. Consequently, our chosen biometric
modalities are particularlywell-suited for integration intoXR
headset equipment.

Memory, latency and energy

Since our feature extractor is trained and evaluated in an
inter-subject setting, and feature comparison is based on
Euclidean distance, no training is required during enrollment
or verification—only model inference is needed, which con-
stitutes the main computational overhead of our approach.
Also, as our best results are based on score fusion, each ver-
ification attempt requires two inferences: one for brainwave
data and one for eye movement data.

Due to software restrictions on XR devices, we evaluated
runtime performance on aRedmiNote 11S smartphone. This
mid-range Android device has hardware comparable to the
Meta Quest 3, though it is significantly less powerful than
high-end XR devices such as the Apple Vision Pro.18,19,20

Using the official TensorFlow Lite Benchmark Tool, we ran

14 https://www.bitbrain.com/neurotechnology-products/dry-eeg.
15 https://www.neurospec.com/Products/Details/1078/dsi-7.
16 https://www.neurospec.com/Products/Details/1077/dsi-vr300.
17 https://galea.co/.
18 https://browser.geekbench.com/v6/cpu/11030128.
19 https://browser.geekbench.com/v6/cpu/3523396
20 https://browser.geekbench.com/v6/cpu/4760218.

50 inference iterations on the device. The average inference
latency was 14.06ms, with a peak memory usage of 11.28
MB.

Therefore, the proposed solution remains lightweight,
even when compared with other mobile-compatible neu-
ral architectures for biometric authentication. For example,
MobileFaceNets [49], which are optimized for on-device
face recognition, report inference latencies between 18 and
27ms.21

To estimate model inference energy on the Redmi Note
11 S (MediaTek Helio G96: 2×Cortex-A76 + 6×Cortex-
A55), we assume the active high-performance core (A76)
operates used which oprate at 0.75W.22 With our mea-
sured latency of 14.06,ms per modality (two modalities →
28.12ms per verification), the inference energy is E =
P × t = 0.75W × 0.02812 s = 21.09mJ per verification.
This is about 0.00003% of the device’s battery (∼69,300J,
from 5000mAh at 3.85V), which is a negligible portion of
the battery per inference.

Usability aspects of XR integration

Even with a fully implemented prototype, usability remains
a pivotal factor for our proposed multimodal authentication
system. To ensure the success of a biometric authentication
system, it is crucial to understand user perspectives on the
modality, its usability, and user concerns. Both brainwave
and eye movement are emerging biometric modalities, and
fully implemented solutions are not yet available in the mar-
ket. Therefore, prioritizing usability is crucial as it greatly
affects initial impressions and the subsequent adoption of
these technologies.

In brainwave authentication usability studies, Chuang et
al. [50] and Arias-Cabarcos et al. [17] found visual tasks
more appealing than reading or auditory ones. Similarly,
Röse et al. [27] and Fallahi et al. [26] confirmed a prefer-
ence for visual tasks in their usability research with mockup
prototypes. For eye movement, Brooks et al. [28] showed
that users found PIN entry simpler but considered the eye
movement dot task more secure, generally preferring it over
reading tasks and PIN entry. Fallahi et al. [26] also reported
high usability scores of 78.8 in the SUS scale for the dot task,
rated as “good” (A−) based onBangor et al. [51] and Sauro et
al. [52]. Their results on eye movement and brainwave-based
authentication indicate that users value usability, security,
and passwordlessness as major advantages, while perfor-
mance limitations and device overhead are seen as major
disadvantages [26].

21 Note that model size differs from runtime memory usage. Mobile-
FaceNets report model size but do not provide runtime memory usage.
22 https://en.wikichip.org/wiki/arm_holdings/microarchitectures/
cortex-a76.
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We selected the dot task as a visually appealing and usable
task, and chose extended reality (XR) as the use case, where
there is already an assumption of wearing a headset. The
potential integration of brainwave and eyemovement sensors
into these headsets could eliminate the need for additional
physical hardware for users. Thus, with a usable dot task and
the elimination of extra hardware, our paper focuses on how
the fusion of these twomodalities could address performance
concerns, which are a major consideration for users.

Privacy and ethical risks

Advances toward practical applications are increasing atten-
tion to the ethical implications of collecting and using
both brainwave and eye movement data for authentication.
Prior work has identified significant privacy concerns among
researchers [53, 54] and users [26, 27], highlighting the
need for robust protection mechanisms. EEG can reveal
highly sensitive personal information, such as emotional
states [55], medical conditions [56], attention levels [57],
and gender [58]. Similarly, eye movement data can reveal
cognitive load, reading patterns, personal interests, and med-
ical conditions such as neurological disorders [59], even
when collected for authentication purposes. The collection of
such data raises the risk of harmful breaches and introduces
opportunities formisuse. For example, an honest-but-curious
authentication provider could conduct unauthorized behav-
ioral profiling or exploit involuntary physiological responses
for commercial gain. These risks are compounded by a
general lack of user awareness regarding the sensitivity
of brain and eye movement data when using consumer-
grade XR devices. Addressing these concerns will require
privacy-preserving biometric techniques such as cancelable
biometrics, which transform biometric data into an inten-
tionally distorted representation that maintains recognition
accuracy but can be regenerated with a new transformation
if the stored template is compromised [60]. Homomorphic
encryption enables authentication computations to be per-
formed directly on encrypted brainwave or eye movement
data, ensuring that raw signals remain inaccessible to the
authentication provider [61].

Revocability and coercion attacks

Revocability and coercion resistance are critical for biometric
authentication.

Coercion

Coercion affects all authentication methods. We distinguish
(1) intentional compliance (voluntary or under duress), and
(2) attempts without the user’s cooperation. For the latter,
our method requires deliberate fixation on randomly posi-

tioned targets; authentication succeeds only when measured
gaze aligns with the expected target sequence, a behavior
expected to be reliably performed only by the legitimate user.
In addition, brainwave signals can indicate affective states
such as fear [62], and eye movement patterns also reflect
emotion [63]. Thus, duress detection is feasible in principle
andmay trigger lockout or additional verification during sus-
pected coercion. Knowledge-basedmethods (e.g., passwords
and PINs) likewise cannot resist intentional compliance.

Revocability and replay

Asdescribed in “Technological andmethodological blueprint”
section, each trial uses fresh, randomly placed stimuli and
requires intentional fixation; comparing recorded fixations
with the expected target sequence renders prerecorded data
ineffective (replay resistance). Revocability can be provided
via cancelable biometrics [60], which apply non-reversible
transforms so compromised templates can be replaced. How-
ever, for static traits (e.g., fingerprints), if raw data leaks from
another source, the underlying trait cannot be changed, leav-
ing systems vulnerable to presentation attacks. In contrast,
our modality—especially EEG—allows issuing a new tem-
plate by slightly changing the task or visual context, which
measurably alters the biometric signal and yields a distin-
guishable template [25].

Related work

In the context of biometric authentication, our study distin-
guishes itself by focusing on consumer-grade devices that
could be used in XR settings. The following discussion elu-
cidates how our contributions relate to existing work in three
pivotal domains: brainwave authentication, eye movement
authentication, and multimodal authentication approaches.

Brainwave authentication

Considerable effort has been made to optimize performance
in the domain of brainwave authentication. Nakanishi et
al. [37] conducted an experiment with a sample size of 10
subjects and achieved a 4.4%EER.Arias-Cabarcos et al. [16]
expanded the sample size to 50 subjects and achieved a 14.5%
EER. In a subsequent study, they improved their results to
8.5% EER through enhanced machine learning techniques
[17]. They used the same machine learning pipeline and a
sample size of 40 subjects to achieve a 1.9% EER on the
medical dataset ERP CORE [65]. These advances in brain-
wave authentication demonstrate the significant impact of
data quality on performance outcomes.Most recently, Fallahi
et al. [33] used again the ERPCORE dataset but with a triplet
loss twin neural network to further improve performance to
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Table 3 Comparative analysis of eye movement authentication studies

Publication Eye movement authentication

S.C. Device P.D. S.R. (Hz) EER (%)

Zhang et al. [18] 30 Glasses � 50 6.9

Sluganovic et al. [11] 30 Desktop × 500 6.3

Eberz et al. [10] 22 Desktop � 500 1.88

Lohr et al. [8] 322 Desktop × 1000 3.66

Zhao et al. [64] 48 Desktop × 100 4.3

Our work, Eye 30 Glasses × 200 3.64

Our work, Eye 30 Glasses � 200 1.82

Our work, Eye + EEG 30 Glasses � 200 0.298

S.C., Subjects count; Device, Tracking hardware; P.D., Pupil diameter
in data; S.R., Sampling rate; EER, Equal error rate

1.37% EER. Similarly, promising results are available on
other medical datasets; for example, 0.14%EER [33], 0.19%
EER [34], 0.04–11% EER [66], and 1.96% EER [36].

Our study utilizes the same network architecture as Brain-
Net [33] to achieve a 4.92%EER.Our performance surpasses
that of Arias-Cabarcos et al. [17], and while it is essential
to acknowledge that our EER is marginally higher by 0.5%
compared to the studybyNakanishi et al. [37],we should note
that, unlike our approach, Nakanishi et al. did not consider
the unknown attacker [67] scenario in their methodology. It
is true that our performance did not reach the accuracy levels
of medical-grade devices. However, our application is not in
the medical sector but instead in XR, where integration of
medical-grade devices, which are often bulky and complex
to set up, is impractical.

Eyemovement authentication

In Table 3, we present key parameters relevant to eye move-
ment authentication in our related works, including device
type (desktop or glasses), pupil diameter, number of subjects,
EER, and sample rate.

Pupil diameter as a feature

Both Zhang et al. [18] and Eberz et al. [10] incorporated
pupil diameter as a feature into their models. In contrast,
Sluganovic et al. [11], Lohr et al. [8], and Zhao et al. [64]
specifically excluded pupil diameter from their feature sets.
Our research indicates that incorporating pupil diameter can
enhance model performance by more than 50%, thus making
it an important factor to consider in comparisons and feature
selection.

EER comparison

Table 3 indicates that our EER outcomes closely align with
the state-of-the-art results in unimodal approaches.Our study
yielded an EER of 1.820% when pupil diameter data were
incorporated and an EER of 3.639% when not. Despite the
lower sampling rate of our device, our results compare well
to those presented by Eberz et al. [10] and Lohr et al. [8]. We
attribute this comparable performance to our refined compar-
ison strategy. Specifically, our S3 strategy uses the remaining
rounds for the enrollment set and adheres, as well, to a best-
match scenario. This strategy effectively mitigates the effect
of noise samples in the enrollment set. By contrast, when we
use our simpler S1 strategy, the EER rates rise to 13.420%
and 19.070%, which underscores the significant role played
by sample rate in outcomes.

Further, our results also underscore the comparative
advantage gained by incorporating brainwave data. Our
EERs of 0.298% and 0.686% showcase the effectiveness of
augmentingmultimodal authentication, specifically bybrain-
wave data.

Multimodal authentication

Multiple studies have been conducted onmultimodal authen-
tication systems; however, many focus on modalities that are
not well-suited for XR environments. For example, Chak-
ladar et al. [68] used EEG and signature-based methods,
Zhang et al. [69] combined EEG and gait, Zheng et al.
[70] utilized fingerprints with photoplethysmography, and
Ammour et al. [71] relied on ECG and fingerprints. In con-
trast, we found two studies more closely related to our work.
First, Wu et al. [72] explored the use of voice and lip move-
ments as biometrics, achieving a 95% True Positive Rate
(TPR) and detecting 93.47% of attacks (TNR) with 104 sub-
jects. It is plausible to assume that XR devices could be
equipped with a camera to capture lip movements. Second,
Peng et al. [73] proposed a system based on voice and hand
motion, reporting a 99% TPR and a 0.5% FRR with 32 sub-
jects.

For performance comparison, the referenced studies did
not report EER, but we can make approximations based on
FAR and FRR. In Wu et al.’s work [72], they reported a 5%
FARand 6.53%FRR, leading us to conclude that their system
has at least a 5% EER. Similarly, Peng et al. [73] noted a 1%
FAR and 0.5% FRR, suggesting a minimum EER of 0.5%
(probably in themiddle of 0.5 and 1). Comparing these to our
best results—0.686% EER without pupil diameter data and
0.298% EER with pupil diameter data—our system outper-
forms Wu et al. and is more effective than Peng et al. when
considering the pupil diameter-based scenario. Moreover,
unlike lip cameras, which serve no additional function, EEG
and eye-tracking can be applied to various other applications,
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including human-computer interfaces [46] and entertainment
[48]. When compared to voice and hand motion-based sys-
tems, we contend that our approach offers the advantage of
being hands-free and potentially more effective in a crowded
setting.

In a somewhat related study

Krishna et al. [74] explored the feasibility of using EEG and
eye movement data for multimodal biometric authentica-
tion. Their approach involved combining two independent
datasets related to eye movement and brainwave patterns
to create a hypothetical multimodal dataset. While the idea
is interesting, its practical applicability is doubtful. For the
purposes of authentication, the point is not to amalgamate
data from multiple subjects but to identify distinct charac-
teristics which are unique to an individual. Furthermore, the
results of Krishna et al. [74] showed poor performance in
the eye movement modality, with a FAR of 7.4% at an FRR
of 36.7%. These results led to no noticeable improvements
over unimodal authentication. In fact, the only enhancement
observed by the authors occurred in scenarios with ‘low-
confidence predictions of EEG.’ Consequently, despite the
innovative aspects of their approach, we do not categorize
theirs as a multimodal authentication system based on eye
movement and brainwave data.

Comparison with VR authentication works

Reliable authentication in XR environment remains an open
challenge. Non-biometric mechanisms, typically classified
as knowledge-based or token-based approaches.Knowledge-
based methods (e.g., alphanumeric passwords, graphical
passwords, gesture patterns) often require memorization and
manual input, which is particularly cumbersome in XR and
disrupts immersion [75]. For instance, users tend to choose
simpler alphanumeric passwords in XR to ease entry using
virtual keyboards, which poses significant security risks [76].
Gesture-based inputs may be vulnerable to shoulder-surfing
attacks, especially in public or shared spaces and long-term
memorability [77–79]. Graphical passwords, while promis-
ing in theory, suffer from poor long-term memorability and
need for manual input as well. Token-based methods, such
as device proximity or the use of external smartphones, face
usability challenges due to the need to carry additional hard-
ware and are susceptible to issues such as loss, theft, or
unintentional activation [80]. Compared to these alterna-
tives, biometric methods offer seamless, better alignment
with XR’s immersive paradigm, and eliminate reliance on
external devices or memorized secrets.

Biometrics have emerged as a viable solution; however,
certain biometricmethods require physical activities thatmay
reduce usability and practicality, ranging from discrete hand

gestures [81, 82] to more active ones like walking [83, 84] or
throwing a virtual ball [85, 86]. Additionally, some solutions
utilize sensors that may not be well-suited for XR environ-
ments [87]; for instance, Chen et al. [87] employed electrical
muscle stimulation, which relies on sensors attached to the
hands.

While several studies propose biometrics suitable for XR
setups, such as free head and body movement [88], eye-
related biometrics [18, 89], skull conductance [90], and
brainwaves [91]; their reported EERs range from 2.5% to
7%, comparable to our single-modality results (1.9%–4.9%).
However, as shown in Table 2, higher security configurations
result in increased FRR. Therefore, the multimodal approach
can be a promising alternative to improve performance fur-
ther.

Multi-factor approaches [92, 93], such as combining
biometrics with knowledge-based methods, aim to address
performance challenges but inherit the limitations of both
factors. An alternative is multimodal biometrics [73, 84],
which uses multi biometrics. We adopted this approach by
fusing eyemovement and brainwaves, reducing the error sig-
nificantly.

Limitations

Our research faces two primary limitations: sample size and
single-session data collection. First, although our sample size
is comparable to that used in similar studies in this field
[10, 11, 18, 33, 72], it is relatively small when consider-
ing broader biometric research such as face and fingerprint
recognition. Increasing the sample size could enhance our
learning model and facilitate more realistic evaluations. Sec-
ond, while relying on data from a single session is common
in our research domain [10, 17, 37, 72, 73], this approach
risks overfitting, which may degrade the performance of our
methods in real-world applications over time. To address this,
our experiment design avoids using samples from the same
round for both enrollment and verification, and incorporates
a 15-s rest period between rounds. While we anticipate a
higher EER in multi-session scenarios [8, 94], it is important
to highlight that our primary contribution lies in demon-
strating that the fusion of brainwave and eye movement
can improve performance significantly, rather than achiev-
ing a specific error rate. Now that we showed feasibility,
future work could explore robustness in bigger and varied
datasets. Furthermore, prior studies have shown that both
EEG and eye movement modalities can exhibit temporal
stability across days, months, or even years [8, 24, 95],
supporting the long-term viability of these modalities with
performance comparable to our single-modality results.

123



Complex & Intelligent Systems            (2026) 12:39 Page 15 of 19    39 

Conclusion and future work

In this study, our investigation shows that this combination
of brainwaves and eye movement yields highly promising
results. Through our research, we substantially improved
authentication accuracy and enhanced resistance against
zero-effort attacks. Specifically, our multimodal authentica-
tion system achieved an EER of 0.298% and 0.686%, along
withFRRof 3.8%and11.6%atFARof0.01%comparedwith
25% and 52.8% FRR in unimodal eye movement authenti-
cation. These results offer a higher level of security with a
reasonable FRR, ensuring a smooth user experience with-
out unnecessary disruptions. We provide a straightforward,
hands-free authenticationmethod that is both suitable for XR
settings and appropriate for consumer-grade devices. Our
multimodal authentication system improves authentication
accuracy while also holding promise for broader adoption in
real-world applications.

In the future, investigating multi-session scenarios and
increasing the sample size are essential steps for improving
model learning and conducting more comprehensive evalua-
tions. Furthermore, exploring additional tasks alongside the

interactive dot task will contribute to a more extensive under-
standing of multimodal biometric authentication. Moreover,
while the dot task can effectively resist against replay attacks,
it would be beneficial to explore whether and how it is pos-
sible to use correlation in synchronized data to ensure that
brainwave and eye movement data are recorded simultane-
ously, adding an extra layer of security.

Appendix

To examine the generalizability of the findings across dif-
ferent neural network architectures and to further explore
the performance of individual modalities, we evaluate our
approach using both ShallowNet [96] and ResNet1D [97].
Tables 4 and 5 present the results. The findings confirm simi-
lar trends observed with the BrainNet architecture: pupil data
has a positive effect, score fusion outperforms feature fusion,
mean and product methods perform better than other score
fusion strategies, method A performs better than method B
in feature fusion, and the user-specific threshold yields better
results than other scenarios.

Table 4 This table shows the
EER of the biometric
authentication system using
three approaches on the
ShallowNet model: single
modality, score fusion, and
feature fusion

The columns represent different authentication strategies, specifically: S1—Fixed ThresholdwithOne Sample
as the enrollment set; S2—Fixed Threshold with the remainder of the samples used for enrollment; S3—User-
specific Threshold per subject with the remainder of the samples used for enrollment
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Table 5 This table shows the
EER of the biometric
authentication system using
three approaches on the
ResNet1D model: single
modality, score fusion, and
feature fusion

The columns represent different authentication strategies, specifically: S1—Fixed ThresholdwithOne Sample
as the enrollment set; S2—Fixed Threshold with the remainder of the samples used for enrollment; S3—User-
specific Threshold per subject with the remainder of the samples used for enrollment
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