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Abstract
This study aimed to identify subpopulations of patients with hip osteoarthritis who exhibit distinct adaptations in 
gait biomechanics, and to evaluate subpopulation-specific effects of total hip replacement on gait biomechanics. 
Three datasets were analyzed: (1) a cohort of 109 unilateral hip osteoarthritis patients before total hip replacement, 
(2) a subset of the first dataset of 63 patients re-evaluated after total hip replacement and (3) a control group of 
56 healthy individuals. For all participants, three-dimensional joint angle and moment waveforms of the pelvis, 
ipsilateral hip and knee, as well as sagittal-plane ankle motion and the foot progression angle, were obtained. 
The analytical framework integrated k-means clustering, support vector machine classifiers, Shapley Additive 
exPlanations, and statistical waveform analyses. Clustering of the pre-operative dataset revealed three distinct 
subpopulations characterized by unique patterns in gait kinematics and joint moments. These subpopulations also 
differed in age, Kellgren-Lawrence score, and walking speed. Prior to total hip replacement, between 51.4% and 
85.2% of hip osteoarthritis patients were classified as pathologic; following surgery, this proportion decreased to 
27.8% − 51.8%. Hip flexion and rotation angles and moments were identified as the most important features for 
patient classification. The magnitude of gait improvement after total hip replacement varied across subpopulations, 
indicating subpopulation-specific responses to surgical intervention. In conclusion, patients with hip osteoarthritis 
demonstrate distinct subpopulation-specific gait adaptations, both before and after total hip replacement. 
Preoperative classification of patients into the identified subpopulations using machine learning approaches may 
facilitate the prediction of postoperative gait recovery and support the development of personalized treatment and 
rehabilitation strategies.
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Introduction
Hip osteoarthritis (OA) is a degenerative joint disease 
and a major public health concern [1]. Its prevalence is 
expected to increase due to demographic aging, as well as 
rising obesity and injury rates [2]. Hip OA is a progressive 
condition [3] and as it progresses, patients typically expe-
rience a decline in quality of life [4]. When quality of life 
becomes severely affected, total hip replacement is the 
primary surgical treatment option [5]. Recent advances 
in machine learning (ML) have created new opportuni-
ties to enhance clinical decision-making in OA and joint 
replacement [6, 7]. For instance, ML models haven been 
used to predict patient dissatisfaction following total 
knee replacement by combining clinical and imaging data 
to identify individuals less likely to benefit from surgery 
[6].

Biomechanical alterations in gait kinematics and kinet-
ics are well documented in patients with hip OA [8, 9]. 
Many patients exhibit compensatory changes in hip kine-
matics [8], while reductions in joint moments are par-
ticularly characteristic for patients with end-stage hip 
OA [9]. Although gait biomechanics generally improve 
within one year after total hip replacement [10], some 
limitations - such as decreased stride length and dimin-
ished hip range of motion in the sagittal plane - often 
persist [10, 11]. Walking speed, an important indicator of 
functional capacity [12], typically recovers after surgery 
[13]. However, postoperative adaptations are influenced 
by preoperative gait patterns [14], meaning that certain 
biomechanical effects may remain undetected when 
using conventional analyses. Furthermore, most existing 
studies have focused on discrete biomechanical param-
eters (e.g. peak values or range of motion) rather than 
continuous waveform data. Because these gait waveforms 
contain hundreds of data points, they provide a more 
comprehensive representation of movement patterns 
[15].

The high dimensionality of biomechanical waveforms 
can be effectively addressed using ML-based analysis 
techniques [16]. Machine learning enables the identi-
fication of subgroups within complex datasets that are 
internally similar but distinct to other groups, a process 
known as clustering [17]. Previous studies used ML to 
identify patient subpopulations exhibiting similar gait 
compensating strategies [14] and to evaluate treatment 
effects [18]. In a prior study from us, clustering based 
on lower-body kinematics identified two characteristic 
subpopulations among patients with hip OA, offering a 
more nuanced understanding of movement biomechan-
ics [14]. Extending this approach to a larger and more 
diverse dataset, including variables like joint moments, 
may uncover additional clinically meaningful subpopula-
tions. Identifying and characterizing these biomechani-
cal subpopulations could support optimized treatment 

decisions and more personalized rehabilitation strategies 
following total hip replacement [10, 14]. Machine learn-
ing can facilitate this biomechanical characterization, 
particularly because deviations from healthy gait can be 
subtle [19]. Support vector machines (SVM), for example, 
have demonstrated high sensitivity in detecting system-
atic changes in gait biomechanics [20, 21]. Furthermore, 
novel ML-derived metrics such as the classifier-oriented 
gait score (COGS) [18] provide low-dimensional, clini-
cally interpretable measures designed to support prac-
tical clinical applications through assistive tools. Such 
ML-based tools can automatically evaluate complex bio-
mechanical gait data, providing clinicians with a more 
streamlined, data-driven assessment of gait function [22]. 
Despite growing integration of ML into biomechanical 
research [15, 16], its clinical application remains limited 
due to the black-box nature of many ML techniques [23]. 
Consequently, explainable ML [24], focused on building 
interpretable, white-box models, has gained increased 
attention. Explainable ML has recently been applied to 
understand biomechanical differences between patients 
after total hip replacement and healthy participants from 
classification models [25]. However, the combined use of 
data-driven subpopulation identification based on gait 
biomechanics and the subpopulation-specific assessment 
of treatment effects using explainable ML has not yet 
been explored.

Therefore, the present study aimed to identify and 
characterize subpopulations of patients who respond 
differently to hip OA by exhibiting distinct adaptations 
in gait kinematics and joint moments using clustering 
techniques, SVMs and explainable ML. It was hypoth-
esized that (1) the identified subpopulations would dif-
fer in their patient characteristics and gait biomechanics 
relative to healthy controls, and (2) total hip replacement 
would lead to subpopulation-specific changes in patient 
characteristics, gait biomechanics, and COGS.

Methods
Participants
The analysis included three datasets drawn from our cur-
rent and previous prospective studies [26–29]: one com-
prising 109 unilateral hip osteoarthritis patients before 
total hip replacement (HOA), a subset of 63 patients who 
were re-examined 7–25 months after total hip replace-
ment (THR), and a dataset of 56 healthy controls (HC). 
The protocols for the original studies were approved 
by local Medical Ethics Committee (reference number 
122/14, 497/15 and 2021-52). A detailed description of 
the three datasets is presented in Table 1.

Data acquisition
Biomechanical data were collected using a 3D motion 
capturing system (8 MX T10 cameras, 200 Hz; Vicon 
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Motion Systems Ltd., Oxford, United Kingdom) and 
two AMTI force plates (1000 Hz; Advanced Mechani-
cal Technology, Inc., Watertown, MA, USA). A modi-
fied Plug-in-Gait marker set was applied, with additional 
markers placed on the medial malleolus, medial femoral 
condyle and trochanter major [30]. Marker trajectories 
were reconstructed and smoothed using a Woltring filter 
(mean square error = 10) within the Vicon Nexus soft-
ware (version 2.12; Vicon Motion Systems, Oxford UK). 
Kinematic and kinetic data were time-normalized to 101 
datapoints for the stance phase of the gait cycle. Joint 
moments were normalized to body mass and expressed 
as external moments. For each participant, three barefoot 
gait trials at self-selected walking speed were analyzed. 
This represented the maximum number of valid trials 
available across all participants, thereby ensuring consis-
tency and comparability in the data [31, 32]. For the study 
groups HOA and THR the affected leg was analyzed. To 
maintain side-to-side balance between groups, the ratio 
of left to right affected legs in the HOA group was used 
to randomly assign the right or left leg for analysis in the 
HC group.

Data processing
A visual overview of the study workflow is provided in 
Figure 1. For each participant, 18 biomechanical wave-
forms were averaged over the three trials, and the result-
ing mean waveforms were used for subsequent analyses. 
Kinematic (joint-angle) waveforms included pelvic tilt, 
pelvic rotation, pelvic obliquity, hip flexion, hip adduc-
tion, hip rotation, knee flexion, knee adduction, knee 
rotation, ankle plantarflexion, and foot progression 
angles. Kinetic (joint-moment) waveforms included 
hip flexion, hip adduction, hip rotation, knee flexion, 
knee adduction, knee rotation, and ankle plantarflex-
ion moments. Because ML-models operate on abso-
lute numerical values, z-standardization was performed 
[33]. Specifically, the mean and standard deviation of the 
HC group were used to standardize the HOA and THR 
datasets, ensuring that all data were expressed within 
the same dimensional space as the HC group. Princi-
pal component analysis (PCA) was then applied to the 
HOA dataset, represented as a data matrix of 109 par-
ticipants, each described by 18 standardized waveforms 
consisting of 101 time points (18 × 101 = 1818 variables). 

Table 1  Descriptive data of the three investigated datasets
HOA (N = 109) THR (N = 63) HC (N = 56)

Sex (male/female) 56/53 34/29 23/33
Age [years] 61.3 ± 10.7 62.4 ± 9.9 63.5 ± 7.6
Body mass [kg] 80.5 ± 14.6 82.3 ± 13.7 69.0 ± 11.9
Body height [m] 1.70 ± 0.09 1.72 ± 0.07 1.68 ± 0.09
BMI [kg/m2] 27.7 ± 4.1 28.1 ± 4.0 24.2 ± 2.8
Affected leg (Left/Right) 46/63 30/33 26/30
Walking speed [m/s] 1.01 ± 0.19 1.17 ± 0.15 1.32 ± 0.15
For the HC dataset, the variable affected leg represents the total number of left and right legs considered

HOA Hip Osteoarthritis dataset, THR Total Hip Replacement dataset, HC Healthy Controls dataset, BMI Body Mass Index

Fig. 1  Illustration of the machine learning workflow used to identify and characterize subpopulations of patients with hip osteoarthritis and to as-
sess the subpopulation-specific effects of total hip replacement. Abbreviations: HOA = Hip Osteoarthritis dataset; THR = Total Hip Replacement dataset; 
HC = Healthy Controls dataset; PCA = Principal Component Analysis; SVM = Support Vector Machine
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In accordance with established approaches, the PCA 
retention threshold was set at 90% cumulative variance 
to achieve substantial dimensionality reduction while 
retaining relevant biomechanical information [34, 35]. 
Applied to the HOA dataset, this criterion resulted in 14 
retained principal components (PCs) collectively explain-
ing 90% of the total variance [14, 18]. The resulting PCs 
provide a lower dimensional representation of the indi-
vidual gait biomechanics. The applied PCA on the HOA 
dataset yielded eigenvectors defining a reduced feature 
space. The THR and HC datasets were subsequently 
expressed into the same feature space by multiplying 
their respective data matrices with the eigenvector matrix 
derived from the HOA dataset. This procedure ensured 
that all groups were represented within the identical fea-
ture space, thereby allowing direct comparison and con-
sistent use of components in subsequent modeling.

Identification of subpopulations with hip OA
Hierarchical clustering combined with k-means clus-
tering was applied to the HOA dataset, following an 
established approach for identifying subpopulations in 
biomechanical data [14, 36]. The Ward method was used 
within hierarchical clustering to determine the optimal 
number of clusters [16]. Based on this, k-means cluster-
ing was performed to identify patients in the different 
subpopulations. To ensure robust results despite possible 
variations from repeated runs, the k-means algorithm 
was executed five times. The silhouette coefficients, 
which measure how well each patient fits within their 
assigned cluster, were evaluated for these clusters [37].

Biomechanical characterization of subpopulations
For each HOA subpopulation, a SVM with a linear func-
tion was trained to discriminate between the specific sub-
population and the HC, using a 10-fold-cross-validation. 
To prioritize model explainability, the box constraint and 
kernel scale were both set to 1, following the approach 
used in the COGS study [18]. Classification rates were 
defined as the percentage of individuals correctly classi-
fied. The pathologic ratio was computed as the propor-
tion of individuals within each subpopulation classified 
as having HOA or THR relative to the total number of 
individuals in that subpopulation. To further assess 
model performance, sensitivity (true-positive rate; pro-
portion of pathological cases correctly identified), speci-
ficity (true-negative rate; proportion of healthy controls 
correctly identified), and ROC-AUC (a unitless measure 
of discriminative ability across all decision thresholds) 
were calculated. The THR data from each subpopulation 
were then projected into the corresponding SVM model 
and evaluated to quantify the postoperative changes fol-
lowing total hip replacement.

Because PCs represent abstract features of the original 
biomechanical waveforms, direct biomechanical inter-
pretation of differences between the subpopulations and 
HC is not possible. Therefore, Shapley Additive exPla-
nations [38] were computed for each PC to identify the 
most important biomechanical features contributing to 
the SVM classifiers. The absolute Shapley value of each 
PC was multiplied by the corresponding PC score, and 
these weighted PCs were then multiplied by the eigen-
vector matrix to reconstruct the original biomechanical 
waveforms. The reconstructed waveforms were subse-
quently scaled by their importance factor and the mean 
of these reconstructed waveforms was used to quantify 
the importance of each original biomechanical wave-
form. These importance values were model-specific and 
thus not directly comparable across subpopulations. A 
higher importance value indicated greater contribution 
of a given biomechanical waveform in distinguishing the 
subpopulation from the HC group. For each subpopula-
tion, the five most influential waveforms (i.e., those with 
the highest importance values) were analyzed to biome-
chanically characterize them.

The COGS was computed to quantify the gait quality 
in a low-dimensional space. This score was defined as the 
orthogonal (minimal) distance of each participant to the 
SVM hyperplane. More detailed descriptions and visual-
ization are provided in Christian et al. [18].

Statistical analysis
All statistical analyses were performed in R (version 4.4.1, 
R Foundation for Statistical Computing, Vienna, Austria) 
[39]. Normality of all continuous variables was tested 
using the Shapiro-Wilk test and visual inspection of the 
Q-Q-plots, while homoscedasticity was evaluated using 
the Levene test.

Patient characteristics were compared both between 
subpopulations and HC, and between HOA and THR. 
Two separate one-way ANOVAs were performed to com-
pare (1) the HOA subpopulations with the HC and (2) the 
THR subpopulations with the HC, both for the variables 
age, body height, body mass, BMI and walking speed. 
Two separate Chi-squared tests were performed to com-
pare the distribution of sex within HOA subpopulations 
and within THR subpopulations. A Kruskal-Wallis H 
test was used to compare the KL score of the affected leg 
between HOA subpopulations. A two-way mixed model 
ANOVA was conducted with time (HOA vs. THR) as the 
within-subject factor and subpopulation as the between-
subject factor to analyze changes in body mass, BMI and 
walking speed. Only patients who participated in both 
examinations were included in this repeated measure 
analysis.

For statistically significant ANOVA results, post-hoc 
tests (paired, or unpaired t-tests as appropriate) were 



Page 5 of 13Stetter et al. Arthritis Research & Therapy          (2025) 27:229 

conducted with Bonferroni correction for multiple com-
parisons. When data did not meet the assumptions of 
parametric testing, the following non-parametric tests 
were applied: Kruskal-Wallis H test (instead of one-way 
ANOVA), Scheirer-Ray-Hare test (instead of two-way 
repeated measures ANOVA), Wilcoxon signed-rank test 
(instead of paired t-tests) and Mann-Whitney U test 
(instead of unpaired t-tests).

Statistical parametric mapping with the spm1d pack-
age [40] was used to compare biomechanical waveforms. 
Two comparisons were performed: (1) between each 
identified HOA subpopulation as well as each THR sub-
population and HC (unpaired t-tests) and (2) between 
those participants represented in a subpopulation before 
and after total hip replacement (HOA vs. THR, paired 
t-tests).

The change over time of the GOGS within the sub-
populations (HOA vs. THR) was done with a paired t-test 
for each of the subpopulations. COGS distributions were 
visualized with violin plots using the seaborn package 
[41] in Python (version 3.12, Python Software Founda-
tion, Wilmington, Delaware, United States).

For all statistical tests, a two-sided p-value of < 0.05 
was considered statistically significant. Effect sizes were 
calculated as follows: Cohen’s d for t-tests, eta squared 
(η 2

G) for ANOVAs and rank-biserial correlation (r) for 
non-parametric tests. Unless otherwise stated, results 
were reported as means with corresponding 95% confi-
dence intervals (95% CI).

Results
Identification of subpopulations with hip OA
A total of 14 PCs were required to explain 90% of 
the variance across all biomechanical waveforms. 

Hierarchical clustering of the HOA dataset identified 
three distinct subpopulations, denoted as HOA1, HOA2, 
and HOA3. These subpopulations comprised of 27, 42, 
and 35 patients, respectively (Table  2). Five of the 109 
HOA patients, two of whom were also included in the 
THR group, could not be consistently assigned to any 
single subpopulation and were therefore excluded from 
subsequent subpopulation-based analyses. A graphical 
representation of the three identified subpopulations is 
provided in Figure 2.

Patient characteristics of subpopulations with hip OA
The patient characteristics of the three HOA subpopu-
lations are presented in Table  2. The one-way ANOVA 
showed a significant main effect for all patient charac-
teristics. Detailed pairwise comparisons are provided in 
the Supplementary Material (S.Table  1) and indicated 
that the subpopulation HOA1 was significantly older 
compared to HOA3 (64.9 [61.5, 68.3] years vs. 57.8 [53.8, 
61.8] years, p = 0.023). HOA3 demonstrated a greater 
body height than HOA2 (1.73 [1.70, 1.79] m vs. 1.68 
[1.65, 1.70] m, p = 0.021). Sex distributions differed within 
HOA subpopulations (χ2(2) = 8.45; p = 0.015): HOA1, 
15 male/12 female patients; HOA2, 15 male/27 female 
patients; HOA3, 24 male/11 female patients. The KL 
score of the affected leg differed within HOA subpopula-
tions (H(2, 162) = 12.68; p = 0.002; η 2

G = 0.11). Pairwise 
comparisons showed that HOA2 had a lower KL score 
(median = 3.0 [Interquartile range (IQR): 3–3]) compared 
with HOA1(3.5 [IQR: 3–4], p = 0.002) and HOA3 (3.4 
[IQR: 3–4], p = 0.003, S.Table 2). When compared to HC, 
HOA3 was younger (p = 0.038) and taller (p = 0.031). All 
HOA subpopulations demonstrated greater body mass 
(p < 0.020), BMI (p < 0.001) and lower walking speeds 
(p < 0.001) than HC (S.Table 1).

Table 2  Descriptive statistics for all subpopulations with the results of the one-way ANOVAs and the distribution tests
Variable HOA1 HOA2 HOA3 THR1 THR2 THR3 HC ANOVA (HOA vs. HC) ANOVA (THR vs. HC)
N 27 42 35 16 27 18 56 / /
Age [years] 64.9  

[61.5 68.3]
61.8  
[58.6 65.0]

57.8  
[53.8 61.8]

64.2  
[59.5 68.9]

62.7  
[58.6 66.9]

60.2  
[55.3 65.2]

63.5  
[61.5 65.5]

F(3, 156) = 3.58;
p = 0.015*; η 2

G = 0.06
F(3, 113) = 0.75;
p = 0.524; η 2

G = 0.02
Body height [m] 1.71  

[1.68 1.75]
1.68  
[1.65 1.70]

1.73  
[1.70 1.76]

1.74  
[1.70 1.79]

1.70  
[1.67 1.72]

1.73  
[1.70 1.76]

1.68  
[1.66 1.71]

F(3, 156) = 3.25;
p = 0.023*; η 2

G = 0.06
F(3, 113) = 3.33;
p = 0.022*; η 2

G = 0.08
Body mass[kg] 84.1  

[78.2 89.9]
76.7  
[72.1 81.3]

82.3  
[77.6 87.0]

90.3  
[83.1 97.5]

79.0  
[73.4 84.7]

80.2  
[74.9 85.5]

69.0  
[65.8 72.2]

F(3, 156) = 10.68;
p < 0.001*; η 2

G = 0.17
F(3, 113) = 13.96;
p < 0.001*; η 2

G = 0.27
BMI [kg/m2] 28.6  

[26.9 30.2]
27.1  
[25.8 28.5]

27.5  
[26.1 28.9]

29.7  
[27.6 31.8]

27.5  
[25.6 29.3]

26.7  
[25.2 28.3]

24.2  
[23.5 25.0]

F(3, 156) = 10.62;
p < 0.001*; η 2

G = 0.17
F(3, 113) = 13.96;
p < 0.001*; η 2

G = 0.27
Walking speed 
[m/s]

0.98  
[0.89 1.07]

1.03  
[0.98 1.08]

1.03  
[0.98 1.09]

1.12  
[1.02 1.22]

1.16  
[1.11 1.21]

1.23  
[1.15 1.31]

1.32  
[1.28 1.36]

F(3, 156) = 36.98;
p < 0.001*; η 2

G = 0.42
F(3, 113) = 11.16;
p < 0.001*; η 2

G = 0.23
HOA1 HOA2 HOA3 THR1 THR2 THR3 Distribution Test 

(HOA)
Distribution Test 
(THR)

Sex [male/
female]

15/12 15/27 24/11 11/5 10/17 13/5 χ2(2) = 8.45;
p = 0.015*

χ2(2) = 6.91;
p = 0.032*

Values are mean and 95% Confidence Interval for all variables

HOA Hip Osteoarthritis, THR Total Hip Replacement, HC Healthy Controls, N Number of individuals, BMI Body Mass Index, F Test-value for the parametric tests, 
Generalized eta squared, χ2 Chi-squared test; Level of significance ≤ 0.05; *marks a significant result
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Biomechanical characterization of subpopulations with hip 
OA
The classification results are presented in Table  3. Indi-
vidual classification rates for the three HOA subpopu-
lations ranged from 63.7% to 90.4%. The proportion of 
patients classified as pathologic before total hip replace-
ment varied between 51.4% and 85.2% for the HOA sub-
populations and decreased to 27.8% to 51.8% after total 

hip replacement. For the HOA subpopulations, sensi-
tivity ranged from 0.486 to 0.815, specificity from 0.750 
to 0.929, and ROC-AUC from 0.689 to 0.919. Following 
total hip replacement, sensitivity decreased to 0.278 to 
0.519, whereas specificity increased to 0.893 to 0.947, 
with corresponding ROC-AUC values between 0.568 
and 0.913. The five most influential biomechanical wave-
forms, derived from the SVM-specific Shapley values, are 
listed in Table 4.

Figure 3 illustrates the time-dependent differences 
from HC for these five key biomechanical waveforms of 
the three subpopulations. Differences between HOA sub-
populations and HC were observed over 74.9% to 100.0% 
of the stance phase. HOA1 showed greater internal hip 
rotation, higher hip and knee flexion, and lower sagit-
tal and transversal hip moment ranges compared with 
HC. HOA2 demonstrated higher external hip rotation, 
lower hip flexion during early stance, lower hip exten-
sion during late stance, lower knee flexion in early stance, 
higher knee flexion in late stance, and lower hip sagittal 
and transversal moment ranges relative to HC. HOA3 
showed higher external hip rotation, reduced hip adduc-
tion, higher hip flexion, reduced external knee rotation, 
and increased pelvis anterior tilt compared with HC.

Patient characteristics of subpopulations after total hip 
replacement
The patient characteristics for the three subpopulations 
after total hip replacement (THR1, THR2, THR3) are 
summarized in Table 2, with detailed post-hoc compari-
sons provided in the Supplementary Materials (S.Table 
3). THR1 patients were heavier than those in THR2 (90.3 

Table 3  Classification results for the three subpopulations at the two examinations
Subgroup Classification rate [%] Classified as HOA [N] Classified as HC [N] Pathologic ratio [%] Sensitivity Specificity ROC-AUC
HOA1 90.4 23 4 85.2% 0.815 0.929 0.919
HOA2 73.5 26 16 61.9% 0.595 0.839 0.777
HOA3 63.7 18 17 51.4% 0.486 0.75 0.689
THR1 / 7 9 43.8% 0.438 0.947 0.913
THR2 / 14 13 51.9% 0.519 0.893 0.737
THR3 / 5 13 27.8% 0.278 0.929 0.568
HOA Hip Osteoarthritis, THR Total Hip Replacement, HC Healthy Controls, N Number of individuals, ROC-AUC Area Under the Receiver Operating Characteristic Curve

Table 4  The five most important biomechanical waveforms for the three SVM that classify an individual as patient with hip 
osteoarthritis. The number of the SVM corresponds to the HOA subpopulation.
Importance SVM 1

(0.05–9.57)
SVM 2
(0.15–3.62)

SVM 3
(0.19–3.83)

1 Hip rotation angle (9.57) Hip flexion moment (3.62) Hip rotation angle (3.83)
2 Hip flexion moment (8.43) Knee flexion angle (3.22) Hip abduction angle (3.13)
3 Knee flexion angle (7.96) Hip rotation angle (3.04) Hip flexion angle (2.76)
4 Hip flexion angle (6.17) Hip flexion angle (2.27) Knee rotation angle (2.76)
5 Hip rotation moment (4.52) Hip rotation moment (1.62) Pelvic tilt (2.62)
The numbers in brackets represent the range of the importance of all biomechanical waveforms in the subpopulation-specific SVM

SVM Support Vector Machine

Fig. 2  Two-dimensional visualization of the three identified subpopula-
tions before total hip replacement based on the first two principal com-
ponents (PC1 and PC2). Lines connect the outermost patients of each 
subpopulation to enhance visualization. Subpopulation with hip osteoar-
thritis HOA1 = blue, HOA2 = red, HOA3 = green
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[83.1, 97.5] kg vs 79.0 [73.4, 84.7] kg, p = 0.041). Sex dis-
tributions differed within THR subpopulations (χ2(2) 
= 6.91; p = 0.032): THR1, 11 male/5 female; THR2, 10 
male/17 female; THR3, 13 male/5 female. When com-
pared to HC, all subpopulations still had greater body 
mass (p < 0.008) and BMI (p < 0.002). THR3 reached the 
greatest improvement in walking speed reaching 1.23 
[1.15, 1.31] m/s), which was only slightly below the value 
of HC (1.32 [1.28, 1.36] m/s, p = 0.120). THR1 and THR2 
still had lower walking speeds (p < 0.002).

When comparing pre- and post-surgical subpopula-
tions (HOA vs. THR) (Table 5), THR2 showed increased 
body mass and BMI (p = 0.002) relative to HOA2. All 
subpopulations showed significant improvements in 
walking speed after total hip replacement compared with 
their HOA conditions (p < 0.003, S.Table 4).

Biomechanical characteristics and COGS of subpopulations 
after total hip replacement
Figure 4 depicts the time-dependent differences in the 
five most influential biomechanical waveforms between 
HOA and THR subpopulations. Across all subpopula-
tions, the waveforms demonstrated differences from 

the HOA patterns, with changes trending towards the 
HC patterns. For all biomechanical waveforms, THR1 
and THR3 exhibited pronounced changes compared 
to HOA, showing differences over 66.6 to 100% of the 
stance phase. In contrast, THR2 showed fewer changes, 
with the most notable differences occurring for the hip 
rotation angle (over 69.5% of the stance phase), whereas 
knee flexion angle and hip rotation moment differed only 
over short periods of the stance phase (12.2% and 3.5%, 
respectively).

For all subpopulations, COGS increased from HOA to 
THR (HOA1 vs THR1: t(15) = 5.22, p < 0.001; HOA2 vs 
THR2: t(26) = 5.37, p < 0.001; HOA3 vs THR3: t(17) = 
5.39, p < 0.001; Figure 5), indicating an overall improve-
ment in gait quality following surgery. 

Discussion
This study aimed to identify and characterize subpopu-
lations of patients with hip OA based on their distinct 
adaptations in gait kinematics and joint moments, and 
to evaluate how these subpopulations respond to total 
hip replacement. The findings revealed three biome-
chanically distinct subpopulations, each characterized 

Fig. 3  Differences between the five most important biomechanical waveforms for the three subpopulations before total hip replacement (red; HOA1 
(left), HOA2 (middle), HOA3 (right)) and healthy controls (blue; HC). Level of significance < 0.05; The grey-shaded areas indicate significant differences
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Table 5  Descriptive statistics of the subpopulations with only the patients who were included in the pre- and post- surgery dataset as 
well as the results for the two-way mixed model ANOVA (factors: subpopulation and time of measurement)
Variable HOA1 HOA2 HOA3 THR1 THR2 THR3 ANOVA

(SUB)
ANOVA
(Time)

ANOVA 
(Interaction)

N 16 27 18 16 27 18
Age [years] 63.1  

[58.4 67.8]
61.7  
[57.6 65.8]

59.0  
[54.2 63.8]

64.2  
[59.5 68.9]

62.7  
[58.6 66.9]

60.2  
[55.3 65.2]

F(2, 101) = 3.642);
p = 0.030*; η 2

G = 0.07
Body height 
[m]

1.74  
[1.70 1.77]

1.70  
[1.67 1.72]

1.73  
[1.70 1.76]

1.74  
[1.70 1.79]

1.70  
[1.67 1.72]

1.73  
[1.70 1.76]

F(2, 101) = 3.86);
p = 0.024*; η 2

G = 0.07
Body mass [kg] 89.23  

[82.3 96.1]
77.6  
[72.3 83.0]

79.6  
[74.9 84.3]

90.3  
[83.1 97.5]

79.0  
[73.4 84.7]

80.2  
[74.9 85.5]

F(2, 58) = 4.39);
p = 0.017*; η 2

G = 0.13
F(1, 58) = 10.01);
p = 0.002*; η 2

G = 
0.00

F(2, 58) = 0.51);
p = 0.602; η 2

G = 
0.00

BMI [kg/m2] 29.4  
[27.4 31.4]

27.0  
[25.3 28.7]

26.6  
[25.2 27.0]

29.7  
[27.6 31.8]

27.5  
[25.6 29.3]

26.7  
[25.2 28.3]

F(2, 58) = 2.62);
p = 0.082; η 2

G = 0.08
F(1, 58) = 7.19);
p = 0.010*; η 2

G = 
0.00

F(2, 58) = 0.52);
p = 0.599; η 2

G = 
0.00

Walking speed 
[m/s]

0.96  
[0.84 1.09]

1.05  
[0.99 1.12]

1.04  
[0.96 1.11]

1.12  
[1.02 1.22]

1.16  
[1.11 1.21]

1.23  
[1.15 1.31]

F(2, 58) = 1.69);
p = 0.193; η 2

G = 0.05
F(1, 58) = 61.47);
p < 0.001*; η 2

G = 
0.17

F(2, 58) = 2.15);
p = 0.125; η 2

G = 
0.01

Values are mean and 95% Confidence Interval for all variables apart from Kellgren-Lawrence score, which is reported as mean and interquartile range

HOA Hip Osteoarthritis, THR Total Hip Replacement, N Number of individuals, KL Kellgren-Lawrence score, BMI Body Mass Index, SUB Between subpopulation effect, 
Time = within subpopulation effect; F = test-value for the parametric tests; η 2

G= generalized eta squared, Level of significance ≤ 0.05; * marks a significant result

Fig. 4  Differences between the five most important biomechanical waveforms for the three subpopulations before (red; HOA1 (left), HOA2 (middle), 
HOA3 (right)) and after total hip replacement (green; THR1 (left), THR2 (middle), THR3 (right)). Level of significance ≤ 0.05; The grey-shaded areas indicate 
significant differences. The blue lines represent the mean and standard deviation of the healthy controls (HC)
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by unique gait biomechanics, patient characteristics, and 
responses to total hip replacement. These results confirm 
our hypotheses and underscore the heterogeneity of hip 
OA, emphasizing the need for more personalized clinical 
management

Differences among subpopulations with hip OA
Our data-driven approach identified three demographi-
cally and biomechanically distinct hip OA subpopu-
lations that differed in age, sex, radiographic disease 
severity, body composition, and walking speed; all fac-
tors known to influence both functional impairment and 
surgical outcomes [42]. Specifically, HOA1 was the old-
est subpopulation and had the highest KL score, whereas 
HOA3 was the youngest, tallest, and had a lower KL 
score than HOA1, but higher than HOA2. All subpopu-
lations walked slower and had higher body mass and 
BMI compared with HC. The identification of these sub-
populations through data-driven clustering is plausible, 
as patient characteristics age, body composition, and 
walking speed are known to influence gait biomechan-
ics [43], which served as the basis for clustering. These 
insights emphasize that patients should not be catego-
rized solely by radiographic severity, as demographic and 
functional characteristics can provide additional insight 
into disease manifestation and risk stratification [44–46]. 
Age, body composition and walking speed, often under-
emphasized in routine clinical evaluation, could enhance 
the identification of high-risk individuals and guide more 
individual treatment strategies as well as reduce unnec-
essary interventions [47, 48]. Interestingly, the clustering 
process, which did not include anthropometrics or sex 
information, revealed one predominantly female (HOA2) 
and one predominantly male (HOA3) subpopulation. 

This aligns with previous studies [20, 49] reporting sex-
specific gait patterns in OA patients, suggesting that our 
workflow effectively captures biomechanical-relevant 
features.

 Regarding the classification based on gait biome-
chanics, HOA1 showed the highest separability from 
HC (classification rate of 90.4%), followed by HOA2 
(73.5%) and HOA3 (63.7%), indicating distinct degrees 
of deviations in gait biomechanics. These rates were 
comparable or slightly lower than previously reported 
[18, 20] likely reflecting milder gait alterations in HOA2 
and HOA3. The lower rates of these groups supports 
the idea that their biomechanical changes from HC are 
less pronounced [21]. This is further supported by the 
reduced sensitivity (true-positive rate) in the THR sub-
populations, meaning fewer participants are classified as 
pathological.

 Of the 15 most influential biomechanical waveforms 
identified (five per subpopulation), 11 originated from 
the hip, three from the knee and one from the pelvis. 
This distribution reflects the central role of hip mechan-
ics in gait pathology. From a clinical perspective, the 
subpopulation-specific adaptations observed here may 
explain the variability in previous literature on com-
pensatory strategies in hip kinematics and kinetics [10]. 
Interestingly, both internal and external hip rotations 
were observed: HOA1 displayed a flexed and internally 
rotated hip; HOA2 showed and extended and externally 
rotated hip; and HOA3 demonstrated a flexed and exter-
nally rotated hip. These findings mirror the variability 
found in an earlier meta-analysis regarding hip rotation 
in hip OA [8] and provide a biomechanical rationale for 
conflicting results. Notably, HOA3, comprising younger, 
taller patients with moderate radiographic findings, dem-
onstrated distinct gait adaptations including reduced hip 
adduction and increased anterior pelvic tilt during late 
stance [13, 50]. These biomechanical gait adaptations 
may reflect compensatory mechanisms in younger, more 
active individuals and highlight the need for earlier or 
targeted interventions in this subpopulation to delay dis-
ease progression or optimize surgical timing [51, 52].

Subpopulation-specific functional improvement after total 
hip replacement
 All subpopulations demonstrated functional improve-
ment following total hip replacement, particularly in 
walking speed, with THR3 approaching the level of 
healthy controls. Walking speed is a robust surrogate for 
overall mobility and quality of life [12], underscoring the 
effectiveness of total hip replacement in restoring func-
tion across diverse subpopulations [53, 54]. The observed 
post-surgery weight gain in THR2 warrants attention. 
While often considered undesirable, such an increase 
may indicate improved physical capacity or increased 

Fig. 5  Violin-plot for the classifier-oriented gait score (GOGS) quantifying 
gait function. The left side (light grey; HOA1, HOA2, HOA3) of each violin 
are the subpopulation-specific COGS before and on the right side (dark 
grey; THR1, THR2, THR3) are the subpopulation-specific COGS after total 
hip replacement. Level of significance ≤ 0.05; * marks a significant result
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muscle mass, both of which can enhance function [53, 
55]. Nevertheless, this underscores the importance of 
incorporating weight management and strength training 
into postoperative rehabilitation protocols.

Reductions in gait compensations, as quantified by the 
COGS, further support the efficacy of total hip replace-
ment in restoring biomechanical function. Clinically, 
metrics like the COGS could enable standardized, auto-
mated gait monitoring of rehabilitation progress and 
facilitate data-driven treatment evaluation [18].

 Biomechanical waveform analysis revealed overall 
movement patterns shifting towards HC, consistent with 
prior meta-analysis [10]. Interestingly, THR1, which was 
initially the most impaired subpopulation, exhibited the 
greatest biomechanical normalization, suggesting that 
patients with more pronounced preoperative deficits 
may derive larger relative benefits from surgery [42]. In 
contrast, THR2, which presented milder impairments, 
showed smaller postoperative changes, highlighting a 
possible ceiling effect in patients with milder preopera-
tive impairments [42].

 Together, the results highlight the subpopulation-
dependent nature of surgical recovery following total hip 
replacement and support the clinical importance of tai-
loring rehabilitation strategies to individual biomechani-
cal adaptations to maximize functional gains.

Implications for personalized hip OA therapy
 The identification of subpopulation-specific adaptations 
in gait kinematics and joint moments highlights oppor-
tunities for advancing personalized treatment and reha-
bilitation strategies in hip OA. Standardized treatment 
protocols may not sufficiently address the heterogeneous 
functional limitations and compensatory mechanisms 
across patient subpopulations. For example, individu-
als in HOA1 may benefit from interventions targeting 
hip extension and reducing compensatory knee stiff-
ness, while HOA2 may require rehabilitation strategies 
to improve hip rotation control. Comprehensive bio-
mechanical assessment before and after surgery could 
enable clinicians to tailor interventions more precisely, 
optimizing both short-term and long-term recovery [10, 
56]. Moreover, the persistence of certain gait compensa-
tions after total hip replacement underscores the need to 
move beyond generic mobility training toward targeted 
biomechanical retraining [57, 58]. In a realistic clini-
cal setting, a potential workflow may involve automatic 
classification of new patients with hip OA via their gait 
analysis: gait data are automatically processed (normal-
ization and PCA) and assigned to a subpopulation using 
the clustering model (e.g. HOA2). Based on this classifi-
cation, the COGS is calculated using the corresponding 

SVM, and an estimation of likely functional improvement 
after surgery can be made (e.g., moderate improvement 
for HOA2 with certain complications). This prediction 
can be used to suggest an individualized rehabilitation 
protocol, for instance rotational control training and 
weight management for a patient in HOA2. In this con-
text, mobile measurement technologies could further 
facilitate the collection of detailed biomechanical data to 
advance the individual approach [59], while integration 
with adjacent predictive systems (e.g. radiological fore-
casting models [7, 60] or predicting postoperative com-
plications [6, 61]) ultimately enhances the development 
of more personalized therapeutic pathways [19].

Limitations
 Several limitations should be considered when inter-
preting the results. First, sex differences within the 
subpopulations were not explicitly analyzed due to lim-
ited subgroup sizes and imbalanced sex distribution. 
Although the subpopulations containing mainly male or 
female patients showed consistent post-surgical changes, 
future studies with larger and more balanced cohorts 
and a more specific sex analysis might yield different 
results [20, 49, 62]. Second, only the affected limb was 
analyzed. While this approach ensured that clustering 
reflected adaptations specific to the pathological joint, 
it precluded analysis of contralateral compensations, 
which are known to occur in hip OA and after surgery 
[11, 63]. Including both legs in future studies (effectively 
doubling the dataset) would allow characterization of 
subpopulation‑specific contralateral compensatory pat-
terns, though care must be taken to avoid diluting pathol-
ogy specific effects. Here, subpopulations driven by the 
contralateral leg could be created, potentially misleading 
therapeutic implications. Third, surgical factors such as 
the operation surgeon, approach, and implant type could 
influence surgical outcomes [64–67]. In the present study 
data were collected over a 10- year period with multiple 
surgeons involved and implant types used. However, post 
hoc chi-squared tests revealed no uneven distribution of 
these factors across the subpopulations (p >0.400). None-
theless, standardized surgery studies (one surgeon and 
same implant) could minimize these sources of variabil-
ity. Another limitation concerns how well each patient 
fits into their subpopulation. The silhouette values 
obtained from k-means clustering were moderate, typi-
cally above 0.25, suggesting a systematic but potentially 
limited fit [37]. Finally, although nonlinear dimensional-
ity-reduction methods or hyperparameter tuning could 
improve ML model accuracy, such approaches might 
compromise clinical interpretability, which is essential 
for translational applications in healthcare.
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Conclusion
 This study identified clinically meaningful heterogeneity 
among patients with hip OA, underscoring the potential 
of gait biomechanics to inform individualized treatment 
decisions and guide postoperative rehabilitation. The 
observed subpopulation-specific differences in gait adap-
tations and surgical responses highlight the potential of 
ML-based classification to support a more personalized 
approach to hip OA management. Integrating biome-
chanical gait data and explainable ML into clinical prac-
tice could enhance outcome prediction, enable tailored 
interventions, and ultimately improve quality of life for 
patients undergoing total hip replacement.
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