Effizientes Fuzzing von loT-Geraten

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultat fiir Informatik
des Karlsruher Instituts fiir Technologie (KIT)
genehmigte
Dissertation

von

Matthias Borsig

Tag der miindlichen Priifung: 18. Dezember 2025

1. Referent: PD Dr.-Ing. Ingmar Baumgart
2. Referent: Prof. Dr. Andreas Zeller

Kurzzusammenfassung

Fuzzing ist eine bewahrte Methode zur Identifizierung von Sicherheitsliicken in Software.
In dieser Dissertation wird untersucht, wie sich die Effizienz des Fuzzings fiir [oT-Gerdéte,
am Beispiel des ESP32-Mikrocontrollers, steigern lasst. Wahrend Fuzzing in klassischen
Softwareumgebungen etabliert ist, fehlen speziell angepasste Verfahren fiir ressourcenarme
IoT-Hardware. Das Ziel besteht in der Entwicklung eines konzeptionellen Frameworks,
das eine umfassende und effiziente Testung trotz begrenzter IoT-Ressourcen erméoglicht.
Zu diesem Zweck werden vier Ansétze zur Effizienzsteigerung sowie ein Konzept zur
flexiblen Kombination dieser Ansitze vorgestellt.

Beim Binary Rewriting wird Bindrcode so modifiziert, dass die Funktionalitat erhalten
bleibt. Fiir viele giangige Architekturen existieren bereits entsprechende Verfahren. Fir die
Xtensa-Architektur des ESP32 gab es jedoch bislang keine Losung. In dieser Dissertation
wird gezeigt, wie sich Binary Rewriting auf dem ESP32 umsetzen lasst, um Fuzzing-In-
strumentierungen direkt in die Firmware zu integrieren und Laufzeitinformationen an
den Fuzzer zuriickzumelden.

Zudem wurde die Emulationsumgebung des ESP32 erheblich erweitert. Dadurch ist nun
Fuzzing von beliebiger Firmware mdglich, auch von Firmware mit zuvor nicht unterstiitz-
ten Hardwarekomponenten. Im Vergleich zur realen Hardware arbeitet die Emulation
deutlich effizienter. Wahrend hardwarebasiertes Fuzzing vier bis 40 Anfragen pro Sekunde
verarbeitet, sind es in der Emulation bis zu 320 Anfragen pro Sekunde.

Zur Generierung valider Eingaben wurde ein Verfahren zum automatisierten Protocol
Reverse Engineering (PRE) entwickelt, das Kiinstliche Neuronale Netze (KNNs) verwendet.
Wihrend PRE bislang manuell erfolgen musste, konnen nun Protokollstrukturen automa-
tisch abgeleitet und damit syntaktisch korrekte Netzwerkpakete erzeugt werden. In den
Tests waren 67,6 % der erzeugten HTTP-Pakete und 100 % der FTP-Pakete giiltig.

Fir das grammatikbasierte Fuzzing wird ein Ansatz mittels Large Language Models (LLMs)
vorgestellt. Die zentrale Herausforderung bestand in der effizienten Integration des LLM
in den Fuzzing-Prozess. Mithilfe der entwickelten Methode lassen sich syntaktisch und
semantisch korrekte XML-Dateien generieren. Dies steigert die Programmflussabdeckung
um den Faktor sechs gegeniiber einer Ausfithrung ohne LLM und erreicht eine um 50 %
hohere Abdeckung als klassische grammatikbasierte Fuzzer.

Abschlieffend wird ein Integrationskonzept préisentiert, das eine flexible Kombination der
Ansitze ermoglicht und deren Verbesserungen additiv nutzbar macht. Dadurch tragt das
Framework zur Effizienzsteigerung des Fuzzings von IoT-Geraten bei. Die Dissertation
leistet somit einen wichtigen Beitrag zur praxisnahen Absicherung von IoT-Geréten.

Abstract

Fuzzing is a well-established method of identifying security vulnerabilities in software.
This dissertation explores ways to improve the efficiency of fuzzing for Internet of Things
(IoT) devices, using the ESP32 microcontroller as a case study. While fuzzing is widely
used in traditional software environments, few methods have been developed to address
the limited resources available on IoT hardware.

The aim is to develop a conceptual framework that enables thorough and effective testing
despite the limited resources available on IoT devices. To this end, four approaches to
increasing efficiency are presented, along with a concept for combining these approaches

flexibly.

In binary rewriting, the functionality of the machine code is preserved, but the code itself
is modified. Although techniques already exist for many common architectures, there
has been no solution available for the Xtensa architecture of the ESP32. This dissertation
demonstrates how binary rewriting can be implemented on the ESP32 to integrate fuzzing
instrumentation directly into the firmware, feeding runtime information back to the fuzzer.

The ESP32’s emulation environment has also been significantly expanded. Consequently,
fuzzing is now feasible for arbitrary firmware, including that which previously relied
on unsupported hardware components. Compared to physical hardware, the emulation
runs far more efficiently: while hardware-based fuzzing processes four to 40 requests per
second, the emulation achieves up to 320.

To generate valid inputs, an automated Protocol Reverse Engineering (PRE) approach
using Neural Networks (NN) was developed. While protocol reverse engineering had
previously required manual effort, protocol structures can now be derived automatically,
enabling the generation of syntactically correct network packets. During testing, 67.6 % of
the generated HTTP packets and 100 % of the FTP packets were valid.

A new approach leveraging a Large Language Model (LLM) for grammar-based fuzzing
has been introduced. The main challenge was integrating the LLM efficiently into the
fuzzing process. The resulting method can generate XML files that are both syntactically
and semantically correct. Compared to execution without an LLM, program flow coverage
increases sixfold, achieving 50 % higher coverage than classical grammar-based fuzzers.

Finally, an approach is presented that integrates these concepts, enabling improvements to
be applied additively. This enhances the efficiency of fuzzing for IoT devices. Consequently,
this dissertation makes a significant contribution to the practical security of IoT systems.

1ii

Inhaltsverzeichnis

Kurzzusammenfassung
Abstract
Abkiirzungsverzeichnis

1 Einleitung
1.1 Motivationo
1.2 Zielsetzung und wissenschaftlicher Beitrag
1.3 Aufbau der Dissertation

2 Grundlagen
2.1 Besonderheiten von IoT-Gerdten

2.1.1 Architekturen und Protokolle von IoT-Geraten
2.1.2 Herausforderungen beim Fuzzing von IoT-Gerédten

2.2 ESP32 Mikrocontroller
221 Architekturo
222 Firmware
223 XtensalSA
23 Rewriting oo
2.3.1 Code Location Problem
2.3.2 Binary Rewriting
24 Fuzzing o
24.1 Definition von Fuzzing
2.4.2 Ungiltige Eingaben
243 Fuzzing-Szenarien
244 Eingabegenerierung
245 Feedbackgesteuertes Fuzzing

2.4.6 Codeabdeckung und Messbarkeit von Fuzzing

2.4.7 Effizientes Fuzzing
2.4.8 Syntaktische und semantische Korrektheit
2.5 Grammatiken fiir Fuzzing
2.5.1 Aufbau der Grammatik
2.5.2 Formale Beschreibung von Grammatiken
2.5.3 Kontextfreie Grammatiken
254 Grammatikvon XML
2.5.5 Vorteile des grammatikbasierten Fuzzings

g1 W = =

O 00 00 3 3 N

10

12
12
13
14
14
15
15
16
17
17
18
19
20
20
21
21
21
22

Inhaltsverzeichnis

vi

2.6
2.7

2.8

2.9

ESP32 Code-Injektion bei unverandertem Kontrollfluss mittels Binary Rewriting

3.1
3.2
3.3

34

35

3.6
3.7
3.8

Fuzzing im Emulator o 0oL

Netzwerkprotokolle L L
2.7.1 Struktur eines TCP-Headers
2.7.2 File Transfer Protocol (FTP)
2.7.3 Hpypertext Transfer Protocol (HTTP)
2.7.4 Angriffsvektoren auf Netzwerkprotokolle
2.7.5 Protocol Reverse Engineering (PRE)
Neuronale Netzwerkarchitekturen
2.8.1 Kiinstliches neuronales Netz(KNN)
2.8.2 Convolutional Neural Network (CNN)
2.8.3 Autoencoder (AE)
2.8.4 Generative Adversarial Network (GAN)
2.8.5 Long Short-Term Memory (LSTM)
2.8.6 Self-Organizing Map (SOM)
2.8.7 Large Language Model (LLM)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) .

Einleitung
Stand der Technik Lo
Design e
3.3.1 BinaryRecovery o
332 Rewriter
Implementierung
3.4.1 BinaryRecovery
342 Rewriter
3.43 Flashen nach dem Binary Rewriting zuriick auf das Gerat

Proofof Concept
3.5.1 Entwicklung eines Beispiel-Tools
3.5.2 Implementierung des Beispiel-Tools
3.5.3 Verwendung des Beispiel-Tools

Einschrankungen und Ausblick
Zusammenfassung oo

Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

4.1
4.2
4.3

4.4

Einleitung
Stand der Technik oo Lo
Konzeption L
43.1 Fehlererkennung
4.3.2 Zielausfihrung mit Fuzzing-Hooks
433 Feedbackgesteuerte Eingabegenerierung
Implementierung
441 Blackbox-Fuzzing auf ESP32-Anwendungen
4.4.2 Whitebox-Fuzzing mit compilerinstrumentiertem Code

22
23
25
25
26
26
27
28
28
31
32
33
33
34
35

39
39
40
41
41
41
44
45
45
46
46
47
47
49
50
52
52

53
53
54
55
56
56
57
58
58
59

Inhaltsverzeichnis

443 Whitebox-Fuzzing mit ESP32-QEMU-FUZZ
4.4.4 Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ
45 Evaluation L
45.1 Fuzzing der TCP-Testanwendung
45.2 Greybox-Fuzzing der LIFX Mini
4.6 Einschrankungen und Ausblick
4.7 Zusammenfassung Lo
48 Fazit.

Protocol Reverse Engineering mittels neuronaler Netze

5.1 Einleitung
5.2 Standder Technik L.
53 Hauptansatz
5.3.1 Datenerfassung o
5.3.2 Feature Extraction
5.3.3 Reverse Engineering von Features
534 Clustering
5.3.5 Zustandserkennung L.
5.3.6 Sequenzgenerierungo e e
5.4 Implementierung von PREUNN
5.4.1 Datenvorverarbeitung
5.4.2 Feature Extraction
5.4.3 Feature Reverse Engineering
544 Clustering
54.5 Zustandserkennung L L.
5.4.6 Sequenzgenerierung
5.5 Weiterentwicklung oo
5.5.1 VorverarbeitungderDaten.
5.5.2 Klassifizierung von Nachrichtentypen und Zustandsiibergéangen
5.5.3 Erlernen des Nachrichtenaufbaus
5.5.4 Generierung neuer Testfalle
5.6 Implementierung von PREUNN2
5.6.1 Vorverarbeitung L.
562 Clustering L
5.6.3 Generierung neuer Pakete und Sequenzen
5.7 Evaluation
571 ProFuzzBench
572 AFLNet
5.7.3 Integration der Machine-Learning-Methoden
5.7.4 Implementierung der Fuzzing-Ziele
5.7.5 Auswertung der Ergebnisse L.
5.8 Zusammenfassung
59 Fazit.

60
61
63
63
64
66
66
67

69
69
70
72
73
73
73
73
74
74
74
75
76
79
82
84
86
88
88
90
90
91
92
92
92
92
93
93
93
93
94
95
98
98

vii

Inhaltsverzeichnis

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

7

8

9

6.1
6.2
6.3

6.4

6.5

6.6
6.7
6.8

Einleitung
Stand der Technik
Entwurf.
6.3.1 Datensatz
6.3.2 Trainingsansatz
6.3.3 Inferenzstrategie
6.3.4 Modell-Integration
6.3.5 Feedback-Schleife
Implementierung

6.4.1 Modelltraining und Integration mit AFL.
6.4.2 Kontinuierlicher Datenintegrationsmechanismus

6.4.3 Optimierungstechnologien

6.4.4 Dynamischer Feedback-Mechanismus

Evaluation
6.5.1 Bewertungsmetriken . . .
6.5.2 Experimentelle Ansitze .
6.5.3 Experimentelle Ergebnisse
6.5.4 Inferenzbewertung

Einschrankungen und zukinftige Arbeiten

Zusammenfassung
Fazit.

Ansatz fiir ein integriertes Fuzzing-Framework

7.1 Konzeptionelle Integration der Module
7.1.1 Flexiblitat der Module . .
7.1.2 PREUNN und HTTYL als parallele Module
7.1.3 Kombination der Module .

7.2 Diskussion und Interpretation der Ergebnisse

7.3 Limitationen

Verwandte Arbeiten

8.1 Binary Rewriting

8.2 Hardware Fuzzing von IoT-Geraten

8.3 IoT Fuzzing mittels Emulation . .

8.4 Fuzzing von Netzwerkprotokollen

8.5 Grammatik-basiertes Fuzzing . . .

8.6 Fuzzing mittels Machine Learning

8.7 Optimierung des Fuzzing-Prozesses

Zusammenfassung und Ausblick
Zusammenfassungo
Ausblick und zukiinftige Arbeiten oL

9.1
9.2

Begriffsdefinitionen

viil

101
101
102
103
104
105
105
106
106
107
107
108
108
109
109
109
110
111
113
113
115
115

117
117
118
118
118
119
120

123
123
124
125
126
127
129
130

133
133
135

137

Inhaltsverzeichnis

Abbildungsverzeichnis 146
Tabellenverzeichnis 148
Listings 149
Eigene Arbeiten 153
Weitere Literatur 155

ix

Abkiirzungsverzeichnis

AE
AFL
AiFF
API
BCE
BLE
BMU
CCE
CE
CISC
CNN
CoAP
CSv
DBSCAN
DDoS
DL
DoS
EBR
ELF
EOP
EQF
FTP
GAN
GDB
GPU
HDBSCAN
HTTP
HTTYL
IDF
IoT

IR
ISA
ISO
KI
KNN
LLM
LoRA

Autoencoder

American Fuzzy Lop

Ansatz fiir ein integriertes Fuzzing-Framework
Application Programming Interface

Binary Cross-Entropy

Bluetooth Low Energy

Best Matching Unit

Categorical Cross-Entropy

Cross-Entropy

Complex Instruction Set Computer
Convolutional Neural Network

Constrained Application Protocol
Comma-Separated Values

Density-Based Spatial Clustering of Applications with Noise
Distributed Denial of Service

Deep Learning

Denial of Service

ESP32 Binary Rewriting

Executable and Linkable Format

End of Package

ESP32-QEMU-FUZZ

File Transfer Protocol

Generative Adversarial Network

GNU Debugger

Graphics Processing Unit

Hierarchical Density-Based Spatial Clustering of Applications with Noise
Hypertext Transfer Protocol

How to Train Your Llama

IoT Development Framework

Internet of Things

Intermediate Representation

Instruction Set Architecture

International Organization for Standardization
Kiinstliche Intelligenz

Kiinstliches Neuronales Netz

Large Language Model

Low-Rank Adaptation

el

Abkiirzungsverzeichnis

LSTM
ML
MQTT
MSB
MSE
NLL
NVS
PEFT
PoC
PREUNN
PRE
PUT
ReLU
RISC
RNN
Seq2Seq
SOM
SOP
TCP
TPU
TTM
uDP
XML
XMPP

xii

Long Short-Term Memory

Machine Learning

Message Queueing Telemetry Transport
Most Significant Bit

Mean Squared Error

Negative Log-Likelihood

Non-Volatile Storage
Parameter-Efficient Fine-Tuning

Proof of Concept

Protocol Reverse Engineering using Neural Networks
Protocol Reverse Engineering

Program Under Test

Rectified Linear Unit

Reduced Instruction Set Computer
Recurrent Neural Network

Sequence to Sequence

Self-Organizing Map

Start of Package

Transmission Control Protocol

Tensor Processing Unit

Time-to-Market

User Datagram Protocol

Extensible Markup Language

Extensible Messaging and Presence Protocol

1 Einleitung

Dieses Kapitel fithrt in die Dissertation ein und erlautert ihre wissenschaftliche Relevanz.
Im Fokus stehen die Sicherheit im Internet der Dinge (engl. Internet of Things, kurz IoT)
und das Fuzzing von IoT-Gerédten als zentrale Forschungsfelder. Anschlieflend werden die
Ziele und Beitrage der Dissertation vorgestellt sowie ihr Aufbau erldutert.

1.1 Motivation

In den letzten Jahren ist die Anzahl von IoT-Geriten signifikant gewachsen. Intelligente
Sensoren und vernetzte Gerite finden zunehmend Anwendung in der Industrie, in Smar-
t-Home-Systemen und in der kritischen Infrastruktur. Laut Fortune Business Insights
betrug die weltweite Marktgrofle fiir IoT im Jahr 2019 rund $251 Milliarden und wird bis
2027 voraussichtlich auf tiber $1,463 Milliarden anwachsen [For20]. Trotz dieser Dynamik
wurden Sicherheitsaspekte in der IoT-Entwicklung lange vernachléssigt. Der IoT Threat
Report 2020 zeigt, dass 57 % der untersuchten Gerite Schwachstellen mittlerer oder hoher
Schwere aufwiesen [Uni20]. Dies macht IoT-Systeme zu attraktiven Zielen fiir Angriffe,
beispielsweise konnen sie iibernommen und in sogenannte Botnetze vereint werden, die
dann ferngesteuert fiir Distributed Denial of Service (DDoS)-Angriffe genutzt werden, um
Webseiten lahmzulegen [BSI25].

Eine wichtige Rolle in der IoT-Landschaft spielt der ESP32-Mikrocontroller, der 2016
ver6ffentlicht und seitdem tiber 100 Millionen Mal verkauft wurde [Esp18; Eli22]. Aufgrund
seiner hohen Integrationsdichte, des giinstigen Preises und der Unterstiitzung von WLAN-
und Bluetooth-Kommunikation ist der ESP32 in zahlreichen kommerziellen Produkten
weit verbreitet [Mil21]. Seine Popularitat macht ihn zugleich zu einem lohnenden Ziel fiir
Angreifer.

Ein zentrales Problem in der IoT-Entwicklung ist das sogenannte Time-to-Market (TTM)-
Dilemma: Um moglichst schnell marktreife Produkte zu liefern, wird IT-Sicherheit oft
nachrangig behandelt oder erst nachtraglich beriicksichtigt [Bau+19]. Dies fiihrt regel-
maflig zu gravierenden Sicherheitsliicken, die Angreifern einen einfachen Zugang zu
sensiblen Daten oder vollstindige Kontrolle tiber Gerate ermoglichen [Kre16].

Eine etablierte Methode zur Identifikation von Sicherheitsliicken ist neben der statischen
Codeanalyse das Fuzzing [Lia+18; GPS17]. Dabei wird Software automatisiert mit zufalli-
gen oder gezielt generierten Eingaben getestet, um fehlerhafte Zustande wie Abstiirze,
Speicherlecks oder unbehandelte Ausnahmen zu provozieren. Ein vollstandiges Durchtes-
ten aller moglichen Eingaben wire ideal, ist in der Praxis jedoch aufgrund der enormen

1 Einleitung

Grofie des Eingaberaums nicht realisierbar [AIB11]. Stattdessen werden gezielte Strategien
eingesetzt, um den Suchraum effizient einzugrenzen.

Typische Ziele des Fuzzings sind Software-Komponenten, Netzwerkprotokolle, Schnitt-
stellen oder Anwendungen, wie etwa XML-Parser. Durch die systematische Eingabe
fehlerhafter, unerwarteter oder zufilliger Daten lassen sich Schwachstellen und Stabili-
tatsprobleme aufdecken. Mithilfe von Fuzzing lassen sich unter anderem Puffertiberlaufe,
Speicherlecks, unbehandelte Ausnahmen und Logikfehler identifizieren [TDMO08].

Im Kontext des IoT sto3t Fuzzing jedoch auf besondere Herausforderungen. Zum einen
sind viele Gerate durch knappe Hardware-Ressourcen wie begrenzten Speicher, geringe
Rechenleistung und fehlende Debugging-Schnittstellen eingeschrankt, was die direkte
Analyse auf den Geréten erheblich erschwert [Yun+22; Tou+24]. Zum anderen fiithrt
die grofle Vielfalt an Mikrocontroller-Architekturen und Betriebssystemen dazu, dass
etablierte Fuzzing-Tools nur eingeschrankt wiederverwendet werden kénnen [Mue+18].
Dariiber hinaus setzen IoT-Gerdte haufig auf komplexe Kommunikationsschnittstellen wie
WLAN, Bluetooth Low Energy (BLE) oder ZigBee, deren vielfaltige Zustandsraume das
systematische Testen zusatzlich erschweren [Tou+24].

Um diese Probleme gezielt anzugehen, bieten sich zwei technische Ansatze an. Binary Re-
writing adressiert insbesondere die Einschrankungen durch fehlende Debugging-Schnitt-
stellen und begrenzte Ressourcen: Durch das gezielte Injektieren von Analysecode in
Firmware-Binaries kann die Codeabdeckung verfolgt und der Kontrollfluss direkt an den
Fuzzer zuriickgemeldet werden, ohne das urspriingliche Verhalten zu verandern [DGR20].
Dadurch wird das Testen selbst auf ressourcenarmen Geraten ermoglicht. Emulation er-
ganzt diesen Ansatz, indem die Firmware in einer kontrollierten und reproduzierbaren
Umgebung ausgefiihrt wird. Dadurch lassen sich interne Zustinde, Speicherzugriffe und
Kommunikationsabldaufe beobachten, wahrend sich Fuzzing-Kampagnen parallelisieren
und beschleunigen lassen. Gleichzeitig reduziert die Emulation die Abhéngigkeit von der
konkreten Hardwarearchitektur und erleichtert so die Wiederverwendbarkeit der Tests
iiber verschiedene Gerate hinweg [Cle+20; Wri+21; Yun+22].

Dariiber hinaus er6ffnen Kiinstliche Intelligenz (KI)-gestiitzte Methoden neue Perspektiven
fur das Fuzzing. Verfahren aus den Bereichen Machine Learning (ML) und Deep Lear-
ning (DL) werden bereits erfolgreich in der statischen Codeanalyse, Malware-Erkennung
und Spam-Filterung eingesetzt [DB25; Kna+25; KY24; GAJ24]. Im Fuzzing erméglichen
diese Methoden eine gezielte Optimierung der Eingabegenerierung: Mithilfe von Muste-
rerkennung kénnen Protokollstrukturen approximiert und synthetische, wohldefinierte
Testdaten erzeugt werden. Dadurch steigt die Wahrscheinlichkeit, dass Eingaben vom
Program Under Test (PUT) akzeptiert werden, was die Testabdeckung verbessert und die
Effizienz der Schwachstellensuche erheblich steigert [Zha+24al].

1.2 Zielsetzung und wissenschaftlicher Beitrag

1.2 Zielsetzung und wissenschaftlicher Beitrag

Die zentrale Forschungsfrage dieser Dissertation lautet:
~Wie kann das Fuzzing von IoT-Geréten effizienter gestaltet werden?*

Zu diesem Zweck wird ein konzeptionelles Framework fiir ESP32-Anwendungen entwi-
ckelt. Dieses Framework integriert verschiedene Ansitze zur Effizienzsteigerung systema-
tisch und macht deren Synergien nutzbar (siehe Definition von effizientem Fuzzing in Ab-
schnitt 2.4.7). Der ESP32 dient dabei als exemplarische Plattform, da seine Architektur die
typischen Einschrankungen ressourcenarmer IoT-Gerate, wie begrenzte Rechenleistung,
Speicher- und Energie-Ressourcen, widerspiegelt. Als methodische Grundlage werden vier
Techniken realisiert: ESP32 Code-Injektion bei unverandertem Kontrollfluss mittels Binary
Rewriting, Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation, Protocol Rever-
se Engineering (PRE) mittels neuronaler Netze und effizientes grammatikbasiertes Fuzzing
mittels Large Language Models (LLMs). Die praktischen Implementierungen demonstrie-
ren den Nutzen dieser Ansitze, wihrend das Framework ihre flexible Kombination fiir
unterschiedliche Anwendungsszenarien aufzeigt.

Die wesentlichen Beitrage dieser Dissertation lassen sich wie folgt zusammenfassen:

« ESP32 Code-Injektion bei unverindertem Kontrollfluss mittels Binary Re-
writing: Beim Binary Rewriting kann beliebiger Code nachtraglich in ein Programm
eingefiigt werden, ohne dessen urspriingliches Verhalten zu verandern. Dazu z&hlt
auch die Instrumentierung, also Code, der wahrend der Ausfithrung zuséatzliche
Informationen erfasst — beispielsweise iber Speicherzugriffe, Funktionsaufrufe oder
den Kontrollfluss. Bislang existierten Ansatze hierfiir nur fir andere Architekturen
wie x86 und ARM. Eine zentrale Herausforderung bestand darin, diese Technik fiir
die Xtensa-Architektur des ESP32 technisch umsetzbar zu machen. Es wurde ein
Verfahren entwickelt, das den Binércode erfolgreich modifiziert und erlaubt relevante
Laufzeitinformationen direkt an den Fuzzer zu ibertragen. Dadurch wird die Analyse
beschleunigt und die Datenmenge reduziert. Praktische Tests zeigen, dass simtliche
Instrumentierungen korrekt ausgefithrt werden und die Integritat der urspriinglichen
Firmware erhalten bleibt.

+ Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation: Auf Basis
von QEMU wurde eine vollstindige Emulationsumgebung mit einem integrierten
Fuzzer fiir den ESP32 realisiert. Die zentrale Herausforderung bestand einerseits
darin, die Emulationssoftware inklusive der fehlenden Hardwarekomponenten (z. B.
WLAN-Unterstiitzung) durch gezielte Anpassungen so zu verandern, dass beliebi-
ge ESP32-Software lauffahig wird. Andererseits musste ein Fuzzer nahtlos in die
Emulation integriert werden, um automatisierte Tests innerhalb derselben Umge-
bung zu erméglichen. Das resultierende System erlaubt direkten Zugriff auf interne
Systeminformationen und erleichtert die effiziente Erkennung von Speicherfehlern
und Schwachstellen. Zudem ermdglicht es parallele Ausfithrung und schnellere Fuz-
zing-Durchlaufe auf der leistungsstarken PC-Hardware, was die Effizienz erheblich

1 Einleitung

steigert. Fiir den Vergleich wurde auf Parallelisierung verzichtet, um gleiche Be-
dingungen zur Hardwareausfithrung sicherzustellen: Wahrend hardwarebasiertes
Fuzzing vier bis 40 Eingaben pro Sekunde verarbeitet, erreicht die Emulation bis zu
320 Eingaben pro Sekunde.

« Protocol Reverse Engineering mittels neuronaler Netze: Es wurde ein KI-ba-
sierter Ansatz fiir das automatisierte PRE von Netzwerkprotokollen entwickelt. Die
zentrale Herausforderung bestand darin, geeignete ML- und DL-Modelle auszuwéh-
len und zu kombinieren, um Protokollstrukturen ohne vorhandene Spezifikationen
zuverlassig abzuleiten. Wahrend das PRE bisher manuell durchgefiihrt werden muss-
te, lassen sich mit diesem Ansatz nun Protokollstrukturen automatisiert ableiten und
syntaktisch sowie semantisch korrekte Netzwerkpakete erzeugen. In den Tests waren
67,6 % der generierten Hypertext Transfer Protocol (HTTP)-Pakete und 100 % der
File Transfer Protocol (FTP)-Pakete giiltig. Dadurch erhéht sich die Testabdeckung
signifikant, da im Vergleich zu zufallig generierten Daten ein grofierer Anteil der
Eingaben vom PUT akzeptiert wird und somit verwertbare Riickmeldungen erzeugt
werden, statt sofort als ungiiltig verworfen zu werden.

. Effizientes grammatikbasiertes Fuzzing mittels Large Language Models: Fiir
den Fuzzing-Prozess wurde ein Ansatz entwickelt, der mithilfe von LLMs syntaktisch
und semantisch korrekte Dateien (z. B. Extensible Markup Language (XML)-Dateien)
als Eingaben erzeugt. Die zentrale Herausforderung bestand darin, die LLMs effi-
zient in bestehende Testablaufe zu integrieren. Im Rahmen dieser Untersuchung
konnte gezeigt werden, dass diese Integration erfolgreich umgesetzt werden kann.
Die Programmflussabdeckung steigt im Vergleich zu Ausfithrungen ohne LLM um
den Faktor 6 und erreicht zudem eine um 50 % hohere Abdeckung, als klassische
grammatikbasierte Fuzzer.

+ Ansatz fiir ein integriertes Fuzzing-Framework: Es wird ein Ansatz vorgestellt,
bei dem die vier vorgestellten Techniken flexibel kombiniert werden, um Synergi-
en gezielt zu nutzen. Binary Rewriting ermoglicht eine effiziente Gewinnung von
Laufzeitinformationen und unterstiitzt die Schwachstellenerkennung. Die Emulation
erhoht die Anzahl der pro Sekunde verarbeiteten Eingaben und tragt ebenfalls zur
Verbesserung der Schwachstellenerkennung bei. Je nach Anwendungsfall konnen mit
dem PRE-Ansatz entweder giiltige Netzwerkpakete automatisiert generiert oder mit
dem LLM-Ansatz strukturierte Eingabedateien (z. B. im XML-Format) erstellt wer-
den. Das Konzept zeigt, dass sich die Effizienzsteigerungen der einzelnen Methoden
kombinieren lassen, um die Gesamteffektivitat der Testgenerierung zu erhéhen.

Die Dissertation beantwortet somit die Frage, wie das Fuzzing von IoT-Geraten effizienter
gestaltet werden kann. Zu diesem Zweck werden vier Ansatze vorgestellt und ein kon-
zeptionelles Framework zu deren Kombination entwickelt. Damit schliefit sie zentrale
Forschungsliicken im Bereich des Fuzzings von IoT-Geréten, insbesondere bei ressourcen-
schwachen Plattformen und heterogenen Protokollen. Gleichzeitig demonstriert sie die
Machbarkeit und Effektivitat der Methoden und schaftt eine fundierte Grundlage fiir die
praxisnahe Absicherung von IoT-Geréten.

1.3 Aufbau der Dissertation

1.3 Aufbau der Dissertation

Die Dissertation ist so strukturiert, dass zunachst die theoretischen Grundlagen vermittelt
und anschlielend die entwickelten Methoden, ihre Umsetzung und ihre Anwendung im
IoT-Fuzzing systematisch vorgestellt werden.

Kapitel 2 (Grundlagen) fithrt in die grundlegenden Konzepte ein, die fiir das Verstandnis
der Dissertation erforderlich sind. Neben den theoretischen Grundlagen des Fuzzings
werden auch die Besonderheiten der Sicherheitsanalyse von IoT-Geréten erldutert.

Kapitel 3 (ESP32 Code-Injektion bei unverandertem Kontrollfluss mittels Binary Rewri-
ting) stellt die Methode des Binary Rewriting vor und erldutert die Umsetzung fiir den
ESP32-Mikrocontroller. Es wird gezeigt, wie sich Firmware gezielt instrumentieren lasst,
um relevante Laufzeitinformationen ohne vollstindiges Speicherauslesen an den Fuzzer
zu Uibertragen. Dies schafft die Grundlage fir effizientere Testablaufe.

In Kapitel 4 (Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation) wird die
Umsetzung praxisnaher Fuzzing-Methoden am Beispiel des ESP32-Mikrocontrollers be-
schrieben. Es wird erldutert, wie durch Emulation die Einschrankungen realer Hardware
umgangen und parallele Fuzzing-Instanzen realisiert werden konnen.

Kapitel 5 (Protocol Reverse Engineering mittels neuronaler Netze) erldutert die KI-gestiitzte
Protokollanalyse. Es wird beschrieben, wie mittels PRE unbekannte textbasierte Kom-
munikationsprotokolle aus dem Datenverkehr rekonstruiert und durch den Einsatz von
neuronalen Netzwerken gezielt valide Netzwerkpakete als Eingaben fiir das Fuzzing er-
zeugt werden.

Kapitel 6 (Effizientes grammatikbasiertes Fuzzing mittels Large Language Models) be-
handelt den Einsatz von LLMs zur Generierung von Eingaben. Es wird gezeigt, wie diese
Modelle variantenreiche, syntaktisch und semantisch korrekte Eingaben fiir komplexe
Programme erzeugen.

In Kapitel 7 (Ansatz fiir ein integriertes Fuzzing-Framework) wird ein konzeptioneller
Ansatz zur Kombination der vier vorgestellten Techniken beschrieben. Es wird erldutert,
welche Synergieeffekte moglich sind und wie unterschiedliche Anwendungsfalle von einer
Integration profitieren kénnten.

In Kapitel 8 (Verwandte Arbeiten) werden die vorgestellten Verfahren in den aktuellen
Stand der Forschung eingeordnet und bestehende Ansitze sowie deren Limitationen
aufgezeigt.

Kapitel 9 (Zusammenfassung und Ausblick) fasst die wichtigsten Ergebnisse der Disserta-
tion zusammen und gibt einen Ausblick auf zukiinftige Forschungsrichtungen im Bereich
IoT-Fuzzing.

2 Grundlagen

Dieses Kapitel legt die theoretischen und technischen Grundlagen, die fiir diese Dis-
sertation erforderlich sind. Es werden zentrale Konzepte aus den Bereichen IoT-Gerite,
Mikrocontroller-Architekturen, Binary Rewriting, Fuzzing, Netzwerkprotokolle und neu-
ronale Netzwerke systematisch vorgestellt. Ziel ist es, ein einheitliches Verstandnis zu
schaffen, das die spatere Analyse und praktische Umsetzung erleichtert.

Zu Beginn widmet sich das Kapitel den Besonderheiten von IoT-Geréten, die sich durch spe-
zifische Architekturen, Kommunikationsprotokolle und Fuzzing-Herausforderungen aus-
zeichnen. Anschlielend wird der ESP32-Mikrocontroller als exemplarische Plattform mit
seiner Architektur, Firmware-Struktur und der Xtensa-Instruction Set Architecture (ISA)
vorgestellt. Darauf aufbauend werden die wesentlichen Konzepte des Binary Rewritings
sowie die Grundlagen des Fuzzings einschlie8lich grammatikbasiertem Fuzzing und der
Nutzung von Emulatoren prasentiert. Abschlieffend werden relevante Netzwerkprotokolle
wie Protocol Reverse Engineering erldutert. Zentrale neuronale Netzwerkarchitekturen
und weitere grundlegende Definitionen, die die methodische und theoretische Basis dieser
Dissertation bilden, werden abschlieffend présentiert.

2.1 Besonderheiten von loT-Geraten

IoT-Gerite weisen spezifische Eigenschaften auf, die sie von klassischen Computersyste-
men unterscheiden. Dazu zdhlen ihre starke Heterogenitét, die Beschrankung der Hardwa-
re-Ressourcen, spezielle Kommunikationsprotokolle sowie vielfaltige Einsatzumgebungen.
Diese Faktoren haben unmittelbare Konsequenzen fiir die Entwicklung, die Sicherheit und
die Testverfahren. Dies ist besonders relevant fiir den Einsatz von Fuzzing, das sich an die
besonderen Randbedingungen dieser Gerite anpassen muss.

2.1.1 Architekturen und Protokolle von loT-Geraten

IoT-Gerate bestehen typischerweise aus eingebetteten Hardwareplattformen, die mit
Sensoren, Aktoren und Kommunikationsmodulen ausgestattet sind. Typische Architek-
turen umfassen mikrocontrollerbasierte Systeme wie den ESP32 oder STM32, Einpla-
tinencomputer wie den Raspberry Pi sowie FPGA-basierte Losungen fiir spezialisierte
Anwendungen [SBV23]. Zur Kommunikation nutzen IoT-Gerite standardisierte Proto-
kolle auf Basis von TCP/IP [Pos81a; Pos81b], wie Message Queueing Telemetry Trans-
port (MQTT) [Ban+19], Constrained Application Protocol (CoAP) [SHB14], Extensible

2 Grundlagen

Tabelle 2.1: Ubersicht iiber verschiedene 32-Bit-Mikrocontroller. Quelle: [SBV23]

Mikrocontroller Taktfrequenz RAM Schnittstellen
STM32F4 [STM25] 180 MHz 96 KB UART, SPL, I°C
Raspberry Pi Pico [Ras24] 133 MHz 264 KB UART, SPI, I°C
ESP8266 [Esp23] 80 MHz 96 KB UART, SPI, I?C (Software)
ESP32 [Esp25a] 240MHz 520KB UART, SPL I2C, WLAN, BLE

Messaging and Presence Protocol (XMPP) [Saill] und HTTP [Nie+99], beispielsweise
fiir REST-Application Programming Interfaces (APIs) [Fie00]. Auflerdem nutzen sie ver-
schiedene Technologien wie Bluetooth Low Energy (BLE) [Blu23], Z-Wave [Z-W21] und
ZigBee [Con23] fur die Kurzstreckenkommunikation. Diese sind speziell auf die ressour-
cenbeschrankten Anforderungen von IoT-Geriten zugeschnitten und ermdglichen eine
effiziente Datentibertragung in verschiedenen Anwendungsbereichen [Has+19].

2.1.2 Herausforderungen beim Fuzzing von loT-Geraten

Das Fuzzing von IoT-Geréten stellt aufgrund der begrenzten Rechenressourcen und spe-
zifischen Hardwarearchitekturen besondere Anforderungen an Fuzzing-Methoden dar.
Représentative IoT-Plattformen auf Basis von 32-Bit-Mikrocontrollern wie dem STM32F4
[STM25], dem Raspberry Pi Pico [Ras24], dem ESP8266 [Esp23] oder dem ESP32 [Esp25a]
verfiigen typischerweise tiber folgende Ressourcen [SBV23]:

« Rechenleistung: Prozessoren mit Taktfrequenzen von 80 MHz bis zu 240 MHz
« Speicher: RAM-Kapazititen zwischen 32 KB und 520 KB
- Kommunikationsschnittstellen [Gup19]: UART, SPI, I°C, WLAN, BLE

Tabelle 2.1 gibt eine exemplarische Ubersicht iiber gingige 32-Bit-Mikrocontroller und ver-
deutlicht die Vielfalt verfiigbarer Plattformen. Die begrenzten Ressourcen von IoT-Geraten
wirken sich direkt auf die Durchfithrung von Fuzzing (siehe Abschnitt 2.4) aus. Die ein-
geschrankte Speicherkapazitit limitiert die Verwaltung umfangreicher Testdaten im Ar-
beitsspeicher, wiahrend die begrenzte Rechenleistung die Anzahl gleichzeitig verarbeit-
barer Eingaben limitiert. Zusatzlich konnen langsame Kommunikationsschnittstellen die
Geschwindigkeit der Fehlerdetektion erheblich reduzieren. Dariiber hinaus erfordern
unterschiedliche Hardware- und Softwarekonfigurationen spezifische Anpassungen der
Fuzzing-Methoden, was die Entwicklung universell einsetzbarer Fuzzer zusétzlich er-
schwert [SBV23].

2.2 ESP32 Mikrocontroller

Fiir diese Dissertation wurde der ESP32 (siehe Abbildung 2.1) als repréisentatives IoT-Gerét
ausgewdhlt, da er zu den am weitesten verbreiteten Mikrocontrollern zahlt und breit in

2.2 ESP32 Mikrocontroller

Abbildung 2.1: NMCU-ESP32: Ein ESP32 auf einem NodeMCU-Entwicklungsboard.

Forschung sowie Industrie eingesetzt wird. Der ESP32 bietet eine moderne Architektur mit
integrierter WLAN- und Bluetooth-Konnektivitat und unterstiitzt zahlreiche Schnittstellen.
Diese Eigenschaften machen ihn zu einer vielseitigen Plattform, die typische Merkmale
moderner [oT-Gerate reprasentiert. Dariiber hinaus zeichnet sich der ESP32 durch seine
offene Dokumentation, eine aktive Community und gute Verfiigbarkeit aus, was ihn
besonders geeignet macht, um experimentelle Ansétze systematisch zu untersuchen und
zu evaluieren [Esp18; Eli22].

2.2.1 Architektur

Die ESP32-Familie von Espressif Systems umfasst energieeffiziente und kostengiinstige
Mikrocontroller, die speziell fiir IoT-Anwendungen entwickelt wurden. Im Vergleich zum
Vorgangermodell ESP8266 verfiigt der ESP32 iiber erweiterte Fahigkeiten hinsichtlich
Rechenleistung, Speicherausstattung und Schnittstellenvielfalt. Abhéngig von der Variante
kommen entweder einzelne oder duale Xtensa LX6-Kerne [Cad25] bzw. LX7-Kerne [Cad24]
oder ein Reduced Instruction Set Computer (RISC)-V-Kern [Wat+16; Esp25b] zum Einsatz.
Waihrend der LX7 gegentiber dem LX6 vor allem durch hohere Taktraten und optimierte
Pipeline-Architektur mehr Leistung bietet, zeichnet sich RISC-V durch seine Offenheit,
Modularitat und breite Unterstiitzung in der Embedded-Community aus. Dabei imple-
mentieren alle Versionen die Xtensa-ISA (siehe Abschnitt 2.2.3) — eine anpassbare und
erweiterbare RISC-basierte Befehlssatzarchitektur [Esp25a].

In dieser Dissertation wird der ESP32-WR0OM-32 [Esp25c] als Referenzplattform verwendet.
Die wesentlichen technischen Eigenschaften sind in Tabelle 2.2 aufgefiihrt. Dank seiner
integrierten WLAN- und BLE-Funktionen, seiner vergleichsweise hohen Rechenleistung
und seines geringen Energieverbrauchs eignet sich der ESP32 besonders fiir ressourcen-
beschrankte IoT-Szenarien. Gleichzeitig ist er aufgrund seiner in der Regel niedrigen
Anschaffungskosten und seiner Vielseitigkeit auch in industriellen Anwendungen weit

2 Grundlagen

Tabelle 2.2: Technische Spezifikationen des ESP32-WROOM-32 [Esp25c]

Eigenschaft Wert
Mikroarchitektur Xtensa 32-bit LX6
CPU-Kerne 2

Maximale Taktfrequenz 240 MHz
Flash-Speicher 4MB

ROM 448 KB

SRAM 520 KB

WLAN IEEE 802.11 b/g/n
Bluetooth Classic und BLE

verbreitet. Dies unterstreichen nicht nur die hohen Verkaufszahlen, die bereits 2018 die
Marke von 100 Millionen ausgelieferten Einheiten Giberschritten, sondern auch Berichte, die
den ESP32 als wichtigen Treiber fiir vernetzte Anwendungen im Kontext von Industrie 4.0
und Industrie 5.0 hervorheben [Esp18; AAZ25].

2.2.2 Firmware

Eine Ubersicht tiber die ESP32-Firmware ist in Abbildung 2.2 zu finden. Die Firmware
enthélt drei Hauptkomponenten: den Bootloader, die Partitionstabelle und mindestens eine
App-Partition, die den Anwendungscode enthélt. Der Bootloader und der Anwendungscode
werden in Executable and Linkable Format (ELF)-Binardateien kompiliert und anschlieBend
in ein Bindrformat umgewandelt, das fiir den ESP32 geeignet ist [Cir25].

Diese Binardateien werden zusammen auf den Mikrocontroller geflasht. Obwohl sie nicht
zu einer Datei zusammengefasst werden, werden der Bootloader, die Partitionstabelle und
das Anwendungsabbild in dieser Dissertation gemeinsam als Firmware-Abbild bezeichnet.
Das Modifizieren oder Austauschen einer dieser Komponenten fithrt in der Regel dazu,
dass die Firmware nicht mehr korrekt funktioniert.

2.2.2.1 Bootloader
Der Bootloader wird zuerst ausgefiihrt, wenn der ESP32 eingeschaltet oder zuriickgesetzt
wird. Er initialisiert die Hardware, stellt die Systemuhr ein, konfiguriert den Speicher und

iiberpriift die Integritdt des Anwendungscodes, bevor er die Kontrolle an die Anwendung
iibergibt [Cir25].

2.2.2.2 Partitionstabelle

Die Partitionstabelle definiert die Anordnung des Flash-Speichers des ESP32, einschlief3-
lich der Position und Grofle des Bootloaders, der Anwendung und anderer Partitionen.

10

2.2 ESP32 Mikrocontroller

B tl d compile elf2image .
0(()30?11 T bootloader.elf — ————— bootloader.bin \
111 enerate .. . Fl ‘h
Partition s partition-table.bin —— o

Table CSV

Application compile application.elf ————*__, application.bin /

Code

Memory

Abbildung 2.2: Der Build- und Flash-Prozess der ESP32-Firmware. Quelle: [Pla+25]

Partitionstabellen werden dabei in einfachen Comma-Separated Values (CSV)-Dateiformat
[Sha05] definiert und wéhrend des Build-Prozesses in ein Bindrformat kompiliert [Cir25].

2.2.2.3 Anwendungsabbild

Das Anwendungsabbild ist die Haupt-Firmware, die den Code fiir die Funktionalitét
des ESP32 enthélt. Nachdem der Bootloader das System initialisiert hat, ibergibt er die
Kontrolle an das Anwendungsabbild, das dann die beabsichtigten Operationen des Geréts
ausfuhrt [Cir25].

2.2.3 XtensaISA

Die Xtensa-ISA [Cad22] ist eine RISC-basierte Architektur, die von Cadence Tensilica
entwickelt wurde und sich durch ihre hohe Konfigurierbarkeit auszeichnet. Sie erlaubt es
Entwicklern, den Befehlssatz gezielt an Anforderungen beziiglich Leistung, Speicherbedarf
und Energieeffizienz anzupassen, unter anderem durch benutzerdefinierte Instruktionen
und Register [Cad22].

Obwohl die Xtensa-ISA den meisten klassischen RISC-Prinzipien folgt, wie etwa einer Loa-
d/Store-Architektur und dass Instruktionen in einem ,Clock Cycle® abgearbeitet werden,
bietet sie mit der Code Density Option eine Besonderheit: Ist diese aktiviert (Standardfall),
konnen viele reguldre 24-Bit-Instruktionen durch kompaktere 16-Bit-Varianten ersetzt
werden. Laut offizieller Dokumentation lassen sich in typischem Code etwa die Hélfte aller
Befehle in diesem komprimierten Format darstellen, was den Speicherbedarf signifikant
reduziert [Cad22].

Die ,Windowed Register Option“ fithrt zusitzliche allgemeine Register ein, wodurch die
Gesamtzahl von 16 auf 64 steigt. Um zu vermeiden, dass neue Anweisungen mit grofieren
Registerkodierungen (von 4 auf 6 Bit pro Register, das in der Anweisung verwendet wird)
eingefithrt werden miissen, bleibt die Anzahl der sichtbaren Register bei 16. Wahrend Funk-
tionsaufrufen kann dieses Fenster sichtbarer Register um ein Vielfaches von 8 verschoben

11

2 Grundlagen

n+0 n+l | n+2 n+3 n+4

! I)

n+0 n+1 Patch n+2 n+3 n+4

Abbildung 2.3: Das Code Location Problem wird beim Einfiigungen von Code deutlich:
Verschobene Instruktionen fithren zu fehlerhaften relativen Spriingen und
Abstiirzen. Der Sprung von Instruktion n + 0 zeigt nach dem Patch nicht
mehr auf den Beginn von Instruktion n + 3, sondern auf den neu hinzuge-
figten Code. Es ist nicht sichergestellt, dass an dieser Stelle eine Instruktion
beginnt, was zu einem Absturz fithren kann. Quelle: [Pla+25]

werden. Diese Option reduziert die Anzahl der Register, die vor einem Funktionsaufruf
auf dem Stack gespeichert werden miissen [Cad22].

Diese komplexen architektonischen Besonderheiten haben direkte Auswirkungen auf die
Struktur der Firmware und die nachtragliche Modifikation des Binircodes. Im folgen-
den Abschnitt wird daher Rewriting als Konzept vorgestellt. Dieses befasst sich mit den
Herausforderungen und Verfahren zur Modifikation von Firmware-Abbildern.

2.3 Rewriting

Dieser Abschnitt gibt einen Uberblick iiber ESP32-Firmware-Abbilder und das Code Locati-
on Problem, das beim Binary Rewriting auftritt, sowie verschiedene Kategorien des Binary
Rewritings, d. h. statisches und dynamisches Rewriting.

2.3.1 Code Location Problem

Das Code Location Problem tritt auf, wenn der Binédrcode eines Programms verdndert wird.
Es betrifft insbesondere Systeme, die relative Adressierung verwenden, beispielsweise bei
Sprung- oder Verzweigungsanweisungen, deren Zieladressen relativ zu ihrer Speicherpo-
sition berechnet werden. Durch das Einfiigen neuer oder die Modifikation bestehender
Instruktionen verschieben sich die Speicheradressen nachfolgender Instruktionen (siehe
Abbildung 2.3). Fir Debugger stellt dies ein zentrales Problem dar, da sie auf eine prazise
Zuordnung von Quellcodezeilen zu Instruktionsadressen angewiesen sind, um Breakpoints,
das Schritthalten und das gezielte Betreten und Verlassen von Subroutinen korrekt zu

12

2.3 Rewriting

realisieren. Nach einer Codeverschiebung verweisen viele Spriinge nicht mehr auf ihre vor-
gesehenen Ziele, was fehlerhafte Kontrollflisse, Programmabstiirze oder unvorhersehbares
Verhalten zur Folge haben kann [TGO00].

Die nachtréigliche Korrektur solcher Sprungadressen ist insbesondere beim ESP32 an-
spruchsvoll. Die Architektur unterstiitzt sowohl 16-Bit- als auch 24-Bit-Instruktionen,
wodurch die exakte Position einzelner Befehle schwer vorhersagbar ist. Schon kleine An-
derungen kénnen Verschiebungen im gesamten nachfolgenden Code verursachen. Hinzu
kommt, dass Code und Daten im Flash-Speicher haufig eng miteinander vermischt sind,
was eine lineare Disassemblierung erschwert [Cad22; Esp25al].

2.3.2 Binary Rewriting

Unter Binary Rewriting versteht man das nachtragliche Verdndern von bereits kompiliertem
Maschinencode, ohne dass der urspriingliche Quellcode benétigt wird. Typische Ziele sind
das Einfiigen von Instrumentierungscode (z. B. fiir Logging oder Fuzzing), das Anpassen
von Programmlogik, das Einfiigen von Sicherheitsmechanismen oder das Beheben von
Fehlern direkt im Bindrcode.

Das Binary Rewriting lasst sich grob in statische und dynamische Methoden unterteilen,
die jeweils unterschiedliche Ansitze und Kompromisse aufweisen.

Beim dynamischen Rewriting erfolgen Anpassungen basierend auf dem tatséchlichen
Verhalten des Programms zur Laufzeit. Diese Methode eignet sich besser fiir dynamischen
oder selbstmodifizierenden Code, verursacht jedoch einen spiirbaren Laufzeit-Overhead,
da bei jeder Ausfithrung zusétzliche Kontroll- und Umleitungslogik beriicksichtigt werden
muss. Wahrend dieser Mehraufwand bei Desktop- oder Serversystemen oft nur wenige
Prozent Leistung kostet und durch hohe Rechenressourcen kompensiert werden kann,
wirkt er sich in IoT-Szenarien deutlich stiarker aus. Begrenzte Taktfrequenzen und klei-
ner Arbeitsspeicher machen dynamisches Rewriting fiir den ESP32 und vergleichbare
Mikrocontroller meist unpraktikabel [SBF22].

Beim statischen Rewriting wird der Binarcode verandert, ohne ihn auszufithren, und es
wird eine neue, modifizierte Bindrdatei erzeugt. Diese Methode erlaubt eine griindliche
Analyse und Optimierung vor der Ausfithrung. Allerdings kann das Neuberechnen von
Sprungzielen innerhalb des Codes schwierig sein, insbesondere bei selbstmodifizieren-
dem Code. Anderungen kénnen dabei den urspriinglichen Kontrollfluss storen und neue
Fehler einfiihren. Statische Rewriter arbeiten héaufig auf einer sogenannten Intermediate
Representation (IR) [Cho13], also einer Zwischendarstellung eines Programms zwischen
Quellcode und Maschinencode, beispielsweise auf Assembler-Ebene. Auf dieser Ebe-
ne werden Anpassungen vorgenommen, bevor die Bindrdatei wieder zusammengesetzt
wird [SBF22].

Eine spezielle Technik des statischen Rewritings sind die sogenannten Trampolin-Rewriter.
Dabei werden neue Instruktionen in ungenutzten Speicherbereichen abgelegt und der
Kontrollfluss durch Spriinge dorthin umgeleitet (siehe Abbildung 2.4). So bleiben die ur-
springlichen Instruktionen unverandert, wahrend zusatzliche Funktionalitidten auflerhalb

13

2 Grundlagen

n+0 n+l | jmp n+3 n+4

Patch n+2 | jmp

Abbildung 2.4: Trampolin-Rewriter bieten eine Losung fiir das Code Location Problem.
Dabei wird die urspriingliche Instruktion durch einen Sprungbefehl ersetzt
und sowohl die Instruktion als auch der Patch werden in ungenutzten
Speicher verschoben. Dadurch bleiben alle nachfolgenden Adressen un-
verandert. Quelle: [Pla+25]

des Originalcodes integriert werden. Dadurch lasst sich die Kontrollflussintegritit wahren
und das Code Location Problem effektiv umgehen [DGR20].

Die hier vorgestellten Techniken des Binary Rewritings bilden eine wichtige Grundlage
fiir verschiedene Test- und Sicherheitsverfahren auf Mikrocontroller-Ebene. Im nachsten
Abschnitt wird das Fuzzing behandelt, eine weit verbreitete Methode zur automatisier-
ten Erkennung von Softwarefehlern. Dabei werden durch gezielte Eingabegenerierung
Schwachstellen in Firmware und Software aufgedeckt.

2.4 Fuzzing

In diesem Unterkapitel wird der Begrift des Fuzzings als Testmethode zur Erkennung von
Softwarefehlern durch die systematische Generierung und Einspeisung ungewdohnlicher
oder ungiiltiger Eingaben definiert. Es werden zentrale Grundlagen vorgestellt, darunter
typische Einsatzszenarien, Verfahren zur Eingabegenerierung und Ansétze des feedbackge-
steuerten Fuzzings. Dariiber hinaus werden Kriterien wie Codeabdeckung, Effizienz sowie
syntaktische und semantische Korrektheit der Eingaben behandelt, um die methodische
Einordnung und Messbarkeit des Fuzzings zu verdeutlichen.

2.4.1 Definition von Fuzzing

Fuzzing (kurz fiir fuzz testing) ist eine automatisierte Testtechnik zur Identifikation von
Fehlern und Sicherheitsliicken in Software. Dabei wird die Software wiederholt mit zufal-
ligen oder systematisch generierten Eingaben versorgt, wahrend das Laufzeitverhalten

14

2.4 Fuzzing

uberwacht wird, um unerwartete Reaktionen wie Abstiirze, unbehandelte Ausnahmen
oder Speicherlecks zu erkennen und potenzielle Schwachstellen aufzudecken [SGAO07;
Mhi+25; Lia+18].

Die Idee des Fuzzing entstand 1988 durch Barton P. Miller von der University of Wis-
consin—Madison. Wahrend eines Gewitters fithrten Storungen auf einer langsamen Mo-
dem-Leitung dazu, dass durch ,Rauschen® getippte Zeichen zufallig Unix-Utilities ab-
stirzen lieSen. Dieses scheinbar banale Phanomen inspirierte Miller dazu, das Konzept
systematisch zu untersuchen. Im Rahmen eines Kurses sollten Studierende Programme
gezielt mit zufalligen Eingaben testen, wodurch Fuzzing entstand. Bereits in der initialen
Studie konnten durch dieses Verfahren 25-33 % der getesteten Programme zum Absturz ge-
bracht werden. Dies war besonders bemerkenswert, da es die Anfilligkeit weit verbreiteter
und scheinbar stabiler Software durch einfache zufillige Eingaben aufzeigte [TDMO08].

2.4.2 Ungultige Eingaben

Eingaben im Rahmen von Fuzzing lassen sich typischerweise in drei Kategorien einteilen:

« Giiltige Eingaben: Diese entsprechen vollstindig der Spezifikation und werden vom
Programm ohne Fehlermeldungen verarbeitet.

+ Semi-valide Eingaben: Sie sind ein Sonderfall der giiltigen Eingaben und erfiillen
gerade noch die Spezifikation, um vom Parser akzeptiert zu werden, enthalten jedoch
gezielt Variationen oder Extremwerte, um seltene Fehlerzustiande zu provozieren.

« Ungiiltige Eingaben: Diese verletzen die grundlegende Struktur der erwarteten Daten
und werden in der Regel unmittelbar vom Programm verworfen. Sie treten insbe-
sondere bei stark strukturierten Formaten wie XML oder bei Netzwerkprotokollen
auf und liefern haufig keine verwertbaren Riickmeldungen fiir die Laufzeitanalyse.

Da eine vollstandige Abdeckung aller moglichen Eingaben praktisch unméglich ist, liegt
der Schwerpunkt neben den giiltigen Eingaben vorwiegend auf den semi-validen Randfil-
len. Diese Strategie erhoht die Wahrscheinlichkeit, seltene oder schwer reproduzierbare
Fehlerzustande zu identifizieren [Bha22].

2.4.3 Fuzzing-Szenarien

Fuzzing-Methoden unterscheiden sich vor allem durch den Grad des Wissens iiber das zu
testende System. Ublich ist die Einteilung in Whitebox-, Blackbox- und Greybox-Fuzzing.

+ Whitebox-Fuzzing: Der Fuzzer hat vollstandigen Zugriff auf den Quellcode und die
interne Programmlogik. Mittels statischer und dynamischer Analyse werden gezielt
Eingaben generiert, um schwer erreichbare Codepfade abzudecken. Oft wird dyna-
mische symbolische Ausfithrung (engl. ,concolic execution®) eingesetzt. Wiahrend
der Programmausfithrung werden symbolische Bedingungen gesammelt und ge-
zielt negiert. Mithilfe eines Constraint-Solvers werden anschlieBend neue Eingaben

15

2 Grundlagen

berechnet, die unerforschte Pfade ansteuern. Damit konnen theoretisch Testfalle
generiert werden, die alle moglichen Ausfithrungspfade abdecken. In der Praxis ist
dies jedoch oft nicht vollstindig umsetzbar, da reale Software sehr viele potenzielle
Pfade enthalt und die Losung der symbolischen Bedingungen komplex sein kann.
Dennoch ermdglicht Whitebox-Fuzzing eine systematische und effiziente Fehlerent-
deckung [GLMO08; Lia+18].

Blackbox-Fuzzing: Das Testen erfolgt ohne Kenntnis des Quellcodes. Die Eingaben
werden zufillig oder heuristisch erzeugt, hdufig aus bestehenden Beispielen, die
durch Mutationen wie Bitflips, Byte-Kopien oder Léschungen veridndert werden. Mo-
derne Anséatze nutzen zusétzlich Wissen tiber das Grammatik- oder Eingabeformat,
um teilweise giiltige Eingaben zu erzeugen. Blackbox-Fuzzing ist einfach implemen-
tierbar und breit anwendbar, erreicht jedoch aufgrund fehlender Riickmeldungen
zur Programmausfithrung meist nur eine geringe Codeabdeckung [Lia+18].

Greybox-Fuzzing: Dieser Ansatz liegt zwischen White- und Blackbox-Fuzzing. Der
Fuzzer erhilt begrenzte Einblicke in das Programm, beispielsweise durch leichte
Instrumentierung oder Feedback zur Codeabdeckung. Komplexe Techniken wie sym-
bolische Ausfithrung werden nicht verwendet. Eingaben, die neue Pfade erreichen,
werden gezielt wiederverwendet und als Basis fiir Mutationen genutzt. Dadurch
steigt die Testeffektivitat im Vergleich zu reinem Blackbox-Fuzzing [Lia+18; Zel+24].

In dieser Dissertation wird, soweit nicht anders angegeben, stets ein Greybox-Fuzzing-S-
zenario zugrunde gelegt.

2.4.4 Eingabegenerierung

Die Generierung von Testeingaben ist ein zentraler Bestandteil des Fuzzings. Eingaben
konnen zufallig, durch Mutationen bestehender Beispiele oder systematisch auf Basis
formaler Regeln erzeugt werden. Entsprechend werden Fuzzer haufig nach ihrer Methode
der Eingabegenerierung unterschieden:

16

« Dumb Fuzzer: Diese Fuzzer erzeugen Eingaben vollstindig zufallig, ohne Kenntnis

des zugrunde liegenden Formats oder der erwarteten Datenstruktur. Sie arbeiten
meist auf Byte- oder String-Ebene und fithren einfache Manipulationen durch, wie das
Einfiigen, Loschen oder Verandern von Zeichen. Sie nutzen allenfalls grundlegende
Heuristiken, erkennen aber keine komplexen Zusammenhénge. Aufgrund der vielen
ungiltigen Eingaben sind sie in komplexen Systemen nur begrenzt effektiv und
eignen sich eher fiir einfache oder robuste Parser [LZZ18].

Mutationsbasierte Fuzzer: Sie starten mit giiltigen Eingaben (Seeds) und verandern
diese durch zufillige oder heuristische Operationen wie Ersetzen, Einfiigen oder
Loschen von Bytes. Durch die Verwendung funktionierender Ausgangsdaten wird
eine hohere Wahrscheinlichkeit erreicht, dass die Eingaben vom Programm verarbei-
tet werden. Diese Methode ist besonders effektiv, wenn hochwertige Seed-Dateien
verfiugbar sind [LZZ138].

2.4 Fuzzing

Monitoring
Eingabe
. ——
Program
Under
_
Information Test
iiber die
Codeabdeckung

Abbildung 2.5: Schematische Darstellung von feedbackgesteuertem Fuzzing

+ Generationsbasierte Fuzzer: Hier werden Eingaben vollstindig neu erzeugt, ba-
sierend auf einer formalen Beschreibung des Eingabeformats, wie Datenmodellen,
Protokollspezifikationen, Zustandsautomaten oder Ablaufdiagrammen. Diese Me-
thode erzeugt syntaktisch giiltige und semantisch anspruchsvolle Testfalle, die sich
besonders fiir strukturierte Eingaben wie Netzwerkprotokolle, APIs oder komplexe
Dateiformate eignen [LZZ18].

« Grammatikbasierte Fuzzer: Eine spezielle Untergruppe der generationsbasierten
Fuzzer. Sie verwenden kontextfreie Grammatiken, um komplexe Eingaben zu erzeu-
gen. Diese Technik eignet sich besonders fiir textbasierte Formate mit klar definierter
Syntax, strukturierte Daten wie JSON oder XML mit eindeutiger Grammatik (siehe
Abschnitt 2.5) [SS19].

2.4.5 Feedbackgesteuertes Fuzzing

Die Effektivitat eines Fuzzers lasst sich deutlich erh6hen, wenn Riickmeldungen aus der
Programmausfithrung zur gezielten Steuerung der Eingabegenerierung genutzt werden.
Beim feedbackgesteuerten Fuzzing (engl. Feedback-driven Fuzzing, auch Coverage-guided
Fuzzing genannt) iiberwacht der Fuzzer wéhrend der Ausfithrung, welche Codebereiche
durch eine bestimmte Eingabe erreicht werden. Mithilfe dieser Informationen werden
anschlieBend neue Eingaben so verandert, dass bisher unerreichte oder selten ausgefiihrte
Pfade gezielt abgedeckt werden. Eine schematische Darstellung ist in Abbildung 2.5 zu
finden. Vor allem mutationsbasierte Fuzzer profitieren stark von diesem Ansatz, da das
Feedback es ihnen ermdglicht, Eingaben adaptiv zu optimieren und die Codeabdeckung
systematisch zu steigern [Zal19].

2.4.6 Codeabdeckung und Messbarkeit von Fuzzing

Die einfachste Moglichkeit, die Wirksambkeit eines Fuzzers zu bewerten, wire, die Anzahl
der gefundenen Abstiirze oder Schwachstellen innerhalb eines begrenzten Zeitraums

17

2 Grundlagen

(z.B. 24 Stunden) zu messen. Allerdings ist oft unklar, ob das getestete Programm tiber-
haupt Schwachstellen enthalt und ob diese innerhalb des vorgegebenen Zeitraums ge-
funden werden konnen. Daher wird die Wirksamkeit von Fuzzing haufig anhand der
Codeabdeckung (engl. Code Coverage) beurteilt. Diese gibt an, wie tief ein Fuzzer in die
Programmlogik vordringt, ist aber kein direkter Indikator fiir die Anzahl gefundener
Schwachstellen [Wan+20b].

Ein géngiges Maf} fiir die Testabdeckung ist die sogenannte Zeilenabdeckung (engl. Line
Coverage). Sie gibt an, welcher Anteil der Quellcodezeilen wihrend eines Fuzzing-Laufs
mindestens einmal ausgefiithrt wurde. Eine vollstdndige Zeilenabdeckung garantiert jedoch
nicht, dass die zugrunde liegende Logik vollstindig getestet wurde, denn unterschiedliche
Eingaben innerhalb einer Zeile konnen zu abweichendem Verhalten fithren. Eine hohe
Zeilenabdeckung signalisiert hingegen, dass ein Grofiteil des Codes aktiviert und potenziell
auf Fehler tiberpriift wurde. Beim feedbackgesteuerten, mutationsbasierten Fuzzing dient
die Zeilenabdeckung als Leitwert fir die Auswahl von Seeds. Eingaben, die eine hohe
Zeilenabdeckung erzeugen, werden bevorzugt mutiert, um neue Testfille zu erzeugen.
Auf diese Weise lassen sich auch tief im Programm liegende Funktionen systematisch
testen [WHJ15; BSM22].

Die Zweigabdeckung (engl. Branch Coverage) betrachtet zusatzlich alle logischen Verzwei-
gungen, etwa beide Pfade eines if-Statements oder samtliche switch-Falle. Somit liefert
sie ein detaillierteres Bild des Programmflusses und erleichtert die gezielte Optimierung
von Testeingaben. Nicht abgedeckte Verzweigungen deuten auf unzureichende Eingaben
hin [BSM22].

Da weder die Zeilen- noch die Zweigabdeckung direkt mit der Anzahl entdeckter Schwach-
stellen korreliert, werden zur objektiven Bewertung oft synthetische Bugs (engl. Synthetic
Bugs) eingesetzt. Dabei werden bekannte Fehler gezielt in das PUT eingebaut, sodass
iberpriift werden kann, welche davon ein Fuzzer tatsachlich findet. Dieses Verfahren
ermoglicht einen vergleichbaren und reproduzierbaren Test der Effektivitat verschiedener
Fuzzing-Strategien [Bun+21].

Der folgende Abschnitt befasst sich deshalb mit dem Thema ,Effizientes Fuzzing”“ und
beleuchtet diese Aspekte ndher. Dabei werden auch wichtige Kennzahlen zur Bewertung
vorgestellt.

2.4.7 Effizientes Fuzzing

Im Kontext des Fuzzings bezeichnet Effizienz das Verhéltnis zwischen eingesetztem Res-
sourcenaufwand, beispielsweise Zeit, Rechenleistung oder Energie, und dem erzielten
Testfortschritt. Im Unterschied dazu bezeichnet Effektivitat die Fahigkeit, tatsachlich si-
cherheitsrelevante Schwachstellen oder Bugs aufzudecken [GGG22]. Ein Fuzzer kann also
sehr effizient arbeiten (z. B. durch hohe Eingabeverarbeitungsraten), ohne notwendiger-
weise effektiv zu sein, wenn er dabei keine relevanten Fehler findet.

Welche Kennzahl zur Bewertung der Effizienz herangezogen wird, hangt davon ab, welcher
Aspekt des Testfortschritts im jeweiligen Szenario erreichbar und sinnvoll messbar ist:

18

2.4 Fuzzing

+ Fehlerentdeckungsrate: Ist der Quellcode zuganglich, lassen sich gezielt synthe-
tische Bugs einbauen und deren Anzahl exakt bestimmen. In diesem Fall kann die
Effizienz unmittelbar als Geschwindigkeit der Fehlerentdeckung definiert werden, da
gemessen werden kann, wie viele dieser bekannten Schwachstellen pro Zeiteinheit
aufgedeckt werden. Je schneller diese Bugs gefunden werden, desto direkter werden
die eingesetzten Ressourcen in sicherheitsrelevanten Fortschritt umgesetzt [GGG22].

« Codeabdeckung: Ist der Code nicht verdnderbar oder die Anzahl der Bugs unbe-
kannt, bleibt die Codeabdeckung die praktikabelste Messgrofle. Vor allem Greybox-
Fuzzer wie AFL instrumentieren den Binédrcode so, dass die Abdeckung die tatsachlich
durchlaufenen Pfade widerspiegelt. Auch wenn dies durch Compiler-Optimierun-
gen nicht exakt den Quellcodezeilen entspricht, erlaubt es dennoch einen direkten
Vergleich verschiedener Ansétze hinsichtlich der erreichten Programmpfad-Abde-
ckung. Eine hohe Abdeckung weist darauf hin, dass mit den gleichen Ressourcen ein

groferer Programmteil getestet wurde, was aus Effizienzsicht vorteilhaft ist [LZZ18;
Zal19].

« Verarbeitungsrate: Selbst ohne vollstandigen Fuzzer kann die Effizienz einzelner
Komponenten anhand ihrer Eingabeverarbeitungsrate bewertet werden. Besonders
auf ressourcenbeschrankten IoT-Geridten ist die Zahl der pro Sekunde verarbeiteten
Anfragen begrenzt, wahrend virtuelle Testumgebungen héhere Raten erlauben. Je
mehr Eingaben in derselben Zeit verarbeitet werden, desto effizienter werden die
verfiigbaren Ressourcen genutzt [Bor+20].

+ Qualitiat der Eingaben: Nicht nur die Menge, sondern auch die Vielfalt und Relevanz
der generierten Eingaben beeinflussen die Effizienz. Ungiiltige Eingaben aktivieren
oft nur triviale Programmteile, wodurch die Testtiefe sinkt. Werden hingegen gezielt
Eingaben generiert, die moglichst viele verschiedene Codepfade ausldsen, steigt die
Wahrscheinlichkeit, kritische Teile des Programms mit begrenztem Ressourcenein-
satz zu testen [Mhi+25].

Zusammenfassend lasst sich die Effizienz beim Fuzzing also als das Verhéltnis von ein-
gesetzten Ressourcen zu erzieltem Testfortschritt verstehen. Je nach Kontext kann der
Fortschritt iiber Fehlerfunde, Codeabdeckung, Eingabedurchsatz oder Eingabequalitit
gemessen werden. Diese unterschiedlichen Perspektiven sind komplementar und verdeut-
lichen, dass Effizienz stets relativ zu den Testzielen interpretiert werden muss.

Um den Erfolg eines Fuzzers jedoch noch gezielter zu verbessern, ist es wichtig, neben der
Menge auch die Qualitat der generierten Eingaben zu betrachten. Dabei spielen insbeson-
dere die syntaktische und semantische Korrektheit der Testeingaben eine entscheidende
Rolle. Auf diesen Aspekt wird im Folgenden niher eingegangen.

2.4.8 Syntaktische und semantische Korrektheit

Eingaben, Datenpakete oder Dokumente kdnnen hinsichtlich ihrer syntaktischen und
semantischen Korrektheit unterschieden werden [FS00; Ais25]:

19

2 Grundlagen

« Syntaktische Korrektheit: Die Eingabe erfiillt die formalen Strukturregeln eines
Datenformats oder Protokolls. Bei XML bedeutet dies korrekt geschlossene Tags,
giiltige Attribute und konsistente Verschachtelungen. Bei Netzwerkpaketen miissen
alle erforderlichen Headerfelder vorhanden sein, die Feldlangen miissen stimmen
und die Checksummen miissen korrekt sein. Syntaktisch korrekte Eingaben werden
vom Parser akzeptiert und kénnen vom System verarbeitet werden.

« Semantische Korrektheit: Die Eingabe ist inhaltlich konsistent und entspricht den
logischen Erwartungen des Systems. Ein XML-Dokument ist semantisch korrekt,
wenn die Feldinhalte den erwarteten Datentypen und zuldssigen Wertebereichen
entsprechen. Ein Netzwerkpaket ist semantisch korrekt, wenn Sequenznummern,
Befehle oder Parameter konsistent mit dem Protokoll sind und sinnvoll interpretiert
werden konnen.

Fir das Fuzzing bildet die syntaktische Korrektheit die notwendige Grundlage, da nur
korrekt geparste Eingaben verarbeitet werden konnen. Dariiber hinaus steigert semanti-
sche Korrektheit die Wahrscheinlichkeit, seltene Fehlerzustande und Sicherheitslucken zu
identifizieren, insbesondere bei stark strukturierten Formaten wie XML und komplexen
Netzwerkprotokollen [Bra+08; Vis+11].

Um diese Aspekte der Korrektheit bei der Eingabegenerierung gezielt zu berticksichtigen,
wird im folgenden Abschnitt das Konzept des grammatikbasierten Fuzzings erlautert. Es
nutzt formale Grammatiken, um strukturierte und giiltige Testfélle zu erzeugen.

2.5 Grammatiken fiir Fuzzing

Grammatikbasiertes Fuzzing ist eine spezialisierte Form des generationsbasierten Fuz-
zings. Es nutzt formale Grammatiken zur prazisen Beschreibung syntaktischer Regeln
und ermdglicht so die Erzeugung strukturell giiltiger Eingaben. Dies ist besonders bei
komplexen oder stark regulierten Formaten von Vorteil [GLMO08; Zel+24].

2.5.1 Aufbau der Grammatik

Eine Grammatik beschreibt eine formale Struktur, die definiert, wie giiltige Zeichenketten
einer Sprache gebildet werden konnen. Sie besteht im Wesentlichen aus einer endlichen
Menge von Terminalsymbolen, die die konkreten Zeichen der Sprache darstellen, einer
Menge von Variablen (auch Nicht-Terminalsymbole genannt), die als Platzhalter fiir syn-
taktische Kategorien dienen, sowie einer Menge von Produktionsregeln, die angeben,
wie Variablen durch andere Variablen oder Terminale ersetzt werden konnen. Eine dieser
Variablen ist als Startsymbol ausgezeichnet und dient als Ausgangspunkt fiir die Erzeugung
von Zeichenketten [HMU11].

20

2.5 Grammatiken fiir Fuzzing

2.5.2 Formale Beschreibung von Grammatiken

Formal wird eine Grammatik G als ein Tupel G = (V, T, P, S) definiert, bestehend aus:

« V:der endlichen Menge der Variablen (Nicht-Terminalsymbole), die Platzhalter fiir
syntaktische Strukturen darstellen,

o T:der endlichen Menge der Terminalsymbole, die die konkreten Zeichen der Sprache
bilden,

« P:der endlichen Menge der Produktionsregeln, die definieren, wie Variablen durch
Terminale oder andere Variablen ersetzt werden,

« S € V:dem Startsymbol, von dem aus die Erzeugung giiltiger Zeichenketten beginnt.

Eine Produktionsregel hat die Form
A—>a

wobei A € V eine Variable und o € (V U T)* eine Zeichenkette aus Terminalen und/oder
Variablen ist. Durch wiederholte Anwendung dieser Regeln lassen sich syntaktisch giiltige
Zeichenketten konstruieren [HMU11].

2.5.3 Kontextfreie Grammatiken

Eine kontextfreie Grammatik ist eine spezielle Klasse formaler Grammatiken, bei der jede
Produktionsregel genau eine Variable auf der linken Seite besitzt:

A—>a mit AeV,ae(VUT)"

Die Anwendbarkeit einer Regel hangt dabei nicht vom Kontext der umgebenden Symbole
ab.

Kontextfreie Grammatiken sind besonders relevant fiir das Fuzzing, da viele Datenformate,
Kommunikationsprotokolle und Programmiersprachen mit ihnen vollstandig beschrieben
werden konnen. Grammatik-basierte Fuzzer konnen daher gezielt syntaktisch giiltige
Testeingaben generieren, was die Wahrscheinlichkeit erhoht, dass diese vom Zielprogramm
akzeptiert und verarbeitet werden [GLM08; HMU11].

2.5.4 Grammatik von XML

Als Beispiel fiir eine weit verbreitete Grammatik wurde XML gewahlt. Es handelt sich um
ein standardisiertes, hierarchisch strukturiertes Datenformat, dessen Grammatik in der
XML 1.0 Specification definiert ist [Bra+08].

Ein Fuzzer, der diese Grammatik beriicksichtigt, kann giiltige XML-Dokumente erzeugen,
die von Parsern verarbeitet werden konnen. Aufgrund der breiten Nutzung von XML in
Webservices, IoT-Protokollen und Konfigurationsformaten ist grammatikbasiertes Fuzzing
in diesem Bereich besonders relevant. Fehler bei der Verarbeitung kénnen schwerwiegende
Sicherheitsliicken verursachen, beispielsweise durch XML External Entity Attacks (XXE)
oder Billion Laughs Attacks [Spa+16].

21

2 Grundlagen

2.5.5 Vorteile des grammatikbasierten Fuzzings

Grammatikbasiertes Fuzzing bietet mehrere entscheidende Vorteile:

« Hohere Eingabevaliditit: Generierte Testfille sind syntaktisch giiltig und werden
daher vom PUT haufiger akzeptiert.

« Hohere Codeabdeckung: Durch giiltige Eingaben lassen sich komplexe Verar-
beitungspfade testen, die zufillige Eingaben nicht erreichen. Dadurch wird tiefer
in das System vorgedrungen, wodurch auch versteckte Logik und selten genutzte
Funktionen getestet werden konnen.

- Effiziente Fehlerfindung: Da weniger ungiiltige Eingaben erzeugt werden, wird
weniger Rechenzeit auf unproduktive Testfalle verschwendet.

+ Gezielte Testgenerierung: Grammatiken lassen sich erweitern oder einschrianken,
um bestimmte Strukturen oder Features des PUT gezielt zu testen.

Diese Eigenschaften machen grammatikbasiertes Fuzzing besonders geeignet fiir Szenarien,
in denen stark strukturierte Eingaben verarbeitet werden, wie etwa bei Dateiformaten,
Netzprotokollen oder Skriptsprachen [GKLO08].

Um die Effektivitat und Analysefidhigkeit beim Fuzzing weiter zu steigern, bietet die
Emulation eine flexible und kontrollierte Umgebung, in der Programme ausgefithrt und
gezielt manipuliert werden konnen. Im folgenden Abschnitt wird dargestellt, wie die
Emulation als Erganzung zum klassischen Fuzzing eingesetzt wird und welche Vorteile sie
insbesondere bei der Instrumentierung von Firmware und Software bietet.

2.6 Fuzzing im Emulator

Die Emulation erméglicht die Ausfithrung von Programmen in einer kontrollierten Umge-
bung und bietet mehrere zentrale Vorteile fiir den Fuzzing-Prozess:

+ Zielausfithrung mit Fuzzing-Hooks: Fuzzing-Hooks erméglichen eine gezielte
Eingabesteuerung und die Analyse der Reaktionen des emulierten Systems auf
unterschiedliche Eingaben. Dadurch lassen sich potenzielle Schwachstellen und
deren Auswirkungen auf die Programmausfithrung untersuchen [HN17].

« Codeabdeckung durch Emulation: Die Emulation erméglicht eine prazise Erfas-
sung von Codeabdeckungsmetriken, beispielsweise in Form von Anweisungs- oder
Zweigabdeckung. Diese Messungen liefern wertvolle Informationen dariiber, wel-
che Programmteile wahrend des Fuzzing-Prozesses ausgefithrt wurden. Auf dieser
Grundlage kann die Testfallgenerierung gezielt optimiert werden, um die Abdeckung
schrittweise zu erh6hen und ungetestete Programmregionen zu erreichen [HN17].

« Registerzugriff in der Emulation: Ein wesentlicher Vorteil der Emulation ist der
direkte Zugriff auf Register und Speicherbereiche. Dadurch kénnen die internen

22

2.7 Netzwerkprotokolle

Zustande des Programms tiberwacht, modifiziert und fiir Debugging-Zwecke ana-
lysiert werden. Diese Einblicke erleichtern die Identifikation von Speicherfehlern,
unerwarteten Zustandsiibergingen oder sicherheitskritischen Abweichungen im
Kontrollfluss [Wri+21].

» Fork-Join-Mechanismen: Viele Emulatoren unterstiitzen Fork-Join oder Snaps-
hotting, um Ausfithrungszustdnde einzufrieren und schnell wiederherzustellen. Dies
ermoglicht parallele Testausfithrungen und steigert die Fuzzing-Geschwindigkeit
erheblich, da wiederholte Initialisierungen vermieden werden [MRR12].

+ Determinismus und Reproduzierbarkeit: Das deterministische Verhalten vie-
ler Emulatoren sorgt dafiir, dass identische Eingaben unter gleichen Bedingungen
stets dieselben Zustande und Ergebnisse erzeugen. Diese Eigenschaft erleichtert das
Debuggen und die reproduzierbare Analyse gefundener Schwachstellen [HN17].

Wihrend die Emulation somit eine prazise Analyseumgebung fiir Firmware und Software
bietet, ist fiir die umfassende Absicherung von vernetzten Systemen auch das Verstandnis
der zugrunde liegenden Kommunikationsprotokolle von zentraler Bedeutung. Das folgende
Kapitel widmet sich daher den Grundlagen und Typen von Netzwerkprotokollen, die fiir
die strukturierte Dateniibertragung und Kommunikation in IoT-Systemen essenziell sind.

2.7 Netzwerkprotokolle

Netzwerkprotokolle bilden die Grundlage fiir die strukturierte Kommunikation in ver-
netzten Systemen. Sie definieren Regeln und Konventionen, die festlegen, wie Daten
zwischen verschiedenen Endpunkten iibertragen und interpretiert werden [TW11]. So legt
ein Protokoll beispielsweise fest, in welchem Format und in welcher Abfolge Daten an ein
Zielsystem iibermittelt werden miissen, um bestimmte Aktionen auszulésen. Ebenso regelt
es die Bedeutung und Verarbeitung der empfangenen Antworten. Dabei unterscheidet man
zwischen zustandsbehafteten Protokollen, die Verbindungsinformationen speichern und
so eine kontrollierte und zuverldssige Kommunikation erméglichen (z. B. Transmission
Control Protocol (TCP) [Pos81b]), und zustandslosen Protokollen, die ohne solche Kontext-
informationen arbeiten (z. B. User Datagram Protocol (UDP) [Pos80]) [TC984].

Um die Vielzahl an Netzwerkprotokollen und deren Zusammenhéange zu strukturieren,
wird haufig das von der International Organization for Standardization (ISO) standardi-
sierte ISO/OSI-Referenzmodell herangezogen. Es unterteilt den Kommunikationsprozess in
sieben klar definierte Schichten (siehe Abbildung 2.6), die jeweils spezifische Aufgaben
erfillen und iiber wohldefinierte Schnittstellen miteinander interagieren. Von unten nach
oben werden folgende Schichten unterschieden [Pos81b; Aun10; MS12]:

1. Bitiibertragungsschicht (Physical Layer): verantwortlich fir die physische Uber-
tragung von Rohbits tiber das Ubertragungsmedium. Hier werden elektrische, opti-
sche und Funk-Schnittstellen definiert. Beispiele fiir physische Medien sind Kupfer-
kabel, Glasfaser und Funkfrequenzen.

23

2 Grundlagen

24

1ISO/0SI-Referenzmodell

@ Anwendung / Application }‘
HTTP, FTP, SMTP
@ Darstellung / Presentation }\ \\\ Datenkapselung
TLS, SSL
@ Sitzung / Session } e RN Data
RPC, NetBIOS Nutzdaten
@ Transport / Transport } B e F-- TCP Segment
TCP, UDP Portnummer
@ Vermittlung / Network } B TR F-- IP Datagram
1P, ICMP IP-Adresse
@ Sicherung / Data Link } R R F-- Erame
MAC, Ethernet, WLAN MAC-Adresse
@ Bitiibertragung / Physical } e b-- Bit
Kupfer, Glasfaser, Funk 000101010101

Abbildung 2.6: Das ISO/OSI-7-Schichtenmodell. Quelle: frei nach [Aun10].

. Sicherungsschicht (Data Link Layer): gewéhrleistet eine fehlerfreie Ubertragung

zwischen zwei direkt verbundenen Netzwerkknoten. Daten werden in Frames ver-
packt, mit Prifsummen versehen und der Zugriff auf das Ubertragungsmedium wird
geregelt. Hier kommen MAC-Adressen zur eindeutigen Identifizierung von Geréten
zum Einsatz. Typische Protokolle sind Ethernet, WLAN und PPP.

. Vermittlungsschicht (Network Layer): zustindig fir die logische Adressierung,

das Routing und die Weiterleitung von Datenpaketen iiber Netzgrenzen hinweg. Hier
entstehen IP-Datagramme, die eine IP-Adresse enthalten, um Sender und Empfanger
eindeutig zu identifizieren. Typische Protokolle: IP, ICMP, IPSec.

. Transportschicht (Transport Layer): stellt die Ende-zu-Ende-Kommunikation

zwischen Anwendungen sicher. Hier erfolgt die Segmentierung der Daten, ihre
Nummerierung und Zuordnung zu Portnummern. TCP sorgt fiir zuverlassige, ver-
bindungsorientierte Ubertragungen, wiahrend UDP fiir schnelle, verbindungslose
Kommunikation genutzt wird, z. B. bei Streaming oder VoIP.

. Sitzungsschicht (Session Layer): verwaltet Sitzungen zwischen Anwendungen,

steuert den Auf- und Abbau von Verbindungen und synchronisiert Datenstrome. Sie
ermoglicht das Fortsetzen von Dialogen nach Unterbrechungen. Beispiele: NetBIOS,
RPC.

. Darstellungsschicht (Presentation Layer): iibersetzt Daten in ein einheitliches

Format und kiitmmert sich um Kodierung, Kompression und Verschliisselung. Hier
arbeiten beispielsweise SSL/TLS sowie Datenformate wie JPEG, JSON oder ASCIL

2.7 Netzwerkprotokolle

7. Anwendungsschicht (Application Layer): bietet Schnittstellen fiir benutzernahe
Anwendungen und definiert die Bedeutung der iibertragenen Daten. Hier laufen die
eigentlichen Dienste und Protokolle, z. B. HTTP, FTP, SMTP, DNS oder SNMP.

2.7.1 Struktur eines TCP-Headers

TCP operiert auf der Transportschicht (Layer 4). Ein TCP-Header enthalt zentrale Steuer-
informationen, darunter:

+ Quell- und Zielport: zur Identifikation der kommunizierenden Anwendungen,

+ Sequenz- und Bestiatigungsnummern: zur Sicherstellung der korrekten Daten-
reihenfolge und Empfangsbestatigung,

« Steuerflags: (z. B. SYN, ACK, FIN) fiir Aufbau, Abbau und Kontrolle der Verbindung,

+ Fenstergrofle: zur Regulierung der Flusskontrolle.

Diese Felder bilden die Grundlage fiir die Zuverlassigkeit von Protokollen. In den folgen-
den Abschnitten werden die anwendungsnahen Protokolle FTP und HTTP exemplarisch
betrachtet. Diese eignen sich besonders gut, da sie eine klare, textbasierte Struktur besit-
zen [Pos81b].

2.7.2 File Transfer Protocol (FTP)

In dieser Dissertation wird das FTP als beispielhaftes Anwendungsprotokoll herangezogen,
da seine einfache, textbasierte Struktur die Analyse unverschliisselter Nachrichten im
Rahmen von PRE (siehe Abschnitt 2.7.5) ermoglicht. Im Gegensatz zu verschliisselten
Alternativen wie SFTP oder FTPS konnen hier die Inhalte direkt untersucht werden.

FTP ist zustandsbehaftet und verwendet zwei separate Verbindungen: eine Kontrollverbin-
dung fiir Kommandos und Statusmeldungen sowie eine Datenverbindung fiir Dateitiber-
tragungen. Fiir diese Dissertation wird ausschlie8lich die Kontrollverbindung betrachtet.
Kommandos bestehen aus einem Schliisselwort und optionalen Argumenten, Serverant-
worten aus Statuscodes und Text. Der Standard lasst sich durch implementierungsspezifi-
sche Kommandos erweitern.

Ein typischer Ablauf beginnt mit der Serverbegriilung und der Authentifizierung mittels
USER und PASS. Ein haufiger Anwendungsfall ist der anonyme Login, bei dem der Benutzer-
name anonymous und ein beliebiges Passwort verwendet werden kann, tiblicherweise guest
oder eine E-Mail-Adresse. Im Anonymous-Modus ist der Zugriff auf das Serverdateisystem
in der Regel eingeschrankt, etwa auf das Auflisten und Herunterladen von Dateien. Nach
erfolgreicher Anmeldung kann der Client beispielsweise das aktuelle Verzeichnis abfragen
(PWD) oder eine Datenverbindung aufbauen. Eine exemplarische FTP-Sitzung ist in Listing
2.1 dargestellt [PR85; DEM9%4].

25

2 Grundlagen

230-Welcome user to FTP server

230-ProFTPD Server (FTPD) [XXX.XXX.XXX.XXX]

230 Please log in.

USER anonymous

331 Anonymous login ok, send email address as your password
PASS john@doe.com

230 Anonymous access granted, restrictions apply

PWD

257 "/" is the current directory

ANV ANV ANV A AN A

Listing 2.1: Eine typische FTP-Kommunikation. Client-Pakete sind mit ,,>“ markiert,
Server-Pakete mit ,,<“. Quelle: [Kie+22]

2.7.3 Hypertext Transfer Protocol (HTTP)

HTTP ist seit 1991 ein zentrales Protokoll des Internets, primar zur Ubertragung von Web-
seiten. Als zustandsloses Protokoll enthélt jede Anfrage alle notwendigen Informationen
zur Verarbeitung. Ein Request umfasst die Methode (z. B. GET, POST), den Pfad und die
HTTP-Version. Die Antwort enthélt mindestens die Version und einen Statuscode [Nie+99].

Die Statuscodes werden dabei grob in fiinf Kategorien unterteilt:
+ 1xx: Information
« 2xx: Erfolg
+ 3xx: Weiterleitung
« 4xx: Clientfehler
« 5xx: Serverfehler

Einige Beispiele fiir Statuscodes sind 200 ,OK", 301 ,Moved Permanently” und 404 ,Not
Found® [Nie+99].

HTTP-Nachrichten konnen zusétzliche Header-Felder transportieren, z. B. Content-Type,
User-Agent oder Cookie, und optional einen Body enthalten (z.B. HTML oder JSON).
Fir diese Dissertation wird ausschlief3lich HTTP/1.1 betrachtet; neuere Versionen wie
HTTP/2 oder HTTP/3 werden aufgrund der erhohten Komplexitat nicht analysiert. Laut
Cloudflare entfallen aktuell etwa 50 % der API-Zugriffe auf HTTP/1.1 und nur rund 12 %
auf HTTP/3 [BP23].

2.7.4 Angriffsvektoren auf Netzwerkprotokolle

Fehlerhafte Implementierungen von Netzwerkprotokollen entstehen haufig durch un-
zureichende Tests, missverstandene Spezifikationen oder unbeachtete Randfalle. Solche

26

2.7 Netzwerkprotokolle

Schwachstellen bieten Angreifern Moglichkeiten, um Systeme zu destabilisieren, unerwar-
tetes Verhalten auszuldsen oder unberechtigten Zugriff auf vertrauliche Daten zu erlangen.
Typische Angriffsvektoren lassen sich wie folgt kategorisieren [SWS07]:

+ Denial of Service (DoS): Ein System wird durch Uberlastung (z. B. hohe Anfrage-
frequenz) oder durch Ausnutzung logischer oder implementierungsbedingter Fehler
in seiner Verfiigbarkeit eingeschrankt. Beispiele sind Ressourcenerschépfung, End-
losschleifen oder speziell gestaltete Nachrichten, die intensive Verarbeitungspfade
auslosen [IHRO06].

+ Injections (z. B. SQL-Injection): Werden Eingaben ohne sichere Behandlung in
nachfolgende Verarbeitungsschichten eingebracht (z. B. in Datenbankabfragen), kon-
nen Angreifer Codeausfiithrung, unautorisierten Datenzugriff oder Datenmanipula-
tionen erreichen. Solche Injections betreffen nicht nur SQL, sondern prinzipiell jede
Schicht, die Eingaben interpretiert (Command-, XPath-, OS-Injection u. 4.) [Cla09].

+ Implementierungsfehler: Fehlende Langenpriifungen, inkorrekte Grenzfallbe-
handlung oder Pointer-Fehler fithren zu Schwachstellen (z. B. Puffertiiberlauf). His-
torische Beispiele wie der Heartbleed-Bug [Bla25] in OpenSSL zeigen, dass ungenii-
gende Priiffungen zu Auslese sensibler Speicherbereiche fithren kénnen und damit
Vertraulichkeit und Integritit gefahrden [SWS07].

« Ausnutzung falscher Zustinde: Das Senden von Nachrichten in falscher Rei-
henfolge oder das Erzeugen inkonsistenter Zustdnde kann in zustandsbehafteten
Protokollen zu unerwartetem Verhalten fithren (z. B. Verarbeitungsfehler bei DELETE
vor CREATE). Fehlt eine robuste Zustandsvalidierung, konnen dadurch Berechtigungs-
fehler oder inkonsistente Datenzustiande entstehen [SWS07].

2.7.5 Protocol Reverse Engineering (PRE)

Beim PRE wird die Spezifikation eines bislang unbekannten Kommunikationsprotokolls
systematisch aus beobachtbarem Netzwerk- oder Schnittstellenverkehr rekonstruiert.
Das Ziel besteht darin, strukturelle Informationen wie Nachrichtenformate, Feldgrenzen,
Konstanten, Nachrichtentypen und gegebenenfalls ein implizites Zustandsmodell zu extra-
hieren. Typische Ergebnisse sind eine formale Nachrichtensyntax (z. B. als Grammatik oder
Feldlayout) und ein Modell der Kontrollflusslogik (z. B. als endlicher Automat) [Won+08;
ANV11].

Der iibliche PRE-Workflow umfasst das Erfassen und Vorverarbeiten von Traffic, die Seg-
mentierung von Nachrichten, die Inferenz von Feldgrenzen und Datentypen, die Induktion
von Syntaxregeln sowie das Lernen eines Zustandsmodells. Zur Umsetzung werden di-
verse Techniken kombiniert: Hierzu zahlen Clusteranalyse und Feature-Engineering zur
Gruppierung dhnlicher Nachrichten, heuristische Verfahren zur Felddetektion (Delimi-
ter-Erkennung, Entropieanalyse) sowie Algorithmen zur Grammatikinduktion und formale
Lernverfahren fiir Automaten. Praktische Tools verkniipfen haufig passive Beobachtung
mit aktiven Maflinahmen (gezielte Anfragen), um nicht beobachtete oder verschleierte
Protokollpfade zu erschliefen [CKW07; Com+09; ANV11].

27

2 Grundlagen

Protokolle lassen sich fiir PRE entlang zweier Dimensionen klassifizieren: textbasiert
versus bindr sowie zustandslos versus zustandsbehaftet. Textbasierte Formate verwenden
druckbare Zeichen und Delimiter, wahrend bindre Formate mit kompakten Bytefolgen,
Langenfeldern und Bitfeldern arbeiten. Mischformen sind ebenfalls méglich. Zustands-
behaftete Protokolle besitzen implizite oder explizite Zustandsmaschinen, deren Rekon-
struktion fur sinnvolle, zustandsbewusste Testvektoren erforderlich ist. Bei zustandslosen
Protokollen hingegen reichen oft unabhangige Nachrichtenmutationen aus [Sch08; Bha25].

Ein erfolgreiches PRE ermdglicht eine weitergehende Analyse der Kommunikation, wie
tiefgehende Paketinspektion [Bro18] und Fuzzing [Bha22]. Beide Verfahren konnen effek-
tiver arbeiten, wenn sie iiber die detaillierte Spezifikation des Protokolls verfiigen [SMO07;
Com+09].

Das Vorgehen beim PRE lasst vermuten, dass KI hier ein besonders grofies Potenzial bietet.
KI kann Protokolle automatisiert analysieren, verborgene Zusammenhénge erkennen und
somit die Effizienz und Tiefe der Analyseverfahren deutlich steigern. Dadurch wird PRE
zu einem wichtigen Anwendungsfeld moderner KI-Technologien.

Aufbauend darauf bietet sich der Einsatz neuronaler Netzwerke an, die komplexe Muster
in groflen Datenmengen erkennen und verarbeiten konnen. Im folgenden Kapitel werden
daher die grundlegenden Konzepte ihrer Architekturen vorgestellt, die fiir KI-gestiitzte
Analyseverfahren von zentraler Bedeutung sind.

2.8 Neuronale Netzwerkarchitekturen

Neuronale Netze gehoren zu den zentralen Methoden des maschinellen Lernens. Thr
Grundprinzip besteht darin, Eingaben durch eine Abfolge miteinander verbundener Verar-
beitungseinheiten in Ausgaben zu iberfithren. Dabei werden die Verbindungen zwischen
den Einheiten mit Gewichtungen versehen, deren Anpassung es ermdéglicht, aus Daten
zu lernen und Muster zu erkennen. Dieses Vorgehen erlaubt es, auch komplexe Abhan-
gigkeiten in den Eingabedaten abzubilden und fiir unterschiedliche Aufgaben nutzbar zu
machen [HSW+89].

Um die Funktionsweise und die Starken dieser Modelle besser zu verstehen, ist es not-
wendig, ihre grundlegenden Architekturen zu betrachten. Im Folgenden werden daher
verschiedene Auspragungen neuronaler Netze vorgestellt.

2.8.1 Kiinstliches neuronales Netz (KNN)

Kiinstliche Neuronale Netze (KNNs) sind rechnergestiitzte Modelle, die von der Funktions-
weise des menschlichen Gehirns inspiriert sind. Sie bestehen aus einer Vielzahl kiinstlicher
Neuronen, die in mehreren Schichten organisiert sind und iiber gewichtete Verbindungen
miteinander kommunizieren. Typischerweise setzt sich ein KNN, wie in Abbildung 2.7
dargestellt, aus einer Eingabeschicht, einer oder mehreren verborgenen Schichten (Hidden
Layers) und einer Ausgabeschicht zusammen [Wut24].

28

2.8 Neuronale Netzwerkarchitekturen

Eingabe- verborgene Ausgabe-
schicht Schichten schicht

K

Abbildung 2.7: Schematische Darstellung eines kiinstlichen neuronalen Netzes. Quel-
le: [Wut24]

Die Verarbeitung von Informationen erfolgt schichtweise. Die Eingabedaten werden zu-
nachst der Eingabeschicht zugefiihrt und dann schrittweise in den nachfolgenden Schichten
transformiert. Dabei berechnet jedes Neuron eine gewichtete Summe seiner Eingaben und
tberfiihrt diese mithilfe einer Aktivierungsfunktion in einen Ausgabewert. Dieser wird an
die nachste Schicht weitergegeben [Wut24].

Beim Training eines neuronalen Netzes werden die Verbindungen zwischen den Neuro-
nen schrittweise angepasst, um die Ubereinstimmung zwischen den vorhergesagten und
den tatséchlichen Ergebnissen zu optimieren. Zu diesem Zweck kommt das sogenannte
Backpropagation-Verfahren in Kombination mit dem Gradientenabstieg zum Einsatz. Beim
Backpropagation-Verfahren wird der am Ende des Netzes entstehende Fehler riickwarts
durch alle Schichten weitergegeben. So lasst sich ermitteln, welche Verbindungen den
Fehler am starksten beeinflussen. Diese Verbindungen werden dann gezielt angepasst. Der
Gradientenabstieg legt fest, in welche Richtung und wie stark die Gewichte veréndert
werden miissen, um den Fehler zu verringern. Dabei spielt die Lernrate eine wichtige Rolle:
Ist sie zu grof, wird das Training instabil, ist sie zu klein, dauert es sehr lange, bis das
Netz lernt. Durch diesen wiederholten Prozess aus Vorwérts- und Riickwartsrechnung
lernt das Netzwerk Schritt fiir Schritt, auch komplizierte Zusammenhinge in den Daten
zu erkennen, um beispielsweise Dinge zu klassifizieren, Werte vorherzusagen oder Muster
zu erkennen [Wut24].

Der Schichtaufbau erméglicht zudem die Verarbeitung unterschiedlicher Datentypen.
Eingabeschichten nehmen Rohdaten wie Text, Bilder oder Zeitreihen auf, wahrend tiefere
Schichten zunehmend abstraktere Merkmale extrahieren. Die anfanglich zufallig gesetzten
Gewichtungen werden tiber viele Iterationen hinweg optimiert, wobei Validierungsda-

29

2 Grundlagen

Sigmoid Tanh ReLU
1 I 10 T T
(<5} [| (<5}
et et et
< = =
&0 &0 . & O n
wn wn w
] = =]
< < | <
. 0 E— | -
4 -5 0 5 10
Eingabe Eingabe Eingabe

Abbildung 2.8: Funktionsdiagramm der Aktivierungsfunktionen von Sigmoid, Tanh und
ReLU. Quelle: frei nach [Sha25]

ten helfen, eine Uberanpassung zu vermeiden. Dabei bestimmen Struktur und Gréfle
des Netzwerks sowohl die Fahigkeit zur Merkmalsextraktion als auch den Trainingsauf-
wand [Wut24].

Im Folgenden werden zentrale Bausteine neuronaler Netze naher erlautert.

2.8.1.1 Aktivierungsfunktion

Aktivierungsfunktionen entscheiden dartiber, ob ein Neuron ,aktiviert” wird, und be-
einflussen maf3geblich die Fahigkeit des Netzes, nichtlineare Zusammenhinge zu mo-
dellieren. Sie bestimmen, wie stark ein Neuron auf bestimmte Eingangssignale reagiert,
und sind somit von entscheidender Bedeutung fiir die Lernfahigkeit des Netzes. Zu den
gebrauchlichsten Funktionen zahlen die in Abbildung 2.8 dargestellte Sigmoid-Funktion,
die Tanh-Funktion und die Rectified Linear Unit (ReLU) [Sha25]:

« Sigmoid-Funktion: Die Sigmoid-Funktion hat die Form o(x) = == und bil-
det jeden reellen Wert auf den Bereich (0, 1) ab. Dadurch eignet sie sich gut fiir
Ausgaben, die als Wahrscheinlichkeiten interpretiert werden sollen, insbesondere
in binaren Klassifikationsaufgaben. Ein Nachteil der Sigmoid-Funktion ist jedoch,
dass sie bei grofien oder kleinen Eingangswerten zu sehr flachen Gradienten fithrt
(Gradientenproblem), wodurch sich das Lernen in tiefen Netzwerken verlangsamen

kann [Sha25].

« Tanh-Funktion: Die Tanh-Funktion (hyperbolischer Tangens) ist definiert als
tanh(x) = ii;gj und transformiert Eingaben in den Bereich (-1, 1). Im Vergleich
zur Sigmoid-Funktion ist sie zentriert, was oft zu schnellerer und stabilerer Kon-
vergenz fiithrt, da die Mittelwerte der Aktivierungen néher bei null liegen. Dennoch
leidet auch die Tanh-Funktion unter dem Vanishing-Gradient-Problem bei extremen

Eingabewerten [Sha25].

« ReLU-Funktion Die Rectified Linear Unit (ReLU)-Funktion ist definiert als f(x) =
max(0, x) und hat sich in vielen modernen neuronalen Netzen als Standard durchge-
setzt. Sie ist einfach, effizient und reduziert das Problem verschwindender Gradienten,

30

2.8 Neuronale Netzwerkarchitekturen

Fully-Connected Neural Network
mit ReLU Aktivierungsfunktion

O =00

2 O 01

2 B N Qo 02
% O s O

O ‘09

- (4x4xn QO Ausgabe

EINGABE

2x12xn
(28 x 28 x1) (24 % 24 x n1) (

o

Abbildung 2.9: Schematische Darstellung eines Convolutional Neural Networks. Quelle:
frei nach [Red+21]

da sie bei positiven Werten eine konstante Ableitung von 1 liefert. Ein Nachteil der
ReLU ist jedoch das sogenannte ,Dying ReLU“-Problem: Neuronen, die dauerhaft
negative Eingabewerte erhalten, geben keine Aktivierung mehr weiter und ,,sterben”
wihrend des Trainings ab [Sha25].

2.8.1.2 Dropout

Dropout ist eine regulierende Technik, die wahrend des Trainings zufillig ausgewahl-
te Neuronen deaktiviert. Dadurch wird verhindert, dass sich das Netzwerk zu stark an
die Trainingsdaten anpasst (Overfitting), und die Generalisierungsfahigkeit auf neue,
unbekannte Daten wird verbessert. Dropout wirkt, indem es wahrend des Trainings gewis-
sermafien viele leicht unterschiedliche Versionen des Netzwerks erzeugt, die gemeinsam
trainiert werden, was die Stabilitit und Robustheit des Modells erh6ht [Sri+14].

2.8.1.3 Optimizer

Optimierer sind Algorithmen, die die Gewichte des neuronalen Netzes wahrend des
Trainings so anpassen, dass der Fehler minimiert wird. Neben dem klassischen Gra-
dientenabstieg (Gradient Descent) existieren zahlreiche Varianten wie Adam [KB17],
RMSprop [HSS12] oder Adagrad [DHS11], die durch adaptive Lernraten und zusétzliche
Informationen wie Bewegungsrichtung (Momentum) die Konvergenz beschleunigen und
verbessern [Rud17].

2.8.2 Convolutional Neural Network (CNN)

Das Convolutional Neural Network (CNN) wurde wegen seiner Leistung bei Aufgaben der
Bilderkennung populér. Ein méglicher Aufbau eines CNNss ist in Abbildung 2.9 dargestellt.
Im Gegensatz zu herkommlichen neuronalen Netzen werden die Eingabedaten in einem
CNN abschnittsweise analysiert. Dabei wird ein kleiner Bereich, das sogenannte Schiebe-
fenster oder Filter, iiber das gesamte Bild bewegt. In jedem Schritt untersucht dieser Filter
nur einen kleinen Teil des Bildes und erkennt darin einfache Muster, zum Beispiel Kanten
oder Farbverlaufe.

31

2 Grundlagen

Ol:iginale Idealerweise sind Eingabe und Ausgabe identisch: x ~ x’ Reko.nstruierte
Eingabe Eingabe

Flaschenhals

X Encoder z Decoder X

Abbildung 2.10: Schematische Darstellung eines Autoencoders. Quelle: frei nach [Wen18]

Die Gewichtungen des Filters bleiben bei dieser Bewegung gleich. Dadurch kann das
Netz dieselben Merkmale tiberall im Bild erkennen, unabhéngig davon, wo sie auftreten.
Viele solcher Filter arbeiten gleichzeitig in verschiedenen Kanédlen, um unterschiedliche
Merkmale zu erfassen.

Diese Vorgehensweise ermoglicht es dem Netzwerk, selbststandig aussagekraftige Merk-
male aus den Rohdaten zu lernen. Der frither notwendige Schritt, Merkmale manuell zu
definieren, entfallt somit.

Obwohl CNNs hauptsachlich in der Bildverarbeitung eingesetzt werden, lasst sich das
Prinzip auch auf andere strukturierte Daten anwenden, beispielsweise auf Texte, Musik
oder Binardateien [KSH12].

2.8.3 Autoencoder (AE)

Autoencoder (AE) sind kiinstliche neuronale Netzwerke, die darauf ausgelegt sind, eine
Reduktion der Dimensionalitét fiir ein gegebenes Eingabedatum zu erreichen, wahrend
so viel Information wie moglich erhalten bleibt. Dies ist in Abbildung 2.10 dargestellt.
Wihrend des Trainings versucht der Autoencoder, die Eingabedaten am Ausgang mog-
lichst genau zu rekonstruieren. Die Verlustfunktion misst den Unterschied zwischen den
urspriinglichen Eingabedaten und der vom Netzwerk erzeugten Rekonstruktion. Je kleiner
dieser Unterschied ausfallt, desto besser hat das Netzwerk gelernt, die wichtigsten Merk-
male der Daten zu erfassen und unwichtige Details zu verwerfen. Die Architektur selbst
enthélt einen Flaschenhals in einer mittleren Schicht, um das Netzwerk dazu zu zwingen,
Daten zu komprimieren, aber rekonstruierbare Informationen zu bewahren. Die Grof3e der
mittleren Schicht muss die komprimierte Grofie balancieren und relevante Informationen
in einer unbekannten Kodierung bewahren. Dies teilt das neuronale Netzwerk in zwei
Komponenten, ndmlich den Encoder- und den Decoder-Teil. Nachdem der AE trainiert
wurde, wird das Decoderelement entfernt, sodass alle Eingabedaten nur noch in ihrer
kodierten Form zuriickgegeben werden [HS06].

32

2.8 Neuronale Netzwerkarchitekturen

Reale Bilder }—‘ Daten ’

Discriminator [> Verlustfunktion

echt

erzeugt

Generator Daten

Rauschen

Abbildung 2.11: Schematische Darstellung eines Generative Adversarial Networks. Quelle:
frei nach [Kin21]

2.8.4 Generative Adversarial Network (GAN)

Das Generative Adversarial Network (GAN) wurde entwickelt, um ein generatives Modell
zu erzeugen, das die zugrunde liegende Verteilung der Trainingsdaten nachbildet. Wie in
Abbildung 2.11 dargestellt, besteht die Architektur aus zwei miteinander konkurrierenden
neuronalen Netzwerken.

Das erste Netzwerk, der Generator, erhélt Zufallsrauschen als Eingabe und versucht, daraus
ein Bild zu erzeugen, das den echten Beispielen aus dem Trainingsdatensatz moglichst
ahnlich ist. Das zweite Netzwerk, der Diskriminator, bekommt sowohl ein echtes als auch
ein vom Generator erzeugtes Bild und soll entscheiden, welches Bild echt und welches
kiinstlich ist.

Die Riickmeldung des Diskriminators dient als Grundlage fiir die Fehlerkorrektur des
Generators: Erkennt der Diskriminator ein Bild als , kiinstlich®, werden die Parameter des
Generators so angepasst, dass dessen Ausgaben realistischer werden.

Durch dieses Zusammenspiel entsteht ein wettbewerbsorientierter Lernprozess, bei dem
sich beide Netzwerke gegenseitig verbessern. Der Generator erzeugt immer iiberzeugen-
dere Bilder und der Diskriminator erkennt immer feinere Unterschiede [Goo+14].

2.8.5 Long Short-Term Memory (LSTM)
Ein Recurrent Neural Network (RNN) ist eine Netzwerkarchitektur, bei der ein Teil des

verborgenen Zustands an den nachsten Zeitschritt zuriickgefithrt wird. Dadurch kann das
Netzwerk zeitliche Abhéngigkeiten in den Daten erkennen.

33

2 Grundlagen

Otfl >® \Q > Ct

hi—1 T T T >(o 0@7—> hy

Xy

Abbildung 2.12: Schematische Darstellung einer Long Short-Term Memory Zelle. Quelle:
frei nach [Che18]

Das Long Short-Term Memory (LSTM) ist eine spezielle Form des RNN, die besonders gut
darin ist, langfristige Abhangigkeiten zu erfassen, und dabei typische Probleme wie das
Verschwinden oder Explodieren von Gradienten vermeidet. Der Aufbau einer LSTM-Zelle
ist in Abbildung 2.12 dargestellt.

Eine LSTM-Zelle besteht aus einem Zellzustand (C;), der Informationen uiber viele Zeit-
schritte wie ein ,Speicherband® transportiert, sowie drei Torstrukturen, die den Informati-
onsfluss steuern:

« Vergessenstor (f;): entscheidet, welche Informationen aus dem Zellzustand gel6scht
werden,

« Eingangstor (i;): bestimmt, welche neuen Informationen aufgenommen werden,

« Ausgangstor (0;): legt fest, welche Informationen als Ausgabe oder fiir den nachsten
Zeitschritt weitergegeben werden.

Mithilfe dieser Tore kann der Zellzustand gezielt aktualisiert, geloscht oder beibehal-
ten werden. Dadurch ist das Netzwerk in der Lage, relevante Informationen iiber lange
Zeitraume zu speichern.

Fiir die Arbeit mit Textdaten (sequentielle Buchstaben) ist es tiblich, ein Worterbuch oder
Alphabet zusammen mit einer geeigneten Einbettung zu verwenden, um die Informationen
in einen mittelgroflen Vektor fiir jedes Wort oder Zeichen zu kondensieren. Der Text wird
in eine Matrix der Dimensionen Linger.,, X Langeg,.44ing umgewandelt [HS97].

2.8.6 Self-Organizing Map (SOM)

Die Self-Organizing Map (SOM) ist eine uniiberwachte neuronale Architektur, deren Aus-
gabeneuronen typischerweise ein- oder zweidimensional angeordnet sind. Dadurch ist eine

34

2.8 Neuronale Netzwerkarchitekturen

Abbildung 2.13: Schematische Darstellung einer Self-Organizing Map. Quelle: frei nach
[Sto10]

topologische Projektion der Eingabedaten méglich. Dabei werden dhnliche Datenpunkte
auf benachbarte Regionen der Karte abgebildet, sodass Clusterstrukturen sichtbar werden.
Jedes Ausgabeneuron ist durch einen Gewichtsvektor im Eingaberaum charakterisiert.
Wie in Abbildung 2.13 dargestellt, passt sich die SOM wihrend des Trainings iterativ an
die Datenverteilung an, indem die Gewichtsvektoren verschoben und geglattet werden.
Fiir eine gegebene Eingabe wird das sogenannte Best Matching Unit (BMU) als Gewinner-
neuron bestimmt. Es kann als Reprasentant der Eingabe sowie fiir deren Indexierung oder
Klassifikation genutzt werden [Koh82].

2.8.7 Large Language Model (LLM)

Ein LLM wird auf groflen Mengen von Textdaten trainiert, um Muster in natiirlicher
Sprache zu erkennen und kohérente Ausgaben zu erzeugen. Die zugrunde liegende Archi-
tektur basiert auf dem Transformer-Modell und nutzt den Self-Attention-Mechanismus.
Ein Transformer ist eine speziell fiir die Verarbeitung von Sequenzen, wie etwa Text,
entwickelte Netzwerkarchitektur. Im Unterschied zu klassischen RNNs verarbeitet ein
Transformer alle Positionen einer Sequenz gleichzeitig. Dadurch kann er Zusammen-
hiange zwischen weit auseinanderliegenden Wortern effizienter erfassen. Der zentrale
Mechanismus im Transformer ist die sogenannte Self-Attention: Fir jedes Wort wird
berechnet, in welchem Maf} es mit allen anderen Wortern der Sequenz in Beziehung steht.
So kann das Modell die Bedeutung eines Wortes im Kontext des gesamten Satzes oder
Textes beriicksichtigen und semantische Zusammenhénge effektiv erfassen. Zusatzlich
konnen Beziehungen zwischen Wortern auch tiber lange Distanzen hinweg erfasst und
deren Bedeutung je nach Kontext unterschiedlich gewichtet werden [Vas+17]. Je nach
Modelltyp wird ein Encoder (z. B. BERT [Dev+19]), ein Decoder (z.B. GPT [Rad+19]) oder
eine Kombination aus Encoder und Decoder (z. B. T5 [Raf+20]) eingesetzt. Als Ergebnis
konnen LLMs das nachste Wort oder die nachste Phrase mit hoher Wahrscheinlichkeit
vorhersagen und konsistenten Text erzeugen. Zu den typischen Anwendungsbereichen
zéhlen unter anderem die Beantwortung von Fragen, die Textzusammenfassung sowie die
Generierung strukturierter Inhalte [Str25].

35

2 Grundlagen

2.8.7.1 Modell-Anpassung

Die ML-Community stellt eine Vielzahl vortrainierter LLMs frei zur Verfiigung. Diese
umfassen hiufig mehrere natiirliche Sprachen (z. B. Englisch, Franzosisch, Deutsch) sowie
Programmiersprachen (z. B. Python, JavaScript). Plattformen wie Hugging Face' ermog-
lichen einen direkten Zugriff auf diese Modelle. Obwohl sie sofort eingesetzt werden
konnen, ist fir spezifische Anwendungsfille oft eine weitere Anpassung erforderlich, etwa
durch Fine-Tuning oder Prompt-Tuning [Str25].

2.8.7.2 Fine-Tuning

Fine-Tuning beschreibt die gezielte Anpassung der Modellparameter eines vortrainierten
LLM, um es auf eine konkrete Aufgabe oder ein spezielles Datenset abzustimmen. Dies
kann beispielsweise die Verbesserung von Fahigkeiten in der Sentiment-Analyse, der
Fragebeantwortung oder der Erzeugung strukturierter Daten (z. B. XML) umfassen. Der
Vorgang erfordert ein zuséatzliches Training auf einem zielgerichteten Datensatz, um die
Parameter optimal anzupassen. Aufgrund der teils Milliarden umfassenden Parameter
aktueller Modelle ist dieser Prozess rechenintensiv, benotigt spezialisierte Ressourcen wie
Hochleistungs-Graphics Processing Units (GPUs) oder Tensor Processing Units (TPUs)
und kann tiber langere Zeitraume andauern [Xu+21].

2.8.7.3 Prompt-Tuning

Da die umfassende Vorschulung von LLMs bereits eine breite Sprachkompetenz ver-
mittelt, ist es oft ineffizient, alle Modellparameter neu anzupassen. Eine ressourcen-
schonendere Methode ist Prompt-Tuning, eine spezielle Parameter-Efficient Fine-Tu-
ning (PEFT)-Technik [Pat24]. Dabei werden die urspriinglichen Gewichte des Modells
eingefroren, wiahrend nur eine kleine Anzahl zusatzlicher Prompt-Parameter trainiert wird.
Mithilfe gezielter Eingabe-Ausgabepaare wird das Modell so optimiert, dass es bestimmte
Aufgaben zuverldssiger bearbeitet. Dieser Ansatz nutzt das in der Vorschulung erworbene
Wissen. Er reduziert den Anpassungsaufwand erheblich und eignet sich daher besonders
fir spezialisierte Anwendungen bei komplexen Modellen [LAC21; Yon+23].

2.8.7.4 Modell-Inference

In der Inference-Phase nutzt ein LLM sein erlerntes Sprachmodell, um auf eine Eingabe
(Prompt) Antworten und Ausgaben zu generieren. Dabei werden probabilistische Vor-
hersagen genutzt, um die wahrscheinlichste Fortsetzung des Textes zu erzeugen [Pla20;
YG23]. Dies ermdglicht es dem Modell, auch auf unbekannte Daten zu reagieren und
kohéarente Texte, Code oder Antworten zu erstellen. Die Effizienz und Genauigkeit des In-
ference bestimmen mafigeblich den praktischen Nutzen und die Einsatzméglichkeiten von

!https://huggingface.co/

36

2.9 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

LLMs. Fortschritte in Architektur, Trainingsmethoden und Rechentechnologien verbes-
sern kontinuierlich die Leistungsfahigkeit dieser Modelle und erweitern ihre industrielle
Anwendbarkeit [Str25].

Der Einsatz grofler Sprachmodelle veranschaulicht die Funktionsweise probabilistischer
Verfahren zur Mustererkennung in Textdaten. Doch auch in nichttextuellen Daten miissen
Strukturen erkannt und abgegrenzt werden. Wahrend LLMs auf Wahrscheinlichkeiten im
Sprachraum basieren, nutzen andere Verfahren einen dichtebasierten Ansatz. Im Folgenden
wird ein Algorithmus zur Identifikation beliebig geformter Cluster und zur robusten
Behandlung von Ausreiflern vorgestellt.

2.9 Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) ist ein dichteba-
sierter Clustering-Algorithmus, der Datenpunkte basierend auf deren lokaler Punktdichte
in Cluster gruppiert und Ausreifler als Rauschen klassifiziert. Durch die Verwendung eines
Nachbarschaftsparameters ¢ und einer minimalen Punktanzahl MinPts erkennt der Algo-
rithmus zusammenhéingende Regionen hoher Dichte, ohne dass die Anzahl der Cluster
im Voraus bekannt sein muss. Dies ermoglicht die Identifikation von Clustern beliebiger
Form und macht DBSCAN besonders robust gegeniiber Ausreifiern [Est+96].

Eine Weiterentwicklung stellt Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) dar, ein Algorithmus, der Cluster mit variabler Dichte
identifizieren kann. Im Gegensatz zu DBSCAN, das einen globalen Dichteparameter ver-
wendet, analysiert HDBSCAN die Dichte-Struktur iiber verschiedene Dichtegrade hinweg
und erstellt eine Hierarchie von Clustern. Anschlieffend werden die stabilsten Cluster
ausgewahlt, wiahrend Punkte, die keinem stabilen Cluster zugeordnet werden kénnen, als
Ausreifler betrachtet werden. Damit entféllt die Notwendigkeit, einen festen e-Parameter
zu definieren, und HDBSCAN ist besonders anpassungsfahig an komplexe Datenstruktu-
ren [CMS13].

37

3 ESP32 Code-Injektion bei unverandertem
Kontrollfluss mittels Binary Rewriting

Der Inhalt dieses Kapitels basiert auf einer gemeinsamen Verdoffentlichung mit Benjamin
Plach, Maximilian Miiller, Roland Groll, Martin Dukek und Ingmar Baumgart. Teile der
prasentierten Ergebnisse wurden bereits in der unten aufgefithrten Publikation verof-
fentlicht. Es wird ein neuartiges Binary-Rewriting-Framework fiir die ESP32-Plattform
vorgestellt, das es erméglicht, zusatzlichen Code in bestehende Firmware einzufiigen, ohne
deren urspriingliche Funktionalitit zu beeintrachtigen.

+ Benjamin Plach, Matthias Borsig, Maximilian Miiller, Roland Gro6ll, Martin Dukek
und Ingmar Baumgart. ,Binary-Level Code Injection for Automated Tool Support
on the ESP32 Platform". In: Secure IT Systems: 29th Nordic Conference, NordSec
2024 Karlstad, Sweden, November 6-7, 2024 Proceedings. Hrsg. von Leonardo Horn
Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls. Bd. 15396. Lecture Notes
in Computer Science. Karlstad, Sweden: Springer-Verlag, Jan. 2025, S. 121-138. isbn:
978-3-031-79006-5. DOI: 10.1007/978-3-031-79007-2_7 [Pla+25].

3.1 Einleitung

In diesem Kapitel wird ein Ansatz zur Instrumentierung von ESP32-Firmware auf Binére-
bene vorgestellt. Das Ziel besteht darin, den Binédrcode so zu erweitern, dass zusatzliche
Analyseinformationen, beispielsweise iiber Speicherzugriffe, Funktionsaufrufe oder den
Kontrollfluss, wahrend der Laufzeit gewonnen werden konnen, ohne das urspriingliche
Verhalten der Firmware zu verdndern. Auf diese Weise wird eine Grundlage geschaffen,
um Fuzzing und Schwachstellenerkennung auch ohne Zugrift auf den Quellcode effektiv
durchzufithren.

Eine zentrale Herausforderung bestand darin, Techniken des Binary Rewriting, die bislang
ausschliefllich fiir Complex Instruction Set Computer (CISC)-basierte x86-Architekturen
verfigbar waren, auf die RISC-basierte Xtensa-ISA des ESP32 zu iibertragen. Hierzu wur-
den bestehende Patching-Strategien analysiert, angepasst und erweitert. Besondere Sorg-
falt war erforderlich, um Patches in spezifischen Bereichen, wie dem . flash. text-Segment
(Speicherbereich im Flash, in dem der ausfithrbare Programmcode abgelegt ist), einzufiigen,
ohne den urspriinglichen Kontrollfluss der Firmware zu verandern.

Die wesentlichen Beitrage lassen sich wie folgt zusammenfassen:

39

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

Anpassung von Binary-Rewriting-Techniken an die Xtensa-Architektur:
Ubertragung und Erweiterung bestehender Patching-Strategien von x86 auf die
RISC-basierte Xtensa-ISA, um préazise Instrumentierung in ESP32-Firmware zu er-
moglichen.

« Implementierung eines eigenen Assemblers: Entwicklung eines minimalen, er-
weiterbaren Assemblers zur Unterstiitzung der fiir die Instrumentierung notwendigen
Xtensa-Befehle, einschlie3lich relativer Sprungbetfehle und Adressberechnungen.

« Entwicklung eines statischen Binary-Rewriting-Frameworks: Aufbau eines
Frameworks, das Code-Injektionen in ESP32-Firmware erlaubt, ohne die urspriingli-
che Funktionalitdt und den Kontrollfluss zu beeintrichtigen.

« Proof of Concept (PoC) fiir Fuzzing-Instrumentierung: Implementierung und
Evaluierung eines Tools, das Funktionsabdeckungsinformationen in modifizierte
ESP32-Binaries integriert und somit die Eignung des Frameworks fiir sicherheitsre-
levante Analysen belegt.

Damit tragt dieses Kapitel wesentlich zum Gesamtziel dieser Dissertation bei, eine modulare
Grundlage fiir automatisierte Sicherheitstests von IoT-Geraten zu schaffen. Dieser Ansatz
stellt die notwendige Infrastruktur bereit, um Laufzeitinformationen effizient zu erfassen
und gezielt fiir nachgelagerte Fuzzing-Prozesse nutzbar zu machen.

3.2 Stand der Technik

In diesem Abschnitt werden Arbeiten vorgestellt, die unmittelbar als Grundlage fiir die
Umsetzung dienten. Das Ziel besteht darin, den aktuellen Stand der Technik einzuordnen,
die konzeptionelle Verwandtschaft zu verdeutlichen und den spezifischen Mehrwert des
vorgestellten Ansatzes klar herauszustellen.

Duck et al. [DGR20] entwickelten mit E9Patch einen statischen Binary Rewriter, der auf
einer Trampolin-Rewriting-Technik basiert und den langen relativen Sprung-Opcode E9
der x86-Architektur nutzt. Dieser Ansatz hat den Vorteil, dass er nur minimale Annahmen
tiber die zu modifizierende Bindrdatei trifft und keinerlei Abhéngigkeiten von Quellspra-
che, Compiler, Debugging-Informationen oder einer vollstandigen Kontrollflussanalyse
benotigt. Gleichzeitig schlie3t die Methode Binardateien aus, die selbstmodifizierenden
Code enthalten oder sich iiberschneidende Instruktionen nutzen.

Die Arbeit von Duck et al. basiert selbst zu Teilen auf der Idee von Chamith et al. [Cha+17]
und der von ihnen vorgestellten Technik des ,Instruction Punning®. Dabei werden be-
stehende Maschinenbefehle so iiberschrieben, dass sie gleichzeitig ausfithrbar bleiben
aber auch als Anker fiir neue Sprungbefehle dienen. Dies erméglicht das Einfiigen von
Analysecode, ohne den Programmfluss zu verdndern.

Der vorgestellte Ansatz basiert auf dieser Grundidee, geht jedoch in zwei wesentlichen
Punkten dartiber hinaus. Zum einen wurde die Technik nicht fiir x86-64-Linux-Binéarda-
teien eingesetzt, sondern auf die Xtensa-Architektur des ESP32 tibertragen. Da diese mit

40

3.3 Design

- - ESP32-Image-Parser - -,

I I
I |

read_flash extract_bin image2elf

Chip | Flash Dump —————— extracted.bin ———— extracted.elf
|
:
|
: Rewriting
I , .
Chip : ertel,ﬂash patched.bin & patched.elf
:
|

Abbildung 3.1: Prozess des Binary Recovery, des Rewritings und erneuten Flashens

einem vollig anderen Befehlssatz und abweichenden Speicherstrukturen arbeitet, war teil-
weise eine methodische Neuentwicklung erforderlich. Zum anderen liegt der Fokus nicht
auf generischen Linux-Binardateien, sondern auf proprietaren IoT-Firmware-Images, die
zusatzliche Herausforderungen wie stark begrenzte Speicherressourcen mit sich bringen.

3.3 Design

Der in diesem Kapitel vorgestellte Ansatz wird im Folgenden als ESP32 Binary Rewriting
(EBR) bezeichnet, um eine konsistente Referenzierung zu ermoglichen.

Das Design besteht aus mehreren aufeinanderfolgenden Schritten: zunéachst wird die
originale Bindrdatei extrahiert. Anschlieflend erfolgt die Modifikation der Bindrdatei
durch den gezielten Einsatz verschiedener Patching-Techniken. Abschlieflend wird die
modifizierte Bindrdatei wieder auf das ESP32-Gerét geflasht.

3.3.1 Binary Recovery

Das Binary Recovery beginnt mit dem Extrahieren eines vollstandigen Flash-Dumps des
ESP32-Gerits. Danach wird die Partitions-Tabelle wiederhergestellt und ihre Informationen
verwendet, um die Anwendungs-Binérdatei zu identifizieren. Eine wichtige Umwandlung
in diesem Prozess ist das Konvertieren der wiederhergestellten Anwendungs-Binardatei
in das ELF-Dateiformat, was die anschlieBende Analyse und Modifikation vereinfacht. Die
allgemeine Idee dieses Extraktions- und Flash-Prozesses ist in Abbildung 3.1 dargestellt.

3.3.2 Rewriter

Der Rewriter besteht aus mehreren Patching-Taktiken, die jeweils spezifische Anderungs-
falle im Code behandeln, sowie einer iibergeordneten Strategie, die das gesamte Binarfile

41

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

<RIP:> <RIP+0xXXXXX/4:>

<+00> 32 ¢2 27 _I——> <+00> ... /* patch */

<+00> X6 XX XX j +0xXXXXX/4 — < .> L. /* patch */

<+03> 7c c8 & <. .> . /* patch */
<...> 32 c2 27 /* verschoben */
<...> R6 RR RR j +OxRRRRR/4

Abbildung 3.2: Anwendung der Jump-Taktik auf Xtensa

beriicksichtigt. Die einzelnen Taktiken werden in einer festgelegten Reihenfolge ange-
wendet. Schldgt eine Methode fehl, wird automatisch die nachste ausprobiert. Ein Beispiel:
Kann die Jump-Taktik an einer Stelle keinen Patch setzen, wird als Nachstes die Punned-
Jump-Taktik verwendet.

3.3.2.1 Patching-Taktiken

Die Rewriter-Komponente ist dafiir verantwortlich, die wiederhergestellte ELF-Binérdatei
zu modifizieren, um die notwendige Instrumentierung einzufiigen. Hierfiir werden ver-
schiedene Patching-Taktiken angewendet, um dies zu erreichen, ohne den urspriinglichen
Programmablauf zu verdndern.

Jump-Taktik Die Jump-Taktik beinhaltet die Umleitung des Kontrollflusses vom urspriing-
lichen Code zur neu eingefiigten Instrumentierung und dann zuriick zum urspriinglichen
Code. Dies wird erreicht, indem Sprungbefehle anstelle der urspriinglichen Instrukti-
on eingefiigt werden, die in den Trampolin-Code verschoben wird. Abbildung 3.2 zeigt
die Anwendung der Jump-Taktik auf die Xtensa-Architektur, wobei die folgende Syntax
verwendet wird: Die urspriingliche Instruktion (rot) wird entfernt und durch den Sprung-
befehl (griin) ersetzt, wobei X einen beliebigen wahlbaren Wert darstellt. Der Opcode
des Sprungbefehls hat sechs Bits, wodurch 18 Bits fiir den relativen Offset zum Zielort
iibrig bleiben. Diese 18 Bits sind als finf Xs dargestellt, wobei jedes ein halbes Byte in
hexadezimaler Kodierung reprasentiert, aber mit /4 (logische Rechtsverschiebung um
2 Bits) versehen wird, um anzugeben, dass die zwei Most Significant Bits (MSBs) abge-
schnitten werden, da sie Teil des Opcodes sind. Dieser Sprungbefehl verweist nun auf
den Beginn des Trampolins (rechte Seite in der Abbildung), an dem der Patch eingefigt
wird, einschlie3lich der urspriinglichen Instruktion am Ende. Die letzte Instruktion im
Trampolin zeigt auf die erste Instruktion nach dem Sprung.

Punned Jump-Taktik Die Punned Jump-Taktik ist eine Variante der Jump-Taktik, die
verwendet wird, wenn die Zielinstruktion, die durch den Sprungbefehl ersetzt werden soll,
eine kurze 16-Bit-Instruktion und keine 24-Bit-Instruktion ist. In solchen Fallen kann das
erste Byte der folgenden Instruktion in die aktuelle Instruktion integriert werden, eine
Technik, die als Instruction Punning [Cha+17] bekannt ist. Abbildung 3.3 zeigt die Punned

42

3.3 Design

<RIP:> <RIP+0x7cXXX/4:>

<+00> 9b 32 _I——><+oo> /* patch */

<+00> X6 XX j +0x7cXXX/4 — <L> L. /* patch */

<+02> c8 R ¢ < o> /* patch */
<...> 9b 32 /* verschoben */
< > R6 RR RR j +OxRRRRR/4

Abbildung 3.3: Anwendung der Punned Jump-Taktik auf Xtensa

<RIP+0XY6XXX/4:>
> <+00> ... /* patch */
<. o> L. /* patch */
<RIP:> < L0> L. /* patch */
<+00>—9b-32
<...> 9b 32 /* verschoben */
<+00> X6 XX j +OXY6XXX/4
J TUx / l_<...> R6 RR RR jmp +OxRRRRR/4
<+02>—Fe——€8
<+02> Yy j +0x79YYY/4 &:_I_
<+05> 33 10 < > <RIP+0x02+0x79YYY/4:>
<+00> 7c c8 /* opfer x/
<+02> S6 SS SS jmp +0xSSSSS/4

Abbildung 3.4: Anwendung der Successor Eviction-Taktik auf Xtensa

Jump-Taktik. Zuséatzlich zur obigen Erklarung gibt es nun das gepunte Byte der folgenden
Instruktion (orange), das nicht geédndert werden kann und den Bereich des Sprungbefehls
einschrankt. Je nach Programm kann es schwieriger sein, freien Speicherplatz fiir das
Trampolin zu finden. Diese Einschrankung wird bewusst in Kauf genommen, um neue
Méglichkeiten zu erdffnen: So ist es moglich, den Sprung in engen Bereichen einzufiigen
und den Patch in Situationen zu verwenden, die sonst unmoglich wéren.

Successor Eviction-Taktik Wenn die Punned Jump-Taktik nicht erfolgreich ist, kann die
Successor Eviction-Taktik verwendet werden, bei der auch die nachste Instruktion an einen
anderen Codebereich verschoben wird (mit einer der oben genannten Taktiken). Wenn
sowohl die urspriingliche Instruktion als auch ihre Nachfolger verschoben werden, gibt es
zusétzliche Optionen, um ungenutzte Codepositionen zu finden. Die verschobenen Instruk-
tionen werden an eine neue Adresse innerhalb der Binardatei verlegt, und der Kontrollfluss
wird angepasst, um sicherzustellen, dass das Programm weiterhin korrekt ausgefithrt wird.
Abbildung 3.4 zeigt diese Taktik. Im Vergleich zur letzten Patching-Taktik gibt es nun zwei
Ersetzungen, die fiir Situationen vorgesehen sind, in denen die Instruction-Punning-Taktik
keinen geeigneten Bereich fiir den Trampolin-Code findet.

Neighbor Eviction-Taktik Die Neighbor Eviction-Taktik ist eine mogliche Option, falls die
Successor Eviction-Taktik fehlschlagt und ist ihr ahnlich, aber sie verschiebt eine Instruk-

43

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

<RIP+0x05+0x39YYY/4:>

<RIP:> > <+00> ... /* patch */
<+00>—9p—32 < o> L. /* patch */
<+00> cc 10 bnez.n a0, +0x05-— < L> L. /* patch */
<+02> 7c c8 c. ¢ <...> 9b 32 /* verschoben */
<+04>—F9-33—10 |——<. ..> R6 RR RR j +OxRRRRR/4
<+04> X6 j +0xY6YYX/4
<+05> Y6 YY j +0x39YYY/4 £ L
<+07> 72 . « <RIP+0x04+Y6BYYX/4:>

> <+00> 79 33 10 /* opfer */

—<+03> S6 SS SS jmp +0xSSSSS/4

Abbildung 3.5: Anwendung der Neighbor Eviction-Taktik auf Xtensa

tion nach dem Patchpunkt. Dieser Ansatz, der in Abbildung 3.5 gezeigt wird, bietet noch
mehr Flexibilitat bei der Suche nach ungenutzten Codepositionen. Da die Xtensa ISA kei-
nen kurzen relativen Sprung bietet, nutzt diese Taktik die bnez.n-Verzweigungsinstruktion,
einen 16-Bit-Befehl, der einen relativen Sprung ausfiihrt, wenn ein Register ungleich null
ist. Das a0-Register enthélt die Riicksprungadresse und sollte daher niemals null sein, was
zu einem garantierten Sprung fiihrt.

3.3.2.2 Patching-Strategie

Fiir jede Ersetzung werden so lange nacheinander verschiedene Taktiken versucht, bis
eine erfolgreich angewendet werden kann. Wenn die letzte Taktik fehlschligt, kann das
Patch nicht angewendet werden.

Alle Ersetzungen werden in umgekehrter Reihenfolge angewendet, das heif3t, das Pat-
chen beginnt bei hoheren Speicheradressen und setzt sich zu niedrigeren Adressen fort.
Dieses Vorgehen verhindert, dass nachfolgende Bytes ,blockiert” werden, die ebenfalls
verdndert werden miissen. Zur Verdeutlichung sei das Beispiel der Punned Jump-Taktik in
Abbildung 3.3 betrachtet: Dort miisste auch die zweite Instruktion verschoben werden.
Wiirde man hingegen in normaler Reihenfolge patchen und zuerst die erste Instruktion
andern, wire das erste Byte der zweiten Instruktion bereits iiberschrieben und somit fiir
ein weiteres Patch nicht mehr zugénglich. Durch die umgekehrte Reihenfolge wird dieses
Problem vermieden, da die zweite Instruktion zuerst gepatcht wird und das Instruction
Punning der ersten Instruktion anschlieffend weiterhin korrekt mit dem neuen Byte Y6
durchgefithrt werden kann.

3.4 Implementierung

Im Folgenden wird die Implementierung des im vorherigen Abschnitt besprochenen
Designs vorgestellt. Die Implementierung ist speziell auf das ESP32-WROOM-32-Modell
ausgelegt, welches eine weit verbreitete Version des ESP32 ist.

44

3.4 Implementierung

Rewriter + ElfWrapper |,

Assembler Disassembler

Abbildung 3.6: Beziehung der Hauptkomponenten des ESP32 Binary Rewriting Tools

3.4.1 Binary Recovery

Zunichst wird ein vollstandiger Flash-Dump des Ziel-ESP32-Gerats mithilfe von Es-
ptool! extrahiert. AnschlieRend wird das ESP32-Image-Parser-Tool? verwendet, um das
Anwendungs-Image aus dem Flash-Dump zu lokalisieren und in das ELF-Format zu trans-
formieren. Da dieses Tool veraltet ist, waren mehrere Fehlerkorrekturen erforderlich, um
eine funktionsfahige Analyseumgebung bereitzustellen.

3.4.2 Rewriter

Das Rewriting-Tool ist der Hauptbeitrag und wird verwendet, um die wiederhergestellte
Bindrdatei zu modifizieren und die notwendige Instrumentierung fiir Aufgaben wie Fuzzing
einzufiigen. Abbildung 3.6 zeigt die Beziehung zu den anderen Komponenten.

Der Rewriter ist so strukturiert, dass er die zukiinftige Entwicklung von Tools unter-
stutzt. Es wurde ein neuer Assembler und ein Adapter fiir den Radare2-Disassembler
implementiert. Die ModifyElf-Bibliothek ermdoglicht die Manipulation von ELF-Binar-
dateien. Sie kapselt die Komplexitat des ELF-Formats und bietet sowohl eine Low-Le-
vel- als auch eine High-Level-Schnittstelle. Die Low-Level-Schnittstelle wird von der
ElfRaw-Klasse bereitgestellt, die detaillierte und prézise Modifikationen erméglicht, wah-
rend die ELfwWrapper-Klasse eine abstraktere Schnittstelle fiir eine einfachere Handhabung
bietet.

3.4.2.1 Patching-Taktiken

Jede Patching-Taktik nimmt den Patch-Standort und den Patch-Code als Eingabe und
gibt zuriick, ob der Patch-Versuch erfolgreich war oder nicht. Ein optionaler Parameter
ermoglicht es, die Reihenfolge zu bestimmen, sodass die verschobene Anweisung vor oder

1ht‘cps://gi‘chub .com/espressif/esptool/
2ht‘cps://gi‘chub .com/tenable/esp32_image_parser

45

https://github.com/espressif/esptool/
https://github.com/tenable/esp32_image_parser

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

nach dem Patch-Code ausgefiithrt wird, wobei der Standardwert die Ausfithrung vor dem
Patch-Code ist.

3.4.2.2 Patching-Strategie

Die Funktion mit dem Namen Patching-Strategie nimmt eine Liste von Patches und
versucht, sie in umgekehrter Reihenfolge an ihren Zielort anzuwenden. Fiir jeden Patch
wendet die Funktion sequenziell die verfiigbaren Patching-Taktiken an. Derzeit wird zuerst
die Jump-Taktik versucht, gefolgt von der Punned Jump-Taktik.

Die Methode gibt Feedback zum Erfolg jedes Patch-Versuchs und fasst am Ende die Abde-
ckungsinformationen zusammen.

3.4.2.3 Assembler

Der Assembler erzeugt Code, der keine weitere Verlinkung erfordert. Damit der Assembler
Instruktionen mit relativen Offsets wie Spriingen oder relativen Ladeanweisungen korrekt
kodieren kann, wird eine Startadresse zusammen mit den Anweisungen als Stream als
Eingabe verwendet.

Der Assembler unterstiitzt die grundlegenden Funktionen der Assemblersprache: die Ko-
dierung mehrerer Xtensa-Assembler-Anweisungen aus der Xtensa ISA-Zusammenfassung,
Assembler-Direktiven wie .align 4 fiir 4-Byte-Ausrichtung, Labels fiir Code-Standorte
und Kommentare [Cad22].

3.4.3 Flashen nach dem Binary Rewriting zuriick auf das Gerat

Sobald das Rewriting abgeschlossen ist, kann die Binardatei vom ELF-Format wieder in
das ESP-Anwendungsformat konvertiert und zuriick auf das Gerat geflasht werden.

Die im Rewriting-Befehl angegebene Adresse muss die gleiche Adresse sein, von der
die Binardatei wiederhergestellt wurde. Andernfalls kann der Bootloader die Datei nicht
finden. Diese Adresse kann in der wiederhergestellten Partitionstabelle nachgeschlagen
werden.

3.5 Proof of Concept

Der Binary Rewriter hat verschiedene Anwendungsmoglichkeiten, wie das Einfiigen be-
liebigen Codes oder das Anwenden von Drittanbieter-Sicherheitspatches, ohne den Kon-
trollfluss des Originalprogramms zu dndern. Um das Potenzial des Tools zu demonstrieren,
wurde ein PoC entwickelt, das sich auf die Instrumentierung fiir Fuzzing konzentriert.
Dieses Tool wurde entwickelt, um das Potenzial des Binary Rewriters zu zeigen. Daher kon-
zentriert es sich nur auf das Sammeln von Abdeckungsinformationen fiir Funktionsaufrufe,
ohne Verzweigungen oder Schleifen zu verfolgen.

46

3.5 Proof of Concept

3.5.1 Entwicklung eines Beispiel-Tools

Drei Optionen wurden in Betracht gezogen, um die Zahler zu implementieren, die benotigt
werden, um Abdeckungsinformationen fiir das Fuzzing zu sammeln:

+ Flash-Speicher: Die Nutzung eines ungenutzten Bereichs des Flash-Speichers zur
Speicherung von Zahlervariablen kann zu Leistungsverbesserungen fithren. Aller-
dings birgt dieser Ansatz Risiken, beispielsweise das Verlieren der gespeicherten
Informationen bei einem Stromausfall oder einem Geréteabsturz. Dies ist besonders
problematisch fiir Fuzzing, bei dem gezielt nach Abstiirzen gesucht wird.

« Non-Volatile Storage (NVS)-Partition: Das Hinzufiigen einer NVS-Partition zum
Firmware-Image, um Zahlerinformationen zu speichern, kann eine effiziente Losung
darstellen. Allerdings erfordert dies eine Modifikation der Partitionstabelle und die
Implementierung des NVS-Zugriffs in Assembler.

« Uberwachungsnachrichten: Das Senden von eindeutigen Funktionskennungen
an ein verbundenes Gerit durch Uberwachungsnachrichten ermoglicht das Zahlen
von Funktionsaufrufen. Auf dem ESP32 werden Daten, die an stdout und stderr
gesendet werden, z.B. iiber printf, an ein Uberwachungsgerit weitergeleitet. Diese
Option ist am einfachsten zu implementieren, stoit jedoch an ihre Grenzen, wenn
man Abdeckungsinformationen fiir alle Funktionen erfassen mochte. Der Grund
dafiir ist, dass das Einfiigen eines Zahlers am Beginn einer Funktion wie printf und
aller von ihr aufgerufenen Funktionen eine Endlosschleife erzeugen wiirde.

Fir den PoC wurden Uberwachungsnachrichten iiber die printf-Funktion implemen-
tiert, da dies fiir die Aufgabe die natiirlichste Option darstellt. Wéahrend das Fuzzing
von Standardbibliotheksfunktionen wie printf fiir eine umfassende Software-Sicherheit
grundsatzlich wichtig ist, stellt das Fehlen dieser Moglichkeit hier einen vernachléssigbaren
Nachteil dar, da der Fokus auf benutzerdefiniertem Anwendungscode liegt.

3.5.2 Implementierung des Beispiel-Tools

In diesem Abschnitt wird die Implementierung des Beispiel-Tools néher erldutert. Da-
bei werden das Speicherlayout und das String-Handling auf dem ESP32, die Erzeugung
von Patch-Code sowie die Auswahl vorhandener Strings und Register fiir die Instrumen-
tierung behandelt. Abschlieflend werden die Anwendungspunkte der Patches und die
Uberwachungsstrategie erlautert.

3.5.2.1 Strings auf dem ESP32

Auf dem ESP32 werden Strings im Abschnitt . flash. rodata gespeichert. Die 24-Bit-In-
struktionsgrofle der Xtensa-ISA erlaubt es nicht, 32-Bit-absolute Adressen direkt zu ko-
dieren, und die 132r-Instruktion, die zum Laden von 32-Bit-Werten verwendet wird, hat
einen begrenzten Bereich. Daher werden Zeiger auf Strings am Anfang des Abschnitts

47

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

.flash. text abgelegt und mit der 132r-Instruktion in Register geladen, bevor printf
aufgerufen wird.

<.flash.rodata:>

0x374041a8: 48 65 6¢c 6Cc 6 ; Hello
20 77 6f 72 6¢c ; Worl
64 21 00 ; dINO

<.flash.text:>

0x400d0618: a8 41 40 3f ; pointer to 0x3f4041a8
0x400d500f: al 82 ed ; 132r all, -0x049f7
0x400d5012: e5 77 05 ; call8 <printf>

Listing 3.1: Strings auf dem ESP32

3.5.2.2 Patch-Code

Erste Versuche, benutzerdefinierte Strings im Patch-Code zu verwenden, schlugen fehl,
vermutlich aufgrund von Einschrankungen beim Zugriff auf den Speicher oder Problemen
bei der Codeausrichtung, die verhindern, dass die Hardware Bytes direkt aus dem Abschnitt
.flash. text liest. Es zeigte sich jedoch, dass die Nutzung vorhandener Strings innerhalb
der Binardatei, wie sie von Systemfunktionen verwendet werden, eine effektive Alternative
fir Instrumentierungszwecke darstellt.

Es ist wichtig zu beachten, dass die Fahigkeit, benutzerdefinierte Strings in die Bindrdatei
einzufiigen, in bestimmten Szenarien wiinschenswert sein mag, jedoch keine kritische
Anforderung fiir viele Formen der Sicherheitstests wie Fuzzing oder abdeckungsbasierte
Instrumentierung darstellt. Das Hauptziel des Rewriters ist es, beobachtende Instruktionen
einzufiigen, ohne den Kontrollfluss der Firmware zu verandern, und dieses Ziel wird
unabhéngig von der Quelle der Strings erreicht. Daher bietet die Verwendung von bereits
vorhandenen Strings eine praktische Losung, ohne die Niitzlichkeit oder Wirksamkeit des
Frameworks zu beeintrachtigen.

Daher wurden bestehende Strings in der Bindrdatei verwendet, wobei mehrere Kriterien
beriicksichtigt wurden:

« Verfiigbarkeit: Der String muss in allen ESP32-Binardateien vorhanden sein. Strings
in FreeRTOS, einem kleinen Betriebssystem, das hdufig in ESP32-Anwendungen
verwendet wird, und in den in ESP32-Code kompilierten Funktionen erfiillen dieses
Kriterium.

« Position: Der Zeiger auf den String muss nahe genug an der 132r-Instruktion liegen,
damit diese ihn laden kann.

« Struktur: Der String muss einen 32-Bit-Integer als letzten Parameter akzeptieren.
Dadurch kann die Datenstruktur, die die aktuelle Adresse des Funktionsaufrufs
enthilt, direkt ohne zusitzliche Konvertierungen ausgegeben werden.

48

3.5 Proof of Concept

Der String W (%lu) %s: Flash clock frequency round down to %d“ wurde ausgewihlt
und gekiirzt. Sein Zeiger und die Adresse der printf-Funktion miissen beim Initialisieren
des Tools vorhanden sein.

Die Kernfunktion add_fuzzing_counter setzt den Patch-Code zusammen, 14dt den String-
Zeiger, schneidet den String ab, 1adt die Zahleradresse und ruft printf auf.

def add_fuzzing_counter(self, addr:int):
fuzzing_counter_patch = [

" 132r alo, " + hex(self.__addr_string_pointer),
" addi alo, alO, 52", # Kuerze den Anfang des Strings
" j jmplabel", # Springe (jump) ueber den Data Block
" .align 4",
"addrlabel: .uint32 " + hex(addr),
"jmplabel: 132r all, addrlabel", # Immer -4
! call8 " + hex(self.__addr_printf_function)

self.rewriter.add_patch(addr, fuzzing_counter_patch, moved_after_patch=
True)

Listing 3.2: Definieren des Patches

Die Register al0 und all konnen gefahrlos verwendet werden, da das Registerfenster
wiahrend des Funktionsaufrufs um 8 verschoben wurde und somit keine wichtigen Daten
iiberschrieben werden.

Patches werden auf die entry-Instruktion angewendet, die den Startpunkt jeder Funk-
tion markiert. Dadurch wird sichergestellt, dass jeder Zahler nur einmal pro Funkti-
onsaufruf ausgelost wird, da der Kontrollfluss innerhalb eines Funktionsaufrufs nie zur
entry-Instruktion zuriickkehrt.

3.5.2.3 Uberwachung

Ein Uberwachungsskript wurde implementiert, um die printf-Ausgaben auf dem Uber-
wachungsgerit zu sammeln, Daten aus dem stdout-Stream zu filtern und Adressen zu
zéhlen, die vom Patch-Code gesendet werden. Nach einer festgelegten Zeit wird das Zéhlen
gestoppt und die Ergebnisse werden angezeigt.

3.5.3 Verwendung des Beispiel-Tools

Mithilfe des Beispiel-Tools kann nun Fuzzing-Instrumentierung in eine bestehende Binar-
datei eingefiigt werden. Nach dem Zuriickflashen auf das Gerét werden die Ergebnisse
mithilfe des Uberwachungsskripts gesammelt.

49

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

Zunichst muss das Tool durch Angabe des Pfads zur extrahierten Binérdatei initialisiert
werden. AnschlieSend konnen Fuzzing-Zahler hinzugefiigt werden. Der Benutzer muss
derzeit die Adressen selbst identifizieren, an denen die Zahler platziert werden sollen. Dies
kann beispielsweise mithilfe eines Disassemblers erfolgen. Diese Adressen werden tiber
die Methode add_fuzzing_counter eingebunden. Zudem muss das Framework dariiber in-
formiert werden, wo zusétzlicher Code sicher eingefiigt werden kann, ohne die bestehende
Funktionalitat zu beeintrachtigen. Dies erfolgt mit der Methode add_free_space. Dieser
Schritt ist entscheidend fiir die Integritat und die korrekte Ausfithrung des Programms.

Nach Abschluss dieser Schritte konnen die Patches angewendet werden. Dabei werden
die neuen Instruktionen korrekt in die Binardatei eingefiigt, mit der bestehenden Co-
de-Struktur ausgerichtet und Spriinge angepasst. AbschlieBend muss die umgeschriebene
ELF-Binardatei gespeichert und auf das Gerat zuriickgeflasht werden.

inserter = Fuzzing_Instrumentation_Inserter(’'extracted.elf’)
inserter.add_fuzzing_counter(0x400e248c)
inserter.add_fuzzing_counter(0x400d4fc0)
inserter.add_fuzzing_counter(0x400d4fdc)

inserter.add_free_space(0x400e23a8, 0x400e2489)

inserter.apply_patches()
util.save_file("patched.elf", inserter.get_elf_bytes())

Listing 3.3: Verwendung des Beispiel-Tools

Nachdem das Binary Rewriting abgeschlossen ist und die Bindrdatei auf das Gerét zuriick-
geflasht wurde, kann das Uberwachungsskript ausgefithrt werden, um die Abdeckungs-
informationen zu sammeln. Das Skript verfolgt die printf-Aufrufe, die vom Patch-Code
ausgefiithrt werden. Nach Abschluss des Durchlaufs werden die Ergebnisse angezeigt.

> python3 monitoring.py
[COUNTER] 0x400d4fdc
[COUNTER] 0x400d4fcoO
[...]
[COUNTER] 0x400e248c
[FINISHED] Found 3 counters in 30 seconds!

Listing 3.4: Ausfithren des Uberwachungsskripts

3.6 Einschrankungen und Ausblick

Wihrend dieser Forschung wurden mehrere Einschrankungen festgestellt. Eine wesent-
liche Einschriankung ist der begrenzte Speicherplatz auf dem ESP32-Gerét fur Patches.

50

3.6 Einschrinkungen und Ausblick

Wihrend kleine Patches in Pufferbereichen untergebracht werden kénnen, erfordern
groBere Anderungen moglicherweise eine Erweiterung der bestehenden Codeabschnitte
innerhalb der Binirdatei oder eine Modifikation des Bootloaders, um zusitzlichen Code
beim Starten zu laden.

Ein Satz von Instruktionen, der derzeit nicht verschoben werden kann, sind Instruktionen
mit relativen Offsets, die in diese eingebettet sind. Die Umsiedlung dieser Instruktionen
wiirde eine Neuberechnung ihrer Offsets erfordern. Dies zu vermeiden, ist eine grundle-
gende Designphilosophie von Trampolin-Rewritern.

Die aktuelle Implementierung unterstiitzt nur eine begrenzte Anzahl von Assembler-In-
struktionen, was die Komplexitit der anwendbaren Patches einschrankt. Dariiber hinaus
sind die aktuellen Patch-Strategien auf die Jump- und Punned Jump-Taktiken beschrankt.
Die Implementierung der Taktiken Successor Eviction und Neighbor Eviction, die beide ei-
ne tiefere Integration eines Disassemblers erfordern, wiirde die Erfolgsrate der erfolgreich
angewendeten Patches erhohen.

Zukiinftige Arbeiten konnten sich auf die Behebung der identifizierten Einschrankungen
und die Verbesserung der Fahigkeiten des Binary Rewriters konzentrieren. Ein méglicher
Verbesserungsbereich ist die automatische Erweiterung von Binédrabschnitten, insbesonde-
re des . flash.text-Abschnitts, um zusatzlichen Raum fiir das Patchen zu schaffen, ohne
andere Teile der Binirdatei zu beeinflussen. Dartiber hinaus wiirde die Erweiterung der
Assembler-Unterstiitzung auf den vollstandigen Bereich der Xtensa ISA-Instruktionen oder
die Integration eines externen Assemblers eine grof3ere Flexibilitat bei der Anwendung
komplexerer Patches bieten.

Die Patch-Taktiken Successor Eviction und Neighbor Eviction waren fiir das PoC-Tool
nicht erforderlich und wurden daher nicht implementiert. Komplexere Programme wiirden
erheblich von ihrer Implementierung profitieren. Neben diesen beiden Taktiken konnte
die Untersuchung neuer Patch-Taktiken, die spezifische Merkmale der Xtensa-Architektur
nutzen, ebenfalls die Effizienz des Rewriters steigern.

Die Reverse-Order-Patching-Strategie ist zwar effektiv, aber moglicherweise nicht in allen
Szenarien optimal. Die Verbesserung der Patch-Strategien durch Experimente mit heuris-
tischen oder zufallsgestiitzten Ansatzen konnte die Erfolgsrate der Patch-Anwendungen
weiter erh6hen.

Der Fuzzing-Instrumentierungs-Inserter wurde als PoC ausgewahlt, da er ein vielver-
sprechender Anwendungsfall fiir das Binary-Rewriting-Framework ist. Wie dargestellt
wurde, zeigt das Tool grofles Potenzial fiir Sicherheitstests von Drittanbietern, muss jedoch
weiterentwickelt werden, bevor es in realen Szenarien angewendet werden kann. Dies
konnte die automatische Erkennung der Fuzzing-Instrumentierungspositionen und die
Hinzufiigung von Zahlern fiir Schleifen und Verzweigungen umfassen.

51

3 ESP32 Code-Injektion bei unverdndertem Kontrollfluss mittels Binary Rewriting

3.7 Zusammenfassung

Mithilfe des in diesem Kapitel vorgestellten Ansatzes wurde die bestehende Liicke bei der
Unterstiitzung von Tools fiir unabhéngige Sicherheitsexperten geschlossen, um proprietare
ESP32-Firmware analysieren und testen zu konnen. Der neuartige Ansatz besteht in der
Entwicklung eines Binary-Rewriting-Frameworks, das erstmals die gezielte Instrumentie-
rung proprietarer ESP32-Firmware ohne Verdnderung der urspriinglichen Funktionalitét
und des Kontrollflusses erméglicht. Durch die Integration von Fuzzing-Zahlern und die
Nutzung von Codeabdeckungsinformationen konnen verschiedene Ausfithrungspfade
effizienter erkundet und potenzielle Sicherheitsliicken gezielter identifiziert werden.

Das Framework vereinfacht den Prozess der Firmware-Analyse und -Modifikation, indem
es die extrahierte Firmware in ein besser handhabbares Format konvertiert, wodurch pra-
zise Anderungen vorgenommen werden konnen, wihrend die Integritit des Originalcodes
gewahrt bleibt. Es fithrt neue Patch-Methoden ein, die speziell auf die Xtensa-Archi-
tektur zugeschnitten sind und etablierte Techniken an die spezifischen Bediirfnisse von
ESP32-Geriten anpassen. Die Wirksamkeit des Frameworks wurde durch ein Proof of Con-
cept demonstriert, das erfolgreich Codeabdeckungsinformationen zu ESP32-Binéirdateien
hinzufiigte. Dieser Ansatz umfasst das Einfiigen eines Zahlers, der die Anzahl der Ausfiih-
rungen eines bestimmten Codeabschnitts erfasst. Durch die Verwendung dieses Feedbacks
kann der Fuzzer verschiedene Ausfithrungspfade effizienter erkunden, was die Wahr-
scheinlichkeit erhoht, Fehler und Sicherheitsliicken zu finden. Dies zeigt das Potenzial
fur die Weiterentwicklung des Frameworks, um die Sicherheit von ESP32-Firmware zu
verbessern.

Zukiinftige Arbeiten sollten sich darauf konzentrieren, die Vielseitigkeit des Frameworks
durch die Implementierung zusatzlicher Patch-Taktiken zu erweitern und neue zu ent-
wickeln, insbesondere um komplexere Patch-Szenarien anzugehen. Eine fortlaufende
Verfeinerung dieses Frameworks wird seine Fahigkeiten erweitern und die Sicherheits-
analyse von ESP32-Geraten weiter unterstiitzen.

3.8 Fazit

Die vorgestellten Ergebnisse zum Binary Rewriting zeigen, dass eine gezielte Instru-
mentierung von ESP32-Firmware auf Binirebene technisch realisierbar ist. Damit wurde
eine zentrale Grundlage geschaffen, um Laufzeitinformationen wie Codeabdeckung und
Kontrollfluss direkt zu erfassen und fiir automatisierte Sicherheitsanalysen nutzbar zu
machen.

Gleichzeitig hat sich jedoch gezeigt, dass Fuzzing und dynamische Analysen auf realer
Hardware aufgrund begrenzter Ressourcen, langsamer Ausfithrungszeiten und einge-
schrankter Skalierbarkeit nur eingeschrankt praktikabel sind. Die erzielten Ergebnisse
verdeutlichen somit die Notwendigkeit, ergéinzende Ansatze zu verfolgen, die eine effizien-
tere und flexiblere Testdurchfithrung erméglichen. Aus diesem Grund wird im folgenden
Kapitel ein Framework zur Emulation von ESP32-Firmware in QEMU vorgestellt.

52

4 Fuzzing von ESP32-Mikrocontrollern
mittels QEMU-Emulation

Fiir dieses Kapitel bietet eine gemeinsame Veroffentlichung mit Sven Nitzsche, Max Eisele,
Roland Groll, Jirgen Becker und Ingmar Baumgart die Grundlage. Teile der Ergebnisse
wurden bereits in der unten genannten Publikation verdffentlicht. Es wird ein emu-
latorbasiertes Fuzzing-Framework fiir ESP32-IoT-Geréte vorgestellt, das es ermdglicht,
ESP32-Anwendungen effizient in virtuellen Umgebungen zu testen und Sicherheitsliicken
deutlich schneller aufzudecken als durch klassisches Fuzzing auf realer Hardware.

« Matthias Borsig, Sven Nitzsche, Max Eisele, Roland Groll, Jirgen Becker und
Ingmar Baumgart. ,Fuzzing Framework for ESP32 Microcontrollers®. In: 2020 IEEE
International Workshop on Information Forensics and Security (WIFS). IEEE, Dez.
2020, S. 1-6. DOI: 10.1109/wifs49906.2020.9360889 [Bor+20].

4.1 Einleitung

Die im vorherigen Kapitel vorgestellten Techniken zur Instrumentierung auf Bindrebene
haben gezeigt, dass sich ESP32-Firmware gezielt erweitern lasst, um Laufzeitinformationen
wie Codeabdeckung und Kontrollfluss direkt zu erfassen. Diese Methoden bilden die
Grundlage fiir automatisierte Sicherheitsanalysen, stoffen jedoch auf praktische Grenzen:
Begrenzte Hardware-Ressourcen, langsame Ausfithrung und eingeschrankte Skalierbarkeit
limitieren das Fuzzing direkt auf dem IoT-Gerit.

Zur Uberwindung dieser Einschrankungen wird in diesem Kapitel ein Fuzzing-Framework
fiir die ESP32-Xtensa-Architektur vorgestellt. Es verlagert die Analyse von ESP32-Firmware
vollstdndig in eine emulierte Umgebung. Dieser Ansatz entkoppelt den Testprozess von
der physischen Hardware und ermoglicht umfangreiche, parallele und automatisierte
Fuzzing-Kampagnen. Damit wird ein zentraler Baustein des Gesamtziels dieser Disserta-
tion adressiert, ndmlich die effiziente Identifikation von Schwachstellen in proprietarer
ESP32-Firmware.

Das Fuzzing-Framework basiert auf dem Emulator QEMU und kombiniert einen angepass-
ten ESP32-Fork! mit einer erweiterten Implementierung von Honggfuzz?, einem QEMU-
basierten feedbackgesteuerten Fuzzer. Um dies zu erméglichen, waren mehrere technische

1ht‘cps://gi‘chub .com/espressif/gemu
thtps://github .com/thebabush/honggfuzz-qgemu

53

https://github.com/espressif/qemu
https://github.com/thebabush/honggfuzz-qemu

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

Erweiterungen notwendig, insbesondere die Anpassung der Emulationsumgebung an die
Xtensa-Architektur und die Implementierung feingranularer Codeabdeckung-Feedback-
Mechanismen.

Die wesentlichen Beitrage lassen sich wie folgt zusammenfassen:

« Anpassung von QEMU an die Xtensa-Architektur: Erweiterung des QEMU-E-
mulators zur prazisen Ausfithrung von ESP32-Firmware und zur Unterstiitzung der
Instrumentierung fiir Laufzeitanalysen. Diese Funktionalitat war zuvor in keinem
verfiigbaren Fuzzing-Tool vorhanden.

+ Integration von QEMU und Honggfuzz: Entwicklung eines kombinierten Fra-
meworks, das ESP32-spezifische Emulation mit einem QEMU-basierten feedbackge-
steuerten Fuzzer verbindet und so automatisierte Whitebox-, Greybox- und Black-
box-Fuzzing-Kampagnen ermdglicht.

« Implementierung feingranularer Codeabdeckung-Feedback-Mechanismen:
Nutzung der internen Strukturen des QEMU-Binary-Translators, um Basisblocke
und Vergleichsinstruktionen abzufangen und an Honggfuzz weiterzugeben. Dies
erhoht deutlich die Prazision, indem die Codeabdeckung analysiert wird.

+ Praktische Evaluation und Machbarkeitsnachweis: Validierung des Frameworks
anhand einer kommerziellen IoT-Lampe (LIFX Mini). Dabei konnten mehrere Abstiir-
ze und eine sicherheitsrelevante Nullzeiger-Dereferenzierung identifiziert werden.
Besonders hervorzuheben ist die signifikant hohere Performance: bis zu 320 Einga-
ben pro Sekunde im Greybox-Fuzzing, im Vergleich zu 80 Eingaben pro Sekunde fiir
reines Whitebox-Fuzzing und nur 4 Eingaben pro Sekunde mit compilerbasierter
Instrumentierung.

Das Framework unterstiitzt verschiedene Fuzzing-Ansétze, einschliellich Whitebox-, Grey-
box- und Blackbox-Fuzzing, und bietet dadurch eine hohe Flexibilitat fiir unterschiedliche
Anwendungsszenarien. Das Fuzzing-Framework schlief3t damit eine wesentliche Liicke in
der Landschaft der verfiigbaren Tools und zeigt, dass die Kombination aus Emulation und
Fuzzing die Analyse proprietarer ESP32-Firmware deutlich effizienter gestaltet.

Als Machbarkeitsnachweis wurde das Fuzzing-Framework erfolgreich eingesetzt, um
ein kommerzielles IoT-Gerat zu analysieren. Dabei konnten innerhalb weniger Minuten
mehrere Fehler und eine potenziell sicherheitskritische Schwachstelle entdeckt werden,
was die Leistungsfahigkeit und praktische Relevanz des Frameworks unterstreicht.

4.2 Stand der Technik

In diesem Kapitel werden Arbeiten vorgestellt, die entweder dhnliche methodische Ansat-
ze wie die vorliegende Dissertation verfolgen oder unmittelbar als Grundlage fiir deren
Umsetzung dienten. Ziel ist es, den aktuellen Stand der Technik einzuordnen, konzeptio-
nelle Verwandtschaften aufzuzeigen und den Mehrwert des vorgestellten Ansatzes klar
abzugrenzen.

54

4.3 Konzeption

Im Bereich der Integration von Fuzzern in Systememulatoren existieren relevante Vorar-
beiten. Hertz und Newsham [HN17] entwickelten mit TriforceAFL ein QEMU-basiertes
Fuzzing-Framework auf Basis von American Fuzzy Lop (AFL), das ganze Systeminstanzen
testen kann. Allerdings basiert dieses Projekt auf einer veralteten QEMU-Version, die nicht
mit der aktuellen ESP32-QEMU-Implementierung kompatibel ist. Die Grundidee dieser
Integration diente als Inspiration fiir die Dissertation. Sie wurde jedoch in verdnderter
Form umgesetzt: Es wird eine aktuelle QEMU-Version genutzt und eine direkte Verbindung
zu einer erweiterten ESP32-Emulation hergestellt.

Voss [Vos17] hat eine Technik entwickelt, um schwer erreichbaren Code gezielt zu testen.
Hierzu wird der Code auf dem Zielsystem bis kurz vor der Verarbeitung der relevanten
Funktion ausgefiihrt und der gesamte Systemzustand an diesem Punkt eingefroren. An-
schlieffend wird dieser Zustand in einen Emulator iibertragen, in dem generierte Testdaten
injiziert und die Ausfithrung fortgesetzt wird. Gui et al. [Gui+20] erweiterten diesen An-
satz, indem sie einen zusatzlichen Analyseprozess integrierten, der relevante Codebereiche
vor dem Fuzzing-Prozess automatisch identifiziert. Beide Arbeiten implementierten ihre
Methoden im Unicorn-Emulator [QV15], der jedoch die Xtensa-Architektur des ESP32
nicht unterstiitzt. Die Dissertation iibertragt das Prinzip des Zustandsiibertrags auf eine
QEMU-basierte ESP32-Emulation und umgeht somit diese Architekturbeschrankung.

Insgesamt greifen die in dieser Dissertation entwickelten Methoden zentrale Konzepte
bestehender Ansatze auf, wie die Integration von Fuzzern in Systememulatoren und den
gezielten Zustandsiibertrag. Im Gegensatz zu bisherigen Arbeiten werden diese Konzepte
jedoch erstmals in einer aktuellen QEMU-Umgebung mit vollstindiger Unterstiitzung
der Xtensa-Architektur des ESP32 zusammengefiihrt. Durch gezielte Erweiterungen der
Emulationsumgebung und die nahtlose Anbindung eines modernen Fuzzers entsteht ein
Setup, das den Funktionsumfang und die Anwendbarkeit bisheriger Losungen deutlich
tbertriftt.

4.3 Konzeption

Fur dieses Konzept wurde Honggfuzz als Fuzzer ausgewéhlt, da er eine gute Balance
zwischen Leistungsfahigkeit, einfacher Integration und Unterstiitzung fiir verschiedene
Fuzzing-Strategien bietet. Insbesondere ermdglicht Honggfuzz die Nutzung von Feed-
back tiber die Codeabdeckung, um die Eingabegenerierung gezielt zu steuern und die
verschiedenen Ausfithrungspfade effizienter zu erreichen. Dariiber hinaus verfiigt er iber
eine bestehende Schnittstelle zur Kommunikation mit externen Fuzzing-Hooks, was den
Einsatz auf dem ESP32 erheblich erleichtert. Ein Fuzzing-Hook ist ein kleines Programm
oder Skript, das Eingabedaten vom Fuzzer entgegennimmt, sie an das Testziel tibermittelt
und dabei die Antwort bzw. die Lebenszeichen iiberwacht. Im Fehlerfall meldet er dies
dem Fuzzer zuriick.

Fuzzing besteht aus drei Schritten: Fehlererkennung, Zielausfithrung und Eingabegenerie-
rung, die im Folgenden erldutert werden.

55

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

4.3.1 Fehlererkennung

Zunichst muss das Verhalten des ESP32 bei Speicherbeschadigungen untersucht werden.
Dazu wurde eine Testanwendung entwickelt, die Anfragen iiber die WLAN-Schnittstel-
le verarbeitet und das absichtliche Auslésen der fiinf Hauptursachen fiir Speicherbe-
schadigungen erméglicht (Stack- und Heap-Pufferiiberlauf, unsichere Verwendung von
printf, Nullzeiger-Dereferenzierung und doppeltes Freigeben von Speicher), basierend
auf [Mue+18].

Das Schreiben auflerhalb der Grenzen eines zugewiesenen Puffers ist auf dem ESP32
moglich. Puffer im Stack befinden sich meist in der Nahe von Riicksprungadressen, wahrend
Puffer im Heap auch neben Funktionszeigern liegen konnen. Das Uberschreiben einer
dieser Adressen fiihrt zu einem Absturz des Gerits, falls darauf zugegriffen wird. Werden
keine wichtigen Werte tiberschrieben, bleibt das ESP32 funktionsfahig und der Fehler
bleibt moglicherweise unentdeckt.

Mit Kontrolle tiber das erste Argument einer printf-Funktion ist es moglich, an bestimmte
Adressen auf dem Stack zu schreiben. Falls diese Adressen auf ungiiltige Speicherbereiche
verweisen, fithrt dies zu einem Absturz des Gerits, wodurch die Speicherbeschadigung
erkennbar wird.

Beim Dereferenzieren eines Nullzeigers und beim erneuten Freigeben eines bereits deallo-
kierten Speicherblocks stiirzt der ESP32 immer ab. Diese Arten der Speicherbeschadigung
sind daher stets beobachtbar.

Es ist wichtig zu beachten, dass der Fuzzing-Prozess eine Speicherbeschadigung nicht
unbedingt beim ersten Auftreten erkennen muss. Wahrend des Fuzzing-Prozesses werden
zahlreiche Eingaben getestet, sodass ein vorhandener Fehler, der zu einer Speicherbe-
schadigung fithrt, hochstwahrscheinlich durch verschiedene Eingaben ausgelost werden
kann. In der Regel erfolgt die Detektion durch Beobachtung von Systemabstiirzen. Im
weiteren Verlauf dieses Abschnitts wird daher auf die Identifikation von Systemabstiirzen
zuriickgegriffen, um durch das Fuzzing provozierte Fehler zu erkennen.

Zur Verbesserung der Fehlererkennung konnten Tools wie AddressSanitizer oder heuristi-
sche Methoden durch Emulation eingesetzt werden [Mue+18].

4.3.2 Zielausfiihrung mit Fuzzing-Hooks

Da der ESP32 fiir IoT-Anwendungen entwickelt wurde, wird die Eingabe normalerweise
iiber die WLAN-Schnittstelle empfangen. Daher ist das Senden der Fuzzing-Daten tiber
WLAN die bequemste Methode beim Testen auf dem tatsachlichen Gerét. Dies geschieht
durch einen sogenannten Fuzzing-Hook, der die Fuzzing-Eingabedaten wiederholt von der
Honggfuzz-Schnittstelle abrufen und an die Netzwerkadresse des Ziels senden muss. Der
Hook muss auflerdem iiberpriifen, ob das Ziel auf die Anfrage geantwortet hat. Falls keine
Antwort eingeht, wird angenommen, dass das Ziel abgestiirzt ist, und der Fuzzing-Hook
muss ein Fehlersignal an den Fuzzer senden.

56

4.3 Konzeption

Einige Ziele erfordern moglicherweise eine zuséatzliche Vitalitdtspriifung, um zu untersu-
chen, ob das Ziel durch die Anfrage nicht abgestiirzt ist. Daher wird nach dem Senden der
Anfrage mit den Fuzzing-Daten eine zusitzliche Anfrage gesendet, von der bekannt ist,
dass das Ziel darauf antwortet.

4.3.3 Feedbackgesteuerte Eingabegenerierung

Fiir die Eingabegenerierung wird der Mutationsmechanismus von Honggfuzz verwendet.
Er kann entweder durch einfache Mutation der bereitgestellten Seed-Eingaben oder durch
zusitzliche Beriicksichtigung der Codeabdeckungsinformationen des Ziels erfolgen. Fol-
gende Methoden zum Sammeln von Codeabdeckungsinformationen stehen zur Verfiigung:
Compiler-generierte Instrumentierung, Binary Rewriting und Emulation.

4.3.3.1 Compiler-generierte Instrumentierung

Der ESP32-Compiler unterstiitzt die Instrumentierung des Codes zur Generierung von
Codeabdeckungsdaten, die dann zur Laufzeit der Anwendung im Speicher des Gerits
gespeichert werden. Um die generierten Abdeckungsdaten zu verarbeiten, muss der Fuz-
zing-Hook diese Daten nach jeder getesteten Eingabe iiber eine JTAG-Debugging-Ver-
bindung herunterladen und an den Fuzzer weiterleiten. JTAG ist eine standardisierte
Schnittstelle zum Testen, Debuggen und Auslesen von Chips. Uber sie ist ein direkter
Zugriff auf interne Register, Speicher und Signalpfade moglich.

Leider werden bei dieser Methode der Codeinstrumentierung nur die ausgefithrten Basis-
blocke und keine Zweig- oder Pfadabdeckungen protokolliert.

4.3.3.2 Binary Rewriting zur Instrumentierung

Eine Moglichkeit, feedbackgesteuertes Greybox-Fuzzing auf dem ESP32 zu realisieren,
besteht darin, den Bindrcode der Anwendung gezielt zu instrumentieren. Durch diese
Code-Modifikation konnen beispielsweise ausgefiihrte Basisblocke oder Parameter von
Vergleichsinstruktionen erfasst und an den Fuzzer zuriickgemeldet werden.

Kapitel 3.1 beschreibt den Ansatz ESP32 Binary Rewriting, der gezielte Code-Injektio-
nen auf Bindrebene ermoglicht. Damit lassen sich zusétzliche Instruktionen direkt in
bestehende ESP32-Firmware einfiigen, ohne deren urspriingliche Funktionalitit oder den
Kontrollfluss zu beeintrachtigen. Dieses Verfahren erdoffnet grundsétzlich die Moglichkeit,
Messpunkte zur Erfassung der Codeabdeckung effizient in die Firmware einzubetten.

Allerdings ist Binary Rewriting nur eine von mehreren méglichen Strategien zur Instru-
mentierung. In dieser Dissertation werden im Folgenden weitere Ansitze betrachtet und
bewertet.

57

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

4.3.3.3 Codeabdeckung durch Emulation

Beim Ausfithren einer Anwendung in einer Emulationsumgebung stehen alle Metadaten
zur Programmausfithrung zur Verfiigung. Diese Transparenz ermoglicht es, den Programm-
zahler und Vergleichsparameter abzufangen, um eine feingranulare Codeabdeckung zu
berechnen.

Honggfuzz bietet hierfiir eine modifizierte QEMU-Version (QEMU-HONGFUZZ) an, die
feedbackgesteuertes Fuzzing unterstiitzt. Da die ESP32-Firmware jedoch nur in einer
vollstandigen Systememulation lauffahig ist, muss die offizielle ESP32-QEMU-Implemen-
tierung genutzt werden [Esp19]. Diese ist jedoch unvollstandig und emuliert wesentliche
Peripherien wie WLAN nicht. Daher miissen alternative Mechanismen zur Eingabeiiber-
tragung in die Anwendung entwickelt werden.

Die Nutzung einer vollstindigen Systememulation fiir Fuzzing ist in der Forschung stark
diskutiert, insbesondere hinsichtlich der Performance. Einige Studien berichten, dass Emu-
lation zwei- bis fiinfmal [Zha+18] und in Extremfallen bis zu zehnmal [Zhe+19] langsamer
sein kann als das Ausfithren auf echter Hardware. Andere Arbeiten zeigen jedoch, dass
Emulatoren — gerade bei ressourcenbeschrankten Embedded-Geraten — sogar schneller
sein konnen als das reale System [Mue+18]. Diese moglichen Unterschiede machen ei-
ne gezielte Evaluation der Performance von ESP32-QEMU fiir relevante Szenarien des
Fuzzings notwendig.

4.4 Implementierung

Das Fuzzing-Framework fiir den ESP32 nutzt verschiedene Methoden, die speziell auf die
Einschrankungen von ressourcenarmen IoT-Geréten abgestimmt sind. Das Ziel besteht in
der Entwicklung effizienter Testverfahren, die auf realer Hardware oder in Emulationsum-
gebungen eingesetzt werden konnen. Je nach Verfiigbarkeit des Quellcodes kommen dabei
unterschiedliche Ansétze zum Einsatz: Blackbox-Fuzzing ohne Quellcodezugriff, White-
box-Fuzzing mit vollem Zugriftf sowie Greybox-Fuzzing auf Basis von Instrumentierung.

4.4.1 Blackbox-Fuzzing auf ESP32-Anwendungen

Blackbox-Fuzzing ohne Beriicksichtigung der Codeabdeckung auf dem eigentlichen Gerat
ist die einfachste Methode zum Testen von ESP32-Anwendungen. Obwohl sie nicht be-
sonders vielversprechend ist, wurde sie implementiert, um eine Vergleichsgrundlage zu
schaffen.

Einige Dienste warten auf bestimmte Symbole am Ende der Eingabedaten, bevor die
Verarbeitung beginnt. Ein Header einer HTTP-Anfrage endet beispielsweise mit zwei
Zeilenumbriichen. Falls diese Zeichen nicht empfangen werden, bleibt die Verarbeitung
der Daten stecken, was den gesamten Fuzzing-Prozess blockieren konnte. Daher miissen

58

4.4 Implementierung

diese Zeichen identifiziert und von der Fuzzing-Hook an die generierten Eingabedaten
angehdngt werden, um Deadlocks zu vermeiden.

Die Absturzerkennung des Ziels muss ebenfalls an den jeweiligen Dienst angepasst wer-
den. Bei verbindungsorientierten Diensten wie TCP reicht es aus, zu iberpriifen, ob die
Verbindung korrekt beendet wurde oder ob eine Antwort vom Ziel empfangen wurde. Bei
verbindungslosen Diensten wie UDP miissen komplexere Methoden verwendet werden,
um festzustellen, ob das Ziel durch die Verarbeitung der Eingabedaten abgestiirzt ist.

Eine Moglichkeit besteht darin, nach jeder getesteten Eingabe eine Vitalitatspriifung
durchzufithren. Solche Vitalitatspriifungen sind jedoch nicht immer zuverlassig. Einge-
bettete Systeme konnen nach einem Absturz sehr schnell neu starten, sodass die Priifung
falschlicherweise eine erfolgreiche Antwort registriert.

Eine ausgefeiltere Methode zur Absturzerkennung besteht darin, Absturzsignale iiber eine
serielle Verbindung zum Zielgerat abzufangen. Wenn der ESP32 abstiirzt, gibt er immer
eine Fehlermeldung, gefolgt von einer Neustartnachricht auf der seriellen Schnittstelle,
aus. Das Abfangen dieses Neustartsignals konnte ebenfalls eine zuverlassige Moglichkeit
zur Absturzerkennung sein.

Mit dieser Methode konnte eine einfache HTTP-Server-Anwendung fiir den ESP32 mit
einer Rate von etwa 30-40 Anfragen pro Sekunde getestet werden. Diese Rate ist jedoch
zu niedrig fir effektives Fuzzing, da sie die Anzahl und Vielfalt der Testfalle begrenzt und
somit die Chance verringert, Fehler oder Sicherheitsliicken zu finden. Zudem liefert sie bei
wiederholten dhnlichen Eingaben kaum neue Erkenntnisse. Fiir aussagekraftige Ergebnisse
sind deutlich hohere Durchsatzraten und abwechslungsreichere Eingaben erforderlich.

4.4.2 Whitebox-Fuzzing mit compilerinstrumentiertem Code

Die Beriicksichtigung der Codeabdeckung einer getesteten Eingabe fiir die Eingabegene-
rierung ist notwendig, um die Effizienz des Fuzzing-Prozesses zu erhchen. Der einfachste
Weg, die Codeabdeckung zu erfassen, besteht darin, die vom Compiler generierte Codein-
strumentierung zu nutzen. Dies geschieht, indem jede zu instrumentierende Quelldatei
mit der Compileroption - coverage neu kompiliert wird. Der Compiler fiigt dadurch jedem
Basisblock Code hinzu, der z&hlt, wie oft er wihrend der Laufzeit ausgefithrt wurde und
speichert die Informationen im RAM.

Die Abdeckungsdaten werden dann iiber eine JTAG-Verbindung von dem Gerét in Hongg-
fuzz Gbertragen. Honggfuzz erstellt eine grofle Bitmap im gemeinsam genutzten Speicher,
in der die Adressen der ausgefithrten Basisblocke gespeichert werden. Jedes Bit in dieser
Bitmap entspricht einer Adresse, wobei zunichst alle Bits auf null gesetzt sind. Wird
ein Basisblock zum ersten Mal ausgefiihrt, wird das entsprechende Bit auf eins gesetzt.
Honggfuzz kann diese Bitdnderung erkennen und speichert die auslésende Eingabe als
zusatzliches Seed im Eingabeordner.

Die Nutzung solcher Compiler-generierten Abdeckungsdaten verlangsamt den Fuzzing-
Prozess um den Faktor 10, sodass beim Fuzzing der einfachen HTTP-Serveranwendung nur

59

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

etwa 4 Anfragen pro Sekunde erreicht werden. Dartiber hinaus werden mit dieser Methode
nur die ausgefiihrten Basisblocke untersucht und es kann keine feingranulare Codeabde-
ckung generiert werden. Der grofite Nachteil der Compiler-generierten Abdeckungsdaten
besteht jedoch darin, dass der Quellcode verfiigbar sein muss.

4.4.3 Whitebox-Fuzzing mit ESP32-QEMU-FUZZ

QEMU-HONGFUZZ untersucht die Codeabdeckung einer emulierten Benutzeranwendung
und leitet sie an Honggfuzz weiter. Diese modifizierte Version von QEMU wurde in die
von Espressif bereitgestellte ESP32-QEMU-Implementierung integriert. Da beide Imple-
mentierungen auf nahezu derselben Version von QEMU basieren und Modifikationen in
verschiedenen Bereichen des Codes aufweisen, war die Zusammenfithrung der beiden
Codebasen unkompliziert. Das Ergebnis ist ESP32-QEMU-FUZZ (EQF), eine Version von
QEMU, die das Fuzzing von ESP32-Anwendungen ermoglicht.

Um feedbackgesteuertes Fuzzing zu ermdglichen, muss untersucht werden, welche Basis-
blocke ausgefithrt wurden, wie in Abschnitt 4.3.3 erlautert. Die binare Ubersetzungsengine
von QEMU gruppiert Anweisungen in Basisblocke, um ihre Ausfithrung ohne Unterbre-
chung zu erméglichen. Dieser Gruppierungsmechanismus wird genutzt, um Basisblocke
fir den Fuzzing-Prozess zu bestimmen.

Durch den Einsatz eines Emulators kann eine noch feingranularere Codeabdeckung erzielt
werden, indem die Parameter von Vergleichsanweisungen berticksichtigt werden. Daher
werden die beiden Parameter einer Vergleichsanweisung wihrend der Ubersetzung der
Maschinenanweisung innerhalb des Emulators abgefangen. Die ESP32-Architektur stellt
dafiir die Funktionen strcmp und strcasecmp bereit, die zwei Zeichenfolgen entweder
exakt oder unter Ignorierung der Grof3- und Kleinschreibung vergleichen. Alle String-
Vergleichsfunktionen befinden sich an festen Adressen im nicht veranderbaren ROM des
ESP32. Dadurch ist es moglich, die Parameter der Funktionen abzufangen, wenn eine solche
Funktion innerhalb des Emulators aufgerufen wird. Der Code von Honggfuzz muss erwei-
tert werden, um diese Parameter zusatzlich zu verarbeiten. Die Parameter und die Adresse,
von der aus die String-Vergleichsfunktion aufgerufen wird, konnen auf dieselbe Weise an
Honggfuzz ibergeben werden wie die Parameter normaler Vergleichsanweisungen.

Zum Zeitpunkt dieser Untersuchung verfiigte ESP32-QEMU noch nicht iiber eine Emulati-
on des integrierten WLAN-Moduls. Erst nach der Veréffentlichung der zugrunde liegenden
Publikation [Bor+20] wurde eine entsprechende Erweiterung verdffentlicht (siehe Related
Work Abschnitt 8.3). Deshalb musste auch ESP32-QEMU-FUZZ ohne diese Komponente
auskommen. Es wurde die von QEMU bereitgestellte Ethernet-Schnittstelle genutzt, um
den Emulator mit dem Netzwerk des Hosts zu verbinden. Dabei muss die Anwendung
gegen den Ethernet-Treiber gelinkt werden, wodurch diese Kommunikationsmethode
ausschliellich fiir Whitebox-Szenarien einsetzbar ist.

Um die Eingabedaten des Fuzzers an die Netzwerkadresse des Hosts weiterzuleiten, wird ein
Fuzzing-Hook erstellt. Dieser ist dafiir verantwortlich, die Fuzzing-Eingabedaten iterativ
von Honggfuzz abzurufen und sie an die richtige Netzwerkadresse weiterzuleiten.

60

4.4 Implementierung

Zur Fehlererkennung reicht es aus, den HALT-Interrupt abzufangen, der ausgelost wird,
wenn der ESP32-Emulator abstiirzt. Dieser Interrupt signalisiert dem Emulator oder De-
bugger, dass ein kritischer Fehler oder eine Ausnahmesituation aufgetreten ist, die die
weitere Ausfithrung stoppt.

Diese Einrichtung bietet eine ausgezeichnete Moglichkeit fiir Whitebox-Fuzzing von
ESP32-Anwendungen. Fiir die TCP-Testanwendung wurden mit einem einzelnen Thread
auf einem Standard-Notebook etwa 80 Anfragen pro Sekunde erreicht. Daher kann davon
ausgegangen werden, dass die ESP32-QEMU-FUZZ-Implementierung hinsichtlich der
gesamten Netzwerk- und Datenverarbeitung schneller ist als das eigentliche Gerét.

Zusétzlich wird eine feingranulare Codeabdeckung fiir jede Eingabe zur Generierung
neuer Eingaben bericksichtigt, was die Effizienz des Fuzzing-Prozesses erhoht. Diese
Methode kann leicht skaliert werden, indem mehrere Instanzen genutzt werden. In diesem
Fall muss jede Instanz an eine eigene Netzwerkschnittstelle gebunden werden.

Mithilfe dieser Whitebox-Fuzzing-Implementierung in QEMU lassen sich automatisierte
Fuzz-Tests in moderne Continuous-Integration- und Continuous-Delivery-Entwicklungs-
zyklen integrieren. Dazu wird die Anwendung separat mit dem erforderlichen Ethernet-
Treiber sowie optionalem Platzhalter-Code fiir nicht emulierbare Hardwareteile kompiliert.
Dies betrifft beispielsweise spezielle Sensoren oder Aktoren, die hardwareseitig direkt
angeschlossen sind und nicht per QEMU emuliert werden kénnen.

4.4.4 Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ

Wie bereits erwihnt, unterstiitzt ESP32-QEMU keine WLAN-Funktionalitat. Da sich Black-
box-Firmwares mit WLAN-Funktionalitat nicht emulieren lassen, ist Blackbox-Fuzzing nur
bei netzwerkloser Firmware moglich. Da ESP32-basierte Mikrocontroller jedoch haufig
gerade wegen des kostengiinstigen WLAN-Moduls eingesetzt werden, stellt dies eine
erhebliche Einschrankung dar. Eine mogliche Losung ware die Emulation der WLAN-
Funktionalitit in ESP32-QEMU. Fiir eine korrekte Implementierung sind jedoch detaillierte
Kenntnisse der Hardware und der Treiberanforderungen erforderlich. Leider sind die
WLAN-Treiber des IoT Development Framework (IDF) Closed Source, und es gibt keine
Dokumentation zur entsprechenden WLAN-Hardware in der Dokumentation®. Um die
internen Kommunikationsmechanismen zu analysieren, wiare umfangreiches manuelles
Reverse Engineering erforderlich. Daher wurde die WLAN-Funktionalitdt nicht imple-
mentiert und kein Blackbox-Fuzzing umgesetzt. Stattdessen wird ein Greybox-Ansatz fiir
das Fuzzing von Firmware-Images verfolgt.

Um Greybox-Binary-Fuzzing zu erméglichen, wurde die Technik aus [Vos17] implemen-
tiert. Diese erlaubt es, die Datenzufuhr tiber Netzwerkschnittstellen zu umgehen. Dies
geschieht, indem ein Zustand des tatsachlichen Geréts nach dem Empfang der Daten
gespeichert und anschlielend in die Emulation tibertragen wird. Fiir den Fuzzing-Prozess
reicht es aus, den Code vom Beginn der Datenverarbeitung bis zu dessen Ende auszu-
fihren. Dies beschleunigt den Fuzzing-Prozess zusétzlich, da irrelevante Teile nicht mehr

3ht‘cps://docs .espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html

61

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

ausgefithrt werden. Um dies umzusetzen, miissen die Ein- und Ausstiegspunkte der Da-
tenverarbeitung innerhalb der Firmware identifiziert werden. Allerdings stellt fast jede
zufallige Bitfolge von zwei oder drei Bytes eine giiltige Instruktion im Xtensa-Befehlssatz
dar. Infolgedessen konnen selbst professionelle Disassemblierungsprogramme wie IDA Pro
den Xtensa-Code nicht korrekt disassemblieren. Das Auffinden der Ein- und Ausstiegs-
punkte erfordert deshalb einen hohen manuellen Aufwand.

Ein Ansatz, um diese Codebereiche zu identifizieren, ist die schrittweise Ausfithrung
der Firmware mit GNU Debugger (GDB). Ein tiefgehendes Verstiandnis des Codes ist
erforderlich, das durch das Setzen von Breakpoints und die Beobachtung der Ausfithrung
erlangt werden kann. Das Ziel ist es, Datenverarbeitungsfunktionen und Codeabschnitte
zu finden, die sich gut fiir das Fuzzing eignen. Wenn der Codeabschnitt nicht an einer
einzigen Stelle endet, miissen mehrere Ausstiegspunkte definiert werden. Zudem muss
der Speicherbereich, in dem sich die Eingabedaten befinden, manuell identifiziert werden.

Sobald geeignete Ein- und Ausstiegspunkte gefunden wurden, muss der Zustand des
Zielgerats beim Erreichen des Einstiegspunkts gespeichert werden. Der Zustand des ESP32
besteht aus den Werten der 16 Register, dem Program Counter und den 512 kB statischen
RAM. Alle diese Daten konnen iiber eine JTAG-Debugging-Verbindung ausgelesen und
somit leicht gespeichert werden. Um diesen gespeicherten Zustand in die Emulatorinstanz
zu laden, muss die QEMU-Implementierung modifiziert werden, sodass das Speicherabbild
in den entsprechenden Speicherbereich geladen und alle Registerwerte korrekt gesetzt
werden. Die Eingabedaten befinden sich dann im Speicher des Emulators und kénnen
modifiziert werden.

Damit die Ausfithrung im Emulator ordnungsgemaf fortgesetzt werden kann, darf der
Zustand nicht vor Abschluss der Initialisierungsroutinen der Firmware geladen werden.
Vielmehr muss die Firmware zunéchst alle wichtigen Initialisierungsroutinen durchlaufen,
um sicherzustellen, dass erforderliche Module funktionieren. Der Punkt, an dem die
Initialisierung des Betriebssystems abgeschlossen ist, wird als Setup-Punkt bezeichnet und
muss ebenfalls manuell identifiziert werden. Eine geeignete Methode, um den Setup-Punkt
einer Firmware zu bestimmen, ist die Ausfithrung der Firmware fiir einige Sekunden im
Emulator, gefolgt von einem Stopp mit dem Debugger. In der Regel befindet sich das Gerat
dann in einem Leerlaufzustand und wartet auf Eingaben.

Bei jeder Fuzzing-Iteration werden die Eingabedaten durch die vom Fuzzer generierten
Daten iiberschrieben, und der Langenwert wird entsprechend angepasst. Sobald einer der
definierten Ausstiegspunkte erreicht wird, beginnt der Prozess von vorn. Daher wird jede
getestete Eingabe ausgefiihrt, wihrend sich der Emulator stets im exakt gleichen Zustand
befindet — einzig die Eingabedaten variieren.

Das erneute Laden des gesamten Zielgeratezustands nach jeder getesteten Eingabe bringt
jedoch einen erheblichen Performance-Nachteil mit sich. Daher wurde eine Technik na-
mens Fork Server implementiert, die im Folgenden erlautert wird.

Auf UNIX-Systemen wird der fork-Aufruf nach der copy-on-write-Richtlinie realisiert. Das
bedeutet, dass der neu erstellte Prozess den Speicher mit dem iibergeordneten Prozess

62

4.5 Evaluation

Elternprozess

Bis Setup-Punkt Kindprozess Eingabedaten
.. Zustand laden o
ausfiihren injizieren

Abbildung 4.1: Fork-Join-Fuzzing-Prozess

Fork

Emulator starten %

Bis zum
Ausstiegspunkt Beenden
ausfiihren

teilt und eine gesamte Speicherseite erst dann kopiert wird, wenn einer der Prozesse eine
Schreiboperation ausfiihrt. Der Fork-join-Fuzzing-Prozess ist in Abbildung 4.1 dargestellt.

Das Verhalten des fork-Aufrufs kann im Fuzzing-Prozess genutzt werden, um sicherzustel-
len, dass in jeder neuen Fuzzing-Iteration der gleiche Zustand des Emulators vorhanden
ist. Dazu wird ein Kindprozess unmittelbar vor der Injektion der Eingabedaten in den
Emulator erstellt. Der Elternprozess wartet mittels join-Systemaufruf auf das Beenden
des Kindprozesses. Anhand des Riickgabecodes kann bestimmt werden, ob der Kindpro-
zess aufgrund eines Absturzes oder des Erreichens eines Ausstiegspunkts beendet wurde.
Anschlielend kann ein neuer Kindprozess mit neuen Eingabedaten des Fuzzers erzeugt
werden. Durch den Fork-Join-Mechanismus wird der Performance-Verlust beim erneuten
Laden des Geréatezustands erheblich reduziert. Mit diesem Mechanismus kann der oben
dargestellte Performance-Nachteil des Greybox-Binary-Fuzzings minimiert werden.

4.5 Evaluation

Im Folgenden werden die Ergebnisse der Evaluation prasentiert. Grundlage hierfiir sind
eine TCP-basierte Testanwendung auf dem ESP32 sowie ein kommerzielles [oT-Gerit.
Mithilfe dieser Anwendung werden die Fehlerdetektion, Abdeckung und Stabilitat der im-
plementierten Fuzzing-Methoden untersucht. Das Ziel besteht darin, die Leistungsfahigkeit
der verschiedenen Ansitze in einem praktischen Einsatzumfeld zu bewerten.

4.5.1 Fuzzing der TCP-Testanwendung

Wie in Abschnitt 4.3.1 erwéahnt, wurde eine TCP-Testanwendung verwendet, um die
Implementierung von ESP32-QEMU-FUZZ zu verifizieren. Die Funktionsweise lief3 sich
am Beispiel des feedbackgesteuerten Whitebox-Fuzzings iiberpriifen. Innerhalb weni-
ger Stunden wurde eine Eingabekombination gefunden, durch die alle implementierten
Fehler ausgelost wurden. Zudem wurden weitere Testszenarien durchgefiihrt, um die
Geschwindigkeit der einzelnen Versuchsarten zu vergleichen. Die erzielten Anfragen pro
Sekunde sind in Tabelle 4.1 aufgefiihrt. Daraus geht hervor, dass das Fuzzing direkt auf
dem Geriét in diesem Szenario deutlich weniger Anfragen pro Sekunde verarbeiten kann
als die Emulation. Der grofite Unterschied zeigt sich zwischen Whitebox-Fuzzing mit kom-
pilierinstrumentiertem Code (ca. vier Anfragen pro Sekunde) und Greybox-Fuzzing mit

63

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

Tabelle 4.1: Vergleich der Fuzzing-Versuche auf einem Intel i7-6600U basierten Stan-
dard-Notebook mit einem Kern

Test Anfragen pro Sekunde
Blackbox-Fuzzing auf ESP32-Anwendungen 40
Whitebox-Fuzzing mit Compiler-instrumentiertem Code 4
Whitebox-Fuzzing mit ESP32-QEMU-FUZZ 80
Greybox-Fuzzing mit ESP32-QEMU-FUZZ 320

ESP32-QEMU-FUZZ (ca. 320 Anfragen pro Sekunde): Hier ergibt sich eine rund 80-fache
Steigerung.

4.5.2 Greybox-Fuzzing der LIFX Mini

Um die Effektivitat der implementierten Fuzzing-Methode zu beweisen, wurde sie an dem
kommerziellen Produkt LIFX Mini getestet. Die LIFX Mini ist eine smarte Gliithbirne, die
einen ESP32 als Steuerungseinheit enthélt. Sie ist ein typisches IoT-Endverbrauchergerit,
das tiber WLAN gesteuert wird. Fir die Steuerung wird eine Smartphone-App angebo-
ten, mit der mehrere smarte Glithbirnen gleichzeitig verwaltet werden konnen. Wie bei
kommerziellen Geréten zu erwarten, ist kein Quellcode verfiigbar.

4.5.2.1 Vorbereitung des Zielobjekts

Bei der ersten Untersuchung des Zielgerats wurde festgestellt, dass der JTAG-Port deakti-
viert wurde. Die permanente Deaktivierung des JTAG-Ports ist eine Sicherheitsfunktion
des ESP32, die nicht riickgangig gemacht werden kann. Daher musste die Firmware der
Glithbirne auf eine ESP32-Entwicklungsplatine iibertragen werden, um die JTAG-Ver-
bindung nutzen zu kénnen. Der 4 MB grofie Flash-Speicher des ESP32, der die Firmware
enthalt, kann tiber eine serielle Verbindung ausgelesen werden. Um die Pins fiir die serielle
Verbindung zu erreichen, musste die Glithbirne gedffnet werden, wie Abbildung 4.2 zeigt.

Anschlielend wurde die Firmware mit dem esptool ausgelesen, das von IDF bereitgestellt
wird. Das etwa 750 kB grof3e Firmware-Image wurde anschliefend in den Flash-Speicher
der ESP32-Entwicklungsplatine geschrieben, die mit einem JTAG-Adapter verbunden ist.
Dies ermdglichte es, Breakpoints an beliebigen Stellen zu setzen und den Zustand des
Gerits auszulesen.

4.5.2.2 Fuzzing des Initialisierungsprozesses

Fiir die erste Konfiguration betreibt die Glithbirne ihren eigenen WLAN-Zugangspunkt.
Die Smartphone-App lasst das Telefon mit diesem Zugangspunkt verbinden und eine

64

4.5 Evaluation

Abbildung 4.2: Eine demontierte LIFX Mini smarte Glithbirne.

sichere TLS-Verbindung zum Gerat iiber den TCP-Port 56700 herstellen. Die Anmeldeda-
ten des WLAN-Zugangspunkts des Benutzers werden somit iiber einen sicheren Kanal
ausgetauscht. Nach der ersten Konfiguration verbindet sich die Glihbirne mit dem WLAN-
Zugangspunkt des Benutzers, und weitere Steuerbefehle werden iiber dieses Netzwerk
iibertragen. Der Fokus des ersten Fuzzing-Ansatzes fiir die Glithbirne liegt auf diesem
Initialisierungsprozess.

Zunachst mussten die Ein- und Ausstiegspunkte mit GDB gefunden werden. Als nichstes
mussten der gespeicherte Geratezustand und die Metadaten dem ESP32-QEMU-FUZZ tiber
die JTAG-Debugging-Schnittstelle zur Verfiigung gestellt werden. Als Ergebnis konnten
mehrere Abstiirze innerhalb weniger Minuten beobachtet werden. Es wurden zwei ver-
schiedene Wege gefunden, das Gerit in eine Endlosschleife zu versetzen, bei der das Gerét
etwa 30 Sekunden lang nicht nutzbar war. Nach dieser Zeit startet das Gerét neu. Dieser
Fehler konnte fiir DoS-Angriffe ausgenutzt werden, um das Gerét unbrauchbar zu machen.
Auflerdem wurde eine Eingabe gefunden, die das Gerat zum Absturz brachte und einen
Neustart ausloste. Der Neustart scheint jedoch durch einen eingebauten Neustart-Befehl
ausgelost zu werden. Speicherbeschadigungen oder Fehler-Signale konnten durch die
manuelle Analyse des Absturzes nicht beobachtet werden.

Nach etwa 45 Minuten explorierte der Fuzzing-Prozess keine neuen Codebereiche mehr.
Selbst das weitere Ausfithren des Fuzzing-Prozesses iiber 72 Stunden fithrte zu keiner
neuen Codeabdeckung. Es kann daher davon ausgegangen werden, dass die meisten
zuganglichen Code-Teile in den ersten 45 Minuten abgedeckt wurden.

4.5.2.3 Fuzzing auf offenem TCP-Port

Nach der Initialisierung bietet die Glithbirne auch einen HTTP-Server auf TCP-Port 80 an.
Nach wenigen Minuten Fuzzing konnte eine Nullzeiger-Ausnahme gefunden werden. Die
Ausnahme resultiert aus einer unsicheren Verwendung der strchr-Bibliotheksfunktion,
die sich im nicht modifizierbaren ROM des ESP32 befindet. Wenn das Zeichen nicht im
String enthalten ist, gibt diese Funktion einen Zeiger auf das geforderte Zeichen innerhalb

65

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

des Strings oder einen Nullzeiger zuriick. In diesem Fall wurde der zuriickgegebene Zeiger
nicht iiberpriift, sondern dereferenziert, was die Ausnahme ausloste.

Es gibt bisher noch keine Arbeiten dariiber, wie sich diese Nullzeiger-Ausnahmen auf
der Xtensa-Architektur ausnutzen lassen. Es wurden aber bereits mehrere Moglichkeiten
gefunden, diese Art von Ausnahmen auf anderen Architekturen auszunutzen. Nullzeiger-
Dereferenzierungen sind in der 2019 CWE Top 25 Most Dangerous Software Errors [Cor19]
auf Platz 14 gelistet. Dieser Fehler sollte daher als potenziell ernsthafte Sicherheitsliicke
betrachtet werden. Die Entdeckung dieses Fehlers zeigt die Effektivitat des feedbackge-
steuerten Greybox-Fuzzings.

4.6 Einschrankungen und Ausblick

Die modifizierte Version von QEMU, die in dieser Dissertation entwickelt wurde, ist auf den
ESP32 beschrénkt. Sie konnte jedoch auf alle eingebetteten Systeme erweitert werden, die
von QEMU unterstitzt werden. Dies wiirde es ermoglichen, die implementierten Methoden
fur eine viel groflere Anzahl von Mikrocontroller-Architekturen zu nutzen. Da QEMU
jedoch nicht alle verfiigbaren Architekturen unterstiitzt, bleibt die Fahigkeit, beliebige
Firmware-Images vollstdndig zu emulieren, wie in [Mue+18] erwahnt, ein offenes Problem.

4.7 Zusammenfassung

Fiir einige IoT-Entwicklungsplattformen wurden in der Vergangenheit Fuzzing-Techni-
ken entwickelt. Es gab jedoch keine veroffentlichten Tools fiir IoT-Geréte, die auf der
ESP32-Plattform basieren. Das Ergebnis dieser Publikation ist das erste veréffentlichte
Fuzzing-Framework, das speziell fiir ESP32-Anwendungen entwickelt wurde. Es wurden
verschiedene Techniken zum Fuzzing von ESP32-Anwendungen in unterschiedlichen
Szenarien implementiert und bewertet. Besonders effektiv sind zwei Methoden, die auf
Fuzzing in einem Emulator statt auf dem tatsdchlichen Gerit basieren.

Whitebox-Fuzzing ermdglicht automatisierte, kontinuierliche Tests wahrend des Anwen-
dungsentwicklungsprozesses und fiigt sich nahtlos in moderne, agile Entwicklungsablaufe
ein. Greybox-Fuzzing ist ein leistungsstarkes Tool fiir Sicherheitsanalysten und erlaubt
gezielte Analysen von Firmware-Komponenten, die als potenziell anfillig gelten. Diese
Methoden wurden an einem kommerziellen Gerat getestet und konnten innerhalb kur-
zer Zeit Fehler finden. So wurde unter anderem ein Nullzeiger-Dereferenzierungsfehler
entdeckt, der eine potenzielle Sicherheitsliicke darstellt. Zwar gibt es derzeit keine ver-
offentlichten Methoden, um diesen Fehler auf der ESP32-Plattform auszunutzen, doch
mit deren zunehmender Popularitét ist es nur eine Frage der Zeit, bis Angreifer einen
finanziellen Anreiz fiir Exploits sehen.

66

4.8 Fazit

4.8 Fazit

Die Virtualisierung der ESP32-Firmware durch EQF hat grundlegend verandert, wie Ein-
gaben an das PUT tbermittelt werden. Anstelle der langsamen und ressourcenbegrenzten
Kommunikation iber WLAN oder andere physikalische Schnittstellen erméglicht die
emulierte Umgebung eine direkte und effiziente Interaktion zwischen Fuzzer und Ziel-
system. Dadurch wird erstmals eine Infrastruktur geschaffen, die die gezielte Erzeugung,
Aufzeichnung und Analyse grofler Mengen an Eingabedaten ermdglicht.

Klassische Fuzzing-Verfahren basieren héaufig auf zufillig generierten Eingaben, die vom
Zielsystem sofort als ungiiltig verworfen werden. Dadurch bleibt der zugrunde liegen-
de Protokollzustandsraum weitgehend ungetestet, insbesondere komplexe Logikpfade
oder sicherheitskritische Schwichen bleiben unentdeckt. Die Effektivitat des Testverfah-
rens steigt jedoch erheblich, wenn mehr Wissen tiber Aufbau, Semantik und zuléssige
Strukturen der Eingaben verfiigbar ist.

Vor diesem Hintergrund ergibt sich eine direkte Motivation fiir die Untersuchung und
automatisierte Rekonstruktion der Protokollstrukturen von ESP32-Anwendungen. Nur
durch ein gezieltes Verstandnis der zugrunde liegenden Datenformate und Kommunika-
tionsprotokolle kann das Fuzzing auf semantisch valide Eingaben ausgedehnt werden.
Im nichsten Kapitel wird daher ein Ansatz zum automatisierten PRE von proprietaren
Netzwerkprotokollen vorgestellt.

67

5 Protocol Reverse Engineering mittels
neuronaler Netze

Fiir die Inhalte dieses Kapitels wurde eine gemeinsame Veroffentlichung mit Valentin
Kiechle, Sven Nitzsche, Ingmar Baumgart, Jirgen Becker, Nico Rausch und Martin Dukek
als Grundlage verwendet. Teile der Ergebnisse wurden bereits in den unten genannten
Publikationen veroffentlicht. Es wird ein neuartiger Ansatz zum PRE vorgestellt, der auf
neuronalen Netzen basiert und somit die bisher manuellen Prozesse automatisiert. Durch
den Einsatz verschiedener neuronaler Netzarchitekturen wie CNNs, AE, GANs, LSTMs
und SOMs ermoglicht dieser Ansatz die effektive Rekonstruktion textbasierter Netzwerk-
protokolle wie HTTP und FTP. Auflerdem wird untersucht, inwieweit durch maschinell
gelernte Modelle realistische Paketsequenzen generiert werden konnen, die gezieltes und
effektives Fuzzing ermoglichen. Zu diesem Zweck wird ein Evaluationsframework auf
Basis von ProFuzzBench entwickelt und auf die Serveranwendungen LightFTP und eine
selbst entwickelte Web-Server-Applikation angewendet.

« Valentin Kiechle, Matthias Borsig, Sven Nitzsche, Ingmar Baumgart und Jirgen
Becker. ,PREUNN: Protocol Reverse Engineering using Neural Networks®. In: Pro-
ceedings of the 8th International Conference on Information Systems Security and
Privacy - ICISSP. ICISSP 2022 Best Poster Award. INSTICC. SciTePress, Feb. 2022,
S. 345-356. isbn: 978-989-758-553-1. DOI: 10.5220/0010813500003120 [Kie+22].

« Nico Rausch. ,Evaluation eines Machine-Learning-basierten Ansatzes zum Protocol
Reverse Engineering fiir effizientes Fuzzing von Netzwerkanwendungen®. Betreuer:
Matthias Borsig und Martin Dukek, Erstgutachter: PD Dr.-Ing. Ingmar Baumgart,
Zweitgutachter: Prof. Dr. Ralf H. Reussner. Masterarbeit am Karlsruher Institut fiir
Technologie, Sep. 2023 [Rau23].

5.1 Einleitung

Wihrend Deep Learning seit 2012 erhebliche Fortschritte in der automatisierten Feature
Extraction und Klassifikation erzielt hat [KSH12], blieb das Gebiet des PRE weitgehend
von diesem Trend unberiithrt. Die meisten Publikationen in diesem Bereich stammen aus
den Jahren 2004 bis 2013, und neuere Ansitze zur Nutzung neuronaler Netze wurden
bislang kaum untersucht.

PRE zielt darauf ab, die Spezifikation eines unbekannten Anwendungsschichtprotokolls aus
den Artefakten seiner Kommunikation zu rekonstruieren. Die gewonnenen Informationen

69

5 Protocol Reverse Engineering mittels neuronaler Netze

konnen in einer Vielzahl sicherheitsrelevanter Anwendungen eingesetzt werden, insbe-
sondere im Fuzzing. Das Wissen iiber die Nachrichtenstruktur und den internen Zustand
des Protokolls kann die Abdeckung von Fehlern und Randfillen signifikant erhéhen.

Vor diesem Hintergrund untersucht die Dissertation die Frage, ob und wie sich neuro-
nale Netze zur Automatisierung von PRE-Aufgaben einsetzen lassen. Der Fokus liegt
dabei auf der Anwendung und Evaluierung moderner Deep-Learning-Methoden fiir text-
basierte Netzwerkprotokolle sowie der Entwicklung eines modularen Frameworks, das
unterschiedliche Architekturen kombiniert.

Die wesentlichen Beitrage lassen sich wie folgt zusammenfassen:

« Konzeption eines modularen PRE-Ansatzes: Entwicklung eines vollstandig
neuronalen, modularen Frameworks zur Protokollanalyse, das verschiedene Archi-
tekturen wie AE, CNNs, SOMs und LSTMs integriert.

« Automatisierte Feature Extraction: Einsatz von AE und CNNs zur automatischen
Identifikation syntaktischer und semantischer Features von Protokollnachrichten,
ohne manuelles Feature-Engineering.

+ Clustering von Protokollnachrichten: Kombination von AE-Features mit SOMs
zur Gruppierung von Nachrichten in Nachrichtentypen. Hierdurch konnte die Clus-
tering-Qualitat gegeniiber einer Baseline um bis zu 19 % verbessert werden.

+ Sequenzgenerierung und Zustandsmodellierung: Systematische Untersuchung
der Wirksamkeit des Ansatzes anhand der Protokolle HTTP 1.1 und FTP. Verwendung
von LSTMs zur Generierung neuer, syntaktisch valider Nachrichten (bis zu 67,6 %
gultige HTTP- und 100 % giltige FTP-Nachrichten) sowie zur Modellierung der
Zustandsiibergénge in zustandsbehafteten Protokollen.

5.2 Stand der Technik

Ansatze des PRE lassen sich systematisch nach den verwendeten Datenquellen klassifizie-
ren. Einige Verfahren basieren ausschlie8lich auf der Analyse von Netzwerknachrichten,
wihrend andere zusatzlich dynamische Laufzeitinformationen einbeziehen. Diese werden
beispielsweise durch Instrumentierung oder Tracing von Bindrdateien gewonnen. Dariiber
hinaus unterscheiden sich die Ergebnisse: Manche Methoden rekonstruieren lediglich das
Nachrichtenformat, wihrend andere auch Zustandsautomaten ableiten. Eine Ubersicht
der wichtigsten Ansatze gemaf; dieser Kriterien zeigt Tabelle 5.1. Der vorgestellte Ansatz
positioniert sich im unteren linken Quadranten der Taxonomie und unterscheidet sich von
bestehenden Ansatzen durch eine vollstandig automatisierte Kombination von Struktur-,
Kontext- und Zustandsmodellierung.

Einen der frithesten und einflussreichsten Anséatze stellt Discoverer von Cui, Kannan
und Wang [CKWO07] dar. Dabei wird ausschlief}lich Netzwerkverkehr in Echtzeit ana-
lysiert, um eine abstrakte Protokollspezifikation zu erzeugen. Nachrichten werden dazu
in einzelne Token zerlegt, die zunéchst zu kleinen Clustern gruppiert und anschlieflend

70

5.2 Stand der Technik

Tabelle 5.1: Taxonomie zur Klassifizierung von PRE-Ansétzen nach Anforderungen (Spal-
ten) und Ergebnissen (Zeilen)

PRE-Taxonomie Anforderungen . Nachrichten und ausfithrbare
: Nur Netzwerknachrichten o) .

und Ergebnisse Binérdatei zur Laufzeit

Abgeleitetes Nachrichtenformat Discoverer [CKWO07] Wondracek [Won+08]

Abgeleiteter Zustandsautomat PREUNN Prospex [Com+09]

rekursiv zusammengefithrt werden. Die Annahme, dass Protokolle haufig standardisierte
Trennsymbole wie Kommas, Leerzeichen oder Zeilenumbriiche verwenden, erméglicht die
Identifikation von Nachrichtenfeldern mittels Heuristik. Zusétzlich werden Datentypen
wie Text- oder Binarfelder abgeleitet und Abhéngigkeiten zwischen einzelnen Feldern
erkannt. Damit erméglicht Discoverer die automatische Rekonstruktion der Nachrichten-
struktur ohne jegliches Vorwissen. Allerdings bleibt dieser Ansatz auf eine oberflachliche
Strukturerkennung beschrankt und beriicksichtigt weder semantische Zusammenhénge
noch komplexe Zustandsabhéngigkeiten. In dieser Dissertation werden die Stiarken von
Discoverer hinsichtlich der Feldidentifikation aufgegriffen und durch weitergehende Mo-
dellierungstechniken ergénzt, um eine detailliertere Darstellung komplexer Protokolle zu
ermoglichen.

Ein weiterer bedeutender Ansatz ist Prospex von Comparetti et al. [Com+09]. Dieser erwei-
tert das Discoverer-Verfahren durch eine Kombination aus Netzwerkanalyse und Laufzeit-
informationen. Hierbei werden zusatzliche Ausfithrungstraces von Binédrdateien analysiert,
wodurch tiefere semantische Einblicke in die Protokollstruktur gewonnen werden kénnen.
Die Methode besteht aus mehreren Schritten: Zunachst werden charakteristische Features
der Nachrichten mittels Byte-Tainting (einzelne Bytes von Daten markieren und wéhrend
der Programmausfithrung verfolgen) und Speicheranalyse extrahiert. Anschlieflend erfolgt
ein Clustering, das neben dem Format der Nachrichten auch deren erzeugte Reaktionen und
Antworten beriicksichtigt. Auf dieser Grundlage wird ein Akzeptor-Automat konstruiert,
der giiltige Nachrichtenfolgen modelliert. Ein Akzeptor-Automat ist ein endlicher Automat,
der priift, ob eine Sequenz von Nachrichten den erlaubten Zustanden und Ablaufen eines
Protokolls entspricht. Er akzeptiert nur giiltige Sequenzen und verwirft alle ungiiltigen,
was insbesondere fiir Fuzzing von zustandsbehafteten Protokollen von Vorteil ist. Der
Automat wird anschlieBend mithilfe des Exbar-Algorithmus [Lan99] minimiert, um seine
Komplexitit zu reduzieren. Das resultierende Modell wird schlielich in den Peach Fuzzer!
integriert, um gezieltes und effektiveres Fuzzing zu erméglichen. Durch die Kombination
von Netzwerkanalyse, Binarinformationen und Zustandsmodellierung liefert Prospex eine
deutlich umfassendere Spezifikation als Discoverer. Allerdings erfordert dieser Ansatz
eine aufwendige Vorverarbeitung und hangt stark von heuristischen Annahmen ab. In
dieser Dissertation werden dhnliche Grundprinzipien verfolgt, jedoch durch eine voll-
standig automatisierte, modulare Architektur erginzt, die explizit Kontextinformationen
beriicksichtigt und dadurch robustere Modelle erzeugt.

Ihttp://peachfuzzer.com

71

http://peachfuzzer.com

5 Protocol Reverse Engineering mittels neuronaler Netze

Neben heuristischen Ansiatzen wurden in jiingeren Arbeiten vermehrt Methoden des ma-
schinellen Lernens fiir PRE-verwandte Aufgaben eingesetzt. Fu et al. [FC17] kombinieren
beispielsweise Blackbox-Fuzzing mit einem Sequenz-zu-Sequenz-LSTM-Modell [SVL14],
um Protokollsemantik zu erfassen und neue Eingaben zu generieren. Dieser Ansatz erdft-
net neue Moglichkeiten zum PRE, bleibt jedoch auf die Generierung syntaktisch plausibler
Nachrichten beschrankt und verzichtet auf Verfahren wie Clustering oder kontextba-
sierte Modellierung. Das GANFuzz-Framework von Hue et al. [Hu+18] nutzt hingegen
Sequence Generative Adversarial Nets (SeqGAN) [Yu+17] in Kombination mit Reinforce-
ment Learning. Fiir jeden Nachrichtentyp wird dabei ein separates Modell trainiert, wobei
die Typen heuristisch durch Clustering bestimmt werden. Dieser Ansatz beriicksichtigt
zwar unterschiedliche Nachrichtentypen, integriert jedoch keinen konsistenten Workflow
und basiert bei der Generierung auf Symbolfolgen statt vollstandigen Protokollmodel-
len. Die Dissertation greift dagegen die Ideen des Deep Learning auf und integriert sie
in einen ganzheitlichen, automatisierten Prozess, der Nachrichtenstruktur, Kontext und
Zustandsabhiangigkeiten gleichzeitig modelliert.

Zusammenfassend lasst sich festhalten, dass die bestehenden Ansitze jeweils nur Teila-
spekte der Protokollspezifikation erfassen. Discoverer konzentriert sich auf die Nachrich-
tenstruktur, Prospex erweitert diese um Zustandsautomaten und Machine-Learning-ba-
sierte Verfahren verbessern die Generierungsfahigkeit syntaktisch plausibler Nachrichten.
Die in dieser Dissertation vorgestellte Methode kombiniert die Starken dieser Ansitze
und geht dariiber hinaus: Durch die explizite Integration von Kontextinformationen, den
modularen Aufbau und den Einsatz moderner Machine-Learning-Techniken wird eine
prazisere, vollstaindig automatisierte Rekonstruktion komplexer Protokolle ermdglicht.
Dadurch werden realistischere Eingaben fiir Analyse- und Fuzzing-Verfahren erzeugt.

5.3 Hauptansatz

In diesem Abschnitt wird eine neuartige Methode zur systematischen Betrachtung der
Aufgabenstruktur beim PRE vorgestellt. Um eine konsistente Referenzierung zu gewahr-
leisten, wird der in diesem Kapitel entwickelte Ansatz im Folgenden als Protocol Reverse
Engineering using Neural Networks (PREUNN) bezeichnet.

PREUNN ist in mehrere, iiberwiegend sequenziell auszufithrende Verarbeitungsschritte
gegliedert. Die hier vorgestellte modulare Architektur orientiert sich am Vorbild klas-
sischer Verfahren des maschinellen Lernens aus der Spracherkennung [WL90]. Dabei
werden komplexe Aufgaben gezielt in Teilschritte wie Merkmalsextraktion, Clustering
und Sequenzmodellierung zerlegt. Dieses Design ermoglicht es, einzelne Subsysteme un-
abhangig voneinander zu optimieren und bei Bedarf durch leistungsfidhigere Modelle zu
ersetzen. Damit unterstiitzt PREUNN sowohl die Anpassung an unterschiedliche neuro-
nale Netzwerkarchitekturen als auch die direkte Integration neuer KI-Methoden in den
Gesamtprozess.

72

5.3 Hauptansatz

5.3.1 Datenerfassung

Fiir das Trainieren neuronaler Netze wird ein reprasentativer Datensatz benoétigt. Um
die Auswertung der Ergebnisse zu erleichtern, wurde ein Satz textbasierter Artefakte
von Anwendungsprotokollen als Grundlage ausgewahlt. Dies ist wichtig, da mit dem
vorgestellten Ansatz kein direkter Vergleich mit klassischen PRE-Ansétzen moglich ist.
Bei einem textbasierten Protokoll lasst sich leicht manuell iiberpriifen, ob die generierten
Daten korrekt sind. Die gewéhlten Protokolle sind HTTP v1.1 und FTP, da diese haufig
verwendet werden, in grofler Menge verfiigbar sind und keine Verschliisselung aufweisen.
Es werden mehrere Quellen (siehe Abschnitt 5.4.1) von Datensétzen verwendet, um eine
breitere Mischung von Implementierungen und Nachrichtenverteilungsarten abzudecken.

5.3.2 Feature Extraction

In diesem ersten Teil werden Features extrahiert, die klar unterscheidbar sind. Sowohl in
Prospex als auch in Discoverer war die Auswahl der Features ein wesentlicher Bestandteil
der Arbeit, aber die Features wurden von den Forschern ausgewahlt. Es ist beabsichtigt,
diesen Prozess mit neuronalen Netzwerken zu automatisieren. Von besonderem Interesse
sind Schliisselworter, Interpunktion, syntaktische Zeichen und andere Muster, die zwischen
verschiedenen Nachrichten unterscheiden. Pseudo-zufillige Zeichenfolgen wie Tags und
Cookies werden vermieden, da sie in der Regel nicht mit den Protokollspezifikationen in
Verbindung stehen.

5.3.3 Reverse Engineering von Features

Beim traditionellen Reverse Engineering von Protokollen dient die Analyse dazu, Regeln,
Variablenlisten, Konstanten und Grammatiken aus Kommunikationsartefakten abzuleiten.
Bei neuronalen Netzwerken ist das erlernte Wissen hingegen intrinsisch nicht repra-
sentativ, was eine menschliche Interpretation erschwert. Zur Bewertung der erlernten
und rekonstruierten Features durch die jeweiligen Architekturen kommt ein generativer
Bewertungsansatz zum Einsatz. Mithilfe dieser Methode werden neue Proben aus der Trai-
ningsverteilung erzeugt, wodurch Einblicke in die internen Lernprozesse der neuronalen
Netzwerke ermoglicht werden.

5.3.4 Clustering

Protokollnachrichten konnen normalerweise in Typen gruppiert werden, unabhangig
davon, ob das Protokoll diese Gruppen explizit spezifiziert hat oder nicht. Diese Nach-
richten konnen unter Verwendung von Informationen wie der sequentiellen Reihenfolge,
Funktionalitat und allgemeinem Format geclustert werden. Da das Clustering verschiede-
ne Nachrichtentypen impliziert, eignet es sich besonders gut fiir den Einsatz neuronaler
Netzwerke [BLP05].

73

5 Protocol Reverse Engineering mittels neuronaler Netze

5.3.5 Zustandserkennung

Eine typische Kommunikationssitzung besteht aus mehreren gesendeten und empfange-
nen Nachrichten. In zustandsbehafteten Protokollen fithren bestimmte Nachrichtenfolgen
zu komplexeren Zustandsiibergingen zwischen den Kommunikationspartnern. Diese se-
quenziellen Muster repriasentieren einen Zustandsautomaten, der den inneren Zustand
des Protokolls beschreibt. Ein neuronales Netzwerk, das sequentielle Abhéngigkeiten
erfassen kann, lernt dabei sowohl die Reihenfolge verschiedener Nachrichtentypen als
auch deren Auftretenswahrscheinlichkeiten. Auf dieser Grundlage lassen sich Metho-
den der Zeitreihenanalyse anwenden, um den jeweils nichsten Zustand des Protokolls
vorherzusagen.

5.3.6 Sequenzgenerierung

Im abschlieenden Schritt werden alle trainierten Modelle zu einer generativen PREUNN-
KI zusammengefiihrt. Das Ziel dieser Phase besteht darin, neue Nachrichtensequenzen
zu erzeugen, die den in den Trainingsdaten beobachteten Kommunikationsmustern ent-
sprechen. Dabei beriicksichtigt das Modell Kontextinformationen wie den Clusterindex
sowie sequentielle Abhangigkeiten zwischen Nachrichten, um realistische und konsistente
Sequenzen zu generieren. Durch die Integration dieser Informationen kann die KI die
zugrunde liegende Struktur und Dynamik des Protokolls nachbilden. Auf diese Weise
entstehen synthetische, aber giiltige Nachrichtenfolgen, die nicht im Trainingsdatensatz
enthalten sind, jedoch dhnliche statistische und semantische Eigenschaften aufweisen.

5.4 Implementierung von PREUNN

In diesem Abschnitt werden die Implementierungsdetails des Hauptansatzes sowie die
durchgefithrten Experimente zur Evaluierung verschiedener neuronaler Netzwerkarchi-
tekturen beschrieben. Die Hyperparameter der Modelle wurden auf Grundlage empirischer
Tests manuell festgelegt. Dabei erfolgte die Auswahl anhand der Trainingsstabilitat, der
Konvergenzgeschwindigkeit und der erzielten Validierungsgenauigkeit. Eine systema-
tische, automatisierte Hyperparameteroptimierung wurde nicht durchgefithrt, da die
verfiigbare Hardware keine effiziente Exploration groflerer Suchraume erlaubte.

Alle Experimente wurden in Python 3 unter Verwendung eines objektorientierten Pro-
grammieransatzes implementiert, um eine modulare Struktur und einfache Erweiterbarkeit
auf weitere Protokolle sicherzustellen. Als Deep-Learning-Framework kam PyTorch? zum
Einsatz. Die Entscheidung fiel zugunsten von PyTorch aufgrund seiner dynamischen
Berechnungsgraphen, der guten Integration in die Python-Umgebung sowie der hohen
Flexibilitat bei der Entwicklung und dem Debugging experimenteller Modelle. Samtliche
Experimente wurden auf einer NVIDIA-GTX-970-GPU ausgefiihrt.

Zhttps://pytorch.org/

74

https://pytorch.org/

5.4 Implementierung von PREUNN

5.4.1 Datenvorverarbeitung

In den Test wurden zwei Datensétze verwendet. Der erste besteht aus der Kombinati-
on mehrerer HTTP-Quellen [Gar08; Shi+12; Goo+19; Sha+19], die ausgew#hlt wurden,
um verschiedene Implementierungen und Szenarien abzudecken. Der zweite Datensatz
besteht aus FTP-Nachrichten [PP03]. Bevor Experimente durchgefiithrt werden konnten,
wurden die Daten auf Ausreifler und Unregelmafligkeiten untersucht. Datenengineering
nimmt in der Regel einen erheblichen Teil der Zeit in jedem Machine-Learning-Projekt
in Anspruch. Dieser Prozess konnte jedoch mit Netzwerkaufzeichnungen in Form von
pcap-Dateien (einem Format zum Speichern von Netzwerkpaketen) verkiirzt werden. Das
Netzwerk-Analysetool Wireshark?® bietet einen weit verbreiteten Parser fiir die Analyse von
Netzwerkprotokollen. Es wurde mithilfe des Parsers von Wireshark nach giiltigen HTTP-
und FTP-Paketen gefiltert und der Rest verworfen. Auf diese Weise wurde sichergestellt,
dass sich keine ungiiltigen oder fehlerhaften Pakete im Datensatz befanden.

Die Lange der Anwendungsdatagramme der Anwendungsschicht ist durch das zugrunde
liegende TCP-Protokoll begrenzt. Eine Analyse der neuen pcap-Datei zeigte, dass lange
Nachrichten nur bei Bildiibertragungen (HTTP) oder benutzerdefinierten Nachrichten
(FTP) auftreten und anschlieBend ohne signifikanten Verlust von Informationen abge-
schnitten werden konnen. Das Langenlimit von 1024 Bytes wurde fiir alle Pakete festgelegt,
um die Eingaben des neuronalen Netzwerks zu vereinheitlichen. Nur 0,33 % der HTTP-
Daten und 0,18 % der FTP-Daten tiberschritten dieses Limit und wurden entsprechend
abgeschnitten. Die geringe Uberschreitungsrate zeigt, dass der gewihlte Grenzwert in der
Praxis eine sinnvolle Balance zwischen Datenvollstandigkeit und Modellkompatibilitat
darstellt.

Als weiterer Schritt in den HTTP-Experimenten wurde der gesamte Inhalt nach dem
Nachrichtenkopf entfernt. Dadurch sollten XML und andere, nicht HTTP-basierte Daten
ausgeschlossen werden. Dies wurde erreicht, indem jede Nachricht an der Stelle, an der
ein doppelter Zeilenumbruch (\r\n\r\n) auftrat, geteilt wurde. Dabei wurde nur der erste
Teil beibehalten. Der doppelte Zeilenumbruch markiert das Ende des HTTP-Headers und
den Beginn des Payloads. Somit stellt er eine einfache Methode zur gezielten Bereinigung
der Daten dar. Fiir die FTP-Daten wurde hingegen kein entsprechender Filter angewendet,
da die Trennung von Befehlen und Nutzdaten durch separate Steuer- und Datenkanale
bereits sichergestellt ist.

Dataset-Bias ist eine haufige Falle bei der Entwicklung von Machine-Learning-Losungen.
Es beschreibt eine ungleichmaflige Verteilung von Klassen innerhalb der Daten, die zu sub-
optimalem Lernen der Features in den neuronalen Netzwerken fithrt. Die Protokolle selbst
spezifizieren keine Klassen von Nachrichten direkt, die manuell erstellten Klassifikationen
fir beide Protokolle orientieren sich jedoch an der Baseline fiir das Klassenungleichge-
wicht. Es ist winschenswert, dass die neuronalen Netzwerke weiterhin lernen, welche
Typen héufiger sind als andere, aber das Ungleichgewicht in dem Datensatz ist deutlich
zugunsten von zwei oder drei haufigen Nachrichtentypen. Um die Anzahl der Nachrichten

3https://www.wireshark.org/

75

https://www.wireshark.org/

5 Protocol Reverse Engineering mittels neuronaler Netze

HTTP Dataset Type Distribution

I Original
I Balanced
80000
(%]
3 60000 -
=
o
[
=
[¥)
|-
=}
£ 40000 -
=
=z
20000 +

0- T
0 2 4 6
HTTP Types

[s: 0

10 12

Abbildung 5.1: HTTP-Datensatzverteilungen in Original (blau) und ausgeglichen (griin).
Das deutliche Ungleichgewicht zugunsten einzelner Nachrichten wurde
gemildert, wahrend dieser Typ weiterhin am haufigsten erhalten blieb.

pro Klasse auszugleichen, wurde diese Formel entwickelt:

AnzahlNachrichten pro Klasse = \/AnzahIVOrkommen * 100

Die visualisierte Verteilung der Nachrichtentypen ist in Abbildung 5.1 und in Abbildung 5.2
zu sehen.

Fiir jede Klasse wurden Netzwerpakete zufallig ausgewahlt, bis ein zuvor definiertes Limit
erreicht war. Dabei erfolgte eine gezielte Vervielfachung seltener Nachrichtentypen, um
in allen Klassen eine ausreichende Stichprobengrofie sicherzustellen. Experimente, die
im Rahmen dieser Dissertation ohne diesen Ausgleich durchgefiithrt wurden, zeigten in
mehreren Fallen deutliche Anzeichen von Overfitting. Dies unterstreicht die Notwendig-
keit einer ausbalancierten Datenverteilung. Um die natiirliche Haufigkeitsverteilung der
Nachrichten zu bewahren, wurden die Klassen nicht vollstindig auf ein einheitliches Limit
normiert, sondern proportional zu ihrer urspriinglichen Auftretenswahrscheinlichkeit
angepasst.

5.4.2 Feature Extraction

Neuronale Netzwerke sind dafiir bekannt, hochgradig flexible, selbstlernende Feature-Ex-
traktoren fiir unterschiedliche Aufgaben zu sein. In diesem Ansatz wird jedes Zeichen einer
Nachricht als Ganzzahlwert interpretiert und die gesamte Nachricht als eindimensionales
Bild betrachtet, sodass Verfahren aus bildbasierten Aufgaben angewendet werden kénnen.

76

5.4 Implementierung von PREUNN

FTP Dataset Type Distribution

I Original
200000 {1 = Balanced

175000 4

150000 +

125000 4

100000 +

Num Occurrences

75000 A

50000

25000

0_

FTP Types

Abbildung 5.2: FTP-Datensatzverteilungen in Original (blau) und ausgeglichen (griin). Bei
drei dominanten Typen und mehreren unterreprasentierten Typen wurde
die Umverteilung erheblich geglattet, wobei Tendenzen erhalten blieben.

Zur Feature Extraction wurden zwei Architekturen ausgewéhlt: ein AE und ein CNN. Die
in diesen Experimenten von den Modellen gelernten Zuordnungen von Features werden
anschlieflend als Eingabe fiir das Clustering verwendet. Aufgrund der Blackbox-Natur neu-
ronaler Netzwerke kann die Qualitat der Zuordnungen von Features nicht direkt gemessen
werden. Stattdessen werden die Ergebnisse des spateren Clusterings zur Bewertung beider
Architekturen herangezogen.

Autoencoder AE arbeiten nur mit Daten fester Lange und lernen eine kompakte Darstel-
lung der Daten. Die Netzwerknachrichten, die als Daten verwendet werden, variieren in
der Lange, Giberschreiten jedoch in der Regel nicht 1024 Bytes. Um sie zu vereinheitlichen,
werden kiirzere Nachrichten mit Nullen aufgefillt, um eine Lange von 1024 Bytes zu
erreichen. Kleinere Tests haben ergeben, dass das Auffiillen bzw. Kiirzen auf diese Lange
die Leistung des Modells nicht signifikant beeintrachtigt. Da die erwartete Ausgabe fiir
die AE-Architektur gleich der Eingabe ist, wird die Hamming-Distanz als Leitmaf} fiir
den Erfolg wahrend des Experimentierens verwendet. Der AE wurde mit den folgenden
Schichtgrofien trainiert: 1024 — 256 — 128 — 256 — 1024. Bei den Tests wurden die
Softplus-Aktivierungen verwendet und der Adam-Optimizer auf eine Lernrate von 0,0005
gesetzt. Die Verlustfunktion ist der Mean Squared Error (MSE) und die Batch-Grofle =
128 fiir 10 Epochen. Die resultierende 128 Neuronen breite Ausgabe des Encoder-Teils
wurde als Kodierung von Features fiir eine Nachricht verwendet. Die Daten fiir dieses
Experiment wurden als Pixel interpretiert und haben anschlieffend eine kontinuierliche
Natur im Intervall [0, 255]. Die fiir Trainingsdaten mit einer Linge von 1024 Bytes er-

77

5 Protocol Reverse Engineering mittels neuronaler Netze

Klasse 1: unverandert
H|T|T|P|/|1]|.]|1 2(0/0| |O|K]|:

Klasse 2: Lange der Blocke: 8
2/0(0| |OK|!

Klasse 3: Lange der Blocke: 4
ol - FAEIIE |2]o o IS

Abbildung 5.3: Eine HTTP-Anweisung, die in 3 Klassen aufgeteilt und vermischt wurde
(unverdndert sowie Blocke der Lange 8 und 4). Die Farbe gibt die Blockgrofe
an. Die Reihenfolge der Blocke wurde zufillig angeordnet.

reichte Distanz betridgt im Durchschnitt 254,44 fir HTTP und 41,28 fir FTP. Die sehr
hohe Hamming-Distanz resultiert aus der kontinuierlichen Natur der Byte-Interpreta-
tionen, selbst die Fiilllsymbole (0) konnten nicht vollstandig rekonstruiert werden. Es ist
festzustellen, dass Fiillsymbole oft denselben ASCII-Wert um 1 oder 2 Werte verfehlen,
wenn die ASCII-Tabelle als Skala von 0 bis 255 interpretiert wird. In einem Bild waren
solche kleinen Farbfehler kaum wahrnehmbar. Fiir das Alphabet als kontinuierliche Skala
sehen die Ergebnisse oft falsch aus. Das Hauptziel eines Autoencoders ist jedoch, die
Dimensionalitdt von Features mit minimalem Verlust von Informationen zu reduzieren
und Muster zu lernen. In diesem Fall ist es gelungen, die Dimension von 1024 Bytes auf 128
Bytes zu reduzieren und dabei zufriedenstellende Features fiir die Rekonstruktion wahrend
des Experiments zu bewahren. Die niedrigere durchschnittliche Hamming-Distanz fiir
FTP lasst sich durch die viel kiirzere durchschnittliche Nachrichtenldnge erkléaren.

Convolutional Neural Network CNNs werden tblicherweise fiir die iiberwachte Bild-
klassifikation verwendet [KSH12]. Die fiir diese Dissertation gewéhlten Trainingsdaten
enthalten jedoch keine Labels, die fiir das iiberwachte Lernen verwendet werden kénnen.
Deshalb wurde eine eigene uniiberwachte Lerntechnik unter Verwendung von Datenaug-
mentation entwickelt. Bei der enwickelten Lerntechnik werden Nachrichten repliziert und
in mehrere bekannte Klassen von Augmentierungstypen modifiziert, um Informationen
iiber den syntaktischen Kontext zu extrahieren. Die zugrunde liegende Idee besteht darin,
dass ein CNN durch das Training an der Unterscheidung zwischen diesen Augmentie-
rungsklassen in die Lage versetzt wird, die charakteristischen Muster der Syntax effizient
zu erkennen und sich darauf adaptiv einzustellen. HTTP- oder FTP-Anweisungen werden
wiederum auf eine feste Lange von 1024 Bytes aufgefiillt/gekiirzt und dann in Segmente
verschiedener Langen (1024 Bytes, 32 Bytes, 16 Bytes, 8 Bytes, 4 Bytes) unterteilt, die
dann innerhalb derselben Anweisung in zufalliger Reihenfolge eingegeben werden. Dieser
Ansatz fithrt zu 5 Klassen: unverandert und in Blocke der Langen 32, 16, 8 und 4 Bytes
durcheinander gemischt. Ein vereinfachtes Beispiel wird in Abbildung 5.3 illustriert.

78

5.4 Implementierung von PREUNN

HTTP/1.1 200 OK
Date: Mon, 14 Jun 2010 11:33:55 GM
(Red Hat)
Last-Modified: Mon,
"1ef8b2d-59-46c£634892380

y: User-Agent
Content-Typ: image/gif 200

Abbildung 5.4: Beispiel einer HTTP-Anweisungs-Klassifizierung, visualisiert durch Grad-
CAM. Die aufgefiillten Nullen wurden weggelassen. Die semantisch signi-
fikanten und konsistenten Teile werden hervorgehoben, wahrend pseu-
do-randomisierte Teile im ETag ignoriert werden. Die Textmarkierungen
in dieser Abbildung sind eine Annaherung.

Es wurde eine Architektur gewahlt, die Blocke mit 1D-Faltung, 1D-Batch-Normalisierung,
Softplus-Aktivierung und 20%-Dropout in insgesamt 5 Schichten verwendet, wobei die
Kanalgrolen wie folgt aussehen: 1 — 128 — 64 — 32 — 16 — 8. Die Klassifikations-
aufgabe wurde durch zwei vollstindig verbundene Schichten durchgefiihrt, die nach dem
Training entfernt wurden, um eine Feature Map mit 8 * 30 = 240 Neuronen zu erhalten, die
grofler ist als die des Autoencoders. Eine Visualisierung der gelernten Features wird als
zusatzliche Analysemethode zur Evaluierung der Leistung verwendet. Die Visualisierung
der Pixelwichtigkeit, auch Grad-CAM [Sel+17] genannt, wird als Qualitatsmessung fiir die
syntaktischen Features verwendet, die vom Modell gefunden wurden. Die Experimente
zeigten gemischte Ergebnisse fiir HTTP und FTP. Beziiglich HTTP wird deutlich, dass
verschiedene Teile einer Protokollnachricht unterschiedlich hervorgehoben werden, siehe
Abbildung 5.4. Die hervorgehobenen Teile stimmen oft mit syntaktisch relevanten Ab-
schnitten iberein, wihrend pseudo-randomisierte Strings ignoriert werden. Dies ist genau
die Art der syntaktischen Feature Extraction, die fiir dieses Experiment gewiinscht wird.

Die Ergebnisse fiir das FTP-Protokoll sind in Grad-CAM weniger deutlich sichtbar, da
die durchschnittliche Nachrichtenldnge deutlich geringer ist. Auch der Trainingsprozess
konvergierte insgesamt flacher als bei der HTTP-Variante.

5.4.3 Feature Reverse Engineering

Ein zentrales Ergebnis des PRE ist die Darstellung des Zielprotokolls in Form von Regeln
oder Clustern. Neuronale Netze erlauben jedoch keinen direkten Einblick in ihre interne
Représentation der erlernten Features. Um ein greifbares Ergebnis zu erhalten, das tiber
das Clustering und die Sequenzrekonstruktion hinausgeht, wird das Ziel verfolgt, neue
Nachrichten generieren zu konnen - als Beleg dafiir, dass das Modell die semantischen
Strukturen tatsachlich erfasst hat.

Dazu werden generative neuronale Netzwerke genutzt und deren Ausgaben analysiert.
Dabei stehen zwei Interpretationsansitze fiir Textnachrichten zur Verfiigung: Entweder

79

5 Protocol Reverse Engineering mittels neuronaler Netze

werden sie als Byte-Folge mit bildahnlicher Struktur dargestellt — wie bereits bei der
Feature Extraction verwendet — oder als sequenzielle Folge von ASCII-Zeichen.

Beide Varianten wurden erprobt. Fiir die bilddhnliche Byte-Interpretation kam eine Stan-
dard-GAN-Architektur zum Einsatz, die sich an den Empfehlungen der Originalautoren
orientiert [Goo+14; RMC15]. Fir die sequenzielle Interpretation wurde ein LSTM-Modell
verwendet, das um eine angepasste Embedding-Schicht ergédnzt wurde, um die inhéa-
rente Zufalligkeit bestimmter Protokollbestandteile (z. B. Cookies, Adressen) realistisch
abzubilden.

Generative Adversarial Net Ein GAN besteht aus zwei Netzwerken — dem Generator und
dem Diskriminator —, die parallel zueinander trainiert werden. Der Generator verwendet
vier 1D-Transponierte-Faltungsschichten mit folgenden Parametertupeln fiir (Kernelgrofe,
Schrittweite): (2, 2), (4, 4), (8, 8) und (16, 16) in aufsteigender Reihenfolge. Die ersten drei
Schichten werden jeweils durch eine 1D-Batch-Normalisierung und eine ReLU-Aktivierung
erganzt, wahrend die letzte Schicht mit einer Sigmoid-Aktivierung endet. Die Kanalanzahl
ist wie folgt: 1024 — 1024 — 128 — 32 — 1.

Der Diskriminator nutzt vier 1D-Faltungsschichten mit Batch-Normalisierung (aufler in
der ersten Schicht), Leaky ReLU mit einer Steigung von 0,2 sowie 20 % Dropout. Das
Netzwerk endet in einer vollvernetzten Schicht mit 360 Neuronen. Die Kanalanzahl lautet:
1—-10—> 20— 60 — 90 — 1.

Um ein Ungleichgewicht im Training zu verhindern, wurde eine Regel implementiert:
Wenn der Fehler eines Netzwerks einen bestimmten Schwellwert tiberschreitet oder der
Fehler des anderen Netzwerks unter einen festgelegten Wert fallt, wird das tiberlegene
Netzwerk temporar vom Training ausgeschlossen, bis das andere aufholt.

Beide Netzwerke verwenden den Adam-Optimizer mit einer Lernrate von 0,0005 und den
Parametern betas = (0,5, 0,99). Als Verlustfunktion kommt Binary Cross-Entropy (BCE)
zum Einsatz.

Das Training des GAN-Modells zeigte keine signifikante Konvergenz zu einem stabi-
len Zustand. Die ungenaue Byte-zu-Bild-Interpretation begrenzt das Modell bereits von
Anfang an und in Kombination mit der inharenten Instabilitdt von GAN-Architekturen
iiberrascht das enttduschende Ergebnis kaum. Die Idee, Text aus einer kontinuierlichen
Datenrepréasentation zu generieren, erschien zunéchst vielversprechend - insbesondere bei
der Betrachtung der statischen Struktur von Protokollen. Jedoch konnten nicht einmal die
aufgefiillten Nullen konsistent reproduziert werden (Abweichungen von etwa +3 ASCII-
Werten). Weitere Experimente mit dieser Architektur wurden daher nicht durchgefiihrt.

Long Short-Term Memory LSTMs sind fortgeschrittene rekurrente Netzwerke, die auf
Sequenzen fester Lange trainiert werden. Das Auffiillen mit Nullen ist hierbei jedoch un-
geeignet, da es kiinstliche sequenzielle Abhéangigkeiten einfithren wiirde. Stattdessen wird
ein Trainingsskript verwendet, das mehrere Protokollnachrichten verkniipft, sodass eine
Sequenz entsteht, die mindestens viermal so lang ist wie die Zielsequenz. Anschlieflend

80

5.4 Implementierung von PREUNN

wird ein zufalliger Abschnitt der gewiinschten Lénge extrahiert. Dieses Verfahren kommt
ausschliefllich wéahrend des Trainings zum Einsatz, um echte Zeichen-zu-Zeichen-Abhéan-
gigkeiten zu vermitteln.

Vor und nach jeder Nachricht wird jeweils ein eindeutiges Symbol fiir ,Start of Packa-
ge (SOP)“ bzw. ,End of Package (EOP)“ eingefiigt, damit das Modell unterschiedliche
Nachrichten voneinander unterscheiden kann. Die Daten werden als One-Hot-Encoding
des ASCII-Zeichensatzes dargestellt.

Die Architektur beginnt mit einer Embedding-Schicht, gefolgt von einer Faltungsschicht
mit einer Kernelgrof3e von 4 und einer Schrittweite von 4, um das Embedding anzupassen.
Dieser Ansatz, hier als Convolutional Embedding eingefiihrt, dient als Mittelweg zwischen
Zeichen- und Wort-basiertem Embedding, insbesondere bei Daten mit hoher zufalliger
Zeichenvariation.

Die Dimension des Embeddings wird dabei mit der Feature-Lénge getauscht: Die Faltungs-
schicht behandelt die versteckte Breite als Kandle und die Feature-Lénge als Bilddimension,
wobei die Batch-Grof3e unverdndert bleibt. Nach der Faltung wird diese Transposition
rickgingig gemacht, sodass ein eingebetteter Tensor mit einem Viertel der urspriinglichen
Lange entsteht. Dieser wird dann in ein einfaches, einschichtiges LSTM-Modell eingespeist.

Das Ergebnis durchliduft denselben Vorgang riickwirts: eine transponierte Faltung, ge-
folgt von einer vollvernetzten Schicht mit identischen Hyperparametern und erneutem
Dimensionswechsel. Abbildung 5.5 zeigt den Aufbau dieses Embeddings.

Diese Art der Darstellung kann als lernbares, gewichtetes 4-Gramm interpretiert werden.
Die Architektur muss jeweils nur das nachste Zeichen vorhersagen (Indexverschiebung
von 0-1023 auf 1-1024). Die Kombination aus lokalem Kontext im 4-Gramm und den
durch die Faltung verkiirzten Langzeitabhéngigkeiten erleichtert dem Modell das Lernen
und verbessert die Stabilitat bei der Generierung.

Fiir das Training wird der Adam-Optimizer mit einer Lernrate von 0,005 und Standard-
parametern verwendet. Als Verlustfunktion kommt Negative Log-Likelihood (NLL) zum
Einsatz, da der Fehler auf Zeichenebene gemessen wird. Dies erfordert, dass die Eingabe-
sequenzen eine Lange besitzen, die durch vier teilbar ist.

Dieser sequenzbasierte Versuch, HTTP- und FTP-Anfragen nachzubilden, zeigt gute Er-
gebnisse. Die LSTM-Architektur konvergiert nach weniger als einer Epoche auf einen
minimalen Verlust, was auf exzellentes strukturelles Lernen und wiederkehrende Muster
hinweist. Dies lasst sich durch die Natur eines textbasierten Protokolls wie HTTP und
FTP erklaren, das Schliisselwdrter, eine feste Grammatik und ein konsistentes Alphabet
verwendet. Beim Abtasten des LSTM (Buchstabe fiir Buchstabe) wird eine Zeichenkette
mit einer giltigen Nachricht erzeugt, die mit den SOP- und EOP-Symbolen geparst werden
kann. Die resultierenden Anfragen werden mit giiltigen, aber zufalligen TCP- und IP-Hea-
dern umschlossen, um vollstindige Netzwerkpakete in einer pcap-Datei zu erzeugen. Das
Netzwerk-Analysetool Wireshark* zeigte, dass 67,6 % der HT TP-Nachrichten giiltig waren,
wihrend die restlichen als TCP mit zufalligem Payload klassifiziert wurden. Fiir FTP wurde

“https://www.wireshark.org/

81

https://www.wireshark.org/

5 Protocol Reverse Engineering mittels neuronaler Netze

Batch von Sequenzen {

Batch von 1D-Bildern { X X5 X3 Xy X5
(umgedrehte Tensordimensionen) : :

! I I I I
! T T T T

Batch von Sequenzen { Xy | Xo | X5 | Xy Xsﬂ

Abbildung 5.5: Eine Veranschaulichung des Prozesses von Convolutional 4:1, bei dem eine
Reihe von Daten durch zwei unterschiedliche Faltungen geschickt wird.

HTTP/1.1 200 OK HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 13:20:25 GMT Date: Mon, 14 Jun 2010 13:20:25 GMT

Server: Apache Server: Apache

Last-Modified: Mon, 21 Jun 2010 14:18:09 GMT Content-Length: 43

ETag: "2de9573-2b-486717fb77ac0" Connection: close

Accepted-Ranges: bytes Content-Type: text/html; charset=iso-8859-1

Content-Length: 43
Connection: close
Content-Type: text/html; charset=iso0-8859-1

Abbildung 5.6: Zwei von LSTM generierte HTTP-Anfragen. Wahrend die Grundstruktur
unverdndert bleibt, wurden Inhalte und optionale Felder angepasst.

eine Quote von 100 % erreicht, allerdings konnen FTP-Nachrichten recht einfach sein,
um giiltig zu sein. Einige Nachrichten wiederholen sich haufig in den Trainingsdaten,
was auch in der Ausgabe dieses Experiments zu sehen ist. Zwei generierte Beispiele sind
in Abbildung 5.6 zu sehen. Diese Ergebnisse sind als eine solide Grundlage fiir weitere
Experimente zu sehen.

5.4.4 Clustering

Fiir das Clustering sind die Ergebnisse der Feature Extraction relevant, um die Datenséatze
in ein kleineres Format zu kodieren. Drei SOMs wurden initialisiert und ihre Ergebnisse
verglichen: ein Basismodell mit gekiirzten und aufgefiillten Nachrichten auf eine feste
Lange von 1024 Byte, ein zweites SOM-Modell unter Verwendung der AE-Kodierung
und ein drittes Modell unter Verwendung der CNN Feature Map. Diese drei Modelle
unterscheiden sich in ihrer Eingabedimension, haben aber alle eine identische Ausgabe-
kartendimension von 16 X 1 fiir HTTP und 64 X 1 fiir FTP. Die unterschiedlichen Zahlen

82

5.4 Implementierung von PREUNN

Tabelle 5.2: Ubersicht iiber die FTP-Cluster: Die FTP-Typen wurden manuell in Cluster
von Schliisselwortern/Codes mit dhnlicher Bedeutung oder dhnlichem Zweck

gruppiert
0 | Sonstiges (MISC)

1 | ACCT, ADAT, AUTH, CONF, ENC, MIC, PASS, PBSZ, PROT, QUIT, USER

2| 230, 331, 332, 530, 532

3 | PASV, EPSV, LPSV

4 | 227, 228, 229

5 | ABOR, EPRT, LPRT, MODE, PORT, REST, RETR, TYPE, XSEM, XSEN

6 | 125, 150, 221, 225, 226, 421, 425, 426

7 | ALLO, APPE, CDUP, CWD, DELE, LIST, MKD, MDTM, PWD, RMD, RNFR,
RNTO, STOR, STRU, SYST, XCUP, XMKD, XPWD, XRMD

8 | 212, 213, 215, 250, 257, 350, 532

9 | 120, 200, 202, 211, 214, 220, 450, 451, 452, 500, 501, 502, 503, 504, 550, 551, 552, 553, 554, 555

fir die Ausgabedimensionen fiir beide Protokolle basieren auf Experimenten und ent-
sprechen im Groflen und Ganzen der Vielfalt der verschiedenen Nachrichtentypen fiir
jedes Protokoll. Dies kann fiir jedes neue Protokoll oder zu Optimierungszwecken durch
Parameter angepasst werden. Das Training wird mit einer Lernrate von 0,005 und Sigma =
1,5 fiir HTTP und Sigma = 3 fiir FTP durchgefiihrt. Details zu den Parametern finden sich
in der ,MiniSom“-Bibliotheksdokumentation®.

Fiir diese Auswertung miissen die tatsachlichen Klassen bzw. Typen fiir beide Protokolle im
Voraus bekannt sein. Dies ist nicht einfach, da keines der Protokolle explizite Typen/Grup-
pen von Nachrichten festlegt, abgesehen von Anfragen und Antworten. Fiir HTTP haben
insbesondere die Antworten eine breite Bedeutungsrange, die fiir diese Analyse nach der
ersten Ziffer des jeweiligen Codes gruppiert sind, da diese eine grundlegende Bedeutung
des Codes darstellen. Das bedeutet, dass sich alle Nachrichten mit den Nummern von
200 bis 299, alle von 300 bis 399 und alle von 400 bis 499 als denselben Typ betrachten
lassen. Zusammen mit allen giiltigen Schliisselwortern, mit denen eine HTTP-Nachricht
beginnen kann (GET, POST, HEAD, DELETE, OPTIONS, PUT, TRACE, CONNECT), ergibt
sich eine Gesamtzahl von 11 Clustern mit einem zusatzlichen ,Sonstiges“-Cluster (MISC)
fiir Nachrichten, die keinem anderen Cluster zugeordnet werden konnen. Fiir FTP wurden
manuell Gruppen von Schlisselwdrtern und -codes mit dhnlicher Bedeutung oder dhnli-
chem Zweck definiert, wie in Tabelle 5.2 gezeigt. Dies war ein manueller Prozess, und bei
dieser beispielhaften Gruppierung bleibt sicher Optimierungsbedarf.

Fiir das Experimentieren mit Clustering wurde ein Multi-Modell-Ansatz verwendet. Dabei
werden drei verschiedene Konfigurationen von SOMs in Bezug auf ihre Leistung bei den
Clustering-Metriken miteinander verglichen. Als erstes wird fiir die 128 Neuronen breite

5ht‘cps://gi‘chub .com/JustGlowing/minisom

83

https://github.com/JustGlowing/minisom

5 Protocol Reverse Engineering mittels neuronaler Netze

SOM die Kodierung aus dem AE-Modell verwendet. Zweitens wird fiir die 240 Neuronen
breite SOM die Feature Map der CNN-Architektur verwendet. Schliefllich wird als Baseline
eine rohe SOM mit 1024 Neuronen Breite als Vergleichsgrundlage verwendet.

Es wurden zwei Metriken verwendet, um die Effektivitat des Clusterings fiir jedes Setup
zu beurteilen. Die erste ist die Genauigkeit: Wie viele erkannte Cluster stimmen mit einem
Nachrichtentyp des Protokolls mit mehr als 50 % Vertrauen iiberein, was als ,dominantes”
Cluster bezeichnet wird. Hier wird Vertrauen definiert als der relative Anteil eines Typs
unter allen Nachrichten, die einem Cluster zugewiesen sind. Wenn es 120 Nachrichten vom
Typ A und 80 Nachrichten vom Typ B gibt, die alle in ein Cluster gepackt wurden, dann
wird das Vertrauen dieses Clusters, Typ A zu reprasentieren, mit % = 60 % berechnet.
Die zweite Metrik ist das durchschnittliche Vertrauen aller Cluster. Auf3erdem werden
beide Metriken nur fiir dominante Typen (grofer als 50 % fiir einen Typ) angegeben, um
leere und sehr kleine Cluster aus dem Durchschnitt zu entfernen.

Tabelle 5.3 zeigt die Ergebnisse der Experimente. Es lasst sich festhalten, dass die Leis-
tungsfahigkeit durch die Einbindung eines AE vor der SOM deutlich erhéht wird. Beim
HTTP-Clustering steigt die Genauigkeit von 75 % auf 87,5 % und das durchschnittliche
Klassifikationsvertrauen von 58,34 % auf 69,24 %. Ein vergleichbarer Effekt zeigt sich beim
FTP-Clustering: Die Architektur AE + SOM erreicht 67,19 % bzw. 86 % im dominanten Clus-
ter und tibertrifft damit sowohl das Basismodell als auch CNN + SOM. Das durchschnittliche
Vertrauen erhoht sich hierbei von 51,8 % auf 56,11 %. Einige Setups, die dedizierte Featu-
re-Extraktoren verwenden, konnen die Baseline signifikant iibertreffen. Der AE scheint
besser fiir diese Aufgabe geeignet zu sein. Ein moglicher Grund dafiir konnte sein, dass die
CNN-Architektur einen Workaround mit Datenaugmentation benétigte, um tiberhaupt ein
Training zu ermdglichen. Fiir weitere Experimente, die Cluster-Indizes erfordern, werden
die AE- und SOM-Architekturen zu einer Pipeline kombiniert, um Nachrichten durch
ihren Cluster-Index zu ersetzen.

5.4.5 Zustandserkennung

Um tiefere Zustande in einem Protokoll zu erkennen, werden die Korrelation von Nach-
richtenfolgen verwendet, wie sie chronologisch im Datensatz erscheinen. Dafiir wurden
alle Nachrichten durch ihre zugewiesenen Cluster aus dem Clustering-Modell ersetzt. Ein
einfaches LSTM mit passenden Dimensionen zum SOM-Ausgang reicht aus, um hochkor-
relierte Sequenzen anzuzeigen, indem es das Vertrauen des Netzwerks fiir den moglichen
nachsten Nachrichtentyp prasentiert. Die zentrale Idee des SOM-Lernens besteht darin,
ahnliche Nachrichtentypen in der Nahe voneinander anzuordnen, sodass die Verwendung
der MSE-Verlustfunktion eine Anndherung an den korrekten Nachrichtentyp im LSTM-
Ausgang ermoglicht. Die Verwendung der Cross-Entropy (CE)-Verlustfunktion hat keine
Konvergenz gezeigt. Fiir das Training wurde ein Adam-Optimizer mit einer Lernrate von
0,005 und Betas = (0,3, 0,9) verwendet.

Die Anordnung ist in Abbildung 5.7 dargestellt. Eine einfache Zeitreihenprognose auf Basis
eines LSTMs liefert insbesondere fiir FTP vielversprechende Ergebnisse. Dort lassen sich

84

5.4 Implementierung von PREUNN

Tabelle 5.3: Ergebnisse der Clustering-Experimente im Vergleich. Gegeniiber dem Ba-
sismodell lasst sich bei Verwendung des Autoencoders eine Verbesserung

erkennen.
(a) HTTP-Clustering

Architektur Genauigkeit (dominant) | Durchschnittliches Vertrauen (dominant)
Baseline SOM 75 % (75 %) 58,34 % (58,34 %)

CNN + SOM 68,75 % (68,75 %) 53,61 % (53,61 %)

AE + SOM 87,5% (87,5 %) 69,24 % (69,24 %)

(b) FTP-Clustering

Architektur Genauigkeit (dominant) | Durchschnittliches Vertrauen (dominant)
Baseline SOM 60,94 % (72,22 %) 51,8 % (61,4 %)

CNN + SOM 29,69 % (29,69 %) 18,19 % (18,19 %)

AE + SOM 67,19 % (86 %) 56,11% (71,82 %)

implizite Protokollzustdnde zuverlassig modellieren. Bei 64 moglichen Clustern stimmt
das LSTM in 42 % der Falle mit dem tatsachlich folgenden Nachrichtentyp iiberein. Zum
Vergleich: Eine zufillige Vorhersage hiatte eine Trefferwahrscheinlichkeit von lediglich
1/64 ~ 1,56 %.

Obwohl 42 % isoliert betrachtet nicht besonders hoch erscheinen, stellt dies im Kontext von
Fuzzing, wo zahlreiche Versuche moéglich sind, eine substanzielle Reduktion des Suchraums
dar und erhoht die Effizienz zielgerichteter Testfalle deutlich.

Dieses Experiment wurde auch fiir das HTTP-Protokoll durchgefiihrt. Die Ergebnisse fiir
HTTP-Protokolle sind allerdings weniger beeindruckend. Von den 16 implizierten Clustern
wurden 72 % korrekt vorhergesagt. Diese Zahl ist deutlich hoher als fiir die FTP-Protokolle,
sie basiert allerdings auf der Vorhersage der durchschnittlichen Clusterzahl, die mit der
Verzerrung des Datensatzes iibereinstimmt. Anders ausgedriickt: Die Vorhersage gibt zwei
oder drei abwechselnde Typen fiir die GET-Nachricht an, was die Vorhersagegenauigkeit
héher treibt als bei anderen Vorhersagemustern. Der Datensatz konnte in diesem Experi-
ment nicht fiir Klassen ausgeglichen werden, da vermieden werden sollte, durch zufilliges
Auswaihlen von Nachrichten sequentielle Abhéngigkeiten zu verandern. Infolgedessen
weisen die Eingabedaten fiir HTTP eine erhebliche Verzerrung zugunsten der GET-Nach-
richtentypen auf, wie es die Originaldaten auch tun, was letztlich dieses Verhalten des
LSTM erklart.

Die Ergebnisse in diesem Abschnitt verdeutlichen die zentralen Risiken beim Einsatz
maschineller Lernverfahren. Dies gilt insbesondere, wenn unterschiedliche Embeddings
und Modellansétze kombiniert werden und die Bewertung ausschlief}lich anhand einer
vordefinierten Metrik erfolgt. Die Experimente mit dem zustandsabhéngigen Protokoll

85

5 Protocol Reverse Engineering mittels neuronaler Netze

1024 Bytes
/—/%

HTTP/1.1 200 POST... HTTP/1.1

200 POST. ..

HTTP/1.1 [AGS UGN HTTP/1.1
200 OK. .. 200 OK. ..

HTTP/1.1 302

128 Bytes
HTTP/1.1...

Autoencoder
(AE)

HTTP/1.1

302 Moved. ..

Moved. ..

Vorhersage: Sequenz: SOM
% Lot g 1.7.1 (16 Klassen)

I

7 (Moved)

Abbildung 5.7: Beispiele von HTTP-Anfragen und ihrer Verarbeitung fiir die Zustandser-
kennung.

waren hingegen erfolgreich und erfiillten das urspriingliche Ziel. Die Ubertragung der-
selben Methoden auf ein zustandsloses Protokoll fithrte jedoch zu deutlichen Schwéachen.
Dies macht deutlich, dass die alleinige Betrachtung der Metrik zu Fehlschliissen fithren
kann, da wichtige strukturelle Unterschiede der Daten unberiicksichtigt bleiben. Die Ana-
lyse beider Protokolle zeigt, dass die Metrik auf den ersten Blick irrefithrend wirkt. Nur
eine vertiefte, analytische Auswertung der tatsiachlichen Vorhersageergebnisse ermoglicht
es, die Diskrepanzen zu erkennen und die Ergebnisse korrekt zu interpretieren. Dieses
Beispiel unterstreicht die Notwendigkeit, maschinelle Lernverfahren nicht isoliert anhand
quantitativer Kennzahlen zu bewerten, sondern die Modelle und deren Vorhersagen stets
im Kontext der zugrunde liegenden Datenstruktur zu analysieren.

5.4.6 Sequenzgenerierung

Um das Verhalten eines Protokolls vollstdndig nachzubilden, miissen syntaktisch korrekte
Nachrichten mit einer realistischen Verteilung erzeugt werden. Dazu wird ein LSTM-Modell
eingesetzt, das dem fiir das Feature Reverse Engineering verwendeten Modell dhnelt, jedoch
um zusatzlichen Kontext erweitert wurde. Anstelle generischer SOP- und EOP-Symbole
zur Markierung von Nachrichtenbeginn und -ende werden fiir jede Nachricht spezielle
Symbole eingefiihrt, die nach Clustertyp differenziert sind. Dies fiihrt zu 2 X 16 zusétzlichen
Symbolen fiir HTTP und 2x64 Symbolen fiir FTP, die dem ASCII-Alphabet in den jeweiligen
Setups hinzugefiigt und anschlieffend mittels One-Hot-Encoding dargestellt werden.

Die dem LSTM zugefiihrten Sequenzen verwenden eine versteckte Gréf3e von 100 Neu-
ronen in zwei Schichten, um die zusatzliche Komplexitat abzubilden. Innerhalb jeder
Sequenz zeigt ein spezielles Cluster die Position von Nachrichtenbeginn und -ende durch

86

5.4 Implementierung von PREUNN

B feature reverse engineering

0.8 1 .
sequence generation

0.7 |
0.6 -
0.5 -
0.4

0.3 4

proportional occurrence

0.2

0.1+

0.0 - -I T T T T T T
misc GET 200s 300s 400s POST HEAD DELETECPTIONS PUT TRACE CONNECT

HTTP statement types

Abbildung 5.8: Ergebnisse hinsichtlich der Typverteilung fiir HTTP Feature Reverse Engi-
neering (blau) und Sequenzgenerierung (orange).

die entsprechenden SOP- und EOP-Symbole an. Die tibrige Architektur entspricht der des
Modells fiir Feature Reverse Engineering, einschlieflich der konvolutionalen Embeddings.
Fiir das Training kommen der Adam-Optimizer mit einer Lernrate von 0,005 und den
Standard-Betas sowie eine NLL-Verlustfunktion zum Einsatz.

Die beim Feature Reverse Engineering mit dem LSTM verwendete Metrik kommt auch
hier zur Anwendung. Die generierten Sequenzen wurden in HTTP- bzw. FTP-Aussagen
geparst, in giiltige Protokoll-Header eingebettet und als pcap-Datei gesammelt. Eine
anschlieflende Validierung mit Wireshark ergab, dass 63 % der HTTP-Sequenzen und 100 %
der FTP-Sequenzen syntaktisch valide waren. Das hervorragende Abschneiden bei FTP
erklart sich, wie bereits beim Feature Reverse Engineering, durch die vergleichsweise
einfache Struktur der FTP-Nachrichten und der Trainingsdaten.

Abbildung 5.9 zeigt die Typverteilungen fiir FTP sowohl beim Feature-Reverse-Engineering
als auch bei der Sequenzgenerierung und visualisiert damit den Einfluss der Cluster-Indi-
zierung auf die resultierende Verteilung. Auffallig ist eine dominante Klasse, die entweder
auf ihre geringe Komplexitit oder auf eine mogliche Fehlkategorisierung innerhalb der
FTP-Typen zuriickzufiihren ist. Insgesamt deutet die Verteilung jedoch auf eine breitere
und ausgewogenere Typaufteilung hin.

Die im Vergleich niedrigere Validierungsrate fiir HT TP geht mit einer starkeren Korrelation
zwischen Anfragen und Antworten einher (siehe Abbildung 5.8). Dieser Befund legt nahe,
dass der zusatzliche Typkontext dem Modell dabei hilft, Anfrage-Antwort-Beziehungen zu
lernen. Komplexere Abhédngigkeiten im HTTP-Verkehr erschweren jedoch die vollstandige

87

5 Protocol Reverse Engineering mittels neuronaler Netze

I feature reverse engineering

0.6 sequence generation

0.5

0.4 4

0.3

proportional occurrence

0.2 1

0.1

o.o—!.'!' lql

misc ACCT/. 2300 PASV/.. 227/. ABOR[. 125, ALLOL. 212, 120
FTP statement types

Abbildung 5.9: Ergebnisse hinsichtlich der Typverteilung fiir FTP Feature Reverse Engi-
neering (blau) und Sequenzgenerierung (orange).

Reproduktion. Leistungsfahigere und grofiere Modellarchitekturen diirften die beobachtete
Effektivitat weiter steigern.

Diese Ergebnisse bilden die empirische Grundlage dafiir, pro Protokoll ein Deep-Lear-
ning-basiertes Fuzzing zu realisieren, da der hier verfolgte PRE-Ansatz generalisierbar ist
und die automatische Erzeugung syntaktisch valider Testeingaben ermoglicht.

5.5 Weiterentwicklung

Im Rahmen dieser Dissertation wurden zwei aufeinander aufbauende PREUNN-Ansatze
entwickelt. Zur eindeutigen Unterscheidung wird der weiterentwickelte Ansatz im Fol-
genden sowie in der Evaluation als PREUNN2 bezeichnet. PREUNN2 wurde konzipiert,
um die Leistungsfahigkeit des urspriinglichen Modells insbesondere fiir die Protokolle
HTTP und FTP zu verbessern.

In diesem Abschnitt werden die konzeptionellen und technischen Erweiterungen von
PREUNN zu PREUNN?2 detailliert beschrieben. Abbildung 5.10 zeigt die Gesamtarchitektur
des weiterentwickelten ML-PRE-Modells PREUNN2. Die einzelnen Komponenten der
Architektur sind farblich gekennzeichnet.

5.5.1 Vorverarbeitung der Daten

Die urspringliche Vorverarbeitung in PREUNN ignoriert Protokollinformationen der
Transportebene und trennt nicht zwischen Requests und Responses. Mithilfe der Aus-

88

5.5 Weiterentwicklung

Beobachteter Netzwerkverkehr

~ ~ ~
Extraktion von Vektorisierung des Erkennung von
Metadaten-Features Paketinhalts Sequenzen
~
Dimensionsreduktion
mittels Autoencoder
41 ~
Cluster-Labeling Automatisiertes Clustering Nachrichtengenerierung
Request / Response mittels HDBSCAN (LSTM) fiir jeden Cluster
~

Sequenzgenerierung
(LSTM)

Erzeugung neuen Netzwerkverkehrs

Abbildung 5.10: Architektur des weiterentwickelten PREUNN2-Modells. Vorverarbeitung
(blau), Clustering (rot), Nachrichtengenerierung (gelb) und Sequenzgene-
rierung (grin).

89

5 Protocol Reverse Engineering mittels neuronaler Netze

wertung von TCP-Headerdaten wie Sequenznummern oder Ports sollen vollstindige
Kommunikationssequenzen erkannt und die Richtung der Pakete eindeutig bestimmt
werden.

Ein zentrales Problem stellt der Balancing-Algorithmus dar, der auf manuell definier-
ten Paketklassen basiert. Dies setzt tiefes Protokollwissen voraus und widerspricht dem
automatisierten PRE-Ansatz. Zudem fiihrt der aktuelle Algorithmus durch die strikte Be-
grenzung von Klassengrofien mitunter zum Verlust seltener, aber relevanter Pakete. Auch
das Auffillen mit Nullen auf Maximalgréfle erzeugt kiinstliches Rauschen, da relevante
Nutzdaten oft nur einen Bruchteil des Pakets ausmachen.

SchlieBllich erzeugt die bildbasierte Byte-Reprasentation eine Ahnlichkeit zwischen se-
mantisch ungleichen Zeichen. Dadurch kann die Generalisierung des Modells erschwert
werden, insbesondere in Kombination mit den Verzerrungen durch die aufgefiillten Nullen.

Zur Verbesserung und Abschwichung dieser Probleme werden relevante Metadaten bereits
bei der Paketextraktion gespeichert und normiert. Anstelle einer manuellen Klassifizierung
erfolgt eine clusterbasierte Typisierung der Pakete. Ein iiberarbeiteter Balancing-Ansatz
beriicksichtigt nun relative Clusteranteile und soll flexibler auf unterschiedliche Datenver-
teilungen reagieren. Die Optimierungen dieser weiteren Schritte werden in den folgenden
Abschnitten detailliert beschrieben.

5.5.2 Klassifizierung von Nachrichtentypen und Zustandsiibergangen

Die urspriingliche PREUNN-Klassifizierung nutzt eine SOM, um Nachrichten zu Clustern
zusammenzufassen, die den Protokollzustanden entsprechen sollen. Diese Methode zeigt
jedoch Schwachen: Bei HTTP wurden 72 % der Zustande korrekt vorhergesagt, bei FTP
lediglich 42 % (siehe Abschnitt 5.4.5). Ein Hauptproblem ist, dass viele Pakete demselben
Cluster zugeordnet werden. Zudem werden in der Vorverarbeitung alle Nachrichten
unabhéngig vom TCP-Kontext betrachtet, wodurch Verbindungen nicht korrekt getrennt
werden und falsche Sequenzabhiangigkeiten gelernt werden.

Zur Verbesserung wird ein mehrstufiger Ansatz gewéhlt: Nachrichten werden tokenisiert,
wobei hdufige Token in einem Worterbuch gespeichert und iiber Multi-Hot-Vektoren
reprasentiert werden. Tokens am Anfang eines Pakets, die typischerweise den Nachrich-
tentyp kodieren, werden starker gewichtet.

Anschlielend reduziert ein AE die Vektordimension und filtert irrelevante Informatio-
nen [BKG20]. Fiir das anschlieflende Clustering wird HDBSCAN verwendet, das sich
gegeniiber klassischen Verfahren wie DBSCAN durch eine hohere Robustheit gegeniiber
unbalancierten Daten auszeichnet. Damit lassen sich strukturell d&hnliche Nachrichten wie
PASS und PASV zuverlassig unterscheiden [CMS13].

5.5.3 Erlernen des Nachrichtenaufbaus

Die in PREUNN eingesetzten LSTM-Netzwerke erzeugen syntaktisch korrekte Nach-
richten und imitieren den Aufbau realer Pakete zuverlassig, insbesondere bei weniger

90

5.5 Weiterentwicklung

restriktiven Protokollen wie HTTP und FTP. Daher wird das LSTM-Modell auch in der
Weiterentwicklung beibehalten.

Eine Schwiche des bisherigen Ansatzes liegt in der unausgewogenen Verteilung der
Trainingsdaten: Durch den Balancing-Algorithmus werden nur ausgewahlte Teile der
Daten verwendet, wodurch seltene Nachrichtentypen vernachlassigt werden. Zudem
erfolgte das Training nur in einer Epoche, was fiir LSTM-Modelle suboptimal ist.

Zur Verbesserung wird das LSTM nun epochenbasiert trainiert. Dabei werden in je-
der Epoche neue, zufillig gesampelte Beispiele aus allen Clustern verwendet, um eine
gleichmafligere Abdeckung aller Nachrichtentypen zu gewahrleisten. Der optimierte Clus-
tering-Ansatz unterstiitzt dieses Sampling zusétzlich.

Als Eingabe erhilt das Modell neben One-Hot-Vektoren fiir Zeichen auch den zugehorigen
Clusterindex. Dadurch wird ein gezieltes Generieren von Nachrichten bestimmter Typen

moglich.

5.5.4 Generierung neuer Testfille

Die bisherige Sequenzgenerierung in PREUNN kombiniert LSTM-basiertes Lernen mit
Cluster-Markierungen, um neue Paketfolgen zu erzeugen. Grundsétzlich lassen sich da-
durch verschiedene Pakettypen korrekt kombinieren, es treten jedoch mehrere Probleme
auf. So fehlen beispielsweise oft die giiltigen Startpakete USER/PASS, da das Modell aufgrund
der festen Eingabeldnge von 1024 Bytes keinen sinnvollen Sequenzbeginn lernen kann. Zu-
dem fithren ungenaue Clusterzuweisungen und die fehlende Trennung von TCP-Streams
im Training zu inkonsistenten Paketabfolgen. Eine Uberreprasentation haufig vorkom-
mender Pakete wie PORT verschérft das Problem zusatzlich.

Auch die pcap-Generierung ist eingeschrankt. Da jede Nachricht eine eigene IP-Adresse
und Port erhélt, fehlt eine klare Zuordnung zu zusammenhéngenden Kommunikationss-
tromen. Dadurch wird die Nachverfolgbarkeit und Analyse der generierten Sequenzen
erschwert.

In PREUNN2 wird deshalb ein zweistufiger Ansatz verfolgt. Zunéchst erzeugt ein LSTM
auf Basis von Cluster-Indizes eine sinnvolle Paketreihenfolge. Anschlieffend generiert das
bereits trainierte Nachrichtenmodell zu jedem Index ein konkretes Paket. Zwar lassen sich
so keine inhaltlichen Abhangigkeiten zwischen den Nachrichten abbilden, doch solche
Verkniipfungen traten im urspriinglichen Datensatz kaum auf.

Auch die pcap-Generierung wurde verbessert: Innerhalb einer Sequenz bleiben IP-Adressen
und Ports konsistent. Mithilfe der Clusterinformationen kann auflerdem automatisch
zwischen Client- und Serverpaketen unterschieden werden. So entstehen strukturierte,
realistisch wirkende Kommunikationsabliufe.

91

5 Protocol Reverse Engineering mittels neuronaler Netze

5.6 Implementierung von PREUNN2

Zur Evaluierung der zuvor identifizierten Optimierungspotenziale wird mit PREUNN2
ein alternatives ML-PRE-Modell realisiert. Es dient als Vergleich zur urspriinglichen
PREUNN-Implementierung und basiert auf TensorFlow® mit Keras’.

5.6.1 Vorverarbeitung

Die Pakete werden anhand von Zielports gefiltert, zu TCP-Stromen gruppiert und durch
extrahierte Features wie Lange, Struktur, Richtung sowie Zeichenverteilung beschrieben.
Eine gewichtete Tokenisierung bildet den Paketinhalt als Sparse Vector ab und erméglicht
eine differenzierte Eingabereprasentation.

5.6.2 Clustering

Zur Dimensionsreduktion wird ein AE trainiert, dessen latente Représentation gemeinsam
mit den Metadaten in ein Clustering iiberfiihrt wird. Der HDBSCAN-Algorithmus gruppiert
die Daten effizient und ohne Vorwissen in robuste Cluster, wobei auch seltene Pakettypen
erfasst werden.

5.6.3 Generierung neuer Pakete und Sequenzen

Ziel der Nachrichtengenerierung ist es, syntaktisch korrekte Pakete auf Basis der Cluster-
struktur zu erzeugen. Dazu wird ein LSTM-Modell mit zwei Eingaben verwendet: einem
kontextbasierten Zeichenstrom und einem Vektor fiir den zugehorigen Clusterindex. Mit-
hilfe dieser Informationen ist eine kontextsensitive Vorhersage des néchsten Zeichens
moglich. Die Architektur kombiniert mehrere Schichten mit Dropout und nutzt eine
Softmax-Ausgabe zur Byte-Wahrscheinlichkeitsverteilung.

Das Training erfolgt iiber einen Generator, der Paketsequenzen dynamisch erzeugt und
mit SOP/EOP-Markierungen versieht. So konnen aus ca. 250 Clustern pro Epoche iiber 15
Millionen Trainingsbeispiele generiert werden. Zur Generierung neuer Nachrichten wird
zunichst der Clusterindex mit einem SOP-Zeichen eingespeist. Anschlielend wird iterativ
ein Zeichen generiert, bis das EOP-Zeichen erreicht ist. Eine variable Sampling-Temperatur
sorgt dabei fiir diversifizierte Ausgaben.

Auch fir die Sequenzgenerierung kommt ein LSTM zum Einsatz. Dieser sagt auf Ba-
sis vorheriger Clusterabfolgen den nachsten Cluster voraus. Die Eingabe besteht aus
One-Hot-Vektoren der Clusterindizes, erganzt um SOP/EOP. Aufgrund der typischen Lange

6h‘ctps ://www.tensorflow.org/
"https://keras.io/

92

https://www.tensorflow.org/
https://keras.io/

5.7 Evaluation

von Protokollkonversationen wird eine Kontextlange, also die Anzahl der Input-Vekto-
ren, von 20 verwendet. Das Modell erreicht nach 20 Epochen eine stabile Trainings- und
Validierungsperformance (0,17 Categorical Cross-Entropy (CCE)).

Zur Erstellung von Fuzzing-Testfallen wird gepriift, ob die Cluster eher clientseitige oder
serverseitige Nachrichten enthalten. Somit konnen bei der Generierung nur solche Pakete
ausgewahlt werden, die aus einem Cluster von Client-Nachrichten stammen.

5.7 Evaluation

Zur Bewertung des entwickelten Ansatzes kommt das Test-Framework ProFuzzBench zum
Einsatz. Dieses ist ein Open-Source-Benchmark fiir das Fuzzing von Netzwerkprotokollen.
Es unterstiitzt verschiedene Fuzzer, darunter auch AFLNet [NP21].

5.7.1 ProFuzzBench

Fir jede Zielanwendung stellt das Framework ein Docker-Image bereit, das die Zielsoft-
ware (mit und ohne Debug-Symbolen), den Fuzzer, vorbereitete Testfille sowie ein Skript
zur Steuerung des Fuzzing-Prozesses enthalt. Dabei werden neue Testfille erzeugt, die
Anwendung iiberwacht und im Anschluss die Codeabdeckung aller Testfélle ausgewertet.
Alle Daten werden automatisch erfasst und gespeichert.

Zusatzliche Skripte ermdglichen die parallele Ausfithrung mehrerer Fuzzing-Prozesse und
die visuelle Auswertung der Abdeckungsdaten. Die Integration eigener Zielanwendungen
ist durch die dokumentierte Struktur einfach umsetzbar.

5.7.2 AFLNet

Der mutationsbasierte Fuzzer AFLNet wurde gewahlt, da dieser keine kontinuierliche Ge-
nerierung neuer Testfille zur Laufzeit erfordert und somit eine klare Trennung zwischen
der Testfallerzeugung und dem eigentlichen Fuzzing-Prozess ermdglicht. Dies ist notwen-
dig, um eine objektive Baseline-Messung durchzufiithren, bei der das ML-Modell nicht in
den Fuzzing-Prozess eingreift. Stattdessen werden vorab erzeugte Testfalle verwendet, die
durch die Extraktion aus dem Netzwerkverkehr stammen [PBR20].

5.7.3 Integration der Machine-Learning-Methoden

Zur Erweiterung des Frameworks wird ML-gestiitzte Testfallgenerierung in den Fuz-
zing-Prozess integriert. Dabei kommt AFLNet sowohl fiir die Baseline als auch fiir die
Evaluation zum Einsatz. Ausgangspunkt ist ein Datensatz mit TCP-Client-Paketen, aus
dem einerseits direkt Testfalle extrahiert und andererseits ein ML-Modell trainiert werden.

93

5 Protocol Reverse Engineering mittels neuronaler Netze

Dieses Modell generiert dquivalente Eingaben, die anschlieffend ebenfalls durch AFL-
Net mutiert werden. So lassen sich mutations- und generationsbasierte Fuzzing-Vorteile
kombinieren.

Es wurden die folgenden drei Integrationsansatze untersucht:

+ Vollintegrierte Generierung: Bei der vollintegrierten Generierung werden Trai-
ning und Testfallerzeugung zur Laufzeit im Docker-Container ausgefithrt. Dadurch
wird die komplette Laufzeit beriicksichtigt und es entstehen unterschiedliche Mo-
delle je Instanz. Der Aufwand ist jedoch hoch, insbesondere bei rechenintensiven
Modellen wie PREUNN.

« Externe Generierung: Bei der externen Generierung werden der ML-Prozess und
das Fuzzing vollstandig getrennt. Testfélle werden einmalig vorab erzeugt und beim
Start des Containers verwendet. Diese Methode ist ressourcenschonend, erlaubt
komplexe Modelle und erfasst keine Trainingszeiten, was dynamische Anpassungen
erschwert.

+ Integrierte Generierung mit Vortraining: Bei der integrierten Generierung mit
Vortraining werden vortrainierte Modelle im Container genutzt, die bei Bedarf weiter
trainiert oder direkt zur Laufzeit verwendet werden konnen. Dieser Ansatz verbindet
Flexibilitat mit realistischer Ausfithrung und ermoglicht eine automatische Zeiter-
fassung bei hoher Modellkomplexitat.

Aufgrund des besten Verhiltnisses von Aufwand, Flexibilitat und Praxisndhe wird der
letzte Ansatz der integrierten Generierung mit Vortraining umgesetzt.

5.7.4 Implementierung der Fuzzing-Ziele

Fiir ProFuzzBench lassen sich neue Fuzzing-Ziele gemaf der Repository-Anleitung® in-
tegrieren. Im Folgenden werden zwei HTTP-basierte Ziele hinzugefiigt: der Webserver
nginx sowie eine gezielt verwundbare, minimalistische Serverapplikation auf Basis von
Express.

5.7.4.1 Protokollimplementierungen fiir HTTP

HTTP wird von zahlreichen Serveranwendungen wie Apache und nginx unterstiitzt und
bietet sich aufgrund seiner weiten Verbreitung und standardisierten Struktur als geeignetes
Protokoll fiir das Benchmarking an. Diese gelten als ausgereift und gut getestet, weshalb
Fuzzing bei ihnen voraussichtlich nur begrenzte Ergebnisse liefert. Zur Validierung dieser
Annahme soll eine prototypische nginx-Implementierung eingesetzt werden. Zusatzlich
wird eine eigens entwickelte, bewusst angreifbare HTTP-Implementierung verwendet,
um gezielte Analysen zu erméglichen und um das Serververhalten flexibel anpassen zu
konnen.

8h‘ctps ://github.com/profuzzbench/profuzzbench/blob/7779866f04/README.md

94

https://github.com/profuzzbench/profuzzbench/blob/7779866f04/README.md

5.7 Evaluation

nginx Der nginx Server kann korrekt instrumentiert und tiber angepasste Konfigura-
tionen gesteuert werden. Erste Experimente zeigen jedoch, dass ein Grof3teil des Codes
bereits beim Serverstart durchlaufen wird, wodurch spétere Fuzzing-Anfragen kaum zu-
satzliche Abdeckung erzeugen. Zudem erschwert die aufwandige Wiederinitialisierung
pro Testfall eine prazise Auswertung. Als exploratives Fuzzing-Ziel eignet sich nginx daher
nur bedingt, kann aber als realitdtsnaher Referenzpunkt dienen.

Express Zur besseren Evaluierung des Fuzzing-Verhaltens wird eine eigene HTTP-Ser-
veranwendung mit dem Express-Framework® entwickelt. Dieses erlaubt es, Endpunkte
gezielt mit vordefinierten Fehlern und ungewohnlichem Verhalten auszustatten, beispiels-
weise durch bewusste Absturze, Timeouts oder inkonsistentes Antwortverhalten. Der
gesamte Datenverkehr sowie auftretende Fehlerzustande werden protokolliert [Exp25].

Da eine klassische Instrumentierung bei JavaScript nicht méoglich ist, wird die Codeab-
deckung zur Laufzeit iber externe Tools erfasst. Diese Messung erfolgt in Intervallen,
um die Performance nicht zu beeintriachtigen. Die Anwendung lésst sich vollstdndig in
ProFuzzBench integrieren und stellt eine leichtgewichtige, gut kontrollierbare Umgebung
zur Analyse des entwickelten Fuzzing-Ansatzes dar.

5.7.4.2 Protokollimplementierungen fiir FTP

Auf verbreitete FTP-Server wie ProFTPD und Filezilla Server wird zugunsten einer leich-
ter analysierbaren Alternative verzichtet. Stattdessen wird LightFTP'® eingesetzt, da es
in mehreren Studien [AC22; NP21; Nat22] als Fuzzing-Ziel dient, Open Source ist und
vielfaltige Konfigurationsmoglichkeiten bietet.

5.7.5 Auswertung der Ergebnisse

Zur Bewertung des ML-gestiitzten PREs wurden Fuzzing-Tests mit AFLNet auf den Zie-
len LightFTP und Express durchgefiihrt, um die Effizienz von PREUNN und PREUNN2
zu testen. Als Baseline dient eine zufallige Auswahl von 100 TCP-Sequenzen aus dem
Trainingsdatensatz.

5.7.5.1 Fuzzingvon Express

Beim Fuzzing des Express-Servers wurden je acht Instanzen pro Strategie zwolf Stunden
lang ausgefithrt. Aufgrund der geringeren Diversitiat der HTTP-Daten wurden pro Instanz
nur 50 Testfille generiert. Wahrend PREUNN urspriinglich fiir HTTP entworfen wurde,
musste PREUNN2 ohne spezielle Anpassungen auf das Protokoll generalisieren.

9ht‘cps://expressj s.com/
Onttps://github.com/hfirefOx/LightFTP

95

https://expressjs.com/
https://github.com/hfiref0x/LightFTP

5 Protocol Reverse Engineering mittels neuronaler Netze

Avg. edge coverage over time (%) Avg. line coverage over time (%)

90 1 90

80 - 801 —

g 70 B

g o 70

© 60 A g

“g g 60 4

S 50 S

[0} @ 50 1

2 40

2 40 —— aflnet-baseline 5 —— aflnet-baseline
30 4 aflnet-preunn 40 aflnet-preunn

—— aflnet-preunn2 —— aflnet-preunn2
20 T T T T T T T 30 T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (in min) Time (in min)
Best edge coverage over time (%) Best line coverage over time (%)

90 1 90

. 80 1 80+ 1 ——= |

2 70 S r

[0} n o 70

€ 60 11 g

% 9 60

S 50 A S

] o 50

[s)

2 40 —— aflnet-baseline 5 —— aflnet-baseline
30 - aflnet-preunn 40 A aflnet-preunn

—— aflnet-preunn2 —— aflnet-preunn2
20 T T T T T T T 30 T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (in min) Time (in min)

Abbildung 5.11: Verlauf der Codeabdeckung beim Fuzzing von Express mit den Testfall-
strategien Baseline (blau), PREUNN (orange) und PREUNNZ2 (griin).

Trotzdem lieferte PREUNN2 durchweg die beste Codeabdeckung und in allen Instanzen
zuverlassige Ergebnisse von tiber 80 %. Es war zudem der einzige Ansatz, der in jeder Instanz
Abstiirze und Hanger identifizieren konnte. PREUNN schnitt besser ab als die Baseline,

erreichte jedoch weniger konstante Resultate als PREUNN2. In der Zeilenabdeckung lag
die Baseline im Mittel leicht vorne.

Eine Analyse der gefundenen Abstiirze zeigt, dass alle Strategien unterschiedliche Fehler-
arten entdecken. PREUNN?2 identifizierte den Absturz durch einen ungiiltigen Date-Header,
die Baseline entdeckte einen Dateizugriffsfehler und nur PREUNN fand beide. Zwei weitere
bekannte Abstiirze wurden von keiner Methode erfasst — vermutlich aufgrund fehlender
Reprasentation in den Trainingsdaten oder zu kurzer Laufzeit.

Insgesamt erzielte PREUNN2 die besten Ergebnisse. Der Test zeigt jedoch auch, dass
eine hohe Codeabdeckung nicht automatisch zu einer besseren Fehlersuche fithrt. Am
sinnvollsten erscheint daher eine Kombination aus beobachteten Netzwerkdaten und
ML-generierten Testféllen.

5.7.5.2 Fuzzingvon LightFTP

Fiir das LightFTP-Ziel wurden je acht Fuzzing-Instanzen mit den drei Testfallgenerierungen
gestartet. Alle Versuche liefen parallel iiber einen Zeitraum von ebenfalls zwolf Stunden.

Die Dauer der Testfallgenerierung hatte dabei keinen nennenswerten Einfluss auf die
Ergebnisse.

96

5.7 Evaluation

Avg. edge coverage over time (%) Avg. line coverage over time (%)
55
70 A
50 -
2 9 —=71
b 45 1 ; 60 -
=4 o
© 40 4 o
g g
8 351 g 207
N]
2 30 —— aflnet-baseline 5 40 1 —— aflnet-baseline
25 aflnet-preunn aflnet-preunn
—— aflnet-preunn2 —— aflnet-preunn2
20 T T T T T 1 T 30 T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (in min) Time (in min)
Best edge coverage over time (%) Best line coverage over time (%)
55
70 A
50 - e S S ——
S 8
v 45 A o 601
e 40 g
g g
8 351 g 301
& g
2 30 —— aflnet-baseline 3 404 —— aflnet-baseline
25 4 aflnet-preunn aflnet-preunn
—— aflnet-preunn2 —— aflnet-preunn2
20 T T T T T T T 30 T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (in min) Time (in min)

Abbildung 5.12: Verlauf der Codeabdeckung beim Fuzzing von LightFTP mit den Testfall-
generierungen Baseline (blau), PREUNN (orange) und PREUNN2 (griin).

PREUNN? erzielte iiber die Laufzeit hinweg die stabilsten Resultate und erreichte im Mittel
die hochste Codeabdeckung mit 48 % Zweig- und 67,6 % Zeilenabdeckung. In der Zwei-
gabdeckung wurde es allerdings vereinzelt von der zufallsbasierten Baseline tibertroffen,
die mit 68,4 % auch den hochsten Einzelwert bei der Zeilenabdeckung erzielte. Insgesamt
zeigte sich PREUNN2 jedoch effizienter: 95 % der maximalen Zweigabdeckung wurden in
sieben von acht Instanzen erreicht, gegeniiber nur zwei bei der Baseline und keiner bei
PREUNN.

Keiner der Versuche fiihrte zu echten Abstiirzen oder Hiangern. Auffillige Testfzlle in der
Baseline wurden vom Fuzzer falschlich als Absturz klassifiziert, da sie besonders lange
Antwortzeiten simulierten, ohne das Ziel tatsachlich zu blockieren.

Die urspriingliche PREUNN-Implementierung lag in den meisten Metriken zuriick. Ursache
dafiir waren schwichere Startsequenzen und weniger realistische Nachrichtenfolgen, die
zu langeren Laufzeiten und geringerer Fuzzing-Effektivitat filhrten. Dennoch erreichte
PREUNN teilweise eine hohere Zeilenabdeckung als die Baseline, was auf die strukturierte
Generierung zuriickzufiihren ist.

Ein klarer Sieger lasst sich nicht ausmachen. Wahrend PREUNNZ2 konsistente Ergebnisse
mit schneller Abdeckung liefert, erreicht die zufillige Baseline in Einzelfdllen bessere
Spitzenwerte. Eine kombinierte Strategie erscheint daher vielversprechend.

97

5 Protocol Reverse Engineering mittels neuronaler Netze

5.8 Zusammenfassung

Im Rahmen dieser Dissertation wurden zwei neuartige Ansatze zur protokollbasier-
ten Rekonstruktion entwickelt. PREUNN und die darauf aufbauende Weiterentwicklung
PREUNN?. Beide nutzen Deep-Learning-Architekturen, um automatisch die Struktur und
Semantik von Netzwerkprotokollen wie HTTP v1.1 und FTP zu rekonstruieren und daraus
realistische, kontextabhangige Testfalle zu generieren. Damit 16sen sie das Problem, dass
die Schritte nicht mehr manuell ausgefithrt werden miissen und die Daten leichter fiir
Fuzzing verwendet werden konnen. Somit ist sichergestellt, dass der Fuzzer giiltige Test-
fille verwenden kann und keine Zeit mit ungiltigen Eingaben verschwendet, die direkt
verworfen werden.

Die Ansatze kombinieren unterschiedliche Deep-Learning-Architekturen: Autoencoder fiir
die Feature-Extraktion, LSTMs fiir das Reverse Engineering von Features und Zustands-
wahrnehmung, sowie Self-Organizing Maps fir das Clustering. Durch die Integration von
NLP-Techniken in PREUNN2 konnen zusatzlich semantisch korrekte und kontextabhéngi-
ge Kommunikationssequenzen erzeugt werden. Der modulare Aufbau erlaubt auch die
Nutzung moderner Architekturen wie BERT und erdffnet Perspektiven fiir den Einsatz
von Reinforcement Learning, um automatisierte Fuzzer fiir beliebige nachrichtenbasierte
Formate zu entwickeln.

Zur Evaluation wurde das ProFuzzBench-Framework erweitert, das mehrere Serverim-
plementierungen und Netzwerkprotokolle integriert. In den Fuzzing-Tests erzielten ML-
generierte Testfille eine hohere und stabilere Codeabdeckung als zufillig ausgewéhlte
Sequenzen aus realen Netzwerkmitschnitten:

« Express: PREUNN2 erzielte durchweg die hochste und stabilste Codeabdeckung
(>80 %) und identifizierte zuverlassig Abstiirze und Hanger. PREUNN erzielte bessere
Ergebnisse als die zufallige Baseline, war jedoch weniger konsistent als diese.

+ LightFTP: PREUNN2 lieferte iiber alle Instanzen hinweg die stabilsten Resultate,
mit durchschnittlich 48 % Zweigabdeckung und 67,6 % Zeilenabdeckung. Wenige

Spitzenwerte wurden vereinzelt von der zufalligen Baseline ibertroffen, insgesamt
war PREUNN2 jedoch effizienter.

Die Analyse der generierten Sequenzen zeigt, dass 63 % der HTTP- und 100 % der FT-
P-Sequenzen als giiltig erkannt wurden. Dies unterstreicht die Fahigkeit der Ansétze,
realistische Protokollnachrichten zu modellieren. Begrenzungen ergeben sich vor allem
durch Overfitting bei langeren Trainingsldufen, unbalancierte Trainingsdaten und eine
begrenzte Cluster-Pragnanz.

5.9 Fazit

In diesem Kapitel wurde untersucht, inwiefern sich klassische Deep-Learning-Modelle
wie AE und LSTMs fiir das PRE eignen. Die Ergebnisse zeigen, dass neuronale Netze Kom-
munikationsmuster erkennen, Protokollzustande modellieren und realistische Testfalle

98

5.9 Fazit

generieren konnen. Insbesondere in Kombination verschiedener Architekturen konnten
syntaktisch valide und semantisch konsistente Nachrichtenfolgen erzeugt werden. Dies
stellt einen wichtigen Fortschritt fiir die gezielte Testfallgenerierung dar.

Allerdings zeigen die Experimente auch Grenzen: Klassische Deep-Learning-Modelle
haben Schwierigkeiten, komplexe, hierarchisch strukturierte Daten iiber ldngere Sequen-
zen hinweg prézise zu erfassen. LLMs und Transformer-Architekturen bieten hier neue
Moglichkeiten. Aufgrund ihrer Fahigkeit, Grammatik, Kontext und Abhangigkeiten in
strukturierten Eingaben besser zu erfassen, eignen sie sich besonders fiir die Verarbeitung
von Protokollen und Formaten, die sich durch eine klare, formale Struktur auszeichnen.

Daher wird im folgenden Kapitel untersucht, wie LLM-basierte Verfahren fiir die Generie-
rung von Eingaben in Fuzzing-Szenarien eingesetzt werden konnen. Dies kniipft direkt an
das Ziel dieser Dissertation an, automatisierte Verfahren zur effizienten Sicherheitsanalyse
komplexer IoT-Systeme zu entwickeln.

99

6 Effizientes grammatikbasiertes Fuzzing
mittels Large Language Models

Der Inhalt dieses Kapitels basiert auf einer gemeinsamen Veroffentlichung mit Ibrahim
Mhiri, Akim Stark und Ingmar Baumgart. Teile der Ergebnisse wurden bereits in der unten
genannten Publikation veroffentlicht. Es wird ein neuartiger Ansatz zur Kombination
von LLMs mit grammatikbasiertem Fuzzing vorgestellt. Ziel ist es, die automatisierte
Generierung zielgerichteter Eingaben effizienter zu gestalten und damit die Testabdeckung
deutlich zu erhéhen.

« Ibrahim Mhiri, Matthias Borsig, Akim Stark und Ingmar Baumgart. ,How to Train
Your Llama — Efficient Grammar-Based Application Fuzzing Using Large Language
Models®. In: Secure IT Systems: 29th Nordic Conference, NordSec 2024 Karlstad, Swe-
den, November 6-7, 2024 Proceedings. Hrsg. von Leonardo Horn Iwaya, Liina Kamm,
Leonardo Martucci und Tobias Pulls. Bd. 15396. Lecture Notes in Computer Science.
Karlstad,Sweden: Springer-Verlag, Jan. 2025, S. 239-257. isbn: 978-3-031-79006-5.
DOI: 10.1007/978-3-031-79007-2_13 [Mhi+25].

6.1 Einleitung

Die Ergebnisse von PREUNN im letzten Kapitel zeigen, dass sich mithilfe von PRE realisti-
sche Eingaben fiir Netzwerkprotokolle erstellen lassen. Dadurch lassen sich die Grenzen
klassischer, rein zufallsbasierter Fuzzing-Ansatze tiberwinden. Dennoch gibt es zahlreiche
Szenarien, in denen hochstrukturierte Eingaben erforderlich sind und eine reine Protokol-
lanalyse nicht ausreicht. Fir diese Falle hat sich grammatikbasiertes Fuzzing etabliert, das
auf formalen Beschreibungen basiert und syntaktisch korrekte Testfille generiert.

Jungste Fortschritte im Bereich der LLMs er6ffnen zudem neue Perspektiven. Modelle
wie LLaMA2 [Tou+23] konnen komplexe Abhangigkeiten innerhalb strukturierter Da-
ten erfassen und kontextbewusst neue Sequenzen generieren. Fiir das Fuzzing bedeutet
dies einen Paradigmenwechsel: Anstelle manuell definierter Grammatiken kénnen LLMs
dynamisch Eingaben erzeugen, die sowohl syntaktisch giiltig als auch semantisch konsis-
tent sind. Dadurch lassen sich potenziell tiefere Zustandsraume erreichen und versteckte
Schwachstellen identifizieren, die klassischen Methoden bislang verborgen geblieben sind.

Das Ziel dieses Kapitels besteht darin, das Potenzial von LLMs fiir die Generierung gram-
matikalisch korrekter Eingaben im Kontext des Fuzzings zu untersuchen. Aufbauend
darauf lasst sich der Beitrag wie folgt zusammenfassen:

101

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

« Adaption eines vortrainierten LLaMA-2-13B-Modells: Ein vortrainiertes LLa-
MA-2-13B-Modell wurde mithilfe von Prompt-Tuning und Fine-Tuning an das XML-
Format angepasst. Das Ziel bestand darin, Eingaben zu generieren, die sowohl syn-
taktisch als auch semantisch korrekt sind.

« Integration von LLMs in AFL: Das angepasste Modell wurde in den bekann-
ten feedbackgesteuerten Fuzzer AFL integriert. Dadurch konnen die generierten
Eingaben direkt in den Fuzzing-Prozess eingespeist werden, ohne dass manuelle
Grammatikdefinitionen erforderlich sind.

« Implementierung einer dynamischen Feedback-Schleife: Es wurde ein konti-
nuierlicher Feedback-Mechanismus implementiert, der erfolgreiche Testfille iden-
tifiziert und an das LLM zuriickfiihrt. Auf diese Weise kann das LLM wiahrend des
Fuzzings weiter optimiert werden.

« Evaluation und Ergebnisse: Die Ansitze wurden anhand der XML-Parser 1ibxm12
und TinyXML-2 evaluiert. Das LLM-basierte Fuzzing erzielte eine bis zu sechsmal
hohere Codeabdeckung als ein reines AFL-Setup und iibertraf einen klassischen
grammatikbasierten Fuzzing-Ansatz (Nautilus in Verbindung mit AFL) um bis zu
50 %. Auflerdem wurden drei neue Zeitiiberschreitungen in 1ibxm12 entdeckt.

Die zentrale Herausforderung besteht darin, die Ausdrucksstarke generativer Modelle mit
den spezifischen Anforderungen des Fuzzings in Einklang zu bringen. LLMs er6ffnen zwar
neue Freiheitsgrade bei der Sequenzgenerierung, gleichzeitig muss jedoch sichergestellt
sein, dass die erzeugten Eingaben auch dem geforderten Format entsprechen. Die Evalua-
tion zeigt, dass LLM-basierte Ansatze klassische grammatikbasierte Verfahren nicht nur
erganzen, sondern in vielen Féllen deutlich iibertreffen konnen.

Dieses Kapitel tragt zum Gesamtziel der Dissertation bei, ndmlich zur Effizienzsteigerung
des Fuzzings durch die Erforschung KI-gestiitzter Methoden. Diese Methoden sollen die
Automatisierung der Sicherheitsanalyse komplexer IoT-Systeme unterstiitzen und die
Testabdeckung verbessern.

6.2 Stand der Technik

In diesem Abschnitt werden verwandte Arbeiten vorgestellt, um den Stand der Technik
einzuordnen und die Unterschiede zum vorgestellten Ansatz herauszuarbeiten. Dieser
entstand zeitgleich und unabhédngig von mehreren anderen Projekten, die das Potenzial von
LLMs fiir Fuzzing untersuchten, was die Aktualitat und Vielfalt des Themas unterstreicht.

Hu et al. [HZY23] prasentieren ChatFuzz eine Erweiterung von Greybox-Fuzzern wie
AFL++, die generative Kl integriert. Das System nutzt das LLM ChatGPT, um XML-Eingaben
zu generieren, die den Formatspezifikationen strukturierter Programme entsprechen.
Fine-Tuning oder Prompt-Tuning werden jedoch nicht eingesetzt, was zu einer geringeren
Testabdeckung fiihrt. Der in diesem Kapitel vorgestellte Ansatz geht dariiber hinaus, indem
er verschiedene Tuning-Strategien gezielt untersucht und optimiert, um die Qualitat der
generierten Eingaben zu steigern.

102

6.3 Entwurf

Zhang et al. [Zha+24b] stellen LLAMAFUZZ vor und zeigen ebenfalls, dass LLMs in der
Lage sind, strukturierte Eingaben fiir Fuzzing zu generieren. Ihr Fokus liegt auf dem
Fine-Tuning von LLMs zur Mutation bestehender Seed-Eingaben, wobei AFL++ als Baseline
dient. Im Gegensatz dazu fokussiert sich der in diesem Kapitel vorgestellte Ansatz nicht
allein auf Mutationen, sondern trennt die initiale Eingabegenerierung durch das LLM klar
von der nachgelagerten Mutation durch den Fuzzer. Zudem werden sowohl Prompt-Tuning
als auch Fine-Tuning systematisch verglichen, um die effektivste Strategie zu ermitteln.

Xia et al. [Xia+24] beschreiben mit Fuzz4All ein generisches Fuzzing-Framework, das LLMs
fiir unterschiedliche Zielprogramme nutzt. Es besteht aus einer Autoprompting-Phase und
einer Fuzzing-Schleife, die Eingaben generiert. Das Ziel ist ein moglichst breiter Einsatz,
etwa auch fiir das Testen von Compilern. Der in diesem Kapitel vorgestellte Ansatz zeichnet
sich dadurch aus, dass er auf ein spezifisches Eingabeformat optimiert ist. Dadurch ist eine
tiefere, an das Format angepasste Analyse moglich.

Zusammenfassend zeigt die Literatur, dass LLMs bereits auf unterschiedliche Weise in
Fuzzing-Workflows eingesetzt wird. Der nachfolgend vorgestellte Ansatz erweitert den
aktuellen Stand der Technik, indem er eine klare Trennung von Generierung und Mutation
vornimmt, den Schwerpunkt auf die effiziente Erstellung strukturierter Eingabedaten legt
und verschiedene Tuning-Methoden hinsichtlich ihrer Leistungsfahigkeit bewertet.

6.3 Entwurf

Der im Folgenden als How to Train Your Llama (HTTYL) bezeichnete Prototyp dient der
systematischen Untersuchung unterschiedlicher Trainingsmethoden fiir LLMs sowie dem
Vergleich ihrer Effektivitat. Der Entwurf basiert auf einem spezialisierten Eingabegenerator
fiur XML-Parser, dessen Ziel die Erzeugung semi-valider (syntaktisch giiltiger, jedoch
fehlerhafter) XML-Pakete unter Einsatz von ML-Techniken ist.

Als Fuzzing-Engine wurde AFL gewahlt, da es eine kompakte Codebasis mit hoher Anpas-
sungsfihigkeit verbindet und somit eine flexible Erweiterung ermoglicht. Im Gegensatz
dazu integriert AFL++ zahlreiche Weiterentwicklungen, weist jedoch eine signifikant er-
hohte Komplexitat auf, wodurch die Implementierung eigener Modifikationen erschwert
wird. Um den Fokus auf die Schnittstelle zwischen ML und Fuzzer zu legen, wurde daher
AFL als Grundlage der experimentellen Umsetzung eingesetzt.

AFL steuert den Fuzzing-Prozess, iibermittelt Eingaben an den XML-Parser, iiberwacht des-
sen Verhalten und protokolliert Abstiirze, Zeitiiberschreitungen sowie Anomalien. Seitens
des ML wird ein LLM benétigt, das kontextfreie Grammatiken verarbeiten und komplexe
Eingaben generieren kann. Hierfiir wurde das frei verfiigbare LLaMA-2-13B-Modell aus-
gewdhlt, das sich insbesondere durch die effiziente Generierung komplexer Strukturen
auszeichnet.

Die Konzentration auf XML bietet mehrere Vorteile: Das menschenlesbare Format er-
laubt eine unmittelbare Validierung der Ergebnisse, die strukturierte Natur erleichtert
die Evaluation und Identifikation von Parser-Schwachstellen und die weite Verbreitung

103

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

Llama2 Model AFL Fuzzer

¥ 4

Model Tuning Model Inference Model Integration

(T
- - 010101
Training Training Inference Model-Fuzzer n
Data Approach Strategy Interaction 0

Abbildung 6.1: Ubersicht tiber den vorgestellten Ansatz

gewahrleistet vielfaltige Testfille. Zudem ermoglicht die formale Reprasentierbarkeit
von XML-Grammatiken einen direkten Vergleich mit grammatikbasierten Fuzzern und
schafft somit eine belastbare Benchmark zur Bewertung der Effektivitat des Ansatzes. Die
Abbildung 6.1 veranschaulicht das Konzept des Losungsansatzes. Hierbei werden zwei
Haupteingaben erfordert: ein LLM, im Beispiel Llama2, und das Fuzzing-Tool, in diesem
Fall AFL. Die Methode besteht aus drei Phasen:

« Modell-Tuning: Zunichst wird die Fahigkeit des Modells verfeinert, die Einga-
begrammatik des Zielprogramms zu verarbeiten, indem ein optimaler Datensatz
und eine Trainingsmethode ausgew&hlt werden. Diese Phase resultiert in einem
LLM, das auf die Verarbeitung von Eingabestrukturen abgestimmt ist, die fiir das
Zielprogramm relevant sind, was seine Effizienz bei der Generierung sinnvoller
Eingabevariationen erhoht.

« Modell-Inferenz: Nach dem Tuning wird diese Phase durchgefiihrt, um Testein-
gaben fir den Fuzzing-Prozess zu erzeugen. Der Schwerpunkt liegt hier auf der
Anwendung einer strategischen Inferenzmechanik, die die Erzeugung vielfaltiger
Testfalle ermoglicht.

« Modell-Integration: Dieser letzte Schritt stellt sicher, dass das Modell reibungslos
mit dem Fuzzing-Tool zusammenarbeitet. Es wird ein einfacher Ansatz beschrieben,
um das LLM direkt in den Fuzzing-Prozess einzubinden, mit dem Ziel einer nahtlosen
Zusammenarbeit zwischen den beiden.

Dieser strukturierte Ansatz resultiert in einem umfassenden Fuzzing-Framework, das
ein LLM enthélt, das auf die Erzeugung gezielter Testeingaben abgestimmt ist, und eine
AFL-Instanz, die auf die effektive Nutzung dieser Eingaben ausgerichtet ist.

6.3.1 Datensatz

Es wurde ein Datensatz zusammengestellt, der sowohl bosartige als auch harmlose XML-
Dateien enthalt. Insgesamt wurden 56 bosartigen XML-Dateien gefunden, die hauptsach-
lich XXE-Injection-Payloads enthalten und reale Anwendungsschwachstellen ausnutzen.

104

6.3 Entwurf

Sie wurden aus der Exploit-Datenbank! extrahiert. Fiir die harmlosen Dateien wurde das
KIT-Motion-Language-Dataset? verwendet, aus dem zufillig 100 XML-Dateien ausgewihlt
wurden, um eine ausgewogene Mischung aus bosartigen und harmlosen Beispielen zu
gewihrleisten.

Obwohl der Trainingsdatensatz vergleichsweise klein ist, ist es herausfordernd, eine
grofiere Vielfalt unterschiedlicher bosartiger XML-Dateien zu erhalten. Der geringe Anteil
an harmlosen XML-Dateien sollte jedoch kein Problem darstellen, da Llama2 bereits auf
grof3en Mengen offentlich verfigbarer XML-Dateien aus dem Internet trainiert wurde.
Dadurch verfiigt das Modell iiber eine solide Grundlage fiir das Verstandnis der XML-
Struktur.

6.3.2 Trainingsansatz

Die Trainingsphase umfasst zunichst die Beschaffung von Daten, die den Zielen des
Projekts entsprechen. Dazu wird das generative LLM eingesetzt, um AFL mit einer ausge-
wogenen Mischung aus harmlosen und bosartigen Beispielen zu versorgen. Somit wird
eine griindliche Bewertung der Funktionalitit des Zielprogramms ermoglicht. Nach der
Vorbereitung des Datensatzes wird die optimale Methode zum Modell-Tuning ausgewahlt.
Da Fine-Tuning erhebliche Rechenressourcen erfordert, stellt Prompt-Tuning eine weniger
ressourcenintensive Alternative dar, da hierbei nur ein Teil des Modells angepasst wird.
Aufgrund dieser Uberlegungen wird Prompt-Tuning priorisiert, wihrend Fine-Tuning als
robuste Vergleichsbasis dient.

6.3.3 Inferenzstrategie

Inferenzstrategien zur Erzeugung von Fuzzing-Beispielen fallen im Allgemeinen in zwei
primire Kategorien: Sampling-basierte Strategien, die den Eingaberaum mithilfe von
Zufall erkunden, und deterministische Strategien, die einen vordefinierten Algorithmus
oder eine Heuristik verwenden. Deterministischen Strategien, die fiir gegebene Token
und Wahrscheinlichkeitspaare dieselben Sequenzen erzeugen, fehlt die notwendige Va-
riabilitat fiir eine effektive Fuzzing-Testung. Eine solche Vorhersehbarkeit, kombiniert
mit Skalierungsproblemen im Zusammenhang mit Speicher und Ausfithrungszeit, macht
deterministische Strategien fiir diese Anwendung unpraktisch. Der ausgewéhlte Ansatz ist
daher die Top-k-Sampling-Methode, die zur Kategorie der Sampling-basierten Strategien
gehort. Die Anpassungsfahigkeit der Top-k-Sampling-Methodeake macht sie ideal fiir die
Erzeugung einer Vielzahl von Fuzzing-Eingaben, was eine umfassendere Bewertung der
Schwachstellen des Zielprogramms ermdglicht. Diese Technik beinhaltet die Auswahl der
Top-k-wahrscheinlichsten Token bei jedem Schritt, wodurch Zufall in den Prozess einge-
fithrt wird, um eine vielféltige Menge generierter XML-Beispiele zu gewéhrleisten. Der

1ht‘cps://www.exploit—db .com/
2ht‘cps://mo‘cion- annotation.humanoids.kit.edu/dataset/

105

https://www.exploit-db.com/
https://motion-annotation.humanoids.kit.edu/dataset/

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

Run
(]
Generate XML N Input Read input
Q ¢ Folder Q

Tuned Llama2

Abbildung 6.2: Integration des LLM in den Fuzzing-Test

Hauptvorteil dieser Methode besteht darin, dass sie ein Gleichgewicht zwischen der Erzeu-
gung vielfaltiger Eingaben und der Aufrechterhaltung eines effizienten und handhabbaren
Auswahlprozesses aufrechterhélt. Dieses Gleichgewicht ist fiir Fuzzing-Anwendungen
von entscheidender Bedeutung, bei denen sowohl die Vielfalt der Eingaben als auch die
Praktikabilitat ihrer Erzeugung wichtig sind.

6.3.4 Modell-Integration

Nach der Vorbereitung des LLM fiir die Inferenz wird eine Integrationsstrategie beschrie-
ben, die eine Einbindung des Modells in den Fuzzing-Test ermoglicht. Im Unterschied
zu herkommlichen Tools, die auf vordefinierten Grammatiken basieren, ist durch diese
Integration ein direkter Zugriff auf generierte XML-Beispiele moglich, die in den Fuzzing-
Prozess einfliefen.

Hierzu wird AFL entsprechend angepasst, um eine nahtlose Ubertragung der generier-
ten Beispiele zu gewéhrleisten. Dies wird in Abschnitt 6.4 ausfiihrlich beschrieben. Wie
in Abbildung 6.2 dargestellt, erzeugt das Llama2-Modell eine vordefinierte Anzahl von
XML-Beispielen. Diese werden direkt in ein Eingabeverzeichnis geschrieben, das von AFL
fir die Fuzzing-Tests verwendet wird. Der Vorgang erfolgt zyklisch, wobei wéihrend der
gesamten Dauer des Fuzzing-Tests kontinuierlich neue Beispiele generiert und von AFL
bewertet werden. Der Zyklus startet mit dem LLM, das AFL initiiert, um eine Fuzzing-
Sitzung zu starten, die iber einen definierten Zeitraum (z. B. 24 Stunden) lauft. Die fur
die LLM-Berechnungen benétigte Anfangszeit wird dabei nicht von der Fuzzing-Dauer
abgezogen, da sie vorab berechnet werden kann. Nach Ablauf des Zeitraums wird die
Beispielerzeugung beendet und AFL schlief3t den Vorgang ab. Dies kann entweder durch
ein direktes Stopp-Signal des LLM oder durch einen vordefinierten Timeout-Mechanismus
erfolgen, der zu Beginn der Tests festgelegt wurde.

6.3.5 Feedback-Schleife

Ein integrierender Bestandteil des Systems, wie in Abbildung 6.3 dargestellt, ist die Feed-
back-Schleife, die die Leistung des LLM tiber die Zeit verbessert. Wahrend des Fuzzing-Tests

106

6.4 Implementierung

Input

Tuned Llama2

Samples
led to new
coverage

Abbildung 6.3: Llamaz2 lernt durch eine Feedback-Schleife

wird das LLM anhand der Riickmeldungen des Fuzzers angepasst. Die Feedback-Schleife
analysiert die Ergebnisse von AFL, um XML-Beispiele zu identifizieren, die zur Entde-
ckung neuer Schwachstellen oder Pfade im Zielprogramm beitragen. Diese Beispiele
werden erneut in den Trainingsprozess des LLM eingespeist, wodurch dessen Fahigkeit zur
Generierung relevanter Testfille kontinuierlich verbessert wird. Dieser iterative Zyklus
ermoglicht eine fortlaufende Verfeinerung der Modellausgaben und eine Anpassung an
die sich entwickelnde Landschaft potenzieller Schwachstellen in der Zielsoftware.

6.4 Implementierung

Es wurde ein PoC entwickelt, der die Synergien zwischen dem LLaMA-2-13B-Modell
und AFL fiir ein erweitertes Fuzzing-Framework demonstriert. Der PoC zeigt die prak-
tische Anwendung der Integration eines LLM mit einem fithrenden Fuzzing-Tool, um
Software-Schwachstellen durch strukturierte XML-Eingaben aufzudecken.

6.4.1 Modelltraining und Integration mit AFL

Das LLM wird zunichst auf einem kuratierten Datensatz trainiert, um realistische XML-
Eingaben fiir den Fuzzing-Prozess zu erzeugen. Sowohl Fine-Tuning als auch Prompt-Tu-
ning kommen zum Einsatz, um ein Gleichgewicht zwischen Modellleistung und Rechen-
aufwand zu gewéhrleisten. Anschlieffend wird das trainierte Modell in AFL integriert,
sodass generierte Testfalle automatisch in den Fuzzing-Zyklus eingespeist werden. Auf
diese Weise kann das System kontinuierlich neue Eingaben erzeugen und direkt deren
Effektivitat bei der Aufdeckung von Schwachstellen evaluieren.

107

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

6.4.1.1 Fine-Tuning

Ein vollstandiges Fine-Tuning des Llama2-Modells wurde durchgefiihrt, wobei das Modell
aufgrund seines ausgewogenen Verhiltnisses von Rechenaufwand und Leistung ausge-
wihlt wurde. Der Fine-Tuning-Prozess erstreckte sich iiber drei Epochen bei einer Lernrate
von 0,003, die empirisch bestimmt wurde, um ein Gleichgewicht zwischen einer schnellen
Anpassung des Modells und dem Risiko von Overfitting zu gewéhrleisten. Das Training
erfolgte anhand eines kuratierten Datensatzes, wie in Abschnitt 6.3.1 beschrieben.

6.4.1.2 Prompt-Tuning

Zusitzlich wurde ein Prompt-Tuning-Ansatz unter Verwendung der Transformers-Bi-
bliothek® implementiert. Dieser Ansatz basiert auf demselben kuratierten Datensatz wie
zuvor. Zur Evaluierung wurden zwei unterschiedliche Kontextldngen getestet: 3072 und
4096 Tokens. Wéhrend mit 3072 Tokens Eingaben bis zu dieser Lange verarbeitet werden
konnen, erméglicht die Einstellung von 4096 Tokens die Verarbeitung langerer Abfra-
gen. Die groflere Kontextlange kann Ausgaben generieren, die potenziell detaillierter und
konsistenter sind.

6.4.2 Kontinuierlicher Datenintegrationsmechanismus

Eine im Rahmen der Dissertation erstellte Erweiterung des AFL-Frameworks beinhal-
tet die Implementierung eines kontinuierlichen Datenintegrationsmechanismus. Dieser
unterscheidet sich von traditionellen Fuzzing-Methoden. AFL kann somit neue Testfal-
le dynamisch wahrend des Fuzzing-Prozesses anwenden, anstatt sich auf eine statische
Eingabemenge zu verlassen.

Zu diesem Zweck wurde die Funktion read_testcases() von AFL so modifiziert, dass re-
gelmaflig ein vordefiniertes Eingabeverzeichnis gescannt wird. Bereits verarbeitete Samples
werden verfolgt und Gibersprungen, um Redundanzen zu vermeiden und die Effizienz zu
steigern. Zusétzlich werden Testfalle, die neue eindeutige Pfade oder Programmabstiirze
erzeugen, sowohl im internen AFL Seed Pool als auch in einem vordefinierten Verzeichnis
gespeichert. Dieses Verzeichnis dient als Repository fiir Beispiele, die spater iiber den
Feedback-Mechanismus zur Verbesserung des LLM verwendet werden.

6.4.3 Optimierungstechnologien

Zur Verbesserung der Skalierbarkeit und Effizienz kommen Optimierungstechnologien wie
Accelerate [Gug+22], DeepSpeed [Ras+20] und Zero [Raj+21] zum Einsatz. Diese Techno-
logien ermoglichen die schnelle Ausfithrung des LLM auf weit verbreiteter Hardware und
steigern die Effizienz von Training und Nutzung grofler neuronaler Netzwerke.

3https: //github.com/huggingface/transformers

108

https://github.com/huggingface/transformers

6.5 Evaluation

6.4.4 Dynamischer Feedback-Mechanismus

Ein dynamischer Feedback-Mechanismus iberpriift die Ergebnisse jeder Fuzzing-Iteration.
AFL verarbeitet die vom LLM generierten XML-Dateien und beginnt mit dem Fuzzing.
Die Analyse bewertet die Effektivitat verschiedener XML-Dateien, um diejenigen zu
identifizieren, die neue Ausfithrungspfade oder Abstiirze verursachen. Effektive Dateien
werden an das LLM zuriickgefithrt, wihrend ineffektive im AFL Seed Pool verbleiben,
jedoch nicht fiir das Modelltraining genutzt werden.

Im néchsten Schritt wird das LLM auf den ausgewahlten Samples prompt-getunt, um die
Generierung neuer XML-Beispiele fiir nachfolgende Fuzzing-Tests zu optimieren. Dieser
iterative Zyklus ermoéglicht eine kontinuierliche Verbesserung der Testeffektivitét. Gleich-
zeitig integriert AFL die neuen XML-Dateien in den Seed Pool und setzt den normalen
Betrieb fort, wobei die Suche nach neuer Codeabdeckung aktiv weitergefiithrt wird.

6.5 Evaluation

Zur Bewertung des Ansatzes wurde der in Abschnitt 6.4 entwickelte PoC eingesetzt. Da
die Rechenanforderungen fiir das Training und die Nutzung von LLMs sehr hoch sind,
hatten die Entwicklungsumgebung und die Hardware einen entscheidenden Einfluss auf
die Ergebnisse.

Verwendet wurde ein Server mit einer NVIDIA A100-Grafikkarte (80 GB VRAM), 720
GB RAM, 2,03 TB Speicherplatz und einem AMD EPYC 75F3-Prozessor. Jede Fuzzing-Sit-
zung wurde 24 Stunden lang durchgefiihrt. Dabei wurde der Zugriff auf GPU-Ressourcen
ermdglicht und die Fuzzing-Testung auf einen einzelnen CPU-Kern beschriankt (Stan-
dard-Einstellung von AFL), um die Vergleichbarkeit zwischen den Laufen zu gewahrleisten.
In realen Szenarien stellen Ressourcen typischerweise keinen Engpass fiir Fuzzing-Tests
dar. Das parallele Ausfithren von AFL auf mehreren Kernen skaliert jedoch nicht linear,
da Ergebnisse und Daten zwischen den einzelnen Instanzen geteilt werden miissen, was
zusétzlichen Overhead verursacht.

Die Fuzzing-Einrichtung wurde gegen mehrere Zielprogramme getestet, darunter 1ibxm12
und TinyXML-2.

6.5.1 Bewertungsmetriken

Fiir die Bewertung wurden die von AFL bereitgestellten Metriken herangezogen:

+ Gesamtzahl der gefundenen Pfade: Diese Metrik stellt die Gesamtzahl der ein-
deutigen Pfade dar, die wahrend des Fuzzing-Tests innerhalb des Zielprogramms
gefunden wurden.

«+ Abstiirze: Dies sind eindeutige Testfalle, die zu fatalen Fehlern im getesteten Pro-
gramm fithren, wie z.B. SIGSEGV, SIGILL, SIGABRT usw.

109

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

« Zeitiiberschreitungen: Zeitiiberschreitungen sind eindeutige Testfille, die dazu

fithren, dass die Riickmeldung des PUT zeitlich iiberschritten wird. Die Standard-
Zeitbegrenzung von AFL vor einer Klassifizierung als Zeitiiberschreitung betragt
eine Sekunde.

Zur Bewertung wurden zwei weit verbreitete XML-Parser 1ibxml2 und TinyXML-2 her-
angezogen. Anstelle absichtlich eingefiihrter Fehler wurden reale Programme getestet,
da kiinstliche Fehler die Subtilitat echter Fehler nicht ausreichend abbilden. Wenn keine
Fehler gefunden werden, was héaufig der Fall ist, da Programme bereits griindlich getestet
oder gepatcht wurden, dient die Codeabdeckung (Gesamtzahl der gefundenen Pfade) als
zuverlassigster Indikator fiir die Tiefe der Programmuntersuchung.

6.5.2 Experimentelle Ansatze

Zur Evaluierung des Prototyps wurden mehrere experimentelle Ansdtze getestet:

« AFL-Fuzzing: Dieser Ansatz verwendet die native Funktionalitat des AFL-Fuzzing-

Tools, wobei die Trainingsdaten fiir das LLM als Eingabe verwendet werden.

Vortrainiertes LLM-Fuzzing: Diese Methode verwendet das unveranderte vortrai-
nierte LLaMA-2-13B-Modell als Eingabegenerator fiir AFL

Fine-Tuned LLM-Fuzzing: Diese Methode verwendet eine Fine-Tuned Version von
Llama2, um Eingaben fiir AFL bereitzustellen.

Prompt-Tuned LLM-Fuzzing: Dieser Ansatz verwendet ein Prompt-Tuned Llama2-
Modell.

LLM-Fuzzing mit Feedback-Schleife: Diese Methode verwendet ein Prompt-Tu-
ned Llama2-Modell, um Eingabe-Samples fiir AFL bereitzustellen. Zusétzlich unter-
zieht sich dieses Modell wahrend des Fuzzing-Tests einem Echtzeit-Prompt-Tuning
mit Feedback vom Fuzzer. Vor allem Samples, die zur Entdeckung neuer Pfade fiihren,
werden in das Prompt-Tuning mit einbezogen.

Nautilus* in Kombination mit AFL: Nautilus 2.0, ein grammar-basierter Einga-
begenerator, erzeugt syntaktisch korrekte XML-Daten, die anschlieflend von AFL
ausgefithrt werden. AFL misst dabei die Codeabdeckung und identifiziert Abstiirze
oder Hanger. Fiir die Experimente wurde das mit Nautilus bereitgestellte Beispiel
einer XML-Struktur (grammar_py_example.py’) verwendet. Die Synchronisation er-
folgt nur in eine Richtung: AFL kann Eingaben von Nautilus ibernehmen, aber nicht
umgekehrt.

Diese Ansatze erlauben den Vergleich der Effektivitat und Effizienz unterschiedlicher
Methoden innerhalb des Fuzzing-Frameworks.

4h‘ctps ://github.com/nautilus- fuzz/nautilus
5h‘ctps ://github.com/nautilus- fuzz/nautilus/blob/mit-main/grammars/grammar_py_example.py

110

https://github.com/nautilus-fuzz/nautilus
https://github.com/nautilus-fuzz/nautilus/blob/mit-main/grammars/grammar_py_example.py

6.5 Evaluation

12,000/~) 5,000

9.000 4,000

3,000
6,000

Anzahl Pfade
Anzahl Pfade

2,000

3,000 |-/ =
1,000 |

0 | | | | | | | 0
0 3 6 9 12 15 18 21 24
Stunden Stunden
— AFL Fuzzer — AFL Fuzzer
Vortrainiertes LLM Fuzzing Vortrainiertes LLM Fuzzing
— Fine-Tuned LLM Fuzzing — Fine-Tuned LLM Fuzzing
—— Prompt-Tuned LLM Fuzzing (3072) —— Prompt-Tuned LLM Fuzzing (3072)
—— Prompt-Tuned LLM Fuzzing (4096) —— Prompt-Tuned LLM Fuzzing (4096)
LLM Fuzzing mit Feedback-Schleife LLM Fuzzing mit Feedback-Schleife
— Nautilus + AFL Fuzzer — Nautilus + AFL Fuzzer

Abbildung 6.4: Gesamtzahl der gefundenen Pfade bei den verschiedenen Ansitze in
Libxm12 (links) und TinyXML-2 (rechts) iiber 24 Stunden

6.5.3 Experimentelle Ergebnisse

Abbildung 6.4 zeigt die Anzahl der vom Fuzzer gefundenen Pfade in 1ibxm12 und TinyXML-2
iiber 24 Stunden. Die LLM-basierten Fuzzing-Methoden iibertreffen den traditionellen
AFL-Ansatz. Alle AFL-Varianten, die mit einem LLM integriert wurden, zeigten eine héhere
Leistung als AFL allein, wobei Prompt-Tuned LLMs die beste Verbesserung erzielte.

Fiir 1ibxm12 wurden folgende Anzahlen an Pfaden gefunden: traditionelles AFL 1698, LL-
M-Fuzzing 10705, Prompt-Tuned LLM (mit 4096 Token Kontextldnge) 8203, Prompt-Tuned
LLM (mit 3072 Token Kontextldnge) 11290, Fine-Tuned LLM 6719 und Nautilus + AFL 4826.
Fiir TinyXML-2 wurden folgende Ergebnisse erzielt: traditionelles AFL 411, LLM-Fuzzing
894, Prompt-Tuned LLM (mit 4096 Token Kontextlange) 4745, Prompt-Tuned LLM (mit
3072 Token Kontextlange) 5000, Fine-Tuned LLM 924 und Nautilus + AFL 1396.

Die vergleichsweise geringe Leistung des Fine-Tuned-Modells ist auf die nur drei Trai-
ningslaufe zuriickzufithren. Aufgrund der begrenzten Hardware-Ressourcen waren nicht
mehr Trainingslaufe moglich. Prompt-Tuned-Modelle zeigten eine hohere Fahigkeit, neue
Muster von XML-Dateien zu erlernen, insbesondere aus den bdsartigen Beispieldateien.
Dadurch verbesserten sich Abdeckung und Leistung. Eine Erh6hung der Kontextlan-
ge kann die Leistung zwar weiter optimieren, fithrt jedoch unter Umstanden zu einem
Overhead, der die 24-Stunden-Performance beeintrachtigt, wie in Abbildung 6.4 gezeigt.

In den Tests zeigte die Kombination aus AFL und dem Prompt-Tuned LLM (3.072 Token
Kontext) die beste Leistung. Das Feedback-Schleifen-Modell lag leicht darunter, da regel-
maflige Trainingsphasen die Generierung von Samples unterbrachen. Die Unterschiede

111

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

3 -
é?ﬂ ' AFL Fuzzer
Ev Pys | e e e e :_ n Vortrainiertes LLM Fuzzing
= " - - Fine-Tuned LLM Fuzzing
.gﬂ E E - == Prompt-Tuned LLM Fuzzing (3072)
EC ! : --=--Prompt-Tuned LLM Fuzzing (4096)
S n LLM Fuzzing mit Feedback-Schleife
a1 Lo - - Nautilus + AFL Fuzzer

0 | _l L}_L L L L .

0 3 6 9 12 15 18 21 24

Stunden

Abbildung 6.5: Gefundene Zeitiiberschreitungen in 1ibxm12 fiir die verschiedenen Ansétze
tiber 24 Stunden

Modell Vortrainiertes Modell | Fine-Tuned Modell | Prompt-Tuned Modell | Feedback-Schleifen-Modell
Gesamtzahl der generierten Samples pro Lauf 6060 Samples 980 Samples 13980 Samples 2390 Samples
Generierungszeit eines Samples 14,04 Sekunden 89,49 Sekunden 5,99 Sekunden

Tabelle 6.1: Gesamtzahl der generierten Samples pro Fuzzing-Test

zwischen den Prompt-Tuned-LLMs mit 3.072 und 4.096 Token-Kontext lassen sich ver-
mutlich auf den Overhead durch die grofiere Kontextlange zuriickfithren, welcher die
Performance iiber 24 Stunden beeinflusste.

Abbildung 6.5 zeigt die Anzahl der Zeitiiberschreitungen, die wiahrend des 24-stiindigen
Fuzzing-Tests von 1ibxml2 auftraten. Die Prompt-Tuned-Fuzzing-Ansitze erzielten mit
bis zu drei eindeutigen Zeitiiberschreitungen die besten Ergebnisse. Das Feedback-Schlei-
fen-Modell lag mit einer Zeitiiberschreitung knapp dahinter. Traditionelles AFL-Fuzzing,
vortrainiertes LLM-Fuzzing und das Fine-Tuned LLM-Modell fiithrten dagegen wahrend
des gesamten Testzeitraums zu keinen Zeitiiberschreitungen.

Fir TinyXML-2 wurden unabhingig vom eingesetzten Ansatz keine Zeitiiberschreitun-
gen festgestellt. Aulerdem waren in beiden getesteten Programmen keine Abstiirze zu
beobachten.

Tabelle 6.1 zeigt die Gesamtzahl der generierten Samples pro Lauf sowie die fir die
Erstellung eines einzelnen Samples erforderliche Zeit der verschiedenen LLM-basierten
Ansiatze. Die Unterschiede in der Generierungszeit erklaren die Abweichungen in der
Gesamtzahl der Samples.

So generierte das vortrainierte Llama2-Modell 6.060 Samples innerhalb von 24 Stunden.
Das Fine-Tuning-Modell erzeugte hingegen nur 980 Samples. Dies ist auf die erhohte
Komplexitat und den zusatzlichen Aufwand durch das Fine-Tuning zuriickzufithren. Mit
13.980 Samples erreichte das Prompt-Tuned-Modell (3072 Token Kontext) die hochste
Anzahl und demonstrierte die Effizienz des Prompt-Tuning-Ansatzes. Dieser passt das
Modell gezielt an einen Anwendungsfall an, ohne zusatzliche Komplexitat einzufithren.

112

6.6 Einschrdankungen und zukiinftige Arbeiten

Top-k-Wert 5 25 50 150 250
Vortrainiertes LLM | 13,12 Sek. 14,04 Sek. 14,34 Sek. 14,56 Sek. 14,68 Sek.
Fine-Tuned LLM 89,82 Sek. 89,49 Sek. 90,67 Sek. 89,52 Sek. 91,35 Sek.
Prompt-Tuned LLM | 5,05 Sek. 5,99 Sek. 6,5 Sek. 6,97 Sek. 7,32 Sek.

Tabelle 6.2: Einfluss der Top-k-Variation auf die XML-Generierungszeit

Die Feedback-Schleifen-Variante erzielte eine geringere Anzahl an Samples, da das Modell
wahrend der Fuzzing-Tests regelmafig Trainingsphasen durchlief, in denen die Generie-
rung von Eingaben pausiert wurde.

6.5.4 Inferenzbewertung

Ein zentrales Merkmal der Inferenzbewertung ist die Laufzeit. Die erforderliche Zeit fiir
jedes Modell, um eine XML-Datei zu generieren, wurde aufgezeichnet und in diesem
Teil der Bewertung dargestellt. Die Tabelle 6.2 zeigt die fiir verschiedene Top-k-Werte
erforderliche Zeit fiir jedes Modell, um ein XML-Beispiel in Sekunden zu generieren.
Ein hoher Top-k-Wert kann die Generierungszeit von XML-Beispielen beeinflussen (mit
leichten Variationen). Allerdings zeigt diese Tabelle auch ein interessantes Verhalten: die
Generierungszeit von XML-Beispielen kann je nach Modelltyp (Fine-Tuned, Prompt-Tuned
oder vortrainiert) erheblich variieren. Wie aus diesen Ergebnissen ersichtlich wird, ist
Prompt-Tuned LLM das schnellste Modell, wiahrend das Fine-Tuned-Modell unabhangig
von den Top-k-Werten die langste Zeit benotigt.

6.6 Einschrankungen und zukiinftige Arbeiten

Es gibt mehrere Einschrankungen, die die Ergebnisse beeinflussen konnen:

+ Neuere LLMs wie Llama3, Llama4 oder Code Llama konnten potenziell bessere Er-
gebnisse liefern, da sie auf umfangreicheren und aktuelleren Trainingsdaten basieren
und tiber eine groflere Anzahl an Parametern verfiigen. Der Fokus dieser Dissertation
lag jedoch auf der Machbarkeit und nicht auf der Optimierung der Leistung.

« Die Auswahl der verwendeten Sprachmodelle war durch die verfiigghare Hardware
begrenzt. Groflere Modelle konnten eine héhere Testabdeckung und ein besseres
Verstandnis komplexer Eingaben erméglichen.

+ Das Trainingsdatenset bestand aus 56 bosartigen und 100 harmlosen XML-Beispielen.
Eine Variation der Datentypen und des Verhéltnisses von bosartigen zu harmlosen
Beispielen konnte die Effektivitat des Ansatzes steigern.

« Die gewahlte Top-k-Sampling-Strategie minimiert die Sample-Generierungszeit,
erfordert jedoch weitere Optimierung. Ein ausgewogenes Verhéiltnis von Gene-

113

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

rierungszeit und Sample-Qualitat konnte durch Parameter-Tuning und alternative
Inferenzmethoden erreicht werden.

« Die Feedback-Lernschleife beeinflusst die Anzahl der generierten Samples wihrend
der Fuzzing-Tests. Eine Optimierung iiber asynchrone Lern- und Generierungspro-
zesse konnte die Effizienz steigern.

Zusammenfassend verdeutlichen diese Ergebnisse das Potenzial der Integration von LLMs
in Fuzzing-Methoden, weisen jedoch auch auf Bereiche hin, die fiir zukiinftige Arbeiten
weiter optimiert werden kénnen.

Zukiinftige Arbeiten erdffnen eine Vielzahl von Forschungsmoglichkeiten, die auf den
Ergebnissen dieser Dissertation aufbauen. Mogliche Forschungsrichtungen umfassen:

+ Erforschung von KI-Alternativen: Untersuchung der Machbarkeit alternativer
KI-Modelle, wie z.B. GANs und Sequence to Sequence (Seq2Seq)-Modelle, zur Stei-
gerung der Effizienz von Fuzzing-Tests. Zusatzlich konnte der Einsatz von LoRA die
Fine-Tuning-Ergebnisse verbessern, da damit LLMs auch auf kleinen Datensatzen
effektiv trainiert werden konnen, was in dieser Dissertation eine Einschrankung
darstellte.

« LLM-basiertes Mutation-basiertes Fuzzing: Es konnte erforscht werden, wie
sich LLMs nutzen lassen, um die Mutationsstrategien fortschrittlicher Fuzzer wie
AFL zu erginzen. Das Ziel besteht darin, das kontextuelle Verstandnis von LLMs
effektiv zu nutzen, um Mutationen zu steuern und somit die Testfallgenerierung und
Schwachstellenentdeckung zu verbessern.

« Doménen-spezifische Anpassung: Die Anwendbarkeit des Ansatzes auf Eingaben
jenseits von XML, insbesondere in Programmen mit domanenspezifischen Grammati-
ken, sollte untersucht werden. Dies erfordert eine Anpassung der Fine-Tuning-Phase
unter Verwendung geeigneter Samples des Zielbereichs, etwa zum Lernen von PDF-
Strukturen. Ziel konnte dabei die Erforschung geeigneter Formate und Methodo-
logien fiir die Integration des Ansatzes in unterschiedliche Anwendungsdoménen
sein.

Die Bewertung in Abschnitt 6.5 zeigt das Potenzial eines einfachen, vortrainierten Llama2-
Modells, automatisierte Tests zu unterstiitzen und die Effizienz von Fuzzing-Tests fiir
sicherheitskritische Anwendungen, wie beispielsweise XML-Parser, zu erhéhen.

Zukiinftige Arbeiten konnten dariiber hinaus die in Abschnitt 6.6 aufgefithrten Ein-
schrankungen adressieren. Die Nutzung aktueller LLM-Versionen, die Optimierung der
Top-k-Sampling-Strategie, der parallele Einsatz zusétzlicher Hardware-Ressourcen sowie
das Training auf grofleren und diverseren Datensitzen konnten die Anwendbarkeit und
Leistungsfahigkeit des vorgeschlagenen Ansatzes weiter verbessern.

114

6.7 Zusammenfassung

6.7 Zusammenfassung

In dieser Dissertation wurde ein neuartiger Ansatz zur Integration von LLMs in Fuz-
zing-Workflows untersucht. Das Ziel bestand darin, die Effizienz und die Testabdeckung
signifikant zu verbessern. Die Kombination eines Fuzzers mit einem LLM erwies sich als
deutlich effektiver als der alleinige Einsatz klassischer Fuzzer und tibertraf sogar gramma-
tikbasierte Ansatze. Wahrend traditionelle Fuzzer stark von Mutationen abhangig sind,
generieren LLMs komplexe Eingaben auf Basis gelernter Muster und erméglichen dadurch
tiefere Einblicke in die Programmlogik.

Die Experimente konzentrierten sich auf XML-Dateien, da deren klar definierte Syntax
eine systematische Testgenerierung erleichtert. Der in Abschnitt 6.3 vorgestellte Ansatz
basiert auf der Evaluierung verschiedener Trainingsstrategien, darunter Fine-Tuning und
Prompt-Tuning. Als leistungsfahigster Ansatz hat sich prompt-getuntes LLM-Fuzzing
erwiesen, da die Grammatik implizit vom Sprachmodell erlernt wird und keine manuelle
Spezifikation erforderlich ist. Dadurch ist die Generierung syntaktisch korrekter und
semantisch aussagekraftiger Testfélle selbst fiir unbekannte oder komplexe Formate mog-
lich. Die Anpassungsfahigkeit des Ansatzes erstreckt sich tiber XML hinaus auf Formate
wie PDF, sodass vielfiltige automatisierte Tests in unterschiedlichen Softwaresystemen
moglich sind.

Der entwickelte Proof of Concept integriert das Llama2-Modell in das Fuzzing-Framework
AFL. Tests mit den XML-Parsers 1ibxml2 und TinyXML-2 zeigten eine deutlich hohere
Code-Pfad-Abdeckung im Vergleich zu klassischen Methoden. Auflerdem wurden drei
bislang unbekannte Zeitiiberschreitungen in 1ibxm12 entdeckt, was die Effektivitat des
Ansatzes bei der Aufdeckung neuer Schwachstellen bestatigt.

Durch die direkte Nutzung generativer Modelle lassen sich hochwertige Testfalle dyna-
misch erzeugen, wodurch sich die Effizienz und Genauigkeit klassischer Fuzzing-Methoden
deutlich steigern lassen. Die Ergebnisse belegen, dass LLM die Entdeckung neuer Aus-
fithrungspfade beschleunigen, die Testabdeckung erweitern und bisher verborgene Fehler
aufdecken konnen. Damit leistet diese Arbeit einen wichtigen Beitrag zur Weiterent-
wicklung automatisierter Sicherheitsanalysen und zeigt das Potenzial der Kombination
klassischer Fuzzing-Techniken mit generativen KI-Methoden auf.

6.8 Fazit

Die Untersuchungen in diesem Kapitel haben gezeigt, dass sich LLMs fiir die Generierung
hochstrukturierter Eingaben im Fuzzing einsetzen lassen. Durch die Anpassung eines
vortrainierten LLaMA-2-13B-Modells auf XML-Daten und die Integration eines adaptiven
Feedback-Mechanismus konnten syntaktisch korrekte und kontextbewusste Eingaben
erzeugt werden.

Die grofite Herausforderung bestand darin, die Balance zwischen der Flexibilitat generati-
ver Modelle und den Anforderungen des Fuzzings zu finden. Denn die erzeugten Sequenzen

115

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

mussten sowohl giltig als auch effizient fiir die Pfadexploration sein. Dies verdeutlichen
die Ergebnisse: LLMs erganzen klassische grammatikbasierte Ansatze sinnvoll und kénnen
in bestimmten Szenarien deren Reichweite iibertreffen.

Aufbauend auf diesen Erkenntnissen wird im folgenden Kapitel ein theoretisches Konzept
prasentiert, das die entwickelten Methoden zu einem einheitlichen Ansatz zusammenfiihrt.

116

7 Ansatz fiir ein integriertes
Fuzzing-Framework

In den vorangegangenen Kapiteln wurden vier eigenstidndige Ansétze entwickelt. Die-
se adressieren unterschiedliche Herausforderungen beim Fuzzing von IoT-Gerédten und
decken verschiedene Ebenen des Fuzzing-Prozesses ab.

« ESP32 Binary Rewriting (EBR) ermoglicht die gezielte Instrumentierung der
Firmware direkt auf Bindrebene, um beispielsweise Codeabdeckung oder Laufzeit-
schutzmechanismen zu erfassen (siehe Kapitel 3).

« ESP32-QEMU-FUZZ (EQF) stellt eine emulationsbasierte Testumgebung bereit,
die den Zugriff auf interne Systemzusténde erlaubt, die Auswertung beschleunigt
und parallele Fuzzing-Durchldufe auf leistungsfahiger Hardware erméglicht (siehe
Kapitel 4).

+ Protocol Reverse Engineering using Neural Networks (PREUNN) rekonstru-
iert unbekannte Netzwerkprotokolle automatisch und generiert syntaktisch valide
Eingaben fiir Fuzzing-Tests (siehe Kapitel 5).

« How to Train Your Llama (HTTYL) nutzt Large Language Models, um varianten-
reiche und syntaktisch korrekte Testfalle fiir strukturierte Datenformate wie XML
oder JSON zu erzeugen (siehe Kapitel 6).

Da diese Techniken komplementire Aspekte des Fuzzing-Prozesses optimieren, bietet es
sich an, ihre Interaktion in einem integrierten Ansatz zu betrachten. Ziel dieses Kapitels
ist es daher, einen konzeptionellen Rahmen zu skizzieren, der die vorgestellten Verfahren
modular kombiniert und flexibel an unterschiedliche Anwendungsszenarien anpasst. Zur
besseren Verstiandlichkeit werden die einzelnen Ansitze im Weiteren einheitlich als Module
bezeichnet. In dieser Dissertation wird keine praktische Implementierung vorgenommen.
Stattdessen werden nur theoretisch die Machbarkeit und das Potenzial der Kombination
aufgezeigt.

7.1 Konzeptionelle Integration der Module

Die vier entwickelten Module adressieren unterschiedliche Ebenen des Fuzzing-Prozes-
ses und konnen flexibel miteinander kombiniert werden. Dabei steht die vollstindige
Modularitat des Ansatzes im Vordergrund: Jedes Modul ist optional und kann je nach
Anwendungsszenario individuell eingesetzt oder weggelassen werden.

117

7 Ansatz fiir ein integriertes Fuzzing-Framework

7.1.1 Flexiblitat der Module

Das zentrale Konzept dieses Ansatzes ist die Modularitat. Jedes Modul bringt einen spezi-
fischen Nutzen:

« EBR: Instrumentierung auf Binirebene, etwa zur Erfassung von Codeabdeckung
oder zur Integration von Laufzeitschutzmechanismen.

« EQF: Emulationsumgebung mit Zugriff auf interne Systemzustande und Unterstiit-
zung paralleler Fuzzing-Instanzen.

« PREUNN: Rekonstruktion proprietarer Netzwerkprotokolle und Generierung syn-
taktisch valider Pakete.

« HTTYL: Grammatikbasiertes Fuzzing strukturierter Eingaben wie XML oder JSON
mithilfe von LLMs.

Dank dieser Modularitiat konnen je nach Zielsystem, Datenformat und Testumfang maf3-
geschneiderte Fuzzing-Workflows definiert werden. Der Ansatz stellt somit keinen starren
Framework-Entwurf dar, sondern eine flexible Sammlung kombinierbarer Bausteine.

7.1.2 PREUNN und HTTYL als parallele Module

PREUNN und HTTYL sind anwendungsspezifische Erweiterungen, die in der Regel parallel
betrachtet werden sollten:

« PREUNN kann dann verwendet werden, wenn ein IoT-Gerat {iber proprietire Netz-
werkprotokolle angesprochen wird. Es ermoglicht die automatisierte Rekonstruktion
der Protokollstruktur und generiert syntaktisch valide Netzwerkpakete fiir gezieltes
Fuzzing.

« HTTYL kann verwendet werden, wenn das Zielsystem strukturierte Eingaben wie
XML- oder JSON-Dokumente verarbeitet. Es erzeugt variantenreiche, syntaktisch
korrekte Testfdlle, die gezielt komplexe Parserlogik priifen.

Ebenso denkbar ist ein kombiniertes Szenario, beispielsweise wenn ein IoT-Gerét ein
proprietares Netzwerkprotokoll nutzt, das eingebettete XML-Dokumente in bestimm-
ten Feldern erwartet. In einem solchen Fall konnten PREUNN und HTTYL gemeinsam
eingesetzt werden, um sowohl die Protokollstruktur als auch die eingebetteten Daten
gezielt zu testen. In der Praxis ist es jedoch meist effizienter, diese Schritte nacheinander
durchzufithren. Zunichst wird die Protokollebene vollstindig abgedeckt und anschliefend
werden potenziell fehleranfillige Verarbeitungen strukturierter Eingaben gezielt gepriift.

7.1.3 Kombination der Module

Die flexible Kombinierbarkeit der Module ermdglicht die Realisierung verschiedener Fuz-
zing-Workflows. Ein Uberblick ist in Abbildung 7.1 zu sehen. Besonders relevant sind zwei
praxisnahe Integrationsszenarien:

118

7.2 Diskussion und Interpretation der Ergebnisse

Protocol Reverse Engineering
mittels neuronaler Netze
é L
ESP32 Code-Injektion bei Fuzzing von ESP32-
unverandertem Kontrollfluss Mikrocontrollern

mittels Binary Rewriting mittels QEMU-Emulation

—

Effizientes grammatikbasiertes Fuzzing
mittels Large Language Models

Abbildung 7.1: Modularer Aufbau des Fuzzing Frameworks

1. EBR + EQF + PREUNN: Dieses Setup ist geeignet, wenn das Zielgerit iiber ein
unbekanntes oder proprietdres Netzwerkprotokoll kommuniziert. PREUNN erzeugt
valide Netzwerkpakete, wahrend EBR fiir gezielte Instrumentierung sorgt und EQF
eine skalierbare Emulation auf leistungsfahiger Hardware ermdglicht.

2. EBR + EQF + HTTYL: Dieses Szenario ist geeignet, wenn die getestete Software
strukturierte Eingaben wie XML oder JSON verarbeitet. HTTYL generiert syntak-
tisch korrekte Testfalle, EBR liefert tiefe Einblicke in die Codeabdeckung und EQF
ermoglicht paralleles Fuzzing ohne physische Hardware.

In beiden Féllen konnen einzelne Module bei Bedarf weggelassen werden. So lassen sich
beispielsweise EBR oder EQF auch unabhangig voneinander nutzen: EBR fiir instrumen-
tiertes Fuzzing direkt auf realer Hardware oder EQF fiir emulationsbasiertes Fuzzing ohne
Eingriff in die Firmware. PREUNN und HTTYL kommen nur dann zum Einsatz, wenn die
Art der Eingaben dies erfordert.

7.2 Diskussion und Interpretation der Ergebnisse

Die vollstandige Integration aller vier Module wurde im Rahmen dieser Dissertation nicht
praktisch umgesetzt, da ihr Nutzen stark vom jeweiligen Anwendungsszenario abhangt
und teilweise groflere Anpassungen der einzelnen PoCs nétig wiren (wie in Abschnitt 7.3

119

7 Ansatz fiir ein integriertes Fuzzing-Framework

beschrieben). Die Machbarkeit und das Potenzial einer modularen Kombination wurden
aufgezeigt, die umfassende Evaluation der konkreten Leistungsfahigkeit war jedoch nicht
die Zielsetzung.

Die theoretische Analyse verdeutlicht, dass eine flexible Integration der entwickelten Mo-
dule das Fuzzing von IoT-Geréten erheblich effizienter gestalten konnte. EBR ermdoglicht
eine prézise Instrumentierung der Firmware und liefert dadurch gezielte Laufzeitinfor-
mationen. EQF bietet eine skalierbare und performante Emulationsumgebung, die hohe
Testdurchsétze erlaubt. Mit PREUNN lassen sich semantisch giiltige Netzwerkpakete
automatisiert generieren, wihrend HTTYL strukturierte Eingaben wie XML-Dateien syn-
taktisch und semantisch korrekt erzeugt. Alle Module sind optional und konnen abhéngig
vom Anwendungsfall flexibel kombiniert oder weggelassen werden.

Die in dieser Dissertation prasentierten Ergebnisse und Kennzahlen basieren auf der
Evaluierung einzelner Module. Eine experimentelle Validierung der vollstdndigen Syste-
mintegration wurde bislang nicht durchgefithrt. Dennoch lassen die Resultate eindeutig
erkennen, dass die modulare Kombination der entwickelten Module das Potenzial hat,
die Testabdeckung deutlich zu erhéhen, Fuzzing-Prozesse gezielter zu steuern und die
Gesamteffizienz signifikant zu verbessern. Eine Kombination von EQF und HTTYL konnte
fir IoT-Gerate, die XML-Dateien verarbeiten, in einer virtuellen Umgebung im Vergleich
zum herkémmlichen Blackbox-Fuzzing auf der ESP32-Plattform eine Effizienzsteigerung
um den Faktor 50 erméglichen (siehe Ergebnisse aus Abschnitt 4.5 und Abschnitt 6.5).
Diese Verbesserung resultiert primiar aus einer erhohten Anzahl verarbeiteter Anfragen
pro Sekunde sowie einer qualitativ hochwertigeren Eingabegenerierung. Durch zusatzliche
Parallelisierung der Module lie3e sich dieser Effekt voraussichtlich noch weiter verstarken.

Ein direkter Vergleich mit bestehenden Fuzzing-Frameworks erfolgt an dieser Stelle nicht,
da keine existierende Arbeit alle vier betrachteten Module in vergleichbarer Tiefe integriert.
Stattdessen werden im folgenden Kapitel (Kapitel 8) verwandte Arbeiten diskutiert, die
einzelne Teilaspekte dieser Dissertation adressieren.

7.3 Limitationen

Trotz der vielversprechenden Ergebnisse des vorgestellten integrierten Ansatzes zur Si-
cherheitsanalyse von IoT-Geraten gibt es mehrere Einschrankungen, die die allgemeine
Anwendbarkeit und Skalierbarkeit der Module begrenzen.

Die Untersuchungen wurden bewusst auf die ESP32-Plattform mit Xtensa-Architektur
fokussiert, da alle entwickelten Patch-Methoden sowie das Binary-Rewriting-Framework
speziell auf deren Befehlssatz, Speicherlayout und Toolchain zugeschnitten sind. Eine
Ubertragung auf andere Architekturen wire zwar prinzipiell moglich, erfordert jedoch
eine vollstindige Anpassung der Instruktionsdekodierung, der Patch-Strategien und der
Emulatorintegration.

Die einzelnen Komponenten wurden vorwiegend in Form von experimentellen Machbar-
keitsstudien entwickelt. Die Verfahren sind komplex und miissen weiter ausgebaut werden,

120

7.3 Limitationen

um einen stabilen und praktischen Einsatz zu ermdglichen. So ist das ESP32 Binary Re-
writing aktuell beispielsweise nur auf einen eingeschriankten Funktionsumfang begrenzt,
da nur die am hiufigsten verwendeten sowie die fiir das PoC notwendigen Instruktionen
umgesetzt wurden. Dies wiederum schrankt die Moglichkeiten der Firmware-Instrumen-
tierung ein. Fiir den produktiven Gebrauch ist eine umfassendere Unterstiitzung samtlicher
Firmware-Funktionen erforderlich.

Die Testbreite der angewandten Module ist ebenfalls begrenzt. PREUNN wurde ausschlie3-
lich an textbasierten Protokollen wie HTTPs und FTPs getestet. Ob es auf weit verbreitete
bindre Protokolle wie MQTT iibertragbar ist, bleibt offen. Ebenso wurde grammatikbasier-
tes Fuzzing mit LLMs nur mit XML-Daten gepriift. Dabei wurde die Annahme getroffen,
dass sich die Methodik auf komplexere Formate wie PDF iibertragen lasst. Diese Annahme
konnte sich in der Praxis jedoch als nicht immer zutreffend erweisen, da unterschiedliche
Dateiformate spezifische Anforderungen an die Modellierung stellen.

Auflerdem bringen LLMs eigene Herausforderungen mit sich. So sind fiir das Training
von LLM grofie Mengen hochwertiger Daten notig, deren Qualitat die Genauigkeit der
generierten Testfalle und damit die Fuzzing-Effizienz direkt beeinflusst. Ein weiterer Punkt
ist, dass sich die LLM-Forschung sehr schnell weiterentwickelt. In dieser Dissertation wurde
Llama2 verwendet, das inzwischen um neuere Modelle ergdnzt wurde. Fortschrittliche
Trainingsmethoden wie Low-Rank Adaptation (LoRA) [Hu+22], die ein effizientes Training
mit kleineren Datensétzen ermdglichen, wurden bisher ebenfalls noch nicht integriert.
Sie bieten jedoch vielversprechende Ansatze fiir die Zukunft, um die Effizienz weiter zu
steigern.

Schliefilich ist auch die fehlende praktische Umsetzung des integrierten Ansatzes als Li-
mitation dieser Dissertation zu verstehen, da die konkrete Implementierung stark vom
jeweiligen Anwendungsszenario abhangt. Der Fokus lag auf der Darstellung der grund-
satzlichen Machbarkeit und nicht auf einer umfassenden Evaluation der Leistungsfahigkeit,
weshalb der theoretische Ansatz nicht praktisch evaluiert wurde.

121

8 Verwandte Arbeiten

Die Arbeiten, die bereits als direkte Grundlage fiir die vorgestellten Ansatze dienten oder
methodisch eng verwandt sind, wurden in den jeweiligen Kapiteln behandelt. Beitrage,
die spater entstanden oder nur lose verwandt sind, werden hier gesammelt, um die wis-
senschaftliche Einordnung der Dissertation zu ermdglichen. In den letzten Jahren sind
zahlreiche Arbeiten erschienen, die einzelne Aspekte dieser Dissertation beriihren, et-
wa durch thematische Uberschneidungen oder dhnliche Techniken, aber methodisch oft
andere Wege verfolgen. Fiir die Einordnung dieser Dissertation wurden gezielt Beitrage
beriicksichtigt, die inhaltlich und methodisch anschlussfahige Weiterentwicklungen dar-
stellen und so den Kontext und die Relevanz der vorliegenden Dissertation verdeutlichen.

Eine zentrale Inspirationsquelle fiir diese Dissertation ist die Untersuchung von Muench
et al. [Mue+18], in der zentrale Herausforderungen beim Fuzzing eingebetteter Systeme
identifiziert werden. Dazu zahlen insbesondere das Fehlen vollstandiger System-Emulato-
ren fiir die jeweilige Zielplattform und die Schwierigkeit, auftretende Fehler zuverlassig zu
beobachten. Fuzzing in einem Emulator bietet den Vorteil einer transparenten Ausfithrung,
wodurch sowohl die Fehlererkennung als auch die Erfassung der Codeabdeckung moéglich
wird. Auf diesen Beobachtungen basiert die Konzeption dieser Dissertation: So wurde das
Binary Rewriting entwickelt, um gezielt Analyse- und Instrumentierungscode in Firm-
ware einzufiigen. Die QEMU-basierte Fuzzing-Emulation, wie sie in dieser Dissertation
behandelt wurde, ermdglicht dagegen eine kontrollierte und messbare Ausfithrung auf der
Zielarchitektur.

8.1 Binary Rewriting

Fiir das Binary Rewriting existiert eine Vielzahl von Tools, die fiir unterschiedliche Archi-
tekturen und Zielsetzungen entwickelt wurden. Einige Systeme, wie beispielsweise Lancet
von Van Put et al. [Put+05], Vulcan von Srivastava, Edwards und Vo [SEV01] und OM von
Wall und Srivastava [WS92] fokussieren sich auf Leistungsoptimierungen, etwa durch das
Einfiigen effizienterer Instruktionen oder die Umstrukturierung von Code. Andere wie
Zipr von Hawkins et al. [Haw+17], RevARM von Kim et al. [Kim+17] oder CFI CaRE von
Nyman et al. [Nym+17] zielen auf die Erh6hung der Sicherheit ab, beispielsweise durch
das Hinzufiigen von Schutzmechanismen oder Kontrollfluss-Integritatspriifungen. Ob-
wohl diese Ansdtze unterschiedliche Ziele verfolgen, teilen sie mit dem hier vorgestellten
Ansatz das grundlegende Prinzip, bestehenden Bindrcode zu transformieren, ohne dessen
wesentlichen Kontrollfluss zu verédndern.

123

8 Verwandte Arbeiten

In der Literatur wird zwischen dynamischen und statischen Binary-Rewritern unterschie-
den. Dynamische Rewriter wie Dynamo von Bala, Duesterwald und Banerjia [BDB99],
STRATA von Scott et al. [Sco+03] und Pin von Luk et al. [Luk+05] 4ndern den Code unmit-
telbar vor seiner Ausfithrung. Dies ermoglicht eine flexible Instrumentierung, erfordert
jedoch eine kontinuierliche Anpassung zur Laufzeit und ist daher fiir Embedded-Plattfor-
men wie den ESP32 ungeeignet.

Statische Rewriter hingegen arbeiten vollstindig vor der Ausfithrung. Dabei lassen sich
zwei Untergruppen unterscheiden: IR-basierte Tools wie mctoll von Yadavalli und Smith
[YS19] und revng von Di Federico, Payer und Agosta [FPA17] iibersetzen Binarcode in
eine Zwischensprache wie LLVM IR, um Analysen und Optimierungen durchzufithren.
Andererseits gibt es Disassembler wie ddisasm, Retrowrite und Uroboros, die den Riickbau
in Assemblercode und den anschlieffenden Wiederaufbau zu einer modifizierten Binardatei
ermoglichen. Beiden Ansitzen ist gemein, dass die urspriingliche Binarstruktur haufig
nicht vollstandig erhalten bleibt. Fir sicherheitsrelevante Analysen, wie die in dieser
Dissertation durchgefiihrten, ist jedoch eine mdglichst hohe Strukturtreue entscheidend,
um préazise und reproduzierbare Ergebnisse zu erzielen.

Umfassende Ubersichtsarbeiten, etwa von Wenzel et al. [Wen+19] und Schulte et al. [SBF22],
dokumentieren zwar ein reiches Okosystem an Binary-Rewriting-Tools, doch wird darin
deutlich, dass keiner der bestehenden Ansitze die Xtensa-Architektur unterstiitzt, die im
ESP32 zum Einsatz kommt.

Der hier vorgestellte Ansatz schliefit diese Liicke, indem er bestehende Binary-Rewriting-
Methoden gezielt auf die Xtensa-Architektur tibertragt und erweitert. Dabei bleibt der
Kontrollfluss unverandert und die urspriingliche Struktur der Binardatei wird vollstandig
bewahrt. So entsteht einerseits eine klare Anschlussfihigkeit an bestehende Arbeiten und
andererseits wird ein bislang ungelostes Problem betrachtet.

8.2 Hardware Fuzzing von loT-Geraten

Ein Ansatz, der direkt auf die Instrumentierung von Binardateien abzielt, ist QASan von
Fioraldi et al. [FDQ20]. Bei diesem Ansatz werden Bindrdateien mit dem Quick Address
Sanitizer (QASan) instrumentiert, einem Tool zur Laufzeitiiberpriifung von Speicherfehlern
wie Pufferiiberlauf oder Use-After-Free. Dadurch wird ermdglicht, auch vorkompilierte
Programme auf Speicherfehler zu testen, ohne dass der Quellcode vorliegt. Im Gegen-
satz dazu konzentriert sich diese Dissertation nicht auf reine Funktionen zum Schutz
des Arbeitsspeichers, sondern auf die flexible Integration beliebigen Codes, um den Fuz-
zing-Prozess gezielt zu unterstiitzen.

Ein weiterer Ansatz, der Fuzzing auf unterschiedlichen Mikrocontrollern erméglicht, ist
GDBFuzz von Eisele et al. [Eis+23]. Hierbei werden Hardware-Debugschnittstellen wie
GDB genutzt, um Codeabdeckung-Feedback aus uninstrumentiertem Firmware-Bindrcode
zu gewinnen. Wahrend GDBFuzz auf reale Hardware und vorhandene Debug-Interfaces

124

8.3 IoT Fuzzing mittels Emulation

angewiesen ist, erlaubt der in dieser Dissertation vorgestellte Ansatz die direkte Instrumen-
tierung des Firmware-Codes. Dadurch entfallt die Abhangigkeit von externen Schnittstellen
und eine flexiblere Analyse auf Mikrocontrollern wie dem ESP32 wird méglich.

Dariiber hinaus geben verschiedene Ubersichtsarbeiten einen umfassenden Uberblick
tiber bestehende Fuzzing-Techniken fiir IoT-Gerate. Maialen Eceiza-Olaizola et al. [EFI21]
analysieren aktuelle Ansatze und identifizieren zentrale Herausforderungen beim Fuz-
zing eingebetteter Systeme. Touqir et al. [Tou+24] liefern eine systematische Ubersicht
tiber Fuzzing-Techniken in IoT-Umgebungen, bewerten deren Effektivitit und zeigen be-
stehende Forschungsliicken auf. Diese beispielhaft aufgefithrten Arbeiten verdeutlichen
die zunehmende Relevanz spezialisierter Fuzzing-Methoden fir die Sicherheit vernetzter
IoT-Gerdéte.

8.3 loT Fuzzing mittels Emulation

Zum Zeitpunkt der in Kapitel 4 beschriebenen Arbeiten unterstiitzte die Standardimple-
mentierung von ESP32-QEMU noch keine Emulation des integrierten WLAN-Subsystems.
Inzwischen ist jedoch ein quelloffener Fork von QEMU! verfiigbar, der durch Reverse
Engineering der bislang undokumentierten WLAN-Register des ESP32 eine native Nach-
bildung dieses Subsystems ermdglicht. So ist es nun mdoglich, die ESP32-Firmware und
die dazugehorigen Treiber in einer vollstindig emulierten Umgebung auszufithren, ohne
dass weitere Hardware-Peripherie emuliert werden muss. Diese Implementierung kon-
zentriert sich allerdings ausschlie3lich auf die Emulation der ESP32-Firmware, wahrend
die vorliegende Dissertation den Schwerpunkt auf umfangreiche Fuzzing-Kampagnen in
der emulierten Umgebung legt.

Einen verwandten, aber enger gefassten Ansatz als den in dieser Dissertation vorgestellten
Emulationsansatz verfolgen Bogad und Huber [BH19] in ihrer Arbeit Harzerroller. Sie
beschreiben, wie sie partielle Emulation einsetzen, um Firmware-Bilder des ESP8266 — dem
Vorganger des ESP32 - zu fuzzen. Dabei werden nur bestimmte Teile der Firmware in einer
emulierten Umgebung ausgefiihrt, wahrend andere auf der realen Hardware verbleiben.
Dies erméglicht die gezielte Untersuchung spezifischer Firmware-Bereiche, limitiert jedoch
die Moglichkeiten zur vollstindigen Automatisierung und umfassenden Erfassung der
Codeabdeckung, wie sie in dieser Dissertation angestrebt werden.

Mehrere Ubersichtsarbeiten zum Fuzzing mittels Emulation von IoT-Geréten liefern eine
wichtige Grundlage zur Einordnung des in dieser Dissertation vorgestellten Ansatzes. Li
et al. [LZZ18] liefern eine umfassende Ubersicht zu Methoden der Schwachstellenent-
deckung mit besonderem Fokus auf feedbackgesteuertes Fuzzing. Ihre Analyse zeigt die
Wirksamkeit dieser Technik in verschiedensten Anwendungskontexten und unterstreicht
damit die Relevanz einer préizisen Messung der Codeabdeckung fiir den Erfolg von Fuz-
zing-Kampagnen. Der in dieser Dissertation vorgestellte Ansatz greift diesen Befund auf,
indem er Informationen zur Codeabdeckung nicht nur passiv auswertet, sondern sie aktiv
in den Fuzzing-Workflow integriert, um die Testgenerierung gezielt zu steuern.

lht‘cps://gi‘chub .com/esp32-open-mac/qgemu

125

https://github.com/esp32-open-mac/qemu

8 Verwandte Arbeiten

Yun et al. [Yun+22] geben in Fuzzing of Embedded Systems: A Survey einen breiten Uberblick
iiber den gesamten Fuzzing-Prozess eingebetteter Systeme. Sie betonen die Bedeutung von
QEMU-Anpassungen fiir spezifische Hardware und gehen dabei auf Firmware-Dumping,
Interface-Modellierung und Emulationstechniken ein. Darauf aufbauend identifizieren
Eisele et al. [Eis+22] in Embedded Fuzzing: A Review of Challenges, Tools, and Solutions
zentrale Herausforderungen beim Fuzzing von IoT-Geraten. Dazu zéhlen begrenzte Res-
sourcen, die Emulation spezialisierter Hardware und die Firmware-Instrumentierung. Die
Autoren vergleichen verschiedene Emulationsformen sowie die Nutzung von Schnittstel-
len wie UART und JTAG. Beide Arbeiten liefern wertvolle Ubersichten und Analysen,
entwickeln jedoch keine neuen Fuzzing-Programme oder spezifische Implementierungen.

Das Buch Fuzzing Against the Machine von Nappa und Blazquez [NB23] beschreibt all-
gemeine Fuzzing- und Emulationskonzepte, insbesondere mit QEMU, und teilt damit die
Grundidee dieser Dissertation. Es bleibt jedoch auf einer generischen Ebene und behandelt
weder die ESP32-Plattform noch die Xtensa-Architektur, wahrend der hier vorgestellte
Ansatz gezielt auf diese spezialisiert ist.

Diese aufgefithrten Ubersichtsarbeiten zeigen deutlich, dass grundlegende Konzepte wie
Emulation und Firmware-Verarbeitung zwar gut erforscht sind, es im Bereich der spezifi-
schen Plattformanpassungen (z. B. Xtensa/ESP32) sowie in der Kombination statischer
Instrumentierung mit Fuzzing in Emulationen jedoch noch erhebliche Forschungsliicken
gibt.

8.4 Fuzzing von Netzwerkprotokollen

Dem Erlernen und Fuzzing von Netzwerkprotokollen widmet sich ein eigener Forschungs-
zweig, in dem zunehmend maschinelles Lernen und modellbasierte Verfahren zum Einsatz
kommen.

Ansitze zur Klassifikation unbekannter Protokolle liefern wichtige Grundlagen fiir die
Analyse von Netzwerkverkehr. Jung und Jeong [JJ20] trainieren ein Deep-Belief-Netz-
werk auf statistisch gewonnenen Merkmalen, um Nachrichten mit hoher Genauigkeit zu
klassifizieren. Lopez-Martin et al. [Lop+17] kombinieren Convolutional und Recurrent
Neural Networks zur Kategorisierung von IoT-Verkehr, Michael et al. [Mic+17] nutzen
neuronale Netze zur Erkennung unterschiedlicher Protokolle, und Li et al. [Li+18] setzen
mit dem Byte Segment Neural Network (BSNN) Byte-Segmente ein, um Protokollstrukturen
prazise zu identifizieren. Diese Arbeiten liefern wertvolle methodische Grundlagen fiir die
Dissertation, fokussieren sich jedoch nicht auf die Generierung neuer Eingaben fiir das
Fuzzing.

Fiir das Fuzzing selbst haben Pham et al. [PBR20] mit AFLNET den ersten Greybox-Fuzzer
speziell fir zustandsbehaftete Netzwerkprotokolle vorgestellt. Basierend auf aufgezeich-
netem Client-Server-Verkehr erzeugt AFLNET Nachrichtensequenzen, die gezielt mutiert
werden, um die Codeabdeckung und Zustandsabdeckung zu erhohen. Durch das Ler-
nen eines State-Machine-Modells erreicht AFLNET eine deutlich hohere Abdeckung als

126

8.5 Grammatik-basiertes Fuzzing

klassische mutationsbasierte Fuzzer und demonstriert, dass modellbasierte Verfahren das
Fuzzing komplexer Protokolle erheblich verbessern konnen.

PULSAR von Gascon et al. [Gas+15] ist ein modellbasiertes Fuzzing-Tool fiir zustandsbe-
haftete Netzwerkprotokolle. Es verwendet Markov-Modelle und Clustering, um Zustands-
maschinen abzuleiten, verzichtet jedoch auf den Einsatz neuronaler Netze. Wahrend sich
PULSAR auf die Testgenerierung auf Basis von Zustandsmodellen konzentriert, liegt der
Fokus dieser Dissertation auf der automatisierten Protokollanalyse und der Generierung
neuer Netzwerkpakete.

Die Forschungsergebnisse von PREUNN wurden mehrfach aufgegriffen und weiterent-
wickelt, um die automatisierte Protokollanalyse zu verbessern. PREIUD von Ning et
al. [Nin+23] nutzt uniiberwachtes Clustering und tiefe neuronale Netze, um Nachrichten-
typen, Feldgrenzen und Abhangigkeiten zu erkennen, wihrend CNNPRE von Garshasbi
und Teimouri [GT23] Convolutional Neural Networks einsetzt, um aus Rohdaten von
Netzwerkpaketen Muster und Feldgrenzen zu extrahieren. Beide Ansétze konzentrieren
sich auf die Analyse und Segmentierung von Nachrichten, nicht jedoch auf die direkte
Testfallerzeugung.

ProsegDL von Zhao et al. [Zha+22] erweitert dies, indem es Feldgrenzen automatisch aus
Rohdaten lernt und unbekannte Protokollstrukturen rekonstruiert. DL-ProS® [Zha+24c]
integriert U-Net, ein siamesisches Netzwerk und BiLSTM-CRF, um Feldgrenzen und se-
mantische Informationen zu extrahieren. Erganzt wird dies durch eine wissensbasierte
Verkehrssimulation, die Protokollwissen aus dffentlichen Dokumenten, wie RFCs, einbe-
zieht. Empirische Ergebnisse zeigen hohe Prazision und Recall bei der Analyse unbekann-
ter Protokolle. AEMK/EAEAP von Nemati et al. [NMT24] nutzt Autoencoder-basiertes
Clustering, um Nachrichtenmuster und semantische Beziehungen zwischen Nachrichten
zu identifizieren. Alle diese Deep Learning-Anséitze fokussieren sich auf Analyse und
Clustering, wihrend die Testfallerzeugung nicht im Vordergrund steht.

Insgesamt zeigen diese Arbeiten, dass lern- und modellbasierte Verfahren die Analyse und
das Fuzzing komplexer Netzwerkprotokolle erheblich verbessern konnen. Sie liefern vor
allem methodische Konzepte und Ubersichten, wihrend die Entwicklung plattformspezifi-
scher Fuzzing-Frameworks, wie sie in dieser Dissertation erfolgt, aulerhalb ihres Fokus
liegt.

8.5 Grammatik-basiertes Fuzzing

Grammatikbasierte Verfahren verfolgen das Ziel, strukturell valide Eingaben zu generie-
ren, um eine héhere Code- und Zustandsabdeckung zu erzielen und somit verborgene
Fehlerzustande aufzudecken.

Havrikov et al. [Hav+14] stellen mit XMLMate einen evolutiondren Testgenerator vor, der
auf XML-Schemas und vorhandenen Beispielen basiert. Durch die Anwendung geneti-
scher Operatoren wie Mutation, Rekombination und Selektion werden strukturkonforme
XML-Dokumente erzeugt, die sich gezielt fiir Robustheitstests von Parsern eignen.

127

8 Verwandte Arbeiten

Hoschele et al. [HKZ17] schlagen mit AUTOGRAM einen Ansatz zur Grammatikinduk-
tion vor: Beginnend mit wenigen Beispielen werden Datenfliisse analysiert und mittels
Membership-Queries kontextfreie Grammatiken konstruiert, die sowohl formal korrekt
als auch menschenlesbar sind und sich unmittelbar fiir Fuzzing einsetzen lassen.

Gopinath et al. [Gop+18] gehen mit PYGMALION noch einen Schritt weiter und zeigen, dass
Grammatiken auch ohne Beispielinputs induziert werden konnen. Uber systematisches
Parserfuzzing werden dabei sukzessive giiltige Eingaben (z. B. JSON, URLs) aufgebaut, die
als Grundlage fiir weitere Tests dienen.

Pavese et al. [Pav+18] erweitern grammatikbasiertes Sampling um probabilistische Inver-
sion: Neben haufigen Strukturen werden gezielt seltene, aber syntaktisch giiltige Eingaben
generiert, um ungewohnliche Programmzweige zu erreichen und Robustheitsprobleme
sichtbar zu machen.

Fir strukturierte Binarformate zeigt Fioraldi et al. [FDC20] mit WEIZZ, dass Schluss-
folgerungen tiber die Grammatik in Kombination mit Fuzzing valide und diversifizierte
Eingaben erzeugen, was die Effektivitat bei komplexen Formaten deutlich steigert.

Einen praxisnahen Ansatz verfolgen Dutra et al. [DGZ23] mit FormatFuzzer. Hierbei wer-
den bindre Templates (z. B. aus dem 010 Editor) in Parser und Generatoren iibersetzt,
wodurch komplex strukturierte Eingaben wie MP4- oder ZIP-Dateien erzeugt werden
konnen. In Kombination mit AFL gelang so die Entdeckung bislang unbekannter Schwach-
stellen in FFmpeg und Timidity.

Einen anderen Ansatz verfolgt GDBMiner von Eisele et al. [Eis+25], das Eingabegramma-
tiken direkt aus Bindrprogrammen extrahiert. Mithilfe des GNU-Debuggers (GDB) wird
bytegenau analysiert, welche Eingabeteile von welchen Programmabschnitten verarbeitet
werden, woraus prazise Grammatikregeln abgeleitet werden.

Amaya Zamudio et al. [ASZ25] untersuchen schlief3lich sprachbasierte Fuzzer, die formale
Spezifikationen fiir die Testfallgenerierung nutzen. Der derzeit fithrende Ansatz, ISLa, setzt
auf symbolisches Constraint-Solving und erzeugt damit hochprazise, jedoch langsame
Eingaben. Mit FANDANGO schlagen die Autoren eine suchbasierte Alternative auf Basis
genetischer Algorithmen vor, die Constraints effizient erfiillt und dabei eine deutlich hohere
Geschwindigkeit erreicht. Zudem erlaubt FANDANGO die Formulierung von Constraints
direkt in Python, was eine groflere Ausdrucksstarke und Flexibilitat bietet.

Zusammenfassend legen die dargestellten Arbeiten die Grundlagen fiir effektives Fuz-
zing dar. Durch umfassende Kenntnisse der Eingabegrammatiken lasst sich die gezielte
Erzeugung giltiger Testfalle systematisch realisieren. Unabhédngig davon, ob dies mittels
evolutionarer Verfahren, Parser-Fuzzing, Template-basierter Ansatze oder debuggerge-
stiitzter Extraktion geschieht, fithrt eine grammatikorientierte Testfallgenerierung zu
einer hoheren Code- und Zustandsabdeckung. Insbesondere in IoT-Szenarien, in denen
strukturierte Daten dominieren, erhoht grammatikbasiertes Fuzzing die Testeffizienz und
steigert die Wahrscheinlichkeit, sicherheitsrelevante Schwachstellen aufzudecken.

128

8.6 Fuzzing mittels Machine Learning

8.6 Fuzzing mittels Machine Learning

Der Einsatz von ML im Fuzzing hat in den letzten Jahren erheblich an Bedeutung gewonnen.
Das Ziel besteht darin, die Eingabegenerierung zu optimieren, um eine umfassendere Code-
und Zustandsabdeckung sowie eine effizientere Schwachstellenentdeckung zu erreichen.

Einen der ersten konkreten Vorschldge machten Godefroid, Peleg und Singh [GPS17] mit
Learn&Fuzz. Dabei werden Eingabeformate aus Beispieldaten gelernt und anschlieflend
zur automatisierten Testfallgenerierung genutzt. Dieser Ansatz verdeutlicht, wie ML-
Techniken eingesetzt werden konnen, um strukturierte Eingaben gezielt und systematisch
zu erzeugen.

Spétere Arbeiten schlagen eine Briicke zwischen klassischen ML-Ansétzen und modernen
LLM-Verfahren. So untersuchen Yang et al. [Yan+23], wie LLMs fiir das Whitebox-Com-
piler-Fuzzing eingesetzt werden konnen, und markieren damit eine Ubergangsarbeit.
Ein weiterer Schritt in diese Richtung ist KernelGPT von Yang et al. [YZZ23], das Ker-
nel-Fuzzing durch die automatische Ableitung von Syzkaller-Spezifikationen erweitert.
Syzkaller ist ein state-of-the-art feedbackgesteuerter Fuzzer fiir Betriebssystem-Kernel. Er
deckt System-Call-APIs mittels formaler Spezifikationen ab und erméglicht dadurch eine
systematische Generierung von Testféllen.

Die Forschung zu LLM-basiertem Fuzzing entwickelt sich besonders dynamisch. Deng et
al. [Den+23] schlagen mit TitanFuzz ein generatives Verfahren vor, das Saatprogramme fiir
Deep-Learning-APIs erzeugt und Mutationen mithilfe eines Multi-Armed-Bandit-Algorith-
mus steuert. In einer Folgestudie erweitern Deng et al. [Den+24] diesen Ansatz zu FuzzGPT,
das variierte Eingabeprogramme automatisch generiert und zahlreiche Bugs in PyTorch
und TensorFlow aufdeckt. Liu et al. [LMC23] demonstrieren einen LLM-gestiitzten Ansatz
zur automatisierten Ableitung von Fuzzing-Zielen, wihrend Le Mieux et al. [Lem+23] mit
CodaMosa zeigen, dass LLMs im Rahmen des Search-Based Software Testing (SBST) genutzt
werden konnen, um aus bestehenden Testféllen neue abzuleiten und so die Testabdeckung
zu erhohen. Auch im Bereich des Protokollfuzzings finden LLMs Anwendung. Meng et
al. [Men+24] stellen mit ChatAFL einen Fuzzer vor, der aus Beispieldaten Protokollregeln
extrahiert, Eingabesequenzen vervollstindigt und gezielt mutiert. Dies fithrt zu einer
deutlich héheren Code- und Zustandsabdeckung und zur Entdeckung mehrerer bislang
unbekannter Schwachstellen. Im Gegensatz zum Ansatz in der Dissertation, der sich auf
XML-Parser konzentriert, liegt hier der Fokus auf Netzwerkprotokollen.

Parallel zu diesen Arbeiten ist eine Reihe von Ubersichtsarbeiten entstanden, die den
Forschungsstand systematisieren. Salem und Song [SS19] analysieren grammatikbasierte
Techniken und betonen deren Bedeutung fiir die Erzeugung strukturierter Eingaben. Wang
et al. [Wan+20a] bieten eine umfassende Klassifikation ML-basierter Fuzzing-Ansétze und
zeigen deren Einsatz in verschiedenen Szenarien. Wu [Wu22] untersucht systematisch
grammatikbasierte Verfahren und bewertet ihr Potenzial in Kombination mit ML. Neuere
Meta-Arbeiten betrachten explizit den Einsatz von LLMs: Yu et al. [Jia+24] identifizieren
fiinf zentrale Herausforderungen beim Fuzzing mit LLMs, darunter die Abhéngigkeit von
Prompt-Sensitivitat, die Sicherstellung der Giltigkeit und Vielfalt generierter Eingaben,
die fehlende Standardisierung von Evaluationsmethoden, die Kostenfrage bei grofiem

129

8 Verwandte Arbeiten

Rechenaufwand sowie die Notwendigkeit robuster Benchmarks. Huang et al. [Hua+25]
geben schlief3lich einen breiten Uberblick iiber den aktuellen Stand: Von 14 untersuchten
Arbeiten nutzen fiinf LLMs fiir Prompt Engineering, zehn fiir Seed-Mutation und zwei fiir
die Sammlung und Analyse von Ausgaben.

Insgesamt verdeutlichen diese Arbeiten, dass der Einsatz von Machine Learning (insbeson-
dere LLMs) im Fuzzing ein stark wachsendes Forschungsfeld darstellt. Die Kombination
von LLMs mit grammatikbasierten Methoden bietet dabei ein erhebliches Potenzial, um
die Testeffizienz zu steigern und komplexe Schwachstellen systematisch aufzudecken.

8.7 Optimierung des Fuzzing-Prozesses

Ein effizienter Fuzzing-Prozess zeichnet sich nicht nur durch eine hohe Testabdeckung,
sondern auch durch schnelle und ressourcenschonende Abldufe aus. Zahlreiche Arbeiten
zeigen, wie gezielte Optimierungen die Performance deutlich steigern konnen.

Fioraldi et al. [Fio+20] demonstrieren dies mit AFL++, das durch inkrementelle Verbes-
serungen bei Mutation, Scheduler-Design und Codeinstrumentierung die Performance
gegeniiber dem Original-AFL erheblich erhoht. Dabei werden Erkenntnisse aus der aktu-
ellen Fuzzing-Forschung direkt in die Implementierung iibernommen.

Ein anderer Ansatz, der die Effektivitat von Fuzzer-Ensembles zeigt, ist EnFuzz von Chen
et al. [Che+19]. Durch ensemblebasierte Seed-Synchronisation werden mehrere komple-
mentére Fuzzer synergistisch eingesetzt, was sowohl die Codeabdeckung als auch die
Entdeckung von Abstiirzen verbessert.

Wang et al. [Wan+19] stellen mit NeuFuzz einen pfadbasierten Graybox-Fuzzer vor, der
ein tiefes neuronales Netz zur gezielten Priorisierung von Seeds nutzt. Das Modell lernt
aus vielen ,vulnerablen® und ,sicheren® Pfaden verborgene Merkmale und vergibt eine
hohere ,Mutation Energy” an Seeds, die vermutlich fehleranfallige Pfade abdecken.

She et al. [She+19] verfolgen mittels NEUZZ einen datengetriebenen Ansatz: Durch Pro-
gram Smoothing in Kombination mit neuronalen Surrogatmodellen werden gradienten-
basierte Eingaben generiert, die eine schnellere Entdeckung von Bugs erméglichen und
gleichzeitig die Kantenabdeckung signifikant erhéhen. Im Gegensatz dazu adressieren
Nagy und Hicks [NH19] mit Full-Speed Fuzzing primér den Laufzeit-Overhead. Es wer-
den ausschliellich jene Testfille instrumentiert, die tatsdchlich eine Verdnderung der
Codeabdeckung bewirken. Dadurch wird die benétigte Rechenzeit deutlich reduziert.

Bohme et al. [BMC20] verfolgen mit Entropic einen informations-theoretischen Ansatz:
Jeder generierte Testinput wird nach seinem erwarteten Informationsgehalt bewertet. Da-
durch werden Seeds, die neue oder seltene Programmpfade abdecken, haufiger ausgewahlt
und mutiert. Auf diese Weise werden Bugs effizienter entdeckt und die Codeabdeckung
beschleunigt. In LibFuzzer fithrte dies zu signifikanten Verbesserungen bei der Entdeckung
neuer Programmbahnen und Fehler.

130

8.7 Optimierung des Fuzzing-Prozesses

Jauernig et al. [Jau+23] setzen evolutionédre Strategien ein. Das Programm DARWIN passt
Mutationswahrscheinlichkeiten adaptiv an und verbessert dadurch die Bug-Findung und
die Testabdeckung.

Diese Arbeiten verdeutlichen, wie Prozessoptimierung im Fuzzing durch intelligente
Mutationsstrategien, effizientes Tracing oder den Einsatz von Fuzzer-Ensembles erreicht
werden kann. Der Fokus dieser Dissertation liegt hingegen auf der Entwicklung einer
modularen Architektur, die bestehende Fuzzer als austauschbare Module integriert und so
Fortschritte aus der aktuellen Forschung direkt nutzbar macht.

131

9 Zusammenfassung und Ausblick

In diesem Kapitel werden die zentralen Ergebnisse dieser Dissertation zusammengefasst
und ein Ausblick auf zukiinftige Entwicklungen im Bereich des Fuzzings ressourcenbe-
schrankter IoT-Gerate gegeben. Der Fokus liegt dabei sowohl auf den einzelnen Beitragen
der Dissertation als auch auf deren Zusammenspiel innerhalb eines tibergreifenden Fra-
meworks.

9.1 Zusammenfassung

Die Dissertation adressiert die zentrale Herausforderung, Fuzzing fiir ressourcenbeschrank-
te IoT-Geréte am Beispiel des ESP32 effizienter, flexibler und skalierbarer zu gestalten. Wah-
rend bestehende Arbeiten meist nur isolierte Aspekte betrachten, wird hier ein integrativer
Ansatz verfolgt. Es wurden vier eigenstiandige Verfahren (Module) entwickelt, implemen-
tiert und evaluiert, die gemeinsam die Grundlage fiir ein konzeptionelles Framework bilden.
Die Komponenten sind modular ausgelegt und kénnen je nach Anwendungsfall miteinan-
der kombiniert werden. Auf diese Weise ergibt sich ein flexibles Architekturprinzip.

Das erste Modul, ESP32 Binary Rewriting (EBR), iibertragt Konzepte, die bislang nur fiir
Architekturen wie ARM und x86 verfiigbar waren (beispielsweise e9patch), erstmals auf
die Xtensa-Architektur des ESP32. Dieses Verfahren ermdglicht das Einfiigen von beliebi-
gem Code in bestehende Firmware-Binaries, insbesondere von Instrumentierungen, ohne
deren urspriingliche Funktion zu beeintrachtigen. Wahrend der Programmausfithrung
konnen somit Informationen zu Speicherzugriffen, Funktionsaufrufen und Kontrollfliissen
erfasst und direkt an den Fuzzer iibermittelt werden. Die Evaluierung belegt, dass die
Instrumentierungen korrekt arbeiten und die Integritit der Firmware erhalten bleibt (siehe
Kapitel 3).

Ein weiteres Modul ist ESP32-QEMU-FUZZ (EQF), das die vollstindige Emulation von
ESP32-Firmwares adressiert. Das Ziel bestand darin, verschiedene unvollstdndige Ansétze
wie ESP32-QEMU und QEMU-Fuzz zu konsolidieren und eine funktionsfahige Umgebung
bereitzustellen, die trotz fehlender Hardwarekomponenten wie WLAN eine automatisierte
Testung ermoglicht. Das resultierende System erlaubt erstmals die vollstandige Emulati-
on beliebiger ESP32-Firmwares und zeigt eine erhebliche Effizienzsteigerung: Wahrend
hardwarebasiertes Fuzzing nur vier bis 40 Eingaben pro Sekunde erméglicht, erreicht EQF
bis zu 320 Eingaben pro Sekunde, was einer Beschleunigung um den Faktor 80 entspricht
(siehe Kapitel 4).

133

9 Zusammenfassung und Ausblick

Dariiber hinaus wurde mit Protocol Reverse Engineering using Neural Networks (PREUNN)
ein Modul entwickelt, das die manuell durchgefithrte Aufgabe des Protocol Reverse En-
gineering proprietarer Netzwerkprotokolle automatisiert. Die Herausforderung hierbei
lag in der Auswahl und Kombination geeigneter neuronaler Netze, um Protokollstruktu-
ren ohne vorhandene Spezifikation zuverléssig zu rekonstruieren. Die Methode erlaubt
erstmals die implizite Rekonstruktion von Protokollinformationen und die Generierung
syntaktisch wie semantisch korrekter Netzwerkpakete. In der Evaluation erzielte PREUNN
eine Erfolgsquote von 67,6 % fiir HTTP und 100 % fiir FTP, was die Testabdeckung im
Vergleich zu zufilligen Ansatzen signifikant erhoht (siehe Kapitel 5).

Ein ergdnzendes Modul ist How to Train Your Llama (HTTYL), welches den Einsatz von
LLMs fiir grammatikbasiertes Fuzzing untersucht. Die zentrale Herausforderung bestand
darin, LLMs so in bestehende Testabldaufe einzubinden, dass sie gezielt syntaktisch und
semantisch korrekte Eingaben erzeugen. Im Gegensatz zu prototypischen Losungen wie
ChatFuzz integriert HTTYL LLMs modular in den Fuzzing-Prozess und ermdglicht dadurch
eine kontrollierte Zusammenarbeit zwischen Fuzzer und Modell. Die Evaluierung zeigt
deutliche Verbesserungen: Eine um 50 % hohere Programmflussabdeckung gegeniiber
klassischen grammatikbasierten Fuzzern sowie eine bis zu sechsmal hohere Abdeckung
im Vergleich zu Fuzzing ohne LLM (siehe Kapitel 6).

Schliefllich werden die vier Verfahren in einem Ansatz fiir ein integriertes Fuzzing-Frame-
work (AiFF) konzeptionell zusammengefiihrt. Diese modulare Plattform erlaubt flexible
Kombinationen: So kénnen EBR, EQF und PREUNN gemeinsam fiir protokollzentrier-
tes Fuzzing eingesetzt werden, wahrend sich EBR, EQF und HTTYL fiir strukturierte
Dateiformate eignen. Durch den modularen Aufbau lassen sich die Komponenten an un-
terschiedliche Szenarien anpassen und unabhiangig voneinander weiterentwickeln (siehe
Kapitel 7).

Insgesamt liefert diese Dissertation ein Rahmenkonzept, das wesentliche Fortschritte im
Fuzzing ressourcenbeschrankter IoT-Gerate erzielt. Die wichtigsten Ergebnisse sind:

« EBR: universelle Instrumentierungsfiahigkeit fiir Xtensa-Firmware bei vollstandiger
Wahrung der Firmware-Integritat.

+ EQF: deutliche Effizienzgewinne mit bis zu 320 Eingaben pro Sekunde (Faktor 80 ge-
geniiber hardwarebasiertem Fuzzing) durch vollstandige Emulation und integriertes
Fuzzing.

« PREUNN: automatisierte Protokollrekonstruktion mit 67,6 % giiltigen HTTP-Paketen
und 100 % giltigen FTP-Paketen; signifikant hohere Testabdeckung als zufallige
Ansitze.

« HTTYL: 50 % hohere Programmflussabdeckung als klassische grammatikbasierte
Fuzzer und bis zu Faktor 6 hohere Abdeckung gegentiber Fuzzing ohne LLM.

Im Gegensatz zu bisherigen Arbeiten, die nur isolierte Teilaspekte wie Binary Rewriting,
Emulation, Protokollanalyse oder Dateigenerierung behandeln, verfolgt diese Dissertation
erstmals einen integrierten, modularen Ansatz dieser Aspekte.

134

9.2 Ausblick und zukiinftige Arbeiten

9.2 Ausblick und zukiinftige Arbeiten

Die Ergebnisse dieser Dissertation verdeutlichen das Potenzial einer kombinierten Nutzung
von Binary Rewriting, Emulation, PRE und LLMs fiir das Fuzzing von IoT-Geréten. Auf-
bauend auf dem entwickelten Prototyp erscheint es naheliegend, die vorgestellten Module
in einer einheitlichen Plattform zu integrieren. Eine solche modulare und reproduzierbare
Architektur wiirde die systematische Analyse der Wechselwirkungen zwischen den einzel-
nen Verfahren erméglichen und zugleich eine Grundlage fiir standardisierte Benchmarks
und Metriken schaffen. Damit lie8e sich die Effektivitdt verschiedener Modulkombinatio-
nen empirisch evaluieren und deren Einsatz in unterschiedlichen Anwendungsszenarien
fundiert bewerten.

Im Zentrum der weiteren Forschung steht daher die praktische Umsetzung des AiFF-
Konzepts als lauffahige Plattform. Diese sollte eine einheitliche Schnittstellenarchitektur,
umfassendes Logging sowie Mechanismen zur Reproduzierbarkeit von Experimenten
bieten. Ergdnzend ist die Definition geeigneter Evaluationsmetriken notwendig, die sowohl
strukturelle Abdeckung als auch Performance, Robustheit und Fehlerraten erfassen. Darauf
aufbauende Fallstudien mit realistischen Testumgebungen konnten die Praxistauglichkeit
der entwickelten Ansatze belegen.

Ein zweiter Schwerpunkt betrifft die Erweiterung des Plattform- und Architektursupports.
Hierzu zéhlt insbesondere die Portierung von EBR und EQF auf zusatzliche IoT-relevante
Prozessorarchitekturen sowie die vollstandige Abdeckung des Xtensa-Befehlssatzes. Auf
diese Weise liefle sich eine liickenlose Instrumentierung von Firmware realisieren und
gleichzeitig die Ubertragbarkeit der Ansatze auf heterogene Systeme gewahrleisten. Dar-
tiber hinaus erscheint es sinnvoll, den Einfluss unterschiedlicher Netzwerktopologien und
Laufzeitumgebungen auf die Wirksamkeit der Protokollrekonstruktion und des Fuzzings
systematisch zu untersuchen.

Auch auf der Ebene der Eingabeverarbeitung ergeben sich vielfiltige Perspektiven. Die
Weiterentwicklung von PREUNN und dessen Anpassung an komplexe Protokolle soll
es ermoglichen, mithilfe robuster Methoden zur Feature-Extraktion die Qualitat auto-
matisch rekonstruierter Protokollstrukturen weiter zu verbessern und deren Einsatz in
dynamischen Netzwerkumgebungen effizient zu evaluieren. Parallel dazu sollte HTTYL
um die Fahigkeit erweitert werden, strukturierte Datenformate wie PDF, SQL-Dumps oder
proprietdre Bindrdateien zu generieren und zu mutieren. Um die syntaktische und seman-
tische Korrektheit der erzeugten Testfille sicherzustellen, sind erginzende Mechanismen
zur Validierung erforderlich.

Ein weiteres zukunftstrachtiges Forschungsfeld bildet der Einsatz von LLMs fiir die Gene-
rierung und Modellierung strukturierter Eingaben. Aufbauend auf den in dieser Disserta-
tion erzielten Ergebnissen konnten LLMs gezielt fiir spezifische Datenformate optimiert
werden. Moderne Trainingsansitze wie LoRA versprechen dabei eine Steigerung der
Testqualitét bei gleichzeitig reduzierten Trainingskosten. Offene Fragen betreffen insbe-
sondere Strategien zur Maximierung der Vielfalt fehlerverursachender Testfille, Methoden
zur Vermeidung von Uberanpassung sowie Verfahren zur zuverldssigen Bewertung der
semantischen Korrektheit generierter Eingaben.

135

9 Zusammenfassung und Ausblick

Langfristig besteht die Perspektive, die entwickelten Konzepte in eine offene und modulare
Fuzzing-Tool-Sammlung zu tiberfithren. Diese wiirde sowohl die Wiederverwendbarkeit
einzelner Komponenten als auch die Vergleichbarkeit zukiinftiger Forschungsergebnisse
unterstiitzen. Eine solche Plattform konnte als Referenzimplementierung dienen und
zugleich die Basis fiir groflangelegte empirische Studien bilden.

136

Begriffsdefinitionen

In dieser in deutscher Sprache verfassten Dissertation werden zahlreiche Fachbegriffe
verwendet, die sich urspriinglich im Englischen etabliert haben. Bei der Ubersetzung
wurde darauf geachtet, Begriffe beizubehalten, fiir die es im Deutschen keine addquaten
Entsprechungen gibt oder deren deutsche Ubersetzung im wissenschaftlichen Sprachge-
brauch nicht wiblich ist. Einige Begriffe wurden nicht iibersetzt, weil sie auch im Deutschen
weit verbreitet sind oder weil eine Ubersetzung zu Bedeutungsunklarheiten fiihren kénnte
- insbesondere bei mehrdeutigen englischen Begriffen wie ,security” und ,safety®. Da
auflerdem einige Fachbegriffe bereits in ihrer Ursprungssprache unterschiedliche Interpre-
tationen zulassen, werden im Folgenden die fiir diese Dissertation giiltigen Definitionen
erlautert.

1D-Batch
Eine Gruppe von eindimensionalen Eingabesequenzen, die gemeinsam durch ein neu-
ronales Netzwerk verarbeitet werden.

1D-Batch-Normalisierung
Die Anwendung der Batch-Normalisierung (siehe unten) speziell auf eindimensionale
Daten, z.B. Sequenzen oder Zeitreihen, um die Trainingsstabilitat und Konvergenz zu
verbessern.

1D-Faltung
Die Operation, bei der ein Filter (Kernel) iiber eindimensionale Daten verschoben wird,
um lokale Merkmale zu extrahieren.

1D-Faltungsschichten
Neurale Netzwerk-Layer, die eindimensionale Convolutionen auf sequenzielle Daten
anwenden, um lokale Muster und Features zu extrahieren.

1D-Transponierte-Faltungsschichten
Layer, die die Inverse der 1D-Faltung durchfithren, um Daten zu vergréf3ern oder re-
konstruktive Aufgaben wie bei Autoencodern zu unterstiitzen.

4-Gramm
Eine Sequenz von vier aufeinanderfolgenden Elementen, wie Zeichen, Worter oder
Tokens, die in Text- oder Sequenzanalysen verwendet wird, um Muster oder Abhéngig-
keiten zu erfassen.

Adam-Optimizer
Ein iterativer Optimierungsalgorithmus im maschinellen Lernen, der die Lernrate fiir
jeden Parameter automatisch anpasst und vergangene Gradienteninformationen be-
riicksichtigt.

137

Begriffsdefinitionen

AddressSanitizer (ASan)
Ein Laufzeitanalyse-Tool, das durch Compiler-Instrumentierung zuséatzliche Speicher-
grenzenpriifungen und sogenannte Stack Canaries einfiigt, um Speicherfehler wie Puffer-
tiberldufe, Use-after-Free, Nullzeigerzugriffe und Speicherlecks (siehe unten) zuverlassig
zu erkennen.

Augmentation
Eine Technik im maschinellen Lernen, bei der Trainingsdaten kiinstlich erweitert oder
verandert werden, z. B. durch Rotation, Skalierung oder Hinzufiigen von Rauschen, um
die Modellrobustheit und Generalisierung zu verbessern.

Batch-GroRle
Die Anzahl der Trainingsbeispiele, die in einem Durchgang (Iteration) eines Optimie-
rungsalgorithmus verarbeitet werden.

Batch-Normalisierung
Ein Verfahren, das die Aktivierungen innerhalb eines Layers normalisiert, um die Trai-
ningsstabilitiat zu erhéhen und die Konvergenz zu beschleunigen.

Binary Cross-Entropy (BCE)
Spezialform der Cross-Entropy (CE) Verlustfunktion (siehe unten) fiir binére Klassifika-
tionsaufgaben.

Binary Recovery
Verfahren zur teilweisen oder vollstindigen Wiederherstellung von Programmcode aus
Bindrdateien, haufig im Kontext von Reverse Engineering oder Malware-Analyse.

Binary Rewriting
Ein Verfahren, bei dem bestehende Binirdateien analysiert und gezielt modifiziert
werden, etwa durch Einfligen von Patches, Hooks oder Spriingen, ohne das urspriingliche
Programmverhalten zu zerstoren.

Categorical Cross-Entropy (CCE)
Spezialform der Cross-Entropy (CE) Verlustfunktion (siehe unten) fiir Mehrklassen-
Klassifikationsaufgaben

Clustering
Ein Verfahren des maschinellen Lernens, bei dem Datenpunkte anhand ihrer Ahnlichkeit
automatisch in Gruppen (Cluster) zusammengefasst werden, ohne dass vorher definierte
Klassen bekannt sind.

Code Location Problem
Eigenname fiir das Problem, an welchen Stellen im Programmcode eigene Anderungen
eingefiigt werden konnen, ohne die Funktionalitit zu beeintrachtigen.

Code-Injektion
Bezeichnet das Einschleusen von Code in ein Programm, meist mit dem Ziel, uner-
wiinschte Operationen auszufiihren.

138

Codeabdeckung
Ein Maf} dafiir, welcher Anteil des Programmcodes wiahrend eines Tests tatsachlich
ausgefithrt wird.

Compiler
Ein Programm, das Quellcode in ausfithrbaren Maschinencode iibersetzt und dabei
verschiedene Optimierungen vornimmt.

Cross-Entropy (CE) Verlustfunktion
Eine allgemeine Verlustfunktion (siehe unten) fiir Klassifikationsaufgaben, die die Ab-
weichung zwischen vorhergesagten Wahrscheinlichkeitsverteilungen und den tatsach-
lichen Zielverteilungen anhand des negativen Logarithmus der korrekten Klasse misst.

Datensatz
Eine Sammlung von Samples (siehe unten), die fiir Training, Validierung oder Testen
von maschinellen Lernmodellen verwendet wird.

Debugging-Schnittstelle
Hard- oder Software-Schnittstelle, die den Zugriff auf interne Zusténde eines Systems
ermoglicht, z. B. iiber JTAG (siehe unten), um die Fehleranalyse und Diagnose zu er-
leichtern.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
Ein dichtebasiertes Clustering-Verfahren, das Cluster als zusammenhangende Regionen
hoher Punktdichte identifiziert und Punkte in diinn besiedelten Bereichen als Ausreifler
markiert.

Embedding
Eine Vektordarstellung von Daten, z. B. von Wortern, Tokens oder Codefragmenten,
in einem kontinuierlichen Merkmalsraum, um semantische Ahnlichkeiten messbar zu
machen.

Emulation
Verfahren, bei dem Hardware oder Software eines Systems vollstindig nachgebildet
wird, um Programme in einer kontrollierten Umgebung auszufithren.

Epoche
Ein kompletter Durchlauf durch den gesamten Trainingsdatensatz wahrend des Trai-
nings eines maschinellen Lernmodells.

ESP32
Ein kostengiinstiger, stromsparender Mikrocontroller mit integriertem WLAN- und
Bluetooth-Support, der haufig in IoT-Gerdten eingesetzt wird.

Feature Extraction
Der Prozess, bei dem ein Modell relevante Merkmale aus den Rohdaten identifiziert und
extrahiert.

Feature Map
Die Ausgabedarstellung eines Layers in einem neuronalen Netzwerk, die die aus den

139

Begriffsdefinitionen

Eingabedaten extrahierten Merkmale fiir jeden Kanal abbildet und als Input fiir nach-
folgende Layer dient.

Feature Reverse Engineering
Analyse bestehender Software oder Hardware, um ihre Funktionalitdten und Eigen-
schaften zu identifizieren und zu verstehen.

Feature
Ein einzelnes erkennbares Muster oder eine charakteristische Eigenschaft in den Einga-
bedaten, das von einem neuronalen Netzwerk extrahiert wird.

Feedbackgesteuertes Fuzzing
Eine Fuzzing-Technik, bei der die Generierung von Testeingaben durch Informationen
tiber die bisher abgedeckten Programmstellen gesteuert wird.

Fine-Tuned LLM
Ein Large Language Model (LLM) (siehe unten), das durch gezieltes Nach-Training an
spezifische Aufgaben oder Doméanen angepasst wurde.

Fine-Tuning
Methode des maschinellen Lernens, bei der ein vortrainiertes Modell durch Training
auf spezifischen Daten weiter spezialisiert wird.

Firmware
Software, die dauerhaft auf Hardwarekomponenten gespeichert ist und deren grundle-
gende Funktionalitit steuert.

Flashen
Bezeichnet das (Uber-)Schreiben bzw. Ersetzen der Firmware eines Gerits durch eine
neue Version, meist mittels spezieller Tools oder Bootloader.

Fork
Eine Kopie eines Softwareprojekts oder Repositories, die unabhingig vom Original
weiterentwickelt werden kann, haufig genutzt, um eigene Anderungen vorzunehmen
oder Beitrage zuriick zum Originalprojekt vorzuschlagen.

Framework
Eine strukturierte Sammlung von Bibliotheken, Konventionen und Tools, die die Ent-
wicklung spezifischer Anwendungen oder Systeme erleichtert.

Fuzzing
Eine Testtechnik, bei der Programme automatisiert mit vielen ungiiltigen, zufilligen
oder unerwarteten Eingaben getestet werden, um Schwachstellen aufzudecken. Der
Begriff wird im Deutschen bereits verwendet.

Hamming-Distanz
Ein Maf zur Bestimmung der Unterschiedlichkeit zweier gleich langer Bit- oder Zeichen-
ketten, definiert als die Anzahl der Positionen, an denen sich die Symbole unterscheiden.

Heap
Ein dynamischer Speicherbereich, aus dem Programme wiahrend der Laufzeit Speicher-
blocke anfordern und wieder freigeben konnen.

140

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
Eine Erweiterung von Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) (siehe oben), die hierarchisches Clustering mit dichtebasierter Clusterbildung
kombiniert, um Cluster unterschiedlicher Dichte robuster zu erkennen und Ausreifler
effizient zu identifizieren.

Hook
Eine Technik, bei der bestehender Code gezielt umgeleitet oder erweitert wird, indem
vor, nach oder anstelle von Funktionsaufrufen zusétzlicher Code ausgefiihrt wird.

Hyperparameter
Einstellbare Parameter eines maschinellen Lernmodells, die nicht wéhrend des Trainings
gelernt werden, sondern vorab festgelegt werden, wie Lernrate, Batch-Grofie oder Anzahl
der Layer.

Inferenz
Der Prozess, bei dem ein trainiertes Modell neue Eingabedaten verarbeitet, um Vorher-
sagen, Klassifikationen oder andere Ausgaben zu erzeugen.

Instrumentierung
Technik, bei der zusatzlicher Code in ein Programm eingefiigt wird, um Laufzeitinfor-
mationen wie Codeabdeckung, Variablenwerte oder Kontrollfluss zu messen, ohne die
urspriingliche Programmlogik zu verandern.

Jump
Ein Sprungbefehl in einem Programm, der den Kontrollfluss an eine andere Stelle im
Code uibertragt.

JTAG
Ein Standard fiir die Debugging- und Testschnittstelle von Mikrocontrollern und inte-
grierten Schaltkreisen, der Zugriff auf interne Register, Speicher und die Steuerung des
Programmschritts ermoglicht.

Konvolutionelles Embedding
Eine dichte Vektorreprasentation von Eingabedaten, die durch die Anwendung von
Convolutional-Layern erzeugt wird und lokale Muster sowie Merkmale der Daten in
einem niedrigdimensionalen Raum abbildet.

Large Language Model (LLM)
Maschinelle Lernmodelle, die auf der Verarbeitung und Generierung natiirlicher Sprache
in groflem Mafstab basieren. Aufgrund fehlender etablierter deutscher Ubersetzungen
wird der englische Begriff verwendet.

Latente Reprasentation
Die komprimierte Darstellung der Eingabedaten, die ein Autoencoder nach der Enco-
dierung gelernt hat, also die wichtigsten Merkmale oder Informationen, die das Modell
zur Rekonstruktion der Daten benétigt.

Leaky RelLU
Eine Variante der Rectified Linear Unit (ReLU)-Aktivierungsfunktion (siehe unten), bei

141

Begriffsdefinitionen

der negative Eingaben nicht vollstindig auf null gesetzt, sondern mit einem kleinen
Faktor skaliert werden, um das Problem verschwindender Gradienten zu reduzieren.

LLaMA-2-13B-Modell
Ein LLM (siehe oben) der zweiten LLaMA-Generation von Meta mit 13 Milliarden
Parametern.

Mean Squared Error (MSE)
Ein Maf fiir die mittlere quadratische Abweichung zwischen vorhergesagten und tat-
sachlichen Werten.

Multi-Hot-Vektor
Ein Vektor, bei dem mehrere Positionen den Wert 1 haben und alle anderen 0 sind. Haufig
verwendet, um mehrere aktive Kategorien oder Merkmale gleichzeitig zu représentieren.

Negative Log-Likelihood (NLL)
Eine Verlustfunktion im maschinellen Lernen, die die Wahrscheinlichkeit der richtigen
Zielwerte maximiert, indem sie den negativen Logarithmus der Modellwahrscheinlich-
keiten berechnet.

Neighbor Eviction
Eine Patching-Taktik (siehe unten), bei der eine benachbarte Instruktion verschoben
oder iiberschrieben wird, um Platz fiir zusatzlichen Patch-Code oder neue Sprungziele
zu schaffen.

Network Trace
Aufzeichnung und Analyse von Netzwerkkommunikation, um Datenfliisse, Protokoll-
nutzung oder Fehlverhalten von Anwendungen nachzuvollziehen.

Neuron
Eine grundlegende Verarbeitungseinheit in kiinstlichen neuronalen Netzen, die Eingaben
gewichtet summiert, eine Aktivierungsfunktion anwendet und so eine Ausgabe erzeugt,
die an andere Neuronen weitergegeben wird.

Nullzeiger
Ein Zeiger, der auf keine giiltige Speicheradresse zeigt, tiblicherweise mit dem Wert null
initialisiert.

Nullzeigerzugriff (engl. Null Pointer Dereference)

Ein Laufzeitfehler, der entsteht, wenn ein Programm versucht, iiber einen Zeiger mit
dem Wert Null auf Speicher zuzugreifen, was typischerweise zu einem Absturz fiihrt.

One-Hot-Encoding
Eine Technik zur Darstellung kategorialer Daten als binare Vektoren, bei denen ge-
nau eine Position den Wert 1 hat und alle anderen 0, um die Daten fiir maschinelle
Lernmodelle nutzbar zu machen.

One-Hot-Vektor
Eine Vektordarstellung, bei der genau eine Komponente den Wert 1 hat und alle anderen
0, die haufig zur Kategorisierung diskreter Werte verwendet wird.

142

Opcode
Kurzform fir ,Operation Code®. Bezeichnet den Teil einer Maschineninstruktion, der
angibt, welche Operation die CPU ausfiithren soll, z. B. Addition, Vergleich oder Sprung.

Overfitting
Ein Effekt beim maschinellen Lernen, bei dem ein Modell die Trainingsdaten zu genau
lernt und dadurch Muster auswendig statt verallgemeinerbar erfasst, was zu schlechterer
Leistung auf neuen, unbekannten Daten fiihrt.

Parser
Ein Programm oder Modul, das strukturierte Daten (z. B. Quellcode, XML oder JSON)
analysiert und in eine fiir die Weiterverarbeitung geeignete Form iiberfiihrt.

Patching-Strategie
Ubergeordneter Plan fiir das Einfigen, Ersetzen oder Entfernen von Programmcode in
einem Bindrprogramm, z. B. zur Laufzeitmanipulation oder Fehlerkorrektur.

Patching-Taktiken
Konkrete Methoden innerhalb einer Patching-Strategie (siehe oben), etwa Hooking
(siehe oben), Uberschreiben von Sprungzielen oder binire Erweiterung von Funktionen.

Prompt-Tuned LLM
Ein LLM (siehe oben), das durch gezielte Optimierung seiner Antworten anhand vordefi-
nierter Eingabeaufforderungen (Prompts, siehe oben) an spezifische Aufgaben angepasst
wurde.

Prompt-Tuning
Trainingsmethode, bei der nur die Prompts (siehe oben) oder deren Einbettungen opti-
miert werden, ohne die zugrunde liegenden Modellparameter zu verandern.

Prompt
Text- oder Dateneingaben, die einem Modell wie einem LLM gegeben werden, um eine
gewiinschte Antwort, Vorhersage oder Handlung zu erzeugen.

Proof of Concept (PoC)
Ein einfacher Demonstrator oder Prototyp, mit dem die technische Machbarkeit einer
Idee oder Angriffsmethode gezeigt wird.

Protokoll
Bezieht sich in dieser Dissertation auf Netzwerkprotokolle, also standardisierte Kom-
munikationsregeln zwischen Systemen [Pos81a].

Pufferiiberlauf (engl. Buffer Overflow)
Ein Fehler, bei dem mehr Daten in einen Speicherpuffer geschrieben werden, als dieser
aufnehmen kann, was zu Speicheriiberschreibungen und potenziell zu sicherheitskriti-
schen Schwachstellen fiihrt.

Punned Jump
Eine Patching-Taktik (Siehe oben), bei der der Sprungbefehl Teile der nachfolgenden
Instruktion Gberlagert, um zusatzliche Moglichkeiten fiir Sprungziele zu schaffen.

143

Begriffsdefinitionen

Reinforcement Learning
Ein Lernverfahren, bei dem ein Agent durch Interaktion mit einer Umgebung schritt-
weise lernt, optimale Aktionen auszufithren, indem er fiir erfolgreiches Verhalten Be-
lohnungen und fiir Fehler Bestrafungen erhalt.

RelU
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als ReLU(x) = max(0, x),
die negative Eingaben auf null setzt und positive unverandert lasst.

Retrieval-Augmented Generation (RAG)
Bezeichnet eine KI-Technik, die LLMs (siehe oben) mit externen Datenquellen kombi-
niert, um genauere, aktuellere und relevantere Antworten zu generieren.

Reverse-Engineering
Bezeichnet die Analyse und Rekonstruktion bestehender Systeme oder Software. Der
Begriff ist im Deutschen gebrauchlich und wird nicht tibersetzt.

Reverse-Order-Patching-Strategie
Eine Strategie, bei der Patches riickwérts im Code platziert werden (z. B. vom Ende zum
Anfang), um Konflikte zu minimieren oder Platz effizient zu nutzen.

Rewriter
Programme oder Tools, die bestehende Binédrdateien analysieren und gezielt modifizieren,
etwa durch Einfligen von Spriingen, Code oder Hooks.

Sample
Ein einzelnes Datenobjekt, das fiir Training, Test oder Analyse in einem maschinellen
Lernmodell verwendet wird.

Seed Pool
Eine Sammlung von Seeds (siehe oben) fiir weiteres Fuzzing (siehe oben).

Seed
Eine initiale Eingabedatei oder Datenstruktur, die als Ausgangspunkt fiir die Generierung
neuer Testeingaben beim Fuzzing (siehe oben) dient.

Sigmoid-Funktion
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als o(x) = ﬁ die
Eingaben auf den Bereich (0, 1) abbildet.

Softplus
Eine glatte, differenzierbare Aktivierungsfunktion im maschinellen Lernen, definiert
als Softplus(x) = In(1 + €¥), die eine stetige Approximation der ReLU-Funktion (siehe
oben) darstellt.

Sparse Vector
Ein diinnbesetzter Vektor, der zu einem Grofiteil aus Nullen besteht und nur wenige
relevante Werte enthalt.

Speicherleck (engl. Memory Leak)
Ein Fehler, bei dem ein Programm reservierten Speicher nicht wieder freigibt, was im

144

Laufe der Zeit zu einem steigenden Speicherverbrauch und méglichen Leistungsproble-
men oder Abstiirzen fiihrt.

Stack
Ein Speicherbereich, der fiir die Verwaltung von Funktionsaufrufen, lokalen Variablen
und Riicksprungadressen genutzt wird. Daten werden nach dem LIFO-Prinzip (Last In,
First Out) abgelegt.

Successor Eviction
Eine Patching-Taktik (siehe oben), bei der die aktuelle Instruktion und ihre direkt
folgende Nachfolgerinstruktion an einen anderen Codebereich verschoben werden. Der
Kontrollfluss wird angepasst, um Platz fiir zusatzlichen Patch-Code zu schaffen und die
Programmlogik beizubehalten.

Synthetische Bugs
Kiinstlich eingefiigte Fehler in Software, die gezielt zur Evaluierung und zum Bench-
marking von Testverfahren wie Fuzzing (siehe oben) verwendet werden.

Tanh-Funktion
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als tanh(x) =
Eingaben auf den Bereich (-1, 1) abbildet.

eX—e X

eX+e X

, die

Time-to-Market (TTM)
Die Zeit, die ein Produkt vom Konzept bis zur Markteinfithrung benétigt. Dies fiithrt zu
einem Dilemma, da die Sicherheit vernachlassigt wird, um eine kiirzere Time-to-Market
(TTM) zu erreichen.

Token
Eine kleinste bedeutungstragende Einheit in Textdaten, die von Sprachmodellen verar-
beitet wird, z. B. ein Wort, ein Satzzeichen oder ein Teilwort.

Tool
Eine Software oder ein Hilfsprogramm, das fiir eine spezifische Aufgabe eingesetzt wird,
z.B. zur Analyse, Modifikation oder Uberpriifung von Binércode.

Top-k-Sampling
Eine Sampling-Strategie bei der Text- oder Sequenzgenerierung, bei der das Modell nur
aus den k wahrscheinlichsten nichsten Token auswahlt.

(Un)iiberwacht
Bezieht sich beim maschinelles Lernen auf das Training mit (un)beschrifteten Daten,
um Muster mit bzw. ohne Vorgaben zu erlernen.

Use-after-Free
Ein Speicherfehler, bei dem auf einen bereits freigegebenen Speicherbereich zugegriffen
wird, was zu undefiniertem Verhalten, Abstiirzen oder der Ausfithrung von Schadcode
fithren kann.

Verlustfunktion
Eine Funktion, die den Unterschied zwischen den vorhergesagten Ausgaben eines

145

Begriffsdefinitionen

Modells und den tatsachlichen Zielwerten quantifiziert und somit als Grundlage fiir die
Optimierung der Modellparameter dient.

Vitalitatspriifung
Verfahren zur Laufzeitiiberwachung. Mittels dieser Priifungen wird sichergestellt, dass
bestimmte Programmteile oder Kontrollflisse erreichbar und aktiv sind oder korrekt
ausgefithrt werden konnen.

XML-Parser
Ein spezieller Parser (siehe oben), der XML-Datenstrukturen analysiert und in eine
weiterverarbeitbare Form umwandelt.

Xtensa
Eine energieeffiziente, anpassbare Mikroprozessorarchitektur von Tensilica, haufig in
[oT-Geraten wie dem ESP32 (siehe oben) eingesetzt.

XXE-Injection (XML External Entity Injection)
Eine Sicherheitsliicke in XML-Verarbeitungsroutinen, bei der bosartige externe En-
titaten in XML-Dokumenten eingebracht werden kénnen, was zu einer Ausfithrung
unerwiinschter Aktionen fiihrt.

Zeilenabdeckung
Eine Metrik der Codeabdeckung, die angibt, wie viele einzelne Programmzeilen min-
destens einmal ausgefithrt wurden.

Zweigabdeckung
Eine Metrik der Codeabdeckung, die uberpruft, wie viele Verzweigungen (z.B. if-
Bedingungen) im Programmcode durchlaufen wurden.

146

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4
55
5.6
5.7

5.8
5.9
5.10
5.11
5.12

NMCU-ESP32: Ein ESP32 auf einem NodeMCU-Entwicklungsboard. . . .
Der Build- und Flash-Prozess der ESP32-Firmware
Das Code Location Problem
Trampolin-Rewriter bieten eine Losung fiir das Code Location Problem .
Schematische Darstellung von feedbackgesteuertem Fuzzing
Das ISO/OSI-7-Schichtenmodell
Schematische Darstellung eines kiinstlichen neuronalen Netzes
Aktivierungsfunktionen von Sigmoid, Tanhund ReLU
Schematische Darstellung eines Convolutional Neural Networks
Schematische Darstellung eines Autoencoders
Schematische Darstellung eines Generative Adversarial Networks
Schematische Darstellung einer Long Short-Term Memory Zelle
Schematische Darstellung einer Self-Organizing Map

Prozess des Binary Recovery, des Rewritings und erneuten Flashens . . .
Anwendung der Jump-Taktik auf Xtensa
Anwendung der Punned Jump-Taktik auf Xtensa
Anwendung der Successor Eviction-Taktik auf Xtensa
Anwendung der Neighbor Eviction-Taktik auf Xtensa
Beziehung der Hauptkomponenten des ESP32 Binary Rewriting Tools . .

Fork-Join-Fuzzing-Prozess
Eine demontierte LIFX Mini smarte Gluhbirne.

HTTP-Datensatzverteilungen
FTP-Datensatzverteilungen
Eine HTTP-Anweisung, die in 3 Klassen aufgeteilt und vermischt wurde
Beispiel einer HTTP-Anweisungs-Klassifizierung
Eine Veranschaulichung des Prozesses von Convolutional 4:1
Zwei von LSTM generierte HTTP-Anfragen
Beispiele von HTTP-Anfragen und ihrer Verarbeitung fiir die Zustandser-
kennung.
HTTP Feature Reverse Engineering vs. Sequenzgenerierung
FTP Feature Reverse Engineering vs. Sequenzgenerierung
Architektur von PREUNN2 L
Verlauf der Codeabdeckung beim Fuzzing von Express-Fuzzing-Ziels

Verlauf der Codeabdeckung beim Fuzzing des LightFTP-Fuzzing-Ziels . .

11
12
14
17
24
29
30
31
32
33
34
35

41
42
43
43
44
45

63
65

76
77
78
79
82
82

86
87
88
89
96
97

147

Abbildungsverzeichnis

148

6.1
6.2
6.3
6.4
6.5

7.1

Ubersicht Giber den vorgestellten Ansatz 104
Integration des LLM in den Fuzzing-Test 106
Llama2 lernt durch eine Feedback-Schleife 107
Gesamtzahl der gefundenen Pfade der verschiedenen Anséatze 111
Gefundene Zeitiiberschreitungen in libxml2 112
Modularer Aufbau des Fuzzing Frameworks 119

Tabellenverzeichnis

2.1
2.2

4.1

5.1

5.2
53

6.1
6.2

Ubersicht tiber verschiedene 32-Bit-Mikrocontroller 8
Technische Spezifikationen des ESP32-WROOM-32 [Esp25¢c] 10
Vergleich der Fuzzing-Versuche 64
Taxonomie zur Klassifizierung von PRE-Ansétzen nach Anforderungen

(Spalten) und Ergebnissen (Zeilen) 71
Ubersicht tiber die FTP-Cluster 83
Ergebnisse der Clustering-Experimente zum Vergleich 85
Gesamtzahl der generierten Samples pro Fuzzing-Test 112
Einfluss der Top-k-Variation auf die XML-Generierungszeit 113

149

Listings

2.1

3.1
3.2
3.3
3.4

Eine typische FTP-Kommunikation 26
Strings aufdem ESP32 Lo 48
Definieren des Patches 49
Verwendung des Beispiel-Tools. 50
Ausfithren des Uberwachungsskripts 50

151

Eigene Arbeiten

[Bau+19]

[Bor+20]

[Kie+22]

[Kna+25]

[Mhi+25]

[Pla+25]

Ingmar Baumgart, Matthias Borsig, Niklas Goerke, Timon Hackenjos,
Jochen Rill und Marek Wehmer. ,Who Controls Your Energy? On the
(In)Security of Residential Battery Energy Storage Systems®. In: 2019 IEEE
International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids, SmartGridComm 2019, Beijing, China, October 21-23,
2019. IEEE, Okt. 2019, S. 1-6. por: 10.1109/smartgridcomm.2019.8909749.
URL: https://doi.org/10.1109/SmartGridComm.2019.8909749.

Matthias Borsig, Sven Nitzsche, Max Eisele, Roland Groll, Jirgen Becker
und Ingmar Baumgart. ,Fuzzing Framework for ESP32 Microcontrollers®.
In: 2020 IEEE International Workshop on Information Forensics and Security
(WIFS). IEEE, Dez. 2020, S. 1-6. pOI: 10.1109/wifs49906.2020.9360889. URL:
https://ieeexplore.ieee.org/document/9360889.

Valentin Kiechle, Matthias Borsig, Sven Nitzsche, Ingmar Baumgart und
Jurgen Becker. ,PREUNN: Protocol Reverse Engineering using Neural Net-
works®. In: Proceedings of the 8th International Conference on Information
Systems Security and Privacy - ICISSP. ICISSP 2022 Best Poster Award.
INSTICC. SciTePress, Feb. 2022, S. 345-356. 1SBN: 978-989-758-553-1. DOI:
10.5220/0010813500003120. URL: https://www. scitepress.org/Link.
aspx?doi=10.5220/0010813500003120.

Leonard Knapp, Sven Nitzsche, Matthias Borsig, Alexandru Vasilache, Ing-
mar Baumgart und Juergen Becker. ,Efficacy of Spiking Neural Networks for
Intrusion Detection Systems®. In: 2025 International Conference on Cyberse-
curity and Al-Based Systems (Cyber-Al). IEEE Computer Society, Sep. 2025,
S. 89-95. por: 10.1109/Cyber-AI66431.2025.11233776.

Ibrahim Mhiri, Matthias Borsig, Akim Stark und Ingmar Baumgart. ,How to
Train Your Llama - Efficient Grammar-Based Application Fuzzing Using Lar-
ge Language Models®. In: Secure IT Systems: 29th Nordic Conference, NordSec
2024 Karlstad, Sweden, November 6—7, 2024 Proceedings. Hrsg. von Leonardo
Horn Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls. Bd. 15396.
Lecture Notes in Computer Science. Karlstad, Sweden: Springer-Verlag, Jan.
2025, S. 239-257. 1SBN: 978-3-031-79006-5. DOI: 10.1007/978-3-031-79007 -
2_13. URL: https://dx.doi.org/10.1007/978-3-031-79007-2_13.

Benjamin Plach, Matthias Borsig, Maximilian Miiller, Roland Gro6ll, Martin
Dukek und Ingmar Baumgart. ,Binary-Level Code Injection for Automated
Tool Support on the ESP32 Platform®. In: Secure IT Systems: 29th Nordic Con-
ference, NordSec 2024 Karlstad, Sweden, November 6-7, 2024 Proceedings. Hrsg.

153

https://doi.org/10.1109/smartgridcomm.2019.8909749
https://doi.org/10.1109/SmartGridComm.2019.8909749
https://doi.org/10.1109/wifs49906.2020.9360889
https://ieeexplore.ieee.org/document/9360889
https://doi.org/10.5220/0010813500003120
https://www.scitepress.org/Link.aspx?doi=10.5220/0010813500003120
https://www.scitepress.org/Link.aspx?doi=10.5220/0010813500003120
https://doi.org/10.1109/Cyber-AI66431.2025.11233776
https://doi.org/10.1007/978-3-031-79007-2_13
https://doi.org/10.1007/978-3-031-79007-2_13
https://dx.doi.org/10.1007/978-3-031-79007-2_13

Eigene Arbeiten

von Leonardo Horn Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls.
Bd. 15396. Lecture Notes in Computer Science. Karlstad, Sweden: Springer-
Verlag, Jan. 2025, S. 121-138. 1SBN: 978-3-031-79006-5. DOI: 10.1007/978-3-
031-79007-2_7. URL: https://dx.doi.org/10.1007/978-3-031-79007-2_7.

154

https://doi.org/10.1007/978-3-031-79007-2_7
https://doi.org/10.1007/978-3-031-79007-2_7
https://dx.doi.org/10.1007/978-3-031-79007-2_7

Weitere Literatur

[AAZ25]

[AC22]

[AIB11]

[Ais25]

[ANV11]

[ASZ25]

[Aun10]

[Ban+19]

Atif Ali, Syed Adnan Ali und Nawal Zaheer. ,The Role of ESP32 in Enabling
Industry 4.0 and 5.0: A Comprehensive Narrative Review of Edge Intelligence,
Human-Centric Automation, and Sustainable Innovation®. In: Preprints (Aug.
2025). DOI: 10.20944/preprints202508.0014.v1. URL: https://doi.org/10.
20944/preprints202508.0014.v1.

Anastasios Andronidis und Cristian Cadar. ,SnapFuzz: high-throughput
fuzzing of network applications®. In: Proceedings of the 31st ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis. ISSTA 2022. Virtual,
South Korea: Association for Computing Machinery, 2022, S. 340-351. 1SBN:
9781450393799. por1: 10.1145/3533767.3534376. URL: https://doi.org/10.
1145/3533767.3534376.

Andrea Arcuri, Muhammad Zohaib Igbal und Lionel Briand. ,Random tes-
ting: Theoretical results and practical implications®. In: IEEE Transactions on
Software Engineering 38.2 (2011), S. 258-277.

Gudur Aishwarya. Elements of Network protocol. https : / / www .
geeksforgeeks . org / computer - networks / elements - of - network -
protocol/. Juli 2025.

Joao Antunes, Nuno Neves und Paulo Verissimo. ,Reverse Engineering of
Protocols from Network Traces®. In: Proceedings of the 2011 18th Working
Conference on Reverse Engineering. WCRE "11. IEEE Computer Society, Okt.
2011, S. 169-178. 1sBN: 9780769545820. pOI: 10.1109/WCRE.2011.28.

José Antonio Amaya Zamudio, Marius Smytzek und Andreas Zeller. ,FAN-
DANGO: Evolving Language-Based Testing”. In: Journal of the ACM (FJACM).
Bd. 2. ISSTA. New York, NY, USA: Association for Computing Machinery,
Juni 2025. por: 10.1145/3728915. URL: https://doi.org/10.1145/3728915.

Benjamin Aunkofer. Open System Interconnection — Referenzmodell. https:
/ / www . der - wirtschaftsingenieur . de / index . php / open - system -
interconnection-referenzmodell/. Jan. 2010.

Andrew Banks, Ed Briggs, Ken Borgendale und Rahul Gupta. MQTT Version
5.0. Standard v5.0. OASIS Message Queuing Telemetry Transport (MQTT)
TC, Méarz 2019. URL: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
v5.0.html.

155

https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1145/3533767.3534376
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://doi.org/10.1109/WCRE.2011.28
https://doi.org/10.1145/3728915
https://doi.org/10.1145/3728915
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Weitere Literatur

[BDB99]

[BH19]

[Bha22]

[Bha25]

[BKG20]

[Bla25]

[BLPO5]

[Blu23]

[BMC20]

[BP23]

[Bra+08]

[Bro18]

156

Vasanth Bala, Evelyn Duesterwald und Sanjeev Banerjia. Transparent Dy-
namic Optimization: The Design and Implementation of Dynamo. 1999. URL:
https://homes . cs.washington.edu/~bodik/ucb/cs703-2002/papers/
dynamo- full. pdf.

Katharina Bogad und Manuel Huber. ,Harzer Roller: Linker-Based Instru-
mentation for Enhanced Embedded Security Testing“. In: Proceedings of the
3rd Reversing and Offensive-Oriented Trends Symposium. ROOTS’19. Vienna,
Austria: Association for Computing Machinery, 2019. 1sBN: 9781450377751.
DOI: 10.1145/3375894.3375897. URL: https://doi.org/10.1145/3375894.
3375897.

Soumalya Bhattacharyya. Understanding Fuzzing in Software Testing. https:
//www . analyticssteps. com/blogs/understanding - fuzzing - software -
testing. Analytics Steps. Nov. 2022.

Sakshi Bhakhra. Difference Between Stateless and Stateful Protocol. https :
/ /www . geeksforgeeks . org/ computer - networks /difference - between -
stateless-and-stateful-protocol/. Juli 2025.

Dor Bank, Noam Koenigstein und Raja Giryes. Autoencoders. Marz 2020. DOI:
10.48550/arXiv.2003.05991.

Blackduck, Inc. The Heartbleed Bug. https://www.heartbleed.com/. Mérz
2025.

Fernando Bacéo, Victor Lobo und Marco Painho. ,Self-organizing maps as
substitutes for k-means clustering”. In: International Conference on Computa-
tional Science. Springer. 2005, S. 476—483.

Bluetooth SIG. Bluetooth Core Specification. Version 5.4. Bluetooth Special
Interest Group. 2023. URL: https://www.bluetooth.com/specifications/
bluetooth-core-specification/.

Marcel Bohme, Valentin] M Manes und Sang Kil Cha. ,Boosting fuzzer effi-
ciency: an information theoretic perspective®. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Virtual Event USA: ACM, Nov.
2020.

David Belson und Lucas Pardue. Examining HTTP/3 usage one year on. https:
//blog.cloudflare.com/http3-usage-one-year-on/. Juni 2023.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler und Francois
Yergeau. Extensible Markup Language (XML) 1.0. Fifth Edition. W3C. Nov.
2008. URL: https://www.w3.0rg/TR/xml/.

Chris Brook. What is Deep Packet Inspection? How It Works, Use Cases for
DPI, and More. https://digitalguardian.com/blog/what - deep - packet -
inspection-how-it-works-use-cases-dpi-and-more. Dez. 2018.

https://homes.cs.washington.edu/~bodik/ucb/cs703-2002/papers/dynamo-full.pdf
https://homes.cs.washington.edu/~bodik/ucb/cs703-2002/papers/dynamo-full.pdf
https://doi.org/10.1145/3375894.3375897
https://doi.org/10.1145/3375894.3375897
https://doi.org/10.1145/3375894.3375897
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://doi.org/10.48550/arXiv.2003.05991
https://www.heartbleed.com/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://blog.cloudflare.com/http3-usage-one-year-on/
https://blog.cloudflare.com/http3-usage-one-year-on/
https://www.w3.org/TR/xml/
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more

[BSI25]

[BSM22]

[Bun+21]

[Cad22]

[Cad24]

[Cad25]

[Cha+17]

[Che+19]

[Che18]

[Cho13]

BSI. Botnetze — Auswirkungen und SchutzmafSnahmen. https://www.bsi.
bund . de / DE / Themen / Verbraucherinnen - und - Verbraucher / Cyber -
Sicherheitslage / Methoden - der - Cyber - Kriminalitaet / Botnetze /
botnetze_node.html. 2025.

Marcel Bohme, Laszlé Szekeres und Jonathan Metzman. ,,On the reliabi-
lity of coverage-based fuzzer benchmarking®. In: Proceedings of the 44th
International Conference on Software Engineering. ICSE *22. Pittsburgh, Penn-
sylvania: Association for Computing Machinery, 2022, S. 1621-1633. 1SBN:
9781450392211. poI: 10.1145/3510003.3510230. URL: https://doi.org/10.
1145/3510003.3510230.

Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson
und Tim Leek. ,Evaluating Synthetic Bugs®. In: Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security. ASIA CCS ’21.
Virtual Event, Hong Kong: Association for Computing Machinery, 2021,
S.716-730. 1sBN: 9781450382878. DOI: 10.1145/3433210.3453096. URL: https:
//doi.org/10.1145/3433210.3453096.

Cadence Design Systems, Inc. Xtensa®Instruction Set Architecture (ISA) Sum-
mary. Modification: 737871. https : / /www . cadence . com/ content / dam/
cadence - www / global / en_US / documents / tools / silicon - solutions /
compute-ip/isa-summary.pdf. Apr. 2022.

Cadence Design Systems, Inc. Xtensa LX7 Processor. https://www.cadence.
com/en_US/home/ resources/product - briefs/xtensa- 1x7 - processor -
pb.html. 2024.

Cadence Design Systems, Inc. Xtensa LX6 Customizable DPU. https: //
www . electronicspecifier.com/wp- content/uploads/2025/07/Cadence-
Xtensa-LX6-datasheet.pdf. 2025.

Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro und Ryan R. Newton.
Lnstruction punning: lightweight instrumentation for x86-64“. In: SIGPLAN
Not. 52.6 (Juni 2017), S. 320-332. 1sSN: 0362-1340. URL: https://doi.org/10.
1145/3140587.3062344.

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Xun Jiao und Zhuo Su. ,EnFuzz: Ensemble Fuzzing with Seed Synchroni-
zation among Diverse Fuzzers®. In: 28th USENIX Security Symposium (USE-
NIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, S. 1967-
1983. 1SBN: 978-1-939133-06-9. URL: https://www.usenix.org/conference/
usenixsecurityl9/presentation/chen-yuanliang.

Guillaume Chevalier. LARNN: Linear Attention Recurrent Neural Network.
2018. arXiv: 1808.05578 [cs.LG]. URL: https://arxiv.org/abs/1808.05578.

Fred Chow. ,Intermediate representation”. In: Communications of the ACM
56.12 (Dez. 2013), S. 57-62. 1sSN: 1557-7317. DOI: 10.1145/2534706.2534720.
URL: http://dx.doi.org/10.1145/2534706.2534720.

157

https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://doi.org/10.1145/3140587.3062344
https://doi.org/10.1145/3140587.3062344
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://arxiv.org/abs/1808.05578
https://arxiv.org/abs/1808.05578
https://doi.org/10.1145/2534706.2534720
http://dx.doi.org/10.1145/2534706.2534720

Weitere Literatur

[Cir25]

[CKW07]

[Cla09]

[Cle+20]

[CMS13]

[Com+09]

[Con23]

[Cor19]

[DB25]

[DEM94]

[Den+23]

158

Circuitlabs. Chapter 8: Understanding ESP32 Boot Process. https : / /
circuitlabs.net/understanding-esp32-boot-process/. Mai 2025.

Weidong Cui, Jayanthkumar Kannan und Helen] Wang. ,Discoverer: Au-
tomatic Protocol Reverse Engineering from Network Traces.” In: USENIX
Security Symposium. 2007, S. 1-14.

Justin Clarke. SQL injection attacks and defense. Elsevier, 2009. po1: 10.1016/
B978-1-59749-424-3.X0001-1.

Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, Da-
vid Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi und Mathias
Payer. ,HALucinator: Firmware Re-hosting Through Abstraction Layer Emu-
lation®. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, S. 1201-1218. 1SBN: 978-1-939133-17-5. URL: https://
www.usenix.org/conference/usenixsecurity20/presentation/clements.

Ricardo J. G. B. Campello, Davoud Moulavi und Joerg Sander. ,Density-
Based Clustering Based on Hierarchical Density Estimates®. In: Advances
in Knowledge Discovery and Data Mining. Hrsg. von Jian Pei, Vincent S.
Tseng, Longbing Cao, Hiroshi Motoda und Guandong Xu. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, S. 160-172. 1SBN: 978-3-642-37456-2.

Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel und En-
gin Kirda. ,Prospex: Protocol specification extraction®. In: 2009 30th IEEE
Symposium on Security and Privacy. IEEE. 2009, S. 110-125.

Connectivity Standards Alliance. Zigbee Specification. Connectivity Standards
Alliance. 2023. URL: https://csa-iot.org/wp-content/uploads/2023/04/
05-3474-23-csg-zighee-specification-compressed. pdf.

Mitre Corporation. 2019 CWE Top 25 Most Dangerous Software Errors. https:
//cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html. 2019.

Sena Dikici und Turgay Tugay Bilgin. ,Advancements in automated program
repair: a comprehensive review®. In: Knowledge and Information Systems 67.6
(2025), S. 4737-4783. 1ssN: 0219-3116. DOI: 10.1007/510115-025-02383-9.

Peter Deutsch, Alan Emtage und April Marine. How to Use Anonymous FTP.
Techn. Ber. 1635. Internet Engineering Task Force (IETF), Marz 1994. 13 S.
DOI: 10.17487/RFC1635. URL: https://www.rfc-editor.org/info/rfcl635.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang und Ling-
ming Zhang. Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. 2023. arXiv: 2212 . 14834
[cs.SE]. URL: https://doi.org/10.48550/arXiv.2212.14834.

https://circuitlabs.net/understanding-esp32-boot-process/
https://circuitlabs.net/understanding-esp32-boot-process/
https://doi.org/10.1016/B978-1-59749-424-3.X0001-1
https://doi.org/10.1016/B978-1-59749-424-3.X0001-1
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://csa-iot.org/wp-content/uploads/2023/04/05-3474-23-csg-zigbee-specification-compressed.pdf
https://csa-iot.org/wp-content/uploads/2023/04/05-3474-23-csg-zigbee-specification-compressed.pdf
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doi.org/10.1007/s10115-025-02383-9
https://doi.org/10.17487/RFC1635
https://www.rfc-editor.org/info/rfc1635
https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2212.14834
https://doi.org/10.48550/arXiv.2212.14834

[Den+24]

[Dev+19]

[DGR20]

[DGZ23]

[DHS11]

[EFI21]

[Eis+22]

[Eis+23]

[Eis+25]

Y. Deng, C. Xia, C. Yang, S. Zhang, S. Yang und L. Zhang. ,Large Language
Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing
Deep Learning Libraries®. In: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. ICSE "24. Lisbon, Portugal: IEEE Compu-
ter Society, Apr. 2024, S. 830-842. URL: https://doi.org/10.1145/3597503.
3623343.

Jacob Devlin, Ming-Wei Chang, Kenton Lee und Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. URL: https://arxiv.org/abs/1810.04805.

Gregory J. Duck, Xiang Gao und Abhik Roychoudhury. ,Binary rewriting
without control flow recovery®. In: Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementati-
on, PLDI 2020, London, UK, June 15-20, 2020. Hrsg. von Alastair F. Donaldson
und Emina Torlak. ACM, 2020, S. 151-163. URL: https://doi.org/10.1145/
3385412.3385972.

Rafael Dutra, Rahul Gopinath und Andreas Zeller. ,FormatFuzzer: Effective
Fuzzing of Binary File Formats®. In: ACM Trans. Softw. Eng. Methodol. 33.2
(Dez. 2023). 1ssN: 1049-331X. po1: 10.1145/3628157. URL: https://doi.org/
10.1145/3628157.

John Duchi, Elad Hazan und Yoram Singer. ,Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization®. In: Journal of Machine
Learning Research 12.61 (2011), S. 2121-2159. URL: http://jmlr.org/papers/
v12/duchilla.html.

Maialen Eceiza-Olaizola, Jose Luis Flores und Mikel Iturbe. ,Fuzzing the
Internet of Things: A Review on the Techniques and Challenges for Efficient
Vulnerability Discovery in Embedded Systems®. In: IEEE Internet of Things
Journal PP (Feb. 2021), S. 1-1. por: 16.1109/JI0T.2021.3056179.

Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth und Giam-
paolo Bella. ,Embedded fuzzing: a review of challenges, tools, and solutions®.
In: Cybersecurity 5 (Sep. 2022). DOI: 10.1186/542400-022-00123-y.

Max Eisele, Daniel Ebert, Christopher Huth und Andreas Zeller. ,Fuzzing
Embedded Systems using Debug Interfaces®. In: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA 2023. Seattle, WA, USA: Association for Computing Machinery, 2023,
S. 1031-1042. po1: 10.1145/3597926.3598115. URL: https://doi.org/10.
1145/3597926.3598115.

Max Eisele, Johannes Hagele, Christopher Huth und Andreas Zeller. ,GDB-
Miner: Mining Precise Input Grammars on (Almost) Any System®. In: Leibniz
Transactions on Embedded Systems 10.1 (2025), 1:1-1:26. 1sSN: 2199-2002. DOTI:
10.4230/LITES.10.1.1. URL: https://drops.dagstuhl.de/entities/
document/10.4230/LITES.10.1.1.

159

https://doi.org/10.1145/3597503.3623343
https://doi.org/10.1145/3597503.3623343
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3628157
https://doi.org/10.1145/3628157
https://doi.org/10.1145/3628157
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1109/JIOT.2021.3056179
https://doi.org/10.1186/s42400-022-00123-y
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.4230/LITES.10.1.1
https://drops.dagstuhl.de/entities/document/10.4230/LITES.10.1.1
https://drops.dagstuhl.de/entities/document/10.4230/LITES.10.1.1

Weitere Literatur

[Eli22]

[Esp18]

[Esp19]

[Esp23]

[Esp25a]

[Esp25b]

[Esp25c]

[Est+96]

[Exp25]

[FC17]

[FDC20]

[FDQ20]

160

Michael Eling. Der ESP32: Ein leistungsstarker Mikrocontroller fiir IoT-
Anwendungen. https://techgeeks.de/der-esp32-ein-leistungsstarker-
mikrocontroller-fuer-iot-anwendungen/. Dez. 2022.

Espressif. Espressif Achieves the 100-Million Target for IoT Chip Shipments.
https : / /www . espressif . com/ en/ news /Espressif _ Achieves _ the _
Hundredmillion_Target_for_IoT_Chip_Shipments. 2018.

Espressif. QEMU fork with ESP32 support. https://github.com/espressif/
gemu. 2019.

Espressif Systems. ESP8266EX Datasheet. Version 7.0. https : / / www .
espressif.com/sites/default/files/documentation/0a - esp8266ex_
datasheet_en.pdf. Juni 2023.

Espressif Systems. ESP32 Series Datasheet. Version 5.0. https : / / www .
espressif.com/sites/default/files/documentation/esp32_datasheet_
en.pdf. Aug. 2025.

Espressif Systems. ESP32-C3 Series. Version 2.2. https: //www.espressif.
com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf.
2025.

Espressif Systems. ESP32-WROOM-32 Datasheet. Version 3.6. https://www.
espressif.com/sites/default/files/documentation/esp32-wroom-32_
datasheet_en.pdf. Aug. 2025.

Martin Ester, Hans-Peter Kriegel, Jorg Sander und Xiaowei Xu. , A density-
based algorithm for discovering clusters in large spatial databases with noise®.
In: Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, S. 226-231.

Express.js Team. Express 5.x - API Reference. https://expressjs.com/en/
api.html. 2025.

Rong Fan und Yaoyao Chang. ,Machine learning for black-box fuzzing of
network protocols®. In: International Conference on Information and Commu-
nications Security. Springer. 2017, S. 621-632.

Andrea Fioraldi, Daniele Cono D’Elia und Emilio Coppa. ,WEIZZ: Automatic
Grey-Box Fuzzing for Structured Binary Formats®. In: Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA 2020. Virtual Event, USA: Association for Computing Machinery,
2020, S. 1-13. 1SBN: 9781450380089. DOI1: 10.1145/3395363.3397372. URL:
https://doi.org/10.1145/3395363.3397372.

Andrea Fioraldi, Daniele Cono D’Elia und Leonardo Querzoni. ,Fuzzing Bina-
ries for Memory Safety Errors with QASan®. In: 2020 IEEE Secure Development
(SecDev). 2020, S. 23-30. poI: 10.1109/SecDev45635.2020.00019.

https://techgeeks.de/der-esp32-ein-leistungsstarker-mikrocontroller-fuer-iot-anwendungen/
https://techgeeks.de/der-esp32-ein-leistungsstarker-mikrocontroller-fuer-iot-anwendungen/
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://github.com/espressif/qemu
https://github.com/espressif/qemu
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://expressjs.com/en/api.html
https://expressjs.com/en/api.html
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/SecDev45635.2020.00019

[Fie00]

[Fio+20]

[For20]

[FPA17]

[FS00]

[GAJ24]

[Gar08]

[Gas+15]

[GGG22]

Roy Thomas Fielding. ,Architectural Styles and the Design of Network-based
Software Architectures®. AAI9980887. Diss. University of California, Irvine,
2000. 1sBN: 0599871180. URL: https://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt und Marc Heuse. ,AFL++ :
Combining Incremental Steps of Fuzzing Research®. In: 14th USENIX Work-
shop on Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.
URL: https://www . usenix . org/ conference /woot20 / presentation /
fioraldi.

Fortune Business Insights. Internet of Things (IoT) Market Size, Share and
Industry Analysis By Platform (Device Management, Application Management,
Network Management), By Software & Services (Software Solution, Services), By
End-Use Industry (BFSI, Retail, Governments, Healthcare, Others) And Regional
Forecast, 2020-2027. 2020.

Alessandro Di Federico, Mathias Payer und Giovanni Agosta. ,rev.ng: a
unified binary analysis framework to recover CFGs and function boundaries®.
In: Proceedings of the 26th International Conference on Compiler Construction,
Austin, TX, USA, February 5-6, 2017. Hrsg. von Peng Wu und Sebastian Hack.
ACM, 2017,S.131-141. URL: http://dl.acm.org/citation.cfm?id=3033028.

Wenfei Fan und Jéréme Siméon. ,Integrity constraints for XML®. In: Pro-
ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. PODS ’00. Dallas, Texas, USA: Association
for Computing Machinery, 2000, S. 23-34. 1sBN: 158113214X. poI1: 10.1145/
335168.335172. URL: https://doi.org/10.1145/335168.335172.

Matthew G. Gaber, Mohiuddin Ahmed und Helge Janicke. ,Malware Detec-
tion with Artificial Intelligence: A Systematic Literature Review". In: ACM
Comput. Surv. 56.6 (Jan. 2024). 1ssN: 0360-0300. DOI: 10.1145/3638552. URL:
https://doi.org/10.1145/3638552.

Simson Garfinkel. Nitroba University Harassment Scenario. Dataset: https:
/ / digitalcorpora . org / corpora / scenarios / nitroba - university -
harassment-scenario. Digital Corpora, Nov. 2008.

Hugo Gascén, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp und
Konrad Rieck. ,Pulsar: Stateful Black-Box Fuzzing of Proprietary Network
Protocols®. In: International Conference on Security and Privacy in Communi-
cation Systems. Springer. Springer International Publishing, 2015, S. 330-347.
ISBN: 978-3-319-28865-9.

Rahul Gopinath, Philipp Go6rz und Alex Groce. Mutation Analysis: Answering
the Fuzzing Challenge. 2022. arXiv: 2201.11303 [cs.SE]. URL: https://arxiv.
org/abs/2201.11303.

161

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
http://dl.acm.org/citation.cfm?id=3033028
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/3638552
https://doi.org/10.1145/3638552
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://arxiv.org/abs/2201.11303
https://arxiv.org/abs/2201.11303
https://arxiv.org/abs/2201.11303

Weitere Literatur

[GKL08]

[GLM08]

[Goo+14]

[Goo+19]

[Gop+18]

[GPS17]

[GT23]

[Gug+22]

[Gui+20]

[Gup19]

[Has+19]

162

Patrice Godefroid, Adam Kiezun und Michael Y. Levin. ,Grammar-based whi-
tebox fuZZing“. In: SIGPLAN Not. 43.6 (Juni 2008), S. 206—215. 1ssN: 0362-1340.
DOI: 10.1145/1379022.1375607. URL: https://doi.org/10.1145/1379022.
1375607.

Patrice Godefroid, Michael Y. Levin und David Molnar. ,,Automated Whitebox
Fuzz Testing”. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008. Bd. 8. The Internet Society, Nov. 2008, S. 151-166. URL:
https://www.microsoft.com/en-us/research/publication/automated -
whitebox-fuzz-testing/.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David War-
de-Farley, Sherjil Ozair, Aaron Courville und Yoshua Bengio. ,Generative
adversarial nets”. In: Advances in neural information processing systems. 2014,
S. 2672-2680.

Young-Hoon Goo, Kyu-Seok Shim, Min-Seob Lee und Myung-Sup Kim. HTTP
and DNS traffic traces for experimenting of protocol reverse engineering methods.
http://dx.doi.org/10.21227/tpqf-fe98. 2019. DOI: 10.21227/tpqf- fe98.

Rahul Gopinath, Bjorn Mathis, Mathias Hoschele, Alexander Kampmann und
Andreas Zeller. Sample-Free Learning of Input Grammars for Comprehensive
Software Fuzzing. 2018. arXiv: 1810 .08289 [cs.SE]. URL: https://arxiv.
org/abs/1810.08289.

Patrice Godefroid, Hila Peleg und Rishabh Singh. ,Learn&Fuzz: Machine
learning for input fuzzing®. In: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). Los Alamitos, CA, USA: IEEE
Computer Society, 2017, S. 50-59. URL: https://doi.org/10.1109/ASE.
2017.8115618.

Javad Garshasbi und Mehdi Teimouri. ,CNNPRE: A CNN-Based Protocol
Reverse Engineering Method®. In: IEEE Access 11 (2023), S. 116255-116268.
DOI: 10.1109/ACCESS.2023.3325391.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary
Mueller, Sourab Mangrulkar, Marc Sun und Benjamin Bossan. Accelerate:
Training and inference at scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate. 2022.

Zhijie Gui, Hui Shu, Fei Kang und Xiaobing Xiong. ,FIRMCORN: Vulnerabi-
lity-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution®. In:
IEEE Access 8 (2020), S. 29826-29841.

Aditya Gupta. The IoT Hacker’s Handbook: A Practical Guide to Hacking the
Internet of Things. en. 1. Aufl. APress, Apr. 2019, S. 340. 1SBN: 1484242998.
DOI: 10.1007/978-1-4842-4300-8.

Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal
und Biplab Sikdar. ,A Survey on IoT Security: Application Areas, Security
Threats, and Solution Architectures®. In: IEEE Access PP (Juni 2019), S. 1-1.
DOI: 10.1109/ACCESS.2019.2924045.

https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
http://dx.doi.org/10.21227/tpqf-fe98
https://doi.org/10.21227/tpqf-fe98
https://arxiv.org/abs/1810.08289
https://arxiv.org/abs/1810.08289
https://arxiv.org/abs/1810.08289
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ACCESS.2023.3325391
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.1007/978-1-4842-4300-8
https://doi.org/10.1109/ACCESS.2019.2924045

[Hav+14]

[Haw+17]

[HKZ17]

[HMU11]

[HN17]

[HS06]

[HS97]

[HSS12]

[HSW+89]

[Hu+18]

[Hu+22]

Nikolas Havrikov, Matthias Hoschele, Juan Pablo Galeotti und Andreas Zeller.
~XMLMate: evolutionary XML test generation®. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Enginee-
ring. FSE 2014. Hong Kong, China: Association for Computing Machinery,
2014, S. 719-722. 1sBN: 9781450330565. DOI: 10.1145/2635868.2661666. URL:
https://doi.org/10.1145/2635868.2661666.

William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong und
Jack W. Davidson. ,.Zipr: Efficient Static Binary Rewriting for Security®. In:
47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2017, Denver, CO, USA, June 26-29, 2017. IEEE Computer
Society, 2017, S. 559-566. URL: https://doi.org/10.1109/DSN.2017.27.

Matthias Hoschele, Alexander Kampmann und Andreas Zeller. Active Lear-
ning of Input Grammars. 2017. arXiv: 1708.08731 [cs.PL]. URL: https://
arxiv.org/abs/1708.08731.

John E. Hopcroft, Rajeev Motwani und Jeffrey D. Ullman. Einfiihrung in die
Automatentheorie, Formale Sprachen und Komplexitdtstheorie. de. 3., aktua-
lisierte Auflage. Pearson Studium. Harlow, England: Pearson Deutschland,
Feb. 2011, S. 256. ISBN: 9783868940824. URL: https://elibrary.pearson.de/
book/99.150005/9783863265090.

Jesse Hertz und Tim Newsham. Project Triforce: Run AFL On Everything.
Whitepaper. https://www.nccgroup . com/ research - blog/whitepaper -
project-triforce-run-afl-on-everything-2017/. NCC Group, Apr. 2017.

Geoffrey E. Hinton und R. Salakhutdinov. ,Reducing the Dimensionality of
Data with Neural Networks®. In: Science 313 (2006), S. 504—507.

Sepp Hochreiter und Jurgen Schmidhuber. ,Long short-term memory®. In:
Neural computation 9.8 (1997), S. 1735-1780.

Geoffrey Hinton, Nitish Srivastava und Kevin Swersky. Lecture 6e — RMSProp:
Divide the gradient by a running average of its recent magnitude. http://
www.Cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_1lec6.pdf.
University of Toronto. 2012.

Kurt Hornik, Maxwell Stinchcombe, Halbert White u. a. ,Multilayer feedfor-
ward networks are universal approximators.” In: Neural networks 2.5 (1989),
S. 359-366.

Zhicheng Hu, Jianqi Shi, YanHong Huang, Jiawen Xiong und Xiangxing Bu.
»,GANFuzz: a GAN-based industrial network protocol fuzzing framework". In:
Proceedings of the 15th ACM International Conference on Computing Frontiers.
2018, S. 138-145.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang und Weizhu Chen. ,LoRA: Low-Rank Adaptation of
Large Language Models®. In: ICLR 1.2 (2022), S. 3. URL: https://arxiv.org/
abs/2106.09685.

163

https://doi.org/10.1145/2635868.2661666
https://doi.org/10.1145/2635868.2661666
https://doi.org/10.1109/DSN.2017.27
https://arxiv.org/abs/1708.08731
https://arxiv.org/abs/1708.08731
https://arxiv.org/abs/1708.08731
https://elibrary.pearson.de/book/99.150005/9783863265090
https://elibrary.pearson.de/book/99.150005/9783863265090
https://www.nccgroup.com/research-blog/whitepaper-project-triforce-run-afl-on-everything-2017/
https://www.nccgroup.com/research-blog/whitepaper-project-triforce-run-afl-on-everything-2017/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Weitere Literatur

[Hua+25]

[HZY23]

[IHRO6]

[Jau+23]

[Jia+24]

[JJ20]

[KB17]

[Kim+17]

[Kin21]

[Koh82]

[Kre16]

164

Linghan Huang, Peizhou Zhao, Huaming Chen und Lei Ma. On the Challenges
of Fuzzing Techniques via Large Language Models. 2025. arXiv: 2402 .00350
[cs.SE]. URL: https://arxiv.org/abs/2402.00350.

Jie Hu, Qian Zhang und Heng Yin. Augmenting Greybox Fuzzing with Genera-
tive Al 2023. arXiv: 2306.06782 [cs.CR]. URL: https://doi.org/10.48550/
arXiv.2306.06782.

Internet Architecture Board, Mark J. Handley und Eric Rescorla. Internet
Denial-of-Service Considerations. Techn. Ber. 4732. Internet Engineering Task
Force (IETF), Dez. 2006. 38 S. DOI: 10.17487/RFC4732. URL: https://www.rfc-
editor.org/info/rfc4732.

Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf und
Ahmad-Reza Sadeghi. ,DARWIN: Survival of the fittest fuzzing mutators®.
In: Proceedings 2023 Network and Distributed System Security Symposium. San
Diego, CA, USA: Internet Society, 2023.

Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng Shen,
Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, ShanShan Li und Quan Zhang.
When Fuzzing Meets LLMs: Challenges and Opportunities. 2024. arXiv: 2404.
16297 [cs.SE]. URL: https://arxiv.org/abs/2404.16297.

YoungGiu Jung und Chang-Min Jeong. ,Deep neural network-based auto-
matic unknown protocol classification system using histogram feature®. In:
The Journal of Supercomputing 76.7 (2020), S. 5425-5441.

Diederik P. Kingma und Jimmy Ba. Adam: A Method for Stochastic Optimi-
zation. 2017. arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.
6980.

Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon, Brendan
Saltaformaggio, Xiangyu Zhang und Dongyan Xu. ,RevARM: A Platform-A-
gnostic ARM Binary Rewriter for Security Applications®. In: Proceedings of
the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA,
December 4-8, 2017. ACM, 2017, S. 412-424. URL: https://doi.org/10.1145/
3134600.3134627.

Jorg Kindermann. Generative Adversarial Networks (GANs) fiir maschinel-
le Ubersetzung. https://lamarr- institute.org/de/blog/generative -
neuronale-modelle-gan/. Juni 2021.

Teuvo Kohonen. ,Self-organized formation of topologically correct feature
maps". In: Biological cybernetics 43.1 (1982), S. 59-69.

Brian Krebs. Source Code for IoT Botnet ‘Mirai’ Released. https : / /
krebsonsecurity.com/2016/10/source - code - for - iot - botnet-mirai-
released/. Okt. 2016.

https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.17487/RFC4732
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc4732
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3134600.3134627
https://doi.org/10.1145/3134600.3134627
https://lamarr-institute.org/de/blog/generative-neuronale-modelle-gan/
https://lamarr-institute.org/de/blog/generative-neuronale-modelle-gan/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

[KSH12]

[KY24]

[LAC21]

[Lan99]

[Lem+23]

[Li+18]

[Lia+18]

[LMC23]

[Lop+17]

[Luk+05]

Alex Krizhevsky, Ilya Sutskever und Geoffrey E Hinton. ,ImageNet Classifi-
cation with Deep Convolutional Neural Networks®. In: Advances in Neural
Information Processing Systems 25. Hrsg. von F. Pereira, C. J. C. Burges, L.
Bottou und K. Q. Weinberger. Curran Associates, Inc., 2012, S. 1097-1105.
URL: http://papers.nips.cc/paper/4824 - imagenet - classification -
with-deep-convolutional-neural-networks.pdf.

Low Choon Keat und Tan Xuan Ying. ,Artificial Intelligence-Based Email
Spam Filtering®. In: Journal of Advanced Research in Artificial Intelligence
& It’s Applications 2.2 (Dez. 2024). po1: 10 . 5281/ zenodo . 14264139. URL:
https://doi.org/10.5281/zenodo.14264139.

Brian Lester, Rami Al-Rfou und Noah Constant. The Power of Scale for
Parameter-Efficient Prompt Tuning. 2021. arXiv: 2104 .08691 [cs.CL]. URL:
https://doi.org/10.48550/arXiv.2104.08691.

Kevin J Lang. ,Faster algorithms for finding minimal consistent DFAs®. In:
NEC Research Institute, Tech. Rep (1999).

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri und Siddhar-
tha Sen. ,CodaMosa: Escaping Coverage Plateaus in Test Generation with
Pre-Trained Large Language Models®. In: Proceedings of the 45th Interna-
tional Conference on Software Engineering. ICSE ’23. Melbourne, Victoria,
Australia: IEEE Press, 2023, S. 919-931. 1SBN: 9781665457019. URL: https:
//doi.org/10.1109/ICSE48619.2023.00085.

R. Li, X. Xiao, S. Ni, H. Zheng und S. Xia. ,Byte Segment Neural Network
for Network Traffic Classification®. In: 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS). 2018, S. 1-10. poI: 10.1109/IWQ0S.
2018.8624128.

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen und Jian Zhang.
,Fuzzing: State of the Art®. In: IEEE Transactions on Reliability 67.3 (2018),
S.1199-1218. por: 10.1109/TR.2018.2834476.

Dongge Liu, Jonathan Metzman und Oliver Chang. Al-Powered Fuzzing:
Breaking the Bug Hunting Barrier. https: //security . googleblog . com/
2023/08/ai-powered- fuzzing-breaking-bug-hunting.html. Google Open
Source Security Team. Aug. 2023.

Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas und Jaime
Lloret. ,Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things®. In: IEEE Access 5 (2017), S. 18042-18050.

Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser,
P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi und Kim M. Ha-
zelwood. ,Pin: building customized program analysis tools with dynamic
instrumentation®. In: Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005. Hrsg. von Vivek Sarkar und Mary W. Hall. ACM, 2005, S. 190—-200.
URL: https://doi.org/10.1145/1065010.1065034.

165

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.5281/zenodo.14264139
https://doi.org/10.5281/zenodo.14264139
https://arxiv.org/abs/2104.08691
https://doi.org/10.48550/arXiv.2104.08691
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/IWQoS.2018.8624128
https://doi.org/10.1109/IWQoS.2018.8624128
https://doi.org/10.1109/TR.2018.2834476
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://doi.org/10.1145/1065010.1065034

Weitere Literatur

[LZZ18]

[Men+24]

[Mic+17]

[Mil21]

[MRR12]

[MS12]

[Mue+138]

[Nat22]

[NB23]

[NH19]

[Nie+99]

[Nin+23]

166

Jun Li, Bodong Zhao und Chao Zhang. ,Fuzzing: a survey". In: Cybersecurity
1.1 (2018), S. 6.

Ruijie Meng, Martin Mirchev, Marcel Béhme und Abhik Roychoudhury.
,Large Language Model guided Protocol Fuzzing®. In: Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS). 2024.

A. Michael, E. Valla, Natinael Solomon Neggatu und A. Moore. Network traffic
classification via neural networks. Techn. Ber. UCAM-CL-TR-912. University
of Cambridge, Computer Laboratory, Sep. 2017. URL: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-912.pdf.

Sasa Milic¢evi¢. ESP32 Based Devices. https://templates.blakadder.com/
esp32.html. Jan. 2021.

Michael McCool, Arch D. Robison und James Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Elsevier/Morgan Kaufmann,
Juni 2012, S. 1-432. 1sBN: 0124159931.

Christoph Meinel und Harald Sack. ,Die Grundlage des Internets: TCP/IP-Re-
ferenzmodell®. In: Internetworking: Technische Grundlagen und Anwendun-
gen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, S. 31-67. 1sBN:
978-3-540-92940-6. DOI: 10 . 1007 /978 - 3 - 540 - 92940 - 6_2. URL: https:
//doi.org/10.1007/978-3-540-92940-6_2.

Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon und Davide
Balzarotti. ,What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices.“ In: NDSS. 2018.

Roberto Natella. ,StateAFL: Greybox Fuzzing for Stateful Network Servers®.
In: Empirical Software Engineering 27.7 (2022), S. 191. 1sSN: 1573-7616. DOTI:
10.1007/5s10664-022-10233- 3. URL: https://doi.org/10.1007/s10664 -
022-10233-3.

Antonio Nappa und Eduardo Blazquez. Fuzzing Against the Machine. en.
Birmingham, England: Packt Publishing, Mai 2023.

Stefan Nagy und Matthew Hicks. ,Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing”. In: IEEE Symposium on Securi-
ty and Privacy (Oakland). Mai 2019, S. 787-802. po1: 10.1109/SP.2019.00069.

Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach und Tim Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1.
Techn. Ber. 2616. Internet Engineering Task Force (IETF), Juni 1999. 176 S.
DOI: 10.17487/RFC2616. URL: https://www.rfc-editor.org/info/rfc2616.

Bowei Ning, Xuejun Zong, Kan He und Lian Lian. ,PREIUD: An Industrial
Control Protocols Reverse Engineering Tool Based on Unsupervised Lear-
ning and Deep Neural Network Methods®. In: Symmetry 15.3 (2023). 1SSN:
2073-8994. po1: 10.3390/sym15030706. URL: https://www.mdpi.com/2073-
8994/15/3/706.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.pdf
https://templates.blakadder.com/esp32.html
https://templates.blakadder.com/esp32.html
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.3390/sym15030706
https://www.mdpi.com/2073-8994/15/3/706
https://www.mdpi.com/2073-8994/15/3/706

[NMT24]

[NP21]

[Nym+17]

[Pat24]

[Pav+18]

[PBR20]

[Pla20]

[Pos80]

[Pos81a]

[Pos81b]

[PPO3]

Mohaddese Nemati, Shiva Mahmoudzadeh und Mehdi Teimouri. ,Enhanced
Autoencoder-Based Clustering for Message Analysis in Binary Protocols®. In:
2024 14th International Conference on Computer and Knowledge Engineering
(ICCKE). 2024, S. 302-307. DOI: 10.1109/ICCKE65377.2024.10874790

Roberto Natella und Van-Thuan Pham. ,ProFuzzBench: a benchmark for
stateful protocol fuzzing®. In: Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA 2021. Virtual,
Denmark: Association for Computing Machinery, 2021, S. 662-665. 1SBN:
9781450384599. poI: 10.1145/3460319.3469077. URL: https://doi.org/10.
1145/3460319.3469077.

Thomas Nyman, Jan-Erik Ekberg, Lucas Davi und N. Asokan. ,,CFI CaRE:
Hardware-supported Call and Return Enforcement for Commercial Micro-
controllers®. In: CoRR abs/1706.05715 (2017). arXiv: 1706.05715. URL: http:
//arxiv.org/abs/1706.05715.

Harsh Pathak. Parameter-efficient fine-tuning (PEFT) and how it’s diffe-
rent from fine-tuning. https://medium. com/@harshnpathak/parameter -
efficient - fine - tuning - peft - and - how - its - different - from- fine -
tuning-3f6b95c73bac. Juli 2024.

Esteban Pavese, Ezekiel Soremekun, Nikolas Havrikov, Lars Grunske und
Andreas Zeller. Inputs from Hell: Generating Uncommon Inputs from Common
Samples. 2018. arXiv: 1812.07525 [cs.SE]. URL: https://arxiv.org/abs/
1812.07525.

Van-Thuan Pham, Marcel Bchme und Abhik Roychoudhury. ,AFLNET: A
Greybox Fuzzer for Network Protocols®. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). 2020, S. 460-
465. DOI: 10.1109/I1CST46399.2020.00062

Patrick von Platen. How to generate text: using different decoding methods
for language generation with Transformers. Méarz 2020. URL: https : / /
huggingface.co/blog/how-to-generate.

Jon Postel. User Datagram Protocol. Techn. Ber. 768. Internet Engineering Task
Force (IETF), Aug. 1980. 3 S. poOI: 10.17487/RFCO768. URL: https://www.rfc-
editor.org/info/rfc768.

Jon Postel. RFC 791: Internet Protocol. Request for Comments 791. Internet
Engineering Task Force (IETF), Sep. 1981. por: doi.org/10.17487/RFCO791.
URL: https://www.rfc-editor.org/rfc/rfc791.

Jon Postel. Transmission Control Protocol. Techn. Ber. 793. Internet Engi-
neering Task Force (IETF), Sep. 1981. 91 S. por: 10 . 17487 /RFC0793. URL:
https://www.rfc-editor.org/info/rfc793.

Ruoming Pang und Vern Paxson. Lawrence Berkeley National Laboratory -
FTP - Packet Trace. Dataset: https://ee.lbl.gov/anonymized-traces.html.
Lawrence Berkeley National Laboratory, Jan. 2003.

167

https://doi.org/10.1109/ICCKE65377.2024.10874790
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1145/3460319.3469077
https://arxiv.org/abs/1706.05715
http://arxiv.org/abs/1706.05715
http://arxiv.org/abs/1706.05715
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://arxiv.org/abs/1812.07525
https://arxiv.org/abs/1812.07525
https://arxiv.org/abs/1812.07525
https://doi.org/10.1109/ICST46399.2020.00062
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://doi.org/doi.org/10.17487/RFC0791
https://www.rfc-editor.org/rfc/rfc791
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/info/rfc793
https://ee.lbl.gov/anonymized-traces.html

Weitere Literatur

[PR85]

[Put+05]

[QV15]

[Rad+19]

[Raf+20]

[Raj+21]

[Ras+20]

[Ras24]

[Rau23]

168

Jon Postel und Joyce Kathleen Reynolds. File Transfer Protocol. Techn. Ber.
959. Internet Engineering Task Force (IETF), Okt. 1985. 69 S. por: 10.17487/
RFC0959. URL: https://www.rfc-editor.org/info/rfc959.

Ludo Van Put, Bjorn De Sutter, Matias Madou, Bruno De Bus, Dominique
Chanet, Kristof Smits und Koen De Bosschere. ,LANCET: a nifty code editing
tool®. In: Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis For Software Tools and Engineering, PASTE 05, Lisbon, Portugal,
September 5-6, 2005. Hrsg. von Michael D. Ernst und Thomas P. Jensen. ACM,
2005, S. 75-81. URL: https://doi.org/10.1145/1108792.1108812.

Nguyen Anh Quynh und Dang Hoang Vu. Unicorn-The ultimate CPU emulator.
https://www.unicorn-engine.org/. 2015.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei und Ilya
Sutskever. ,Language models are unsupervised multitask learners®. In: Ope-
nAl Blog 1.8 (2019), S. 9. URL: https://cdn.openai.com/better-language-
models/language_models_are_unsupervised_multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li und Peter J. Liu. ,Exploring the limits of
transfer learning with a unified text-to-text transformer®. In: J. Mach. Learn.
Res. 21.1 (Jan. 2020). 1sSN: 1532-4435.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith und Yu-
xiong He. ,ZeRO-infinity: breaking the GPU memory wall for extreme scale
deep learning®. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. SC ’21. St. Louis,
Missouri: Association for Computing Machinery, 2021. 1SBN: 9781450384421.
URL: https://doi.org/10.1145/3458817.3476205.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase und Yuxiong He. ,De-
epSpeed: System Optimizations Enable Training Deep Learning Models with
Over 100 Billion Parameters®. In: Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. KDD ’20. Virtual
Event, CA, USA: Association for Computing Machinery, 2020, S. 3505-3506.
ISBN: 9781450379984. URL: https://doi.org/10.1145/3394486.3406703.

Raspberry Pi Ltd. Raspberry Pi Pico Datasheet. build-version: eec2bOc-clean.
https://datasheets. raspberrypi.com/pico/pico-datasheet.pdf. Okt.
2024.

Nico Rausch. ,Evaluation eines Machine-learning-basierten Ansatzes zum
Protocol Reverse Engineering fiir effizientes Fuzzing von Netzwerkanwen-
dungen®. Betreuer: Matthias Borsig und Martin Dukek, Erstgutachter: PD
Dr.-Ing. Ingmar Baumgart, Zweitgutachter: Prof. Dr. Ralf H. Reussner. Mas-
terarbeit. Postfach 6980, 76128 Karlsruhe: Karlsruher Institut fiir Technologie,
Sep. 2023.

https://doi.org/10.17487/RFC0959
https://doi.org/10.17487/RFC0959
https://www.rfc-editor.org/info/rfc959
https://doi.org/10.1145/1108792.1108812
https://www.unicorn-engine.org/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3394486.3406703
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

[Red+21]

[RMC15]

[Rud17]

[Sail1]

[SBF22]

[SBV23]

[Scho8]

[Sco+03]

[Sel+17]

[SEV01]

[SGA07]

Monalika Padma Reddy, Sheba Selvam, Meghana Achandar und Ashwitha
NA. ,Human Activity Recognition using 3D CNN*. In: Turkish Online Journal
of Qualitative Inquiry (TOFQI) 12.7 (2021), S. 12898—-12908. poI: 10.13140/RG.
2.2.20520.49923. URL: https://tojqgi.net/index.php/journal/article/
view/6572/4681.

Alec Radford, Luke Metz und Soumith Chintala. ,Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In:
arXiv preprint arXiv:1511.06434 (2015).

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017.
arXiv: 1609.04747 [cs.LG]. URL: https://arxiv.org/abs/1609.04747.

Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
Techn. Ber. 6120. Internet Engineering Task Force (IETF), Mérz 2011. 211 S.
DOI: 10.17487/RFC6120. URL: https://www.rfc-editor.org/info/rfc6120.

Eric Schulte, Michael D. Brown und Vlad Folts. ,A Broad Comparative Eva-
luation of x86-64 Binary Rewriters®. In: CSET 2022: Cyber Security Experimen-
tation and Test Workshop, Virtual Event, 8 August 2022. ACM, 2022, S. 129-144.
URL: https://doi.org/10.1145/3546096.3546112.

Andrei Simion, Calin Bira und Valentin-Gabriel Voiculescu. ,Embedded plat-
form characterization for interface throughput and computing power in
common 8/16/32-bit platforms®. In: Advanced Topics in Optoelectronics, Micro-
electronics, and Nanotechnologies XI. Hrsg. von Marian Vladescu, Razvan D.
Tamas und Ionica Cristea. Bd. 12493. International Society for Optics und
Photonics. SPIE, 2023, S. 1249323. po1: 10.1117/12.2643278. URL: https:
//doi.org/10.1117/12.2643278.

Henning Schulzrinne. Textual vs. Binary Protocols. https : / / www . cs .
columbia.edu/sip/textual-binary.html. Jan. 2008.

Kevin Scott, Naveen Kumar, S. Velusamy, Bruce R. Childers, Jack W. Davidson
und Mary Lou Soffa. ,Retargetable and Reconfigurable Software Dynamic
Translation®. In: 1st [EEE / ACM International Symposium on Code Generation
and Optimization (CGO 2003), 23-26 March 2003, San Francisco, CA, USA. Hrsg.
von Richard Johnson, Tom Conte und Wen-mei W. Hwu. IEEE Computer
Society, 2003, S. 36-47. URL: https://doi.org/10.1109/CG0.26003.1191531.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh und Dhruv Batra. ,Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization®. In: Proceedings of the
IEEE international conference on computer vision. 2017, S. 618-626.

Amitabh Srivastava, Andrew Edwards und Hoi Vo. Vulcan: Binary Transfor-
mation In A Distributed Environment. 2001. URL: https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf.

Michael Sutton, Adam Greene und Pedram Amini. Fuzzing: Brute Force Vul-
nerability Discovery. Boston, MA: Addison-Wesley Educational, Juni 2007,
S. 576. 1sBN: 9780321446114.

169

https://doi.org/10.13140/RG.2.2.20520.49923
https://doi.org/10.13140/RG.2.2.20520.49923
https://tojqi.net/index.php/journal/article/view/6572/4681
https://tojqi.net/index.php/journal/article/view/6572/4681
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.17487/RFC6120
https://www.rfc-editor.org/info/rfc6120
https://doi.org/10.1145/3546096.3546112
https://doi.org/10.1117/12.2643278
https://doi.org/10.1117/12.2643278
https://doi.org/10.1117/12.2643278
https://www.cs.columbia.edu/sip/textual-binary.html
https://www.cs.columbia.edu/sip/textual-binary.html
https://doi.org/10.1109/CGO.2003.1191531
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf

Weitere Literatur

[Sha+19]

[Sha05]

[Sha25]

[SHB14]

[She+19]

[Shi+12]

[SM07]

[Spéa+16]

[Sri+14]

[SS19]

[STM25]

170

Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak und Ali A Ghorbani.
sDeveloping Realistic Distributed Denial of Service (DDoS) Attack Data-
set and Taxonomy*. In: 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE. 2019, S. 1-8.

Yakov Shafranovich. Common Format and MIME Type for Comma-Separated
Values (CSV) Files. Techn. Ber. 4180. Internet Engineering Task Force (IETF),
Okt. 2005. 8 S. DoI: 10.17487/RFC4180. URL: https://www.rfc-editor.org/
info/rfc4180.

Sanjeev Sharma. Tanh vs. Sigmoid vs. ReLU. https://www.geeksforgeeks.
org/deep-learning/tanh-vs-sigmoid-vs-relu/. Juli 2025.

Zach Shelby, Klaus Hartke und Carsten Bormann. The Constrained Appli-
cation Protocol (CoAP). Techn. Ber. 7252. Internet Engineering Task Force
(IETF), Juni 2014. 112 S. po1: 10. 17487 /RFC7252. URL: https://www. rfc-
editor.org/info/rfc7252.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray und
Suman Jana. ,NEUZZ: Efficient Fuzzing with Neural Program Smoothing".
In: 2019 IEEE Symposium on Security and Privacy (SP). 2019, S. 803-817. por:
10.1109/5P.2019.00052.

Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee und Ali A Ghorbani. ,Toward de-
veloping a systematic approach to generate benchmark datasets for intrusion
detection®. In: computers & security 31.3 (2012), S. 357-374.

Karen Scarfone und Peter Mell. Guide to Intrusion Detection and Prevention
Systems (IDPS). Techn. Ber. Special Publication 800-94. Gaithersburg, MD:
National Institute of Standards und Technology (NIST), Feb. 2007. urL: https:
//csrc.nist.gov/publications/detail/sp/800-94/final.

Christopher Spéath, Christian Mainka, Vladislav Mladenov und Jorg Schwenk.
»S0K: XML Parser Vulnerabilities“. In: 10th USENIX Workshop on Offensi-
ve Technologies (WOOT 16). Austin, TX: USENIX Association, Aug. 2016.
URL: https://www.usenix.org/conference/wootl6/workshop-program/
presentation/spath.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever und
Ruslan Salakhutdinov. ,Dropout: A Simple Way to Prevent Neural Networks
from Overfitting®. In: Journal of Machine Learning Research 15.56 (2014),
S. 1929-1958. URL: http://jmlr.org/papers/v15/srivastavalda.html.

Hamad Ali Al Salem und Jia Song. ,A Review on Grammar-Based Fuzzing
Techniques®. English. In: International Journal of Computer Science and Securi-
ty (IJCSS) 13.3 (Juni 2019). Hrsg. von Editor, S. 114-123. 1ssN: 1985-1553. URL:
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-
1481.

STMicroelectronics. STM32F401xD STM32F401xE Datasheet. DS10086 Rev 4.
https://www.st.com/resource/en/datasheet/stm32f401re.pdf. Jan. 2025.

https://doi.org/10.17487/RFC4180
https://www.rfc-editor.org/info/rfc4180
https://www.rfc-editor.org/info/rfc4180
https://www.geeksforgeeks.org/deep-learning/tanh-vs-sigmoid-vs-relu/
https://www.geeksforgeeks.org/deep-learning/tanh-vs-sigmoid-vs-relu/
https://doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://doi.org/10.1109/SP.2019.00052
https://csrc.nist.gov/publications/detail/sp/800-94/final
https://csrc.nist.gov/publications/detail/sp/800-94/final
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
http://jmlr.org/papers/v15/srivastava14a.html
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-1481
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-1481
https://www.st.com/resource/en/datasheet/stm32f401re.pdf

[Sto10]

[Str25]

[SVL14]

[SWS07]

[TC984]

[TDMO08]

[TG00]

[Tou+23]

[Tou+24]

[TW11]

[Uni20]

[Vas+17]

Dan (Mcld) Stowell. Somtraining.svg. https://commons .wikimedia.org/
wiki/File:Somtraining.svg. Mai 2010.

Cole Stryker. What are large language models (LLMs)? https://www.ibm.
com/think/topics/large- language-models. Sep. 2025.

Ilya Sutskever, Oriol Vinyals und Quoc V Le. ,Sequence to sequence learning
with neural networks®. In: Advances in neural information processing systems.
2014, S. 3104-3112.

Anoop Singhal, Theodore Winograd und Karen Scarfone. Guide to Secure Web
Services. Techn. Ber. Special Publication 800-95. https://nvlpubs.nist.gov/
nistpubs/legacy/sp/nistspecialpublication800-95.pdf. Gaithersburg,
MD: National Institute of Standards und Technology (NIST), Aug. 2007.

ISO TC97. ,Basic reference model®. In: International Standard, ISO/IS 7498
(1984).

A. Takanen,]J.D. Demott und C. Miller. Fuzzing for Software Security Testing
and Quality Assurance. Artech House information security and privacy series.
Artech House, 2008. 1SBN: 9781596932159. URL: https://books.google.de/
books?id=tMuAc_y9dFYC.

Caroline Tice und Susan L. Graham. Key Instructions: Solving the Code Locati-
on Problem for Optimized Code. Research Report. https://www. researchgate.
net / publication / 2432347 _ Key _ Instructions _ Solving _ the _ Code _
Location_Problem_for_Optimized_Code. 130 Lytton Avenue, Palo Alto,
California 94301: Compaq Systems Research Center, Sep. 2000, S. 30.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale u. a. Llama 2: Open foundation and fine-tuned chat models. 2023. arXiv:
2307.09288 [cs.CL]. URL: https://doi.org/10.48550/arXiv.2307.09288.

Asma Tougir, Faisal Iradat, Abdur Rakib, Nazim Taskin, Hesamaldin Jadid-
bonab, Zaheeruddin Asif und Olivier Haas. Systematic Review of Fuzzing in
IoT: Evaluating Techniques, Vulnerabilities, and Research Gaps. Aug. 2024. DoTI:
10.21203/rs.3.rs-4963553/v1.

Andrew S. Tanenbaum und David Wetherall. Computer networks. 5th ed.
Boston: Prentice Hall, 2011. 1sBN: 9780133485936. URL: https://learning.
oreilly.com/library/view/-/9780133485936/?ar.

Unit 42. 2020 Unit 42 IoT Threat Report. https://unit42.paloaltonetworks.
com/iot-threat-report-2020. 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser und Illia Polosukhin. ,Attention is All you
Need®. In: Advances in Neural Information Processing Systems. Hrsg. von L
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan
und R. Garnett. Bd. 30. Curran Associates, Inc., 2017. URL: https://arxiv.
org/abs/1706.03762.

171

https://commons.wikimedia.org/wiki/File:Somtraining.svg
https://commons.wikimedia.org/wiki/File:Somtraining.svg
https://www.ibm.com/think/topics/large-language-models
https://www.ibm.com/think/topics/large-language-models
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-95.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-95.pdf
https://books.google.de/books?id=tMuAc_y9dFYC
https://books.google.de/books?id=tMuAc_y9dFYC
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.21203/rs.3.rs-4963553/v1
https://learning.oreilly.com/library/view/-/9780133485936/?ar
https://learning.oreilly.com/library/view/-/9780133485936/?ar
https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Weitere Literatur

[Vis+11]

[Vos17]

[Wan+19]

[Wan+20a]

[Wan+20b]

[Wat+16]

[Wen+19]

[Wen138]

[WHJ15]

[WL90]

[Won+08]

172

Arun Viswanathan, Alefiya Hussain, Jelena Mirkovic, Stephen Schwab und
John Wroclawski. ,A Semantic Framework for Data Analysis in Networked
Systems®. In: 8th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 11). Boston, MA: USENIX Association, Mérz 2011. URL:
https://www.usenix.org/conference/nsdill/semantic- framework-data-
analysis-networked-systems.

Nathan Voss. afl-unicorn: Part 2 Fuzzing the ’Unfuzzable’. https : / /
hackernoon . com / afl - unicorn - part - 2 - fuzzing - the - unfuzzable -
bea8de3540a5. Nov. 2017.

Yunchao Wang, Zehui Wu, Qiang Wei und Qingxian Wang. ,NeuFuzz: Effi-
cient Fuzzing With Deep Neural Network®. In: IEEE Access 7 (2019), S. 36340—
36352. DOI: 10.1109/ACCESS.2019.2903291.

Yan Wang, Peng Jia, Luping Liu, Cheng Huang und Zhonglin Liu. ,A sys-
tematic review of fuzzing based on machine learning techniques®. In: PLOS
ONE 15.8 (Aug. 2020), S. 1-37. URL: https://doi.org/10.1371/journal.
pone.0237749.

Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao
Wu und Purui Su. ,Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization®. In: 27th Annual Network and
Distributed System Security Symposium, NDSS 2020. San Diego, California,
USA: The Internet Society, Feb. 2020, S. 17. po1: 10.14722/ndss.2020.24422.

Andrew Waterman, Yunsup Lee, David A. Patterson und Krste Asanovic. The
RISC-V Instruction Set Manual, Volume I: User Level ISA, Version 2.1. Technical
Report UCB/EECS-2016-118. https://www2 . eecs . berkeley . edu/Pubs/
TechRpts/2016/EECS-2016-118. html. Electrical Engineering und Computer
Sciences University of California at Berkeley, Méarz 2016.

Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich und Edgar R. Weippl.
~From Hack to Elaborate Technique - A Survey on Binary Rewriting”“. In:
ACM Comput. Surv. 52.3 (2019), 49:1-49:37. URL: https://doi.org/10.1145/
3316415.

Lilian Weng. From Autoencoder to Beta-VAE. https://1ilianweng.github.
io/posts/2018-08-12-vae/. Aug. 2018.

Jorge Wong-Mozqueda, Robert Haines und Caroline Jay. ,Is Code Quality
Related to Test Coverage?“ In: Proceedings of the International Workshop on
Sustainable Software Systems Engineering. Jan. 2015, S. 2.

Alexander Waibel und Kai-Fu Lee, Hrsg. Readings in Speech Recognition. First
Edition. San Mateo, CA: Morgan Kaufmann, 1990. 1SBN: 1558601244.

Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel und Engin
Kirda. ,Automatic Network Protocol Analysis.“ In: NDSS. Bd. 8. 2008, S. 1-14.

https://www.usenix.org/conference/nsdi11/semantic-framework-data-analysis-networked-systems
https://www.usenix.org/conference/nsdi11/semantic-framework-data-analysis-networked-systems
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://doi.org/10.1109/ACCESS.2019.2903291
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.14722/ndss.2020.24422
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://doi.org/10.1145/3316415
https://doi.org/10.1145/3316415
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/

[Wri+21]

[WS92]

[Wu22]

[Wut24]

[Xia+24]

[Xu+21]

[Yan+23]

[YG23]

[Yon+23]

[YS19]

Christopher Wright, William A. Moeglein, Saurabh Bagchi, Milind Kulkarni
und Abraham A. Clements. ,,Challenges in Firmware Re-Hosting, Emulation,
and Analysis®. In: ACM Comput. Surv. 54.1 (Jan. 2021). 1ssN: 0360-0300. DOT:
10.1145/3423167. URL: https://doi.org/10.1145/3423167

David W. Wall und Amitabh Srivastava. A Practical System for Intermodule
Code Optimization at Link-Time. 1992. URL: https://web.stanford.edu/
class/cs343/resources/om.pdf.

Ziwei Wu. ,A Study of Grammar-Based Fuzzing Approaches®. California
Polytechnic State University, 2022. URL: https://digitalcommons.calpoly.
edu/theses/2476.

Laurenz Wuttke. Kiinstliche Neuronale Netzwerke: Definition, Einfiihrung,
Arten und Funktion. https : / / datasolut . com / neuronale - netzwerke -
einfuehrung/. Feb. 2024.

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel und
Lingming Zhang. Fuzz4All: Universal Fuzzing with Large Language Models.
2024. arXiv: 2308.04748 [cs.SE]. URL: https://doi.org/10.48550/arXiv.
2109.05687.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang
Huang und Fei Huang. Raise a Child in Large Language Model: Towards
Effective and Generalizable Fine-tuning. 2021. arXiv: 2109 . 05687 [cs.CL].
URL: https://doi.org/10.48550/arXiv.2109.05687.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh
Jabbarvand und Lingming Zhang. White-box Compiler Fuzzing Empowered
by Large Language Models. 2023. arXiv: 2310.15991 [cs.SE]. URL: https:
//doi.org/10.48550/arXiv.2310.15991.

Anil Yemme und Shayan Srinivasa Garani. ,A Scalable GPT-2 Inference
Hardware Architecture on FPGA®. In: 2023 International Joint Conference
on Neural Networks (IJCNN). IEEE. Los Alamitos, CA, USA: IEEE Computer
Society, 2023, S. 1-8. URL: https://doi.org/10.1109/IJCNN54540.2023.
10191067.

Zheng Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji,
David Ifeoluwa Adelani, Khalid Almubarak, M Saiful Bari, Lintang Sutawi-
ka, Jungo Kasai, Ahmed Baruwa, Genta Winata, Stella Biderman, Edward
Raff, Dragomir Radev und Vassilina Nikoulina. BLOOM+1: Adding Language
Support to BLOOM for Zero-Shot Prompting. Hrsg. von Anna Rogers, Jordan
Boyd-Graber und Naoaki Okazaki. Toronto, Canada, Juli 2023. URL: https:
//aclanthology.org/2023.acl-long.653.

S. Bharadwaj Yadavalli und Aaron Smith. ,Raising binaries to LLVM IR with
MCTOLL (WIP paper)®. In: Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded
Systems, LCTES 2019, Phoenix, AZ, USA, June 23-23, 2019. Hrsg. von Jian-Jia

173

https://doi.org/10.1145/3423167
https://doi.org/10.1145/3423167
https://web.stanford.edu/class/cs343/resources/om.pdf
https://web.stanford.edu/class/cs343/resources/om.pdf
https://digitalcommons.calpoly.edu/theses/2476
https://digitalcommons.calpoly.edu/theses/2476
https://datasolut.com/neuronale-netzwerke-einfuehrung/
https://datasolut.com/neuronale-netzwerke-einfuehrung/
https://arxiv.org/abs/2308.04748
https://doi.org/10.48550/arXiv.2109.05687
https://doi.org/10.48550/arXiv.2109.05687
https://arxiv.org/abs/2109.05687
https://doi.org/10.48550/arXiv.2109.05687
https://arxiv.org/abs/2310.15991
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.1109/IJCNN54540.2023.10191067
https://doi.org/10.1109/IJCNN54540.2023.10191067
https://aclanthology.org/2023.acl-long.653
https://aclanthology.org/2023.acl-long.653

Weitere Literatur

[Yu+17]

[Yun+22]

[YZZ23]

[Z-W21]

[Zal19]

[Zel+24]

[Zha+18]

[Zha+22]

[Zha+24a]

[Zha+24Db]

[Zha+24c]

[Zhe+19]

174

Chen und Aviral Shrivastava. ACM, 2019, S. 213-218. URL: https://doi.org/
10.1145/3316482.3326354.

Lantao Yu, Weinan Zhang, Jun Wang und Yong Yu. ,Seqgan: Sequence gene-
rative adversarial nets with policy gradient”. In: Thirty-first AAAI conference
on artificial intelligence. 2017.

Joobeom Yun, Fayozbek Rustamov, Juhwan Kim und Youngjoo Shin. ,Fuzzing
of Embedded Systems: A Survey*“. In: ACM Comput. Surv. 55.7 (Dez. 2022).
ISSN: 0360-0300. po1: 10.1145/3538644. URL: https://doi.org/10.1145/
3538644.

Chenyuan Yang, Zijie Zhao und Lingming Zhang. KernelGPT: Enhanced
Kernel Fuzzing via Large Language Models. 2023. arXiv: 2401.00563 [cs.CR].
URL: https://doi.org/10.48550/arXiv.2401.00563.

Z-Wave Alliance. Z-Wave Specifications. Z-Wave Alliance. 2021. URL: https://
z-wavealliance.org/development- resources-overview/specification-
for-developers/.

Michal Zalewski. AFL Documentation. Version 2.53b. https ://afl-1.
readthedocs.io/_/downloads/en/latest/pdf/. Juli 2019.

Andreas Zeller, Rahul Gopinath, Marcel Bochme, Gordon Fraser und Christian
Holler. The Fuzzing Book. CISPA Helmholtz Center for Information Security,
2024. URL: https://www.fuzzingbook.org/.

Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu und Erxue Min. ,Ptfuzz:
Guided fuzzing with processor trace feedback®. In: IEEE Access 6 (2018),
S.37302-37313.

Sen Zhao, Jinfa Wang, Shouguo Yang, Yicheng Zeng, Zhihui Zhao, Hongsong
Zhu und Limin Sun. ,ProsegDL: Binary protocol format extraction by deep
learning-based field boundary identification®. In: 2022 IEEE 30th International
Conference on Network Protocols (ICNP). IEEE. 2022, S. 1-12.

Ao Zhang, Yiying Zhang, Yao Xu, Cong Wang und Siwei Li. ,Machine Lear-
ning-Based Fuzz Testing Techniques: A Survey". In: IEEE Access 12 (2024),
S. 14437-14454. por1: 10.1109/ACCESS.2023.3347652.

Hongxiang Zhang, Yuyang Rong, Yifeng He und Hao Chen. LLAMAFUZZ:
Large Language Model Enhanced Greybox Fuzzing. 2024. arXiv: 2406.07714
[cs.CR]. URL: https://arxiv.org/abs/2406.07714.

Sen Zhao, Shouguo Yang, Zhen Wang, Yongji Liu, Hongsong Zhu und Limin
Sun. ,Crafting Binary Protocol Reversing via Deep Learning With Knowled-
ge-Driven Augmentation®. In: IEEE/ACM Transactions on Networking 32.6
(2024), S. 5399-5414. pOI: 10.1109/TNET.2024.3468350.

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu und
Limin Sun. ,FIRM-AFL: high-throughput greybox fuzzing of iot firmware
via augmented process emulation®. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, S. 1099-1114.

https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://arxiv.org/abs/2401.00563
https://doi.org/10.48550/arXiv.2401.00563
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://www.fuzzingbook.org/
https://doi.org/10.1109/ACCESS.2023.3347652
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://doi.org/10.1109/TNET.2024.3468350

	Kurzzusammenfassung
	Abstract
	Abkürzungsverzeichnis
	Einleitung
	Motivation
	Zielsetzung und wissenschaftlicher Beitrag
	Aufbau der Dissertation

	Grundlagen
	Besonderheiten von IoT-Geräten
	Architekturen und Protokolle von IoT-Geräten
	Herausforderungen beim Fuzzing von IoT-Geräten

	ESP32 Mikrocontroller
	Architektur
	Firmware
	Xtensa ISA

	Rewriting
	Code Location Problem
	Binary Rewriting

	Fuzzing
	Definition von Fuzzing
	Ungültige Eingaben
	Fuzzing-Szenarien
	Eingabegenerierung
	Feedbackgesteuertes Fuzzing
	Codeabdeckung und Messbarkeit von Fuzzing
	Effizientes Fuzzing
	Syntaktische und semantische Korrektheit

	Grammatiken für Fuzzing
	Aufbau der Grammatik
	Formale Beschreibung von Grammatiken
	Kontextfreie Grammatiken
	Grammatik von XML
	Vorteile des grammatikbasierten Fuzzings

	Fuzzing im Emulator
	Netzwerkprotokolle
	Struktur eines TCP-Headers
	File Transfer Protocol (FTP)
	Hypertext Transfer Protocol (HTTP)
	Angriffsvektoren auf Netzwerkprotokolle
	Protocol Reverse Engineering (PRE)

	Neuronale Netzwerkarchitekturen
	Künstliches neuronales Netz (KNN)
	Convolutional Neural Network (CNN)
	Autoencoder (AE)
	Generative Adversarial Network (GAN)
	Long Short-Term Memory (LSTM)
	Self-Organizing Map (SOM)
	Large Language Model (LLM)

	Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

	ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting
	Einleitung
	Stand der Technik
	Design
	Binary Recovery
	Rewriter

	Implementierung
	Binary Recovery
	Rewriter
	Flashen nach dem Binary Rewriting zurück auf das Gerät

	Proof of Concept
	Entwicklung eines Beispiel-Tools
	Implementierung des Beispiel-Tools
	Verwendung des Beispiel-Tools

	Einschränkungen und Ausblick
	Zusammenfassung
	Fazit

	Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation
	Einleitung
	Stand der Technik
	Konzeption
	Fehlererkennung
	Zielausführung mit Fuzzing-Hooks
	Feedbackgesteuerte Eingabegenerierung

	Implementierung
	Blackbox-Fuzzing auf ESP32-Anwendungen
	Whitebox-Fuzzing mit compilerinstrumentiertem Code
	Whitebox-Fuzzing mit ESP32-QEMU-FUZZ
	Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ

	Evaluation
	Fuzzing der TCP-Testanwendung
	Greybox-Fuzzing der LIFX Mini

	Einschränkungen und Ausblick
	Zusammenfassung
	Fazit

	Protocol Reverse Engineering mittels neuronaler Netze
	Einleitung
	Stand der Technik
	Hauptansatz
	Datenerfassung
	Feature Extraction
	Reverse Engineering von Features
	Clustering
	Zustandserkennung
	Sequenzgenerierung

	Implementierung von PREUNN
	Datenvorverarbeitung
	Feature Extraction
	Feature Reverse Engineering
	Clustering
	Zustandserkennung
	Sequenzgenerierung

	Weiterentwicklung
	Vorverarbeitung der Daten
	Klassifizierung von Nachrichtentypen und Zustandsübergängen
	Erlernen des Nachrichtenaufbaus
	Generierung neuer Testfälle

	Implementierung von PREUNN2
	Vorverarbeitung
	Clustering
	Generierung neuer Pakete und Sequenzen

	Evaluation
	ProFuzzBench
	AFLNet
	Integration der Machine-Learning-Methoden
	Implementierung der Fuzzing-Ziele
	Auswertung der Ergebnisse

	Zusammenfassung
	Fazit

	Effizientes grammatikbasiertes Fuzzing mittels Large Language Models
	Einleitung
	Stand der Technik
	Entwurf
	Datensatz
	Trainingsansatz
	Inferenzstrategie
	Modell-Integration
	Feedback-Schleife

	Implementierung
	Modelltraining und Integration mit AFL
	Kontinuierlicher Datenintegrationsmechanismus
	Optimierungstechnologien
	Dynamischer Feedback-Mechanismus

	Evaluation
	Bewertungsmetriken
	Experimentelle Ansätze
	Experimentelle Ergebnisse
	Inferenzbewertung

	Einschränkungen und zukünftige Arbeiten
	Zusammenfassung
	Fazit

	Ansatz für ein integriertes Fuzzing-Framework
	Konzeptionelle Integration der Module
	Flexiblität der Module
	PREUNN und HTTYL als parallele Module
	Kombination der Module

	Diskussion und Interpretation der Ergebnisse
	Limitationen

	Verwandte Arbeiten
	Binary Rewriting
	Hardware Fuzzing von IoT-Geräten
	IoT Fuzzing mittels Emulation
	Fuzzing von Netzwerkprotokollen
	Grammatik-basiertes Fuzzing
	Fuzzing mittels Machine Learning
	Optimierung des Fuzzing-Prozesses

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick und zukünftige Arbeiten

	Begriffsdefinitionen
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Listings
	Eigene Arbeiten
	Weitere Literatur

