
Effizientes Fuzzing von IoT-Geräten

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Matthias Börsig

Tag der mündlichen Prüfung: 18. Dezember 2025

1. Referent: PD Dr.-Ing. Ingmar Baumgart

2. Referent: Prof. Dr. Andreas Zeller

Kurzzusammenfassung

Fuzzing ist eine bewährte Methode zur Identifizierung von Sicherheitslücken in Software.

In dieser Dissertation wird untersucht, wie sich die Effizienz des Fuzzings für IoT-Geräte,

am Beispiel des ESP32-Mikrocontrollers, steigern lässt. Während Fuzzing in klassischen

Softwareumgebungen etabliert ist, fehlen speziell angepasste Verfahren für ressourcenarme

IoT-Hardware. Das Ziel besteht in der Entwicklung eines konzeptionellen Frameworks,

das eine umfassende und effiziente Testung trotz begrenzter IoT-Ressourcen ermöglicht.

Zu diesem Zweck werden vier Ansätze zur Effizienzsteigerung sowie ein Konzept zur

flexiblen Kombination dieser Ansätze vorgestellt.

Beim Binary Rewriting wird Binärcode so modifiziert, dass die Funktionalität erhalten

bleibt. Für viele gängige Architekturen existieren bereits entsprechende Verfahren. Für die

Xtensa-Architektur des ESP32 gab es jedoch bislang keine Lösung. In dieser Dissertation

wird gezeigt, wie sich Binary Rewriting auf dem ESP32 umsetzen lässt, um Fuzzing-In-

strumentierungen direkt in die Firmware zu integrieren und Laufzeitinformationen an

den Fuzzer zurückzumelden.

Zudem wurde die Emulationsumgebung des ESP32 erheblich erweitert. Dadurch ist nun

Fuzzing von beliebiger Firmware möglich, auch von Firmware mit zuvor nicht unterstütz-

ten Hardwarekomponenten. Im Vergleich zur realen Hardware arbeitet die Emulation

deutlich effizienter. Während hardwarebasiertes Fuzzing vier bis 40 Anfragen pro Sekunde

verarbeitet, sind es in der Emulation bis zu 320 Anfragen pro Sekunde.

Zur Generierung valider Eingaben wurde ein Verfahren zum automatisierten Protocol

Reverse Engineering (PRE) entwickelt, das Künstliche Neuronale Netze (KNNs) verwendet.

Während PRE bislang manuell erfolgen musste, können nun Protokollstrukturen automa-

tisch abgeleitet und damit syntaktisch korrekte Netzwerkpakete erzeugt werden. In den

Tests waren 67,6 % der erzeugten HTTP-Pakete und 100% der FTP-Pakete gültig.

Für das grammatikbasierte Fuzzing wird ein Ansatz mittels Large Language Models (LLMs)

vorgestellt. Die zentrale Herausforderung bestand in der effizienten Integration des LLM

in den Fuzzing-Prozess. Mithilfe der entwickelten Methode lassen sich syntaktisch und

semantisch korrekte XML-Dateien generieren. Dies steigert die Programmflussabdeckung

um den Faktor sechs gegenüber einer Ausführung ohne LLM und erreicht eine um 50%

höhere Abdeckung als klassische grammatikbasierte Fuzzer.

Abschließend wird ein Integrationskonzept präsentiert, das eine flexible Kombination der

Ansätze ermöglicht und deren Verbesserungen additiv nutzbar macht. Dadurch trägt das

Framework zur Effizienzsteigerung des Fuzzings von IoT-Geräten bei. Die Dissertation

leistet somit einen wichtigen Beitrag zur praxisnahen Absicherung von IoT-Geräten.

i

Abstract

Fuzzing is a well-established method of identifying security vulnerabilities in software.

This dissertation explores ways to improve the efficiency of fuzzing for Internet of Things

(IoT) devices, using the ESP32 microcontroller as a case study. While fuzzing is widely

used in traditional software environments, few methods have been developed to address

the limited resources available on IoT hardware.

The aim is to develop a conceptual framework that enables thorough and effective testing

despite the limited resources available on IoT devices. To this end, four approaches to

increasing efficiency are presented, along with a concept for combining these approaches

flexibly.

In binary rewriting, the functionality of the machine code is preserved, but the code itself

is modified. Although techniques already exist for many common architectures, there

has been no solution available for the Xtensa architecture of the ESP32. This dissertation

demonstrates how binary rewriting can be implemented on the ESP32 to integrate fuzzing

instrumentation directly into the firmware, feeding runtime information back to the fuzzer.

The ESP32’s emulation environment has also been significantly expanded. Consequently,

fuzzing is now feasible for arbitrary firmware, including that which previously relied

on unsupported hardware components. Compared to physical hardware, the emulation

runs far more efficiently: while hardware-based fuzzing processes four to 40 requests per

second, the emulation achieves up to 320.

To generate valid inputs, an automated Protocol Reverse Engineering (PRE) approach

using Neural Networks (NN) was developed. While protocol reverse engineering had

previously required manual effort, protocol structures can now be derived automatically,

enabling the generation of syntactically correct network packets. During testing, 67.6 % of

the generated HTTP packets and 100 % of the FTP packets were valid.

A new approach leveraging a Large Language Model (LLM) for grammar-based fuzzing

has been introduced. The main challenge was integrating the LLM efficiently into the

fuzzing process. The resulting method can generate XML files that are both syntactically

and semantically correct. Compared to execution without an LLM, program flow coverage

increases sixfold, achieving 50 % higher coverage than classical grammar-based fuzzers.

Finally, an approach is presented that integrates these concepts, enabling improvements to

be applied additively. This enhances the efficiency of fuzzing for IoT devices. Consequently,

this dissertation makes a significant contribution to the practical security of IoT systems.

iii

Inhaltsverzeichnis

Kurzzusammenfassung i

Abstract iii

Abkürzungsverzeichnis xi

1 Einleitung 1
1.1 Motivation . 1

1.2 Zielsetzung und wissenschaftlicher Beitrag 3

1.3 Aufbau der Dissertation . 5

2 Grundlagen 7
2.1 Besonderheiten von IoT-Geräten . 7

2.1.1 Architekturen und Protokolle von IoT-Geräten 7

2.1.2 Herausforderungen beim Fuzzing von IoT-Geräten 8

2.2 ESP32 Mikrocontroller . 8

2.2.1 Architektur . 9

2.2.2 Firmware . 10

2.2.3 Xtensa ISA . 11

2.3 Rewriting . 12

2.3.1 Code Location Problem . 12

2.3.2 Binary Rewriting . 13

2.4 Fuzzing . 14

2.4.1 Definition von Fuzzing . 14

2.4.2 Ungültige Eingaben . 15

2.4.3 Fuzzing-Szenarien . 15

2.4.4 Eingabegenerierung . 16

2.4.5 Feedbackgesteuertes Fuzzing . 17

2.4.6 Codeabdeckung und Messbarkeit von Fuzzing 17

2.4.7 Effizientes Fuzzing . 18

2.4.8 Syntaktische und semantische Korrektheit 19

2.5 Grammatiken für Fuzzing . 20

2.5.1 Aufbau der Grammatik . 20

2.5.2 Formale Beschreibung von Grammatiken 21

2.5.3 Kontextfreie Grammatiken . 21

2.5.4 Grammatik von XML . 21

2.5.5 Vorteile des grammatikbasierten Fuzzings 22

v

Inhaltsverzeichnis

2.6 Fuzzing im Emulator . 22

2.7 Netzwerkprotokolle . 23

2.7.1 Struktur eines TCP-Headers . 25

2.7.2 File Transfer Protocol (FTP) . 25

2.7.3 Hypertext Transfer Protocol (HTTP) 26

2.7.4 Angriffsvektoren auf Netzwerkprotokolle 26

2.7.5 Protocol Reverse Engineering (PRE) 27

2.8 Neuronale Netzwerkarchitekturen . 28

2.8.1 Künstliches neuronales Netz (KNN) 28

2.8.2 Convolutional Neural Network (CNN) 31

2.8.3 Autoencoder (AE) . 32

2.8.4 Generative Adversarial Network (GAN) 33

2.8.5 Long Short-Term Memory (LSTM) 33

2.8.6 Self-Organizing Map (SOM) . 34

2.8.7 Large Language Model (LLM) . 35

2.9 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) . 37

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting 39
3.1 Einleitung . 39

3.2 Stand der Technik . 40

3.3 Design . 41

3.3.1 Binary Recovery . 41

3.3.2 Rewriter . 41

3.4 Implementierung . 44

3.4.1 Binary Recovery . 45

3.4.2 Rewriter . 45

3.4.3 Flashen nach dem Binary Rewriting zurück auf das Gerät 46

3.5 Proof of Concept . 46

3.5.1 Entwicklung eines Beispiel-Tools 47

3.5.2 Implementierung des Beispiel-Tools 47

3.5.3 Verwendung des Beispiel-Tools 49

3.6 Einschränkungen und Ausblick . 50

3.7 Zusammenfassung . 52

3.8 Fazit . 52

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation 53
4.1 Einleitung . 53

4.2 Stand der Technik . 54

4.3 Konzeption . 55

4.3.1 Fehlererkennung . 56

4.3.2 Zielausführung mit Fuzzing-Hooks 56

4.3.3 Feedbackgesteuerte Eingabegenerierung 57

4.4 Implementierung . 58

4.4.1 Blackbox-Fuzzing auf ESP32-Anwendungen 58

4.4.2 Whitebox-Fuzzing mit compilerinstrumentiertem Code 59

vi

Inhaltsverzeichnis

4.4.3 Whitebox-Fuzzing mit ESP32-QEMU-FUZZ 60

4.4.4 Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ 61

4.5 Evaluation . 63

4.5.1 Fuzzing der TCP-Testanwendung 63

4.5.2 Greybox-Fuzzing der LIFX Mini 64

4.6 Einschränkungen und Ausblick . 66

4.7 Zusammenfassung . 66

4.8 Fazit . 67

5 Protocol Reverse Engineering mittels neuronaler Netze 69
5.1 Einleitung . 69

5.2 Stand der Technik . 70

5.3 Hauptansatz . 72

5.3.1 Datenerfassung . 73

5.3.2 Feature Extraction . 73

5.3.3 Reverse Engineering von Features 73

5.3.4 Clustering . 73

5.3.5 Zustandserkennung . 74

5.3.6 Sequenzgenerierung . 74

5.4 Implementierung von PREUNN . 74

5.4.1 Datenvorverarbeitung . 75

5.4.2 Feature Extraction . 76

5.4.3 Feature Reverse Engineering . 79

5.4.4 Clustering . 82

5.4.5 Zustandserkennung . 84

5.4.6 Sequenzgenerierung . 86

5.5 Weiterentwicklung . 88

5.5.1 Vorverarbeitung der Daten . 88

5.5.2 Klassifizierung von Nachrichtentypen und Zustandsübergängen 90

5.5.3 Erlernen des Nachrichtenaufbaus 90

5.5.4 Generierung neuer Testfälle . 91

5.6 Implementierung von PREUNN2 . 92

5.6.1 Vorverarbeitung . 92

5.6.2 Clustering . 92

5.6.3 Generierung neuer Pakete und Sequenzen 92

5.7 Evaluation . 93

5.7.1 ProFuzzBench . 93

5.7.2 AFLNet . 93

5.7.3 Integration der Machine-Learning-Methoden 93

5.7.4 Implementierung der Fuzzing-Ziele 94

5.7.5 Auswertung der Ergebnisse . 95

5.8 Zusammenfassung . 98

5.9 Fazit . 98

vii

Inhaltsverzeichnis

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models 101
6.1 Einleitung . 101

6.2 Stand der Technik . 102

6.3 Entwurf . 103

6.3.1 Datensatz . 104

6.3.2 Trainingsansatz . 105

6.3.3 Inferenzstrategie . 105

6.3.4 Modell-Integration . 106

6.3.5 Feedback-Schleife . 106

6.4 Implementierung . 107

6.4.1 Modelltraining und Integration mit AFL 107

6.4.2 Kontinuierlicher Datenintegrationsmechanismus 108

6.4.3 Optimierungstechnologien . 108

6.4.4 Dynamischer Feedback-Mechanismus 109

6.5 Evaluation . 109

6.5.1 Bewertungsmetriken . 109

6.5.2 Experimentelle Ansätze . 110

6.5.3 Experimentelle Ergebnisse . 111

6.5.4 Inferenzbewertung . 113

6.6 Einschränkungen und zukünftige Arbeiten 113

6.7 Zusammenfassung . 115

6.8 Fazit . 115

7 Ansatz für ein integriertes Fuzzing-Framework 117
7.1 Konzeptionelle Integration der Module 117

7.1.1 Flexiblität der Module . 118

7.1.2 PREUNN und HTTYL als parallele Module 118

7.1.3 Kombination der Module . 118

7.2 Diskussion und Interpretation der Ergebnisse 119

7.3 Limitationen . 120

8 Verwandte Arbeiten 123
8.1 Binary Rewriting . 123

8.2 Hardware Fuzzing von IoT-Geräten . 124

8.3 IoT Fuzzing mittels Emulation . 125

8.4 Fuzzing von Netzwerkprotokollen . 126

8.5 Grammatik-basiertes Fuzzing . 127

8.6 Fuzzing mittels Machine Learning . 129

8.7 Optimierung des Fuzzing-Prozesses . 130

9 Zusammenfassung und Ausblick 133
9.1 Zusammenfassung . 133

9.2 Ausblick und zukünftige Arbeiten . 135

Begriffsdefinitionen 137

viii

Inhaltsverzeichnis

Abbildungsverzeichnis 146

Tabellenverzeichnis 148

Listings 149

Eigene Arbeiten 153

Weitere Literatur 155

ix

Abkürzungsverzeichnis

AE Autoencoder

AFL American Fuzzy Lop

AiFF Ansatz für ein integriertes Fuzzing-Framework

API Application Programming Interface

BCE Binary Cross-Entropy

BLE Bluetooth Low Energy

BMU Best Matching Unit

CCE Categorical Cross-Entropy

CE Cross-Entropy

CISC Complex Instruction Set Computer

CNN Convolutional Neural Network

CoAP Constrained Application Protocol

CSV Comma-Separated Values

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DDoS Distributed Denial of Service

DL Deep Learning

DoS Denial of Service

EBR ESP32 Binary Rewriting

ELF Executable and Linkable Format

EOP End of Package

EQF ESP32-QEMU-FUZZ

FTP File Transfer Protocol

GAN Generative Adversarial Network

GDB GNU Debugger

GPU Graphics Processing Unit

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise

HTTP Hypertext Transfer Protocol

HTTYL How to Train Your Llama

IDF IoT Development Framework

IoT Internet of Things

IR Intermediate Representation

ISA Instruction Set Architecture

ISO International Organization for Standardization

KI Künstliche Intelligenz

KNN Künstliches Neuronales Netz

LLM Large Language Model

LoRA Low-Rank Adaptation

xi

Abkürzungsverzeichnis

LSTM Long Short-Term Memory

ML Machine Learning

MQTT Message Queueing Telemetry Transport

MSB Most Significant Bit

MSE Mean Squared Error

NLL Negative Log-Likelihood

NVS Non-Volatile Storage

PEFT Parameter-Efficient Fine-Tuning

PoC Proof of Concept

PREUNN Protocol Reverse Engineering using Neural Networks

PRE Protocol Reverse Engineering

PUT Program Under Test

ReLU Rectified Linear Unit

RISC Reduced Instruction Set Computer

RNN Recurrent Neural Network

Seq2Seq Sequence to Sequence

SOM Self-Organizing Map

SOP Start of Package

TCP Transmission Control Protocol

TPU Tensor Processing Unit

TTM Time-to-Market

UDP User Datagram Protocol

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xii

1 Einleitung

Dieses Kapitel führt in die Dissertation ein und erläutert ihre wissenschaftliche Relevanz.

Im Fokus stehen die Sicherheit im Internet der Dinge (engl. Internet of Things, kurz IoT)

und das Fuzzing von IoT-Geräten als zentrale Forschungsfelder. Anschließend werden die

Ziele und Beiträge der Dissertation vorgestellt sowie ihr Aufbau erläutert.

1.1 Motivation

In den letzten Jahren ist die Anzahl von IoT-Geräten signifikant gewachsen. Intelligente

Sensoren und vernetzte Geräte finden zunehmend Anwendung in der Industrie, in Smar-

t-Home-Systemen und in der kritischen Infrastruktur. Laut Fortune Business Insights

betrug die weltweite Marktgröße für IoT im Jahr 2019 rund $251 Milliarden und wird bis

2027 voraussichtlich auf über $1,463 Milliarden anwachsen [For20]. Trotz dieser Dynamik

wurden Sicherheitsaspekte in der IoT-Entwicklung lange vernachlässigt. Der IoT Threat

Report 2020 zeigt, dass 57 % der untersuchten Geräte Schwachstellen mittlerer oder hoher

Schwere aufwiesen [Uni20]. Dies macht IoT-Systeme zu attraktiven Zielen für Angriffe,

beispielsweise können sie übernommen und in sogenannte Botnetze vereint werden, die

dann ferngesteuert für Distributed Denial of Service (DDoS)-Angriffe genutzt werden, um

Webseiten lahmzulegen [BSI25].

Eine wichtige Rolle in der IoT-Landschaft spielt der ESP32-Mikrocontroller, der 2016

veröffentlicht und seitdem über 100 Millionen Mal verkauft wurde [Esp18; Eli22]. Aufgrund

seiner hohen Integrationsdichte, des günstigen Preises und der Unterstützung von WLAN-

und Bluetooth-Kommunikation ist der ESP32 in zahlreichen kommerziellen Produkten

weit verbreitet [Mil21]. Seine Popularität macht ihn zugleich zu einem lohnenden Ziel für

Angreifer.

Ein zentrales Problem in der IoT-Entwicklung ist das sogenannte Time-to-Market (TTM)-

Dilemma: Um möglichst schnell marktreife Produkte zu liefern, wird IT-Sicherheit oft

nachrangig behandelt oder erst nachträglich berücksichtigt [Bau+19]. Dies führt regel-

mäßig zu gravierenden Sicherheitslücken, die Angreifern einen einfachen Zugang zu

sensiblen Daten oder vollständige Kontrolle über Geräte ermöglichen [Kre16].

Eine etablierte Methode zur Identifikation von Sicherheitslücken ist neben der statischen

Codeanalyse das Fuzzing [Lia+18; GPS17]. Dabei wird Software automatisiert mit zufälli-

gen oder gezielt generierten Eingaben getestet, um fehlerhafte Zustände wie Abstürze,

Speicherlecks oder unbehandelte Ausnahmen zu provozieren. Ein vollständiges Durchtes-

ten aller möglichen Eingaben wäre ideal, ist in der Praxis jedoch aufgrund der enormen

1

1 Einleitung

Größe des Eingaberaums nicht realisierbar [AIB11]. Stattdessen werden gezielte Strategien

eingesetzt, um den Suchraum effizient einzugrenzen.

Typische Ziele des Fuzzings sind Software-Komponenten, Netzwerkprotokolle, Schnitt-

stellen oder Anwendungen, wie etwa XML-Parser. Durch die systematische Eingabe

fehlerhafter, unerwarteter oder zufälliger Daten lassen sich Schwachstellen und Stabili-

tätsprobleme aufdecken. Mithilfe von Fuzzing lassen sich unter anderem Pufferüberläufe,

Speicherlecks, unbehandelte Ausnahmen und Logikfehler identifizieren [TDM08].

Im Kontext des IoT stößt Fuzzing jedoch auf besondere Herausforderungen. Zum einen

sind viele Geräte durch knappe Hardware-Ressourcen wie begrenzten Speicher, geringe

Rechenleistung und fehlende Debugging-Schnittstellen eingeschränkt, was die direkte

Analyse auf den Geräten erheblich erschwert [Yun+22; Tou+24]. Zum anderen führt

die große Vielfalt an Mikrocontroller-Architekturen und Betriebssystemen dazu, dass

etablierte Fuzzing-Tools nur eingeschränkt wiederverwendet werden können [Mue+18].

Darüber hinaus setzen IoT-Geräte häufig auf komplexe Kommunikationsschnittstellen wie

WLAN, Bluetooth Low Energy (BLE) oder ZigBee, deren vielfältige Zustandsräume das

systematische Testen zusätzlich erschweren [Tou+24].

Um diese Probleme gezielt anzugehen, bieten sich zwei technische Ansätze an. Binary Re-

writing adressiert insbesondere die Einschränkungen durch fehlende Debugging-Schnitt-

stellen und begrenzte Ressourcen: Durch das gezielte Injektieren von Analysecode in

Firmware-Binaries kann die Codeabdeckung verfolgt und der Kontrollfluss direkt an den

Fuzzer zurückgemeldet werden, ohne das ursprüngliche Verhalten zu verändern [DGR20].

Dadurch wird das Testen selbst auf ressourcenarmen Geräten ermöglicht. Emulation er-

gänzt diesen Ansatz, indem die Firmware in einer kontrollierten und reproduzierbaren

Umgebung ausgeführt wird. Dadurch lassen sich interne Zustände, Speicherzugriffe und

Kommunikationsabläufe beobachten, während sich Fuzzing-Kampagnen parallelisieren

und beschleunigen lassen. Gleichzeitig reduziert die Emulation die Abhängigkeit von der

konkreten Hardwarearchitektur und erleichtert so die Wiederverwendbarkeit der Tests

über verschiedene Geräte hinweg [Cle+20; Wri+21; Yun+22].

Darüber hinaus eröffnen Künstliche Intelligenz (KI)-gestützte Methoden neue Perspektiven

für das Fuzzing. Verfahren aus den Bereichen Machine Learning (ML) und Deep Lear-

ning (DL) werden bereits erfolgreich in der statischen Codeanalyse, Malware-Erkennung

und Spam-Filterung eingesetzt [DB25; Kna+25; KY24; GAJ24]. Im Fuzzing ermöglichen

diese Methoden eine gezielte Optimierung der Eingabegenerierung: Mithilfe von Muste-

rerkennung können Protokollstrukturen approximiert und synthetische, wohldefinierte

Testdaten erzeugt werden. Dadurch steigt die Wahrscheinlichkeit, dass Eingaben vom

Program Under Test (PUT) akzeptiert werden, was die Testabdeckung verbessert und die

Effizienz der Schwachstellensuche erheblich steigert [Zha+24a].

2

1.2 Zielsetzung und wissenschaftlicher Beitrag

1.2 Zielsetzung und wissenschaftlicher Beitrag

Die zentrale Forschungsfrage dieser Dissertation lautet:

„Wie kann das Fuzzing von IoT-Geräten effizienter gestaltet werden?“

Zu diesem Zweck wird ein konzeptionelles Framework für ESP32-Anwendungen entwi-

ckelt. Dieses Framework integriert verschiedene Ansätze zur Effizienzsteigerung systema-

tisch und macht deren Synergien nutzbar (siehe Definition von effizientem Fuzzing in Ab-

schnitt 2.4.7). Der ESP32 dient dabei als exemplarische Plattform, da seine Architektur die

typischen Einschränkungen ressourcenarmer IoT-Geräte, wie begrenzte Rechenleistung,

Speicher- und Energie-Ressourcen, widerspiegelt. Als methodische Grundlage werden vier

Techniken realisiert: ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary

Rewriting, Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation, Protocol Rever-

se Engineering (PRE) mittels neuronaler Netze und effizientes grammatikbasiertes Fuzzing

mittels Large Language Models (LLMs). Die praktischen Implementierungen demonstrie-

ren den Nutzen dieser Ansätze, während das Framework ihre flexible Kombination für

unterschiedliche Anwendungsszenarien aufzeigt.

Die wesentlichen Beiträge dieser Dissertation lassen sich wie folgt zusammenfassen:

• ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Re-
writing: Beim Binary Rewriting kann beliebiger Code nachträglich in ein Programm

eingefügt werden, ohne dessen ursprüngliches Verhalten zu verändern. Dazu zählt

auch die Instrumentierung, also Code, der während der Ausführung zusätzliche

Informationen erfasst – beispielsweise über Speicherzugriffe, Funktionsaufrufe oder

den Kontrollfluss. Bislang existierten Ansätze hierfür nur für andere Architekturen

wie x86 und ARM. Eine zentrale Herausforderung bestand darin, diese Technik für

die Xtensa-Architektur des ESP32 technisch umsetzbar zu machen. Es wurde ein

Verfahren entwickelt, das den Binärcode erfolgreich modifiziert und erlaubt relevante

Laufzeitinformationen direkt an den Fuzzer zu übertragen. Dadurch wird die Analyse

beschleunigt und die Datenmenge reduziert. Praktische Tests zeigen, dass sämtliche

Instrumentierungen korrekt ausgeführt werden und die Integrität der ursprünglichen

Firmware erhalten bleibt.

• Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation: Auf Basis
von QEMU wurde eine vollständige Emulationsumgebung mit einem integrierten

Fuzzer für den ESP32 realisiert. Die zentrale Herausforderung bestand einerseits

darin, die Emulationssoftware inklusive der fehlenden Hardwarekomponenten (z. B.

WLAN-Unterstützung) durch gezielte Anpassungen so zu verändern, dass beliebi-

ge ESP32-Software lauffähig wird. Andererseits musste ein Fuzzer nahtlos in die

Emulation integriert werden, um automatisierte Tests innerhalb derselben Umge-

bung zu ermöglichen. Das resultierende System erlaubt direkten Zugriff auf interne

Systeminformationen und erleichtert die effiziente Erkennung von Speicherfehlern

und Schwachstellen. Zudem ermöglicht es parallele Ausführung und schnellere Fuz-

zing-Durchläufe auf der leistungsstarken PC-Hardware, was die Effizienz erheblich

3

1 Einleitung

steigert. Für den Vergleich wurde auf Parallelisierung verzichtet, um gleiche Be-

dingungen zur Hardwareausführung sicherzustellen: Während hardwarebasiertes

Fuzzing vier bis 40 Eingaben pro Sekunde verarbeitet, erreicht die Emulation bis zu

320 Eingaben pro Sekunde.

• Protocol Reverse Engineering mittels neuronaler Netze: Es wurde ein KI-ba-

sierter Ansatz für das automatisierte PRE von Netzwerkprotokollen entwickelt. Die

zentrale Herausforderung bestand darin, geeignete ML- und DL-Modelle auszuwäh-

len und zu kombinieren, um Protokollstrukturen ohne vorhandene Spezifikationen

zuverlässig abzuleiten. Während das PRE bisher manuell durchgeführt werden muss-

te, lassen sich mit diesem Ansatz nun Protokollstrukturen automatisiert ableiten und

syntaktisch sowie semantisch korrekte Netzwerkpakete erzeugen. In den Tests waren

67,6 % der generierten Hypertext Transfer Protocol (HTTP)-Pakete und 100% der

File Transfer Protocol (FTP)-Pakete gültig. Dadurch erhöht sich die Testabdeckung

signifikant, da im Vergleich zu zufällig generierten Daten ein größerer Anteil der

Eingaben vom PUT akzeptiert wird und somit verwertbare Rückmeldungen erzeugt

werden, statt sofort als ungültig verworfen zu werden.

• Effizientes grammatikbasiertes Fuzzing mittels Large Language Models: Für
den Fuzzing-Prozess wurde ein Ansatz entwickelt, der mithilfe von LLMs syntaktisch

und semantisch korrekte Dateien (z. B. Extensible Markup Language (XML)-Dateien)

als Eingaben erzeugt. Die zentrale Herausforderung bestand darin, die LLMs effi-

zient in bestehende Testabläufe zu integrieren. Im Rahmen dieser Untersuchung

konnte gezeigt werden, dass diese Integration erfolgreich umgesetzt werden kann.

Die Programmflussabdeckung steigt im Vergleich zu Ausführungen ohne LLM um

den Faktor 6 und erreicht zudem eine um 50% höhere Abdeckung, als klassische

grammatikbasierte Fuzzer.

• Ansatz für ein integriertes Fuzzing-Framework: Es wird ein Ansatz vorgestellt,

bei dem die vier vorgestellten Techniken flexibel kombiniert werden, um Synergi-

en gezielt zu nutzen. Binary Rewriting ermöglicht eine effiziente Gewinnung von

Laufzeitinformationen und unterstützt die Schwachstellenerkennung. Die Emulation

erhöht die Anzahl der pro Sekunde verarbeiteten Eingaben und trägt ebenfalls zur

Verbesserung der Schwachstellenerkennung bei. Je nach Anwendungsfall könnenmit

dem PRE-Ansatz entweder gültige Netzwerkpakete automatisiert generiert oder mit

dem LLM-Ansatz strukturierte Eingabedateien (z. B. im XML-Format) erstellt wer-

den. Das Konzept zeigt, dass sich die Effizienzsteigerungen der einzelnen Methoden

kombinieren lassen, um die Gesamteffektivität der Testgenerierung zu erhöhen.

Die Dissertation beantwortet somit die Frage, wie das Fuzzing von IoT-Geräten effizienter

gestaltet werden kann. Zu diesem Zweck werden vier Ansätze vorgestellt und ein kon-

zeptionelles Framework zu deren Kombination entwickelt. Damit schließt sie zentrale

Forschungslücken im Bereich des Fuzzings von IoT-Geräten, insbesondere bei ressourcen-

schwachen Plattformen und heterogenen Protokollen. Gleichzeitig demonstriert sie die

Machbarkeit und Effektivität der Methoden und schafft eine fundierte Grundlage für die

praxisnahe Absicherung von IoT-Geräten.

4

1.3 Aufbau der Dissertation

1.3 Aufbau der Dissertation

Die Dissertation ist so strukturiert, dass zunächst die theoretischen Grundlagen vermittelt

und anschließend die entwickelten Methoden, ihre Umsetzung und ihre Anwendung im

IoT-Fuzzing systematisch vorgestellt werden.

Kapitel 2 (Grundlagen) führt in die grundlegenden Konzepte ein, die für das Verständnis

der Dissertation erforderlich sind. Neben den theoretischen Grundlagen des Fuzzings

werden auch die Besonderheiten der Sicherheitsanalyse von IoT-Geräten erläutert.

Kapitel 3 (ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewri-

ting) stellt die Methode des Binary Rewriting vor und erläutert die Umsetzung für den

ESP32-Mikrocontroller. Es wird gezeigt, wie sich Firmware gezielt instrumentieren lässt,

um relevante Laufzeitinformationen ohne vollständiges Speicherauslesen an den Fuzzer

zu übertragen. Dies schafft die Grundlage für effizientere Testabläufe.

In Kapitel 4 (Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation) wird die

Umsetzung praxisnaher Fuzzing-Methoden am Beispiel des ESP32-Mikrocontrollers be-

schrieben. Es wird erläutert, wie durch Emulation die Einschränkungen realer Hardware

umgangen und parallele Fuzzing-Instanzen realisiert werden können.

Kapitel 5 (Protocol Reverse Engineering mittels neuronaler Netze) erläutert die KI-gestützte

Protokollanalyse. Es wird beschrieben, wie mittels PRE unbekannte textbasierte Kom-

munikationsprotokolle aus dem Datenverkehr rekonstruiert und durch den Einsatz von

neuronalen Netzwerken gezielt valide Netzwerkpakete als Eingaben für das Fuzzing er-

zeugt werden.

Kapitel 6 (Effizientes grammatikbasiertes Fuzzing mittels Large Language Models) be-

handelt den Einsatz von LLMs zur Generierung von Eingaben. Es wird gezeigt, wie diese

Modelle variantenreiche, syntaktisch und semantisch korrekte Eingaben für komplexe

Programme erzeugen.

In Kapitel 7 (Ansatz für ein integriertes Fuzzing-Framework) wird ein konzeptioneller

Ansatz zur Kombination der vier vorgestellten Techniken beschrieben. Es wird erläutert,

welche Synergieeffekte möglich sind und wie unterschiedliche Anwendungsfälle von einer

Integration profitieren könnten.

In Kapitel 8 (Verwandte Arbeiten) werden die vorgestellten Verfahren in den aktuellen

Stand der Forschung eingeordnet und bestehende Ansätze sowie deren Limitationen

aufgezeigt.

Kapitel 9 (Zusammenfassung und Ausblick) fasst die wichtigsten Ergebnisse der Disserta-

tion zusammen und gibt einen Ausblick auf zukünftige Forschungsrichtungen im Bereich

IoT-Fuzzing.

5

2 Grundlagen

Dieses Kapitel legt die theoretischen und technischen Grundlagen, die für diese Dis-

sertation erforderlich sind. Es werden zentrale Konzepte aus den Bereichen IoT-Geräte,

Mikrocontroller-Architekturen, Binary Rewriting, Fuzzing, Netzwerkprotokolle und neu-

ronale Netzwerke systematisch vorgestellt. Ziel ist es, ein einheitliches Verständnis zu

schaffen, das die spätere Analyse und praktische Umsetzung erleichtert.

Zu Beginnwidmet sich das Kapitel den Besonderheiten von IoT-Geräten, die sich durch spe-

zifische Architekturen, Kommunikationsprotokolle und Fuzzing-Herausforderungen aus-

zeichnen. Anschließend wird der ESP32-Mikrocontroller als exemplarische Plattform mit

seiner Architektur, Firmware-Struktur und der Xtensa-Instruction Set Architecture (ISA)

vorgestellt. Darauf aufbauend werden die wesentlichen Konzepte des Binary Rewritings

sowie die Grundlagen des Fuzzings einschließlich grammatikbasiertem Fuzzing und der

Nutzung von Emulatoren präsentiert. Abschließend werden relevante Netzwerkprotokolle

wie Protocol Reverse Engineering erläutert. Zentrale neuronale Netzwerkarchitekturen

und weitere grundlegende Definitionen, die die methodische und theoretische Basis dieser

Dissertation bilden, werden abschließend präsentiert.

2.1 Besonderheiten von IoT-Geräten

IoT-Geräte weisen spezifische Eigenschaften auf, die sie von klassischen Computersyste-

men unterscheiden. Dazu zählen ihre starke Heterogenität, die Beschränkung der Hardwa-

re-Ressourcen, spezielle Kommunikationsprotokolle sowie vielfältige Einsatzumgebungen.

Diese Faktoren haben unmittelbare Konsequenzen für die Entwicklung, die Sicherheit und

die Testverfahren. Dies ist besonders relevant für den Einsatz von Fuzzing, das sich an die

besonderen Randbedingungen dieser Geräte anpassen muss.

2.1.1 Architekturen und Protokolle von IoT-Geräten

IoT-Geräte bestehen typischerweise aus eingebetteten Hardwareplattformen, die mit

Sensoren, Aktoren und Kommunikationsmodulen ausgestattet sind. Typische Architek-

turen umfassen mikrocontrollerbasierte Systeme wie den ESP32 oder STM32, Einpla-

tinencomputer wie den Raspberry Pi sowie FPGA-basierte Lösungen für spezialisierte

Anwendungen [SBV23]. Zur Kommunikation nutzen IoT-Geräte standardisierte Proto-

kolle auf Basis von TCP/IP [Pos81a; Pos81b], wie Message Queueing Telemetry Trans-

port (MQTT) [Ban+19], Constrained Application Protocol (CoAP) [SHB14], Extensible

7

2 Grundlagen

Tabelle 2.1: Übersicht über verschiedene 32-Bit-Mikrocontroller. Quelle: [SBV23]

Mikrocontroller Taktfrequenz RAM Schnittstellen

STM32F4 [STM25] 180MHz 96KB UART, SPI, I
2
C

Raspberry Pi Pico [Ras24] 133MHz 264KB UART, SPI, I
2
C

ESP8266 [Esp23] 80MHz 96KB UART, SPI, I
2
C (Software)

ESP32 [Esp25a] 240MHz 520KB UART, SPI, I
2
C, WLAN, BLE

Messaging and Presence Protocol (XMPP) [Sai11] und HTTP [Nie+99], beispielsweise

für REST-Application Programming Interfaces (APIs) [Fie00]. Außerdem nutzen sie ver-

schiedene Technologien wie Bluetooth Low Energy (BLE) [Blu23], Z-Wave [Z-W21] und

ZigBee [Con23] für die Kurzstreckenkommunikation. Diese sind speziell auf die ressour-

cenbeschränkten Anforderungen von IoT-Geräten zugeschnitten und ermöglichen eine

effiziente Datenübertragung in verschiedenen Anwendungsbereichen [Has+19].

2.1.2 Herausforderungen beim Fuzzing von IoT-Geräten

Das Fuzzing von IoT-Geräten stellt aufgrund der begrenzten Rechenressourcen und spe-

zifischen Hardwarearchitekturen besondere Anforderungen an Fuzzing-Methoden dar.

Repräsentative IoT-Plattformen auf Basis von 32-Bit-Mikrocontrollern wie dem STM32F4

[STM25], dem Raspberry Pi Pico [Ras24], dem ESP8266 [Esp23] oder dem ESP32 [Esp25a]

verfügen typischerweise über folgende Ressourcen [SBV23]:

• Rechenleistung: Prozessoren mit Taktfrequenzen von 80MHz bis zu 240MHz

• Speicher: RAM-Kapazitäten zwischen 32 KB und 520KB

• Kommunikationsschnittstellen [Gup19]: UART, SPI, I2C, WLAN, BLE

Tabelle 2.1 gibt eine exemplarische Übersicht über gängige 32-Bit-Mikrocontroller und ver-

deutlicht die Vielfalt verfügbarer Plattformen. Die begrenzten Ressourcen von IoT-Geräten

wirken sich direkt auf die Durchführung von Fuzzing (siehe Abschnitt 2.4) aus. Die ein-

geschränkte Speicherkapazität limitiert die Verwaltung umfangreicher Testdaten im Ar-

beitsspeicher, während die begrenzte Rechenleistung die Anzahl gleichzeitig verarbeit-

barer Eingaben limitiert. Zusätzlich können langsame Kommunikationsschnittstellen die

Geschwindigkeit der Fehlerdetektion erheblich reduzieren. Darüber hinaus erfordern

unterschiedliche Hardware- und Softwarekonfigurationen spezifische Anpassungen der

Fuzzing-Methoden, was die Entwicklung universell einsetzbarer Fuzzer zusätzlich er-

schwert [SBV23].

2.2 ESP32 Mikrocontroller

Für diese Dissertation wurde der ESP32 (siehe Abbildung 2.1) als repräsentatives IoT-Gerät

ausgewählt, da er zu den am weitesten verbreiteten Mikrocontrollern zählt und breit in

8

2.2 ESP32 Mikrocontroller

Abbildung 2.1: NMCU-ESP32: Ein ESP32 auf einem NodeMCU-Entwicklungsboard.

Forschung sowie Industrie eingesetzt wird. Der ESP32 bietet eine moderne Architektur mit

integrierter WLAN- und Bluetooth-Konnektivität und unterstützt zahlreiche Schnittstellen.

Diese Eigenschaften machen ihn zu einer vielseitigen Plattform, die typische Merkmale

moderner IoT-Geräte repräsentiert. Darüber hinaus zeichnet sich der ESP32 durch seine

offene Dokumentation, eine aktive Community und gute Verfügbarkeit aus, was ihn

besonders geeignet macht, um experimentelle Ansätze systematisch zu untersuchen und

zu evaluieren [Esp18; Eli22].

2.2.1 Architektur

Die ESP32-Familie von Espressif Systems umfasst energieeffiziente und kostengünstige

Mikrocontroller, die speziell für IoT-Anwendungen entwickelt wurden. Im Vergleich zum

Vorgängermodell ESP8266 verfügt der ESP32 über erweiterte Fähigkeiten hinsichtlich

Rechenleistung, Speicherausstattung und Schnittstellenvielfalt. Abhängig von der Variante

kommen entweder einzelne oder duale Xtensa LX6-Kerne [Cad25] bzw. LX7-Kerne [Cad24]

oder ein Reduced Instruction Set Computer (RISC)-V-Kern [Wat+16; Esp25b] zum Einsatz.

Während der LX7 gegenüber dem LX6 vor allem durch höhere Taktraten und optimierte

Pipeline-Architektur mehr Leistung bietet, zeichnet sich RISC-V durch seine Offenheit,

Modularität und breite Unterstützung in der Embedded-Community aus. Dabei imple-

mentieren alle Versionen die Xtensa-ISA (siehe Abschnitt 2.2.3) – eine anpassbare und

erweiterbare RISC-basierte Befehlssatzarchitektur [Esp25a].

In dieser Dissertation wird der ESP32-WROOM-32 [Esp25c] als Referenzplattform verwendet.

Die wesentlichen technischen Eigenschaften sind in Tabelle 2.2 aufgeführt. Dank seiner

integrierten WLAN- und BLE-Funktionen, seiner vergleichsweise hohen Rechenleistung

und seines geringen Energieverbrauchs eignet sich der ESP32 besonders für ressourcen-

beschränkte IoT-Szenarien. Gleichzeitig ist er aufgrund seiner in der Regel niedrigen

Anschaffungskosten und seiner Vielseitigkeit auch in industriellen Anwendungen weit

9

2 Grundlagen

Tabelle 2.2: Technische Spezifikationen des ESP32-WROOM-32 [Esp25c]

Eigenschaft Wert

Mikroarchitektur Xtensa 32-bit LX6

CPU-Kerne 2

Maximale Taktfrequenz 240MHz

Flash-Speicher 4MB

ROM 448KB

SRAM 520KB

WLAN IEEE 802.11 b/g/n

Bluetooth Classic und BLE

verbreitet. Dies unterstreichen nicht nur die hohen Verkaufszahlen, die bereits 2018 die

Marke von 100Millionen ausgelieferten Einheiten überschritten, sondern auch Berichte, die

den ESP32 als wichtigen Treiber für vernetzte Anwendungen im Kontext von Industrie 4.0

und Industrie 5.0 hervorheben [Esp18; AAZ25].

2.2.2 Firmware

Eine Übersicht über die ESP32-Firmware ist in Abbildung 2.2 zu finden. Die Firmware

enthält drei Hauptkomponenten: den Bootloader, die Partitionstabelle und mindestens eine

App-Partition, die denAnwendungscode enthält. Der Bootloader und der Anwendungscode

werden in Executable and Linkable Format (ELF)-Binärdateien kompiliert und anschließend

in ein Binärformat umgewandelt, das für den ESP32 geeignet ist [Cir25].

Diese Binärdateien werden zusammen auf den Mikrocontroller geflasht. Obwohl sie nicht

zu einer Datei zusammengefasst werden, werden der Bootloader, die Partitionstabelle und

das Anwendungsabbild in dieser Dissertation gemeinsam als Firmware-Abbild bezeichnet.

Das Modifizieren oder Austauschen einer dieser Komponenten führt in der Regel dazu,

dass die Firmware nicht mehr korrekt funktioniert.

2.2.2.1 Bootloader

Der Bootloader wird zuerst ausgeführt, wenn der ESP32 eingeschaltet oder zurückgesetzt

wird. Er initialisiert die Hardware, stellt die Systemuhr ein, konfiguriert den Speicher und

überprüft die Integrität des Anwendungscodes, bevor er die Kontrolle an die Anwendung

übergibt [Cir25].

2.2.2.2 Partitionstabelle

Die Partitionstabelle definiert die Anordnung des Flash-Speichers des ESP32, einschließ-

lich der Position und Größe des Bootloaders, der Anwendung und anderer Partitionen.

10

2.2 ESP32 Mikrocontroller

Bootloader
Code

Partition
Table CSV

Application
Code

bootloader.elf

application.elf

bootloader.bin

partition-table.bin

application.bin

Flash
Memory

compile

generate

compile

elf2image

elf2image

Abbildung 2.2: Der Build- und Flash-Prozess der ESP32-Firmware. Quelle: [Pla+25]

Partitionstabellen werden dabei in einfachen Comma-Separated Values (CSV)-Dateiformat

[Sha05] definiert und während des Build-Prozesses in ein Binärformat kompiliert [Cir25].

2.2.2.3 Anwendungsabbild

Das Anwendungsabbild ist die Haupt-Firmware, die den Code für die Funktionalität

des ESP32 enthält. Nachdem der Bootloader das System initialisiert hat, übergibt er die

Kontrolle an das Anwendungsabbild, das dann die beabsichtigten Operationen des Geräts

ausführt [Cir25].

2.2.3 Xtensa ISA

Die Xtensa-ISA [Cad22] ist eine RISC-basierte Architektur, die von Cadence Tensilica

entwickelt wurde und sich durch ihre hohe Konfigurierbarkeit auszeichnet. Sie erlaubt es

Entwicklern, den Befehlssatz gezielt an Anforderungen bezüglich Leistung, Speicherbedarf

und Energieeffizienz anzupassen, unter anderem durch benutzerdefinierte Instruktionen

und Register [Cad22].

Obwohl die Xtensa-ISA den meisten klassischen RISC-Prinzipien folgt, wie etwa einer Loa-

d/Store-Architektur und dass Instruktionen in einem „Clock Cycle“ abgearbeitet werden,

bietet sie mit der Code Density Option eine Besonderheit: Ist diese aktiviert (Standardfall),

können viele reguläre 24-Bit-Instruktionen durch kompaktere 16-Bit-Varianten ersetzt

werden. Laut offizieller Dokumentation lassen sich in typischem Code etwa die Hälfte aller

Befehle in diesem komprimierten Format darstellen, was den Speicherbedarf signifikant

reduziert [Cad22].

Die „Windowed Register Option“ führt zusätzliche allgemeine Register ein, wodurch die

Gesamtzahl von 16 auf 64 steigt. Um zu vermeiden, dass neue Anweisungen mit größeren

Registerkodierungen (von 4 auf 6 Bit pro Register, das in der Anweisung verwendet wird)

eingeführt werdenmüssen, bleibt die Anzahl der sichtbaren Register bei 16.Während Funk-

tionsaufrufen kann dieses Fenster sichtbarer Register um ein Vielfaches von 8 verschoben

11

2 Grundlagen

... n+0 n+1 n+2 n+3 n+4 ...

... n+0 n+1 Patch n+2 n+3 n+4 ...

Abbildung 2.3: Das Code Location Problem wird beim Einfügungen von Code deutlich:

Verschobene Instruktionen führen zu fehlerhaften relativen Sprüngen und

Abstürzen. Der Sprung von Instruktion 𝑛 + 0 zeigt nach dem Patch nicht

mehr auf den Beginn von Instruktion 𝑛 + 3, sondern auf den neu hinzuge-

fügten Code. Es ist nicht sichergestellt, dass an dieser Stelle eine Instruktion

beginnt, was zu einem Absturz führen kann. Quelle: [Pla+25]

werden. Diese Option reduziert die Anzahl der Register, die vor einem Funktionsaufruf

auf dem Stack gespeichert werden müssen [Cad22].

Diese komplexen architektonischen Besonderheiten haben direkte Auswirkungen auf die

Struktur der Firmware und die nachträgliche Modifikation des Binärcodes. Im folgen-

den Abschnitt wird daher Rewriting als Konzept vorgestellt. Dieses befasst sich mit den

Herausforderungen und Verfahren zur Modifikation von Firmware-Abbildern.

2.3 Rewriting

Dieser Abschnitt gibt einen Überblick über ESP32-Firmware-Abbilder und das Code Locati-
on Problem, das beim Binary Rewriting auftritt, sowie verschiedene Kategorien des Binary

Rewritings, d. h. statisches und dynamisches Rewriting.

2.3.1 Code Location Problem

Das Code Location Problem tritt auf, wenn der Binärcode eines Programms verändert wird.

Es betrifft insbesondere Systeme, die relative Adressierung verwenden, beispielsweise bei

Sprung- oder Verzweigungsanweisungen, deren Zieladressen relativ zu ihrer Speicherpo-

sition berechnet werden. Durch das Einfügen neuer oder die Modifikation bestehender

Instruktionen verschieben sich die Speicheradressen nachfolgender Instruktionen (siehe

Abbildung 2.3). Für Debugger stellt dies ein zentrales Problem dar, da sie auf eine präzise

Zuordnung von Quellcodezeilen zu Instruktionsadressen angewiesen sind, um Breakpoints,

das Schritthalten und das gezielte Betreten und Verlassen von Subroutinen korrekt zu

12

2.3 Rewriting

realisieren. Nach einer Codeverschiebung verweisen viele Sprünge nicht mehr auf ihre vor-

gesehenen Ziele, was fehlerhafte Kontrollflüsse, Programmabstürze oder unvorhersehbares

Verhalten zur Folge haben kann [TG00].

Die nachträgliche Korrektur solcher Sprungadressen ist insbesondere beim ESP32 an-

spruchsvoll. Die Architektur unterstützt sowohl 16-Bit- als auch 24-Bit-Instruktionen,

wodurch die exakte Position einzelner Befehle schwer vorhersagbar ist. Schon kleine Än-

derungen können Verschiebungen im gesamten nachfolgenden Code verursachen. Hinzu

kommt, dass Code und Daten im Flash-Speicher häufig eng miteinander vermischt sind,

was eine lineare Disassemblierung erschwert [Cad22; Esp25a].

2.3.2 Binary Rewriting

Unter Binary Rewriting versteht man das nachträgliche Verändern von bereits kompiliertem

Maschinencode, ohne dass der ursprüngliche Quellcode benötigt wird. Typische Ziele sind

das Einfügen von Instrumentierungscode (z. B. für Logging oder Fuzzing), das Anpassen

von Programmlogik, das Einfügen von Sicherheitsmechanismen oder das Beheben von

Fehlern direkt im Binärcode.

Das Binary Rewriting lässt sich grob in statische und dynamische Methoden unterteilen,

die jeweils unterschiedliche Ansätze und Kompromisse aufweisen.

Beim dynamischen Rewriting erfolgen Anpassungen basierend auf dem tatsächlichen

Verhalten des Programms zur Laufzeit. Diese Methode eignet sich besser für dynamischen

oder selbstmodifizierenden Code, verursacht jedoch einen spürbaren Laufzeit-Overhead,

da bei jeder Ausführung zusätzliche Kontroll- und Umleitungslogik berücksichtigt werden

muss. Während dieser Mehraufwand bei Desktop- oder Serversystemen oft nur wenige

Prozent Leistung kostet und durch hohe Rechenressourcen kompensiert werden kann,

wirkt er sich in IoT-Szenarien deutlich stärker aus. Begrenzte Taktfrequenzen und klei-

ner Arbeitsspeicher machen dynamisches Rewriting für den ESP32 und vergleichbare

Mikrocontroller meist unpraktikabel [SBF22].

Beim statischen Rewriting wird der Binärcode verändert, ohne ihn auszuführen, und es

wird eine neue, modifizierte Binärdatei erzeugt. Diese Methode erlaubt eine gründliche

Analyse und Optimierung vor der Ausführung. Allerdings kann das Neuberechnen von

Sprungzielen innerhalb des Codes schwierig sein, insbesondere bei selbstmodifizieren-

dem Code. Änderungen können dabei den ursprünglichen Kontrollfluss stören und neue

Fehler einführen. Statische Rewriter arbeiten häufig auf einer sogenannten Intermediate

Representation (IR) [Cho13], also einer Zwischendarstellung eines Programms zwischen

Quellcode und Maschinencode, beispielsweise auf Assembler-Ebene. Auf dieser Ebe-

ne werden Anpassungen vorgenommen, bevor die Binärdatei wieder zusammengesetzt

wird [SBF22].

Eine spezielle Technik des statischen Rewritings sind die sogenannten Trampolin-Rewriter.

Dabei werden neue Instruktionen in ungenutzten Speicherbereichen abgelegt und der

Kontrollfluss durch Sprünge dorthin umgeleitet (siehe Abbildung 2.4). So bleiben die ur-

sprünglichen Instruktionen unverändert, während zusätzliche Funktionalitäten außerhalb

13

2 Grundlagen

... n+0 n+1 jmp n+3 n+4 ...

... Patch n+2 jmp ...

Abbildung 2.4: Trampolin-Rewriter bieten eine Lösung für das Code Location Problem.

Dabei wird die ursprüngliche Instruktion durch einen Sprungbefehl ersetzt

und sowohl die Instruktion als auch der Patch werden in ungenutzten

Speicher verschoben. Dadurch bleiben alle nachfolgenden Adressen un-

verändert. Quelle: [Pla+25]

des Originalcodes integriert werden. Dadurch lässt sich die Kontrollflussintegrität wahren

und das Code Location Problem effektiv umgehen [DGR20].

Die hier vorgestellten Techniken des Binary Rewritings bilden eine wichtige Grundlage

für verschiedene Test- und Sicherheitsverfahren auf Mikrocontroller-Ebene. Im nächsten

Abschnitt wird das Fuzzing behandelt, eine weit verbreitete Methode zur automatisier-

ten Erkennung von Softwarefehlern. Dabei werden durch gezielte Eingabegenerierung

Schwachstellen in Firmware und Software aufgedeckt.

2.4 Fuzzing

In diesem Unterkapitel wird der Begriff des Fuzzings als Testmethode zur Erkennung von

Softwarefehlern durch die systematische Generierung und Einspeisung ungewöhnlicher

oder ungültiger Eingaben definiert. Es werden zentrale Grundlagen vorgestellt, darunter

typische Einsatzszenarien, Verfahren zur Eingabegenerierung und Ansätze des feedbackge-

steuerten Fuzzings. Darüber hinaus werden Kriterien wie Codeabdeckung, Effizienz sowie

syntaktische und semantische Korrektheit der Eingaben behandelt, um die methodische

Einordnung und Messbarkeit des Fuzzings zu verdeutlichen.

2.4.1 Definition von Fuzzing

Fuzzing (kurz für fuzz testing) ist eine automatisierte Testtechnik zur Identifikation von

Fehlern und Sicherheitslücken in Software. Dabei wird die Software wiederholt mit zufäl-

ligen oder systematisch generierten Eingaben versorgt, während das Laufzeitverhalten

14

2.4 Fuzzing

überwacht wird, um unerwartete Reaktionen wie Abstürze, unbehandelte Ausnahmen

oder Speicherlecks zu erkennen und potenzielle Schwachstellen aufzudecken [SGA07;

Mhi+25; Lia+18].

Die Idee des Fuzzing entstand 1988 durch Barton P. Miller von der University of Wis-

consin–Madison. Während eines Gewitters führten Störungen auf einer langsamen Mo-

dem-Leitung dazu, dass durch „Rauschen“ getippte Zeichen zufällig Unix-Utilities ab-

stürzen ließen. Dieses scheinbar banale Phänomen inspirierte Miller dazu, das Konzept

systematisch zu untersuchen. Im Rahmen eines Kurses sollten Studierende Programme

gezielt mit zufälligen Eingaben testen, wodurch Fuzzing entstand. Bereits in der initialen

Studie konnten durch dieses Verfahren 25–33 % der getesteten Programme zumAbsturz ge-

bracht werden. Dies war besonders bemerkenswert, da es die Anfälligkeit weit verbreiteter

und scheinbar stabiler Software durch einfache zufällige Eingaben aufzeigte [TDM08].

2.4.2 Ungültige Eingaben

Eingaben im Rahmen von Fuzzing lassen sich typischerweise in drei Kategorien einteilen:

• Gültige Eingaben: Diese entsprechen vollständig der Spezifikation und werden vom

Programm ohne Fehlermeldungen verarbeitet.

• Semi-valide Eingaben: Sie sind ein Sonderfall der gültigen Eingaben und erfüllen

gerade noch die Spezifikation, um vom Parser akzeptiert zu werden, enthalten jedoch

gezielt Variationen oder Extremwerte, um seltene Fehlerzustände zu provozieren.

• Ungültige Eingaben: Diese verletzen die grundlegende Struktur der erwarteten Daten

und werden in der Regel unmittelbar vom Programm verworfen. Sie treten insbe-

sondere bei stark strukturierten Formaten wie XML oder bei Netzwerkprotokollen

auf und liefern häufig keine verwertbaren Rückmeldungen für die Laufzeitanalyse.

Da eine vollständige Abdeckung aller möglichen Eingaben praktisch unmöglich ist, liegt

der Schwerpunkt neben den gültigen Eingaben vorwiegend auf den semi-validen Randfäl-

len. Diese Strategie erhöht die Wahrscheinlichkeit, seltene oder schwer reproduzierbare

Fehlerzustände zu identifizieren [Bha22].

2.4.3 Fuzzing-Szenarien

Fuzzing-Methoden unterscheiden sich vor allem durch den Grad des Wissens über das zu

testende System. Üblich ist die Einteilung in Whitebox-, Blackbox- und Greybox-Fuzzing.

• Whitebox-Fuzzing: Der Fuzzer hat vollständigen Zugriff auf den Quellcode und die

interne Programmlogik. Mittels statischer und dynamischer Analyse werden gezielt

Eingaben generiert, um schwer erreichbare Codepfade abzudecken. Oft wird dyna-

mische symbolische Ausführung (engl. „concolic execution“) eingesetzt. Während

der Programmausführung werden symbolische Bedingungen gesammelt und ge-

zielt negiert. Mithilfe eines Constraint-Solvers werden anschließend neue Eingaben

15

2 Grundlagen

berechnet, die unerforschte Pfade ansteuern. Damit können theoretisch Testfälle

generiert werden, die alle möglichen Ausführungspfade abdecken. In der Praxis ist

dies jedoch oft nicht vollständig umsetzbar, da reale Software sehr viele potenzielle

Pfade enthält und die Lösung der symbolischen Bedingungen komplex sein kann.

Dennoch ermöglicht Whitebox-Fuzzing eine systematische und effiziente Fehlerent-

deckung [GLM08; Lia+18].

• Blackbox-Fuzzing: Das Testen erfolgt ohne Kenntnis des Quellcodes. Die Eingaben

werden zufällig oder heuristisch erzeugt, häufig aus bestehenden Beispielen, die

durch Mutationen wie Bitflips, Byte-Kopien oder Löschungen verändert werden. Mo-

derne Ansätze nutzen zusätzlich Wissen über das Grammatik- oder Eingabeformat,

um teilweise gültige Eingaben zu erzeugen. Blackbox-Fuzzing ist einfach implemen-

tierbar und breit anwendbar, erreicht jedoch aufgrund fehlender Rückmeldungen

zur Programmausführung meist nur eine geringe Codeabdeckung [Lia+18].

• Greybox-Fuzzing: Dieser Ansatz liegt zwischen White- und Blackbox-Fuzzing. Der

Fuzzer erhält begrenzte Einblicke in das Programm, beispielsweise durch leichte

Instrumentierung oder Feedback zur Codeabdeckung. Komplexe Techniken wie sym-

bolische Ausführung werden nicht verwendet. Eingaben, die neue Pfade erreichen,

werden gezielt wiederverwendet und als Basis für Mutationen genutzt. Dadurch

steigt die Testeffektivität im Vergleich zu reinem Blackbox-Fuzzing [Lia+18; Zel+24].

In dieser Dissertation wird, soweit nicht anders angegeben, stets ein Greybox-Fuzzing-S-

zenario zugrunde gelegt.

2.4.4 Eingabegenerierung

Die Generierung von Testeingaben ist ein zentraler Bestandteil des Fuzzings. Eingaben

können zufällig, durch Mutationen bestehender Beispiele oder systematisch auf Basis

formaler Regeln erzeugt werden. Entsprechend werden Fuzzer häufig nach ihrer Methode

der Eingabegenerierung unterschieden:

• Dumb Fuzzer: Diese Fuzzer erzeugen Eingaben vollständig zufällig, ohne Kenntnis

des zugrunde liegenden Formats oder der erwarteten Datenstruktur. Sie arbeiten

meist auf Byte- oder String-Ebene und führen einfacheManipulationen durch, wie das

Einfügen, Löschen oder Verändern von Zeichen. Sie nutzen allenfalls grundlegende

Heuristiken, erkennen aber keine komplexen Zusammenhänge. Aufgrund der vielen

ungültigen Eingaben sind sie in komplexen Systemen nur begrenzt effektiv und

eignen sich eher für einfache oder robuste Parser [LZZ18].

• Mutationsbasierte Fuzzer: Sie starten mit gültigen Eingaben (Seeds) und verändern

diese durch zufällige oder heuristische Operationen wie Ersetzen, Einfügen oder

Löschen von Bytes. Durch die Verwendung funktionierender Ausgangsdaten wird

eine höhere Wahrscheinlichkeit erreicht, dass die Eingaben vom Programm verarbei-

tet werden. Diese Methode ist besonders effektiv, wenn hochwertige Seed-Dateien

verfügbar sind [LZZ18].

16

2.4 Fuzzing

Fuzzer
Program
Under
Test

Monitoring

Eingabe

Information
über die

Codeabdeckung

Abbildung 2.5: Schematische Darstellung von feedbackgesteuertem Fuzzing

• Generationsbasierte Fuzzer: Hier werden Eingaben vollständig neu erzeugt, ba-

sierend auf einer formalen Beschreibung des Eingabeformats, wie Datenmodellen,

Protokollspezifikationen, Zustandsautomaten oder Ablaufdiagrammen. Diese Me-

thode erzeugt syntaktisch gültige und semantisch anspruchsvolle Testfälle, die sich

besonders für strukturierte Eingaben wie Netzwerkprotokolle, APIs oder komplexe

Dateiformate eignen [LZZ18].

• Grammatikbasierte Fuzzer: Eine spezielle Untergruppe der generationsbasierten
Fuzzer. Sie verwenden kontextfreie Grammatiken, um komplexe Eingaben zu erzeu-

gen. Diese Technik eignet sich besonders für textbasierte Formate mit klar definierter

Syntax, strukturierte Daten wie JSON oder XML mit eindeutiger Grammatik (siehe

Abschnitt 2.5) [SS19].

2.4.5 Feedbackgesteuertes Fuzzing

Die Effektivität eines Fuzzers lässt sich deutlich erhöhen, wenn Rückmeldungen aus der

Programmausführung zur gezielten Steuerung der Eingabegenerierung genutzt werden.

Beim feedbackgesteuerten Fuzzing (engl. Feedback-driven Fuzzing, auch Coverage-guided
Fuzzing genannt) überwacht der Fuzzer während der Ausführung, welche Codebereiche

durch eine bestimmte Eingabe erreicht werden. Mithilfe dieser Informationen werden

anschließend neue Eingaben so verändert, dass bisher unerreichte oder selten ausgeführte

Pfade gezielt abgedeckt werden. Eine schematische Darstellung ist in Abbildung 2.5 zu

finden. Vor allem mutationsbasierte Fuzzer profitieren stark von diesem Ansatz, da das

Feedback es ihnen ermöglicht, Eingaben adaptiv zu optimieren und die Codeabdeckung

systematisch zu steigern [Zal19].

2.4.6 Codeabdeckung und Messbarkeit von Fuzzing

Die einfachste Möglichkeit, die Wirksamkeit eines Fuzzers zu bewerten, wäre, die Anzahl

der gefundenen Abstürze oder Schwachstellen innerhalb eines begrenzten Zeitraums

17

2 Grundlagen

(z. B. 24 Stunden) zu messen. Allerdings ist oft unklar, ob das getestete Programm über-

haupt Schwachstellen enthält und ob diese innerhalb des vorgegebenen Zeitraums ge-

funden werden können. Daher wird die Wirksamkeit von Fuzzing häufig anhand der

Codeabdeckung (engl. Code Coverage) beurteilt. Diese gibt an, wie tief ein Fuzzer in die

Programmlogik vordringt, ist aber kein direkter Indikator für die Anzahl gefundener

Schwachstellen [Wan+20b].

Ein gängiges Maß für die Testabdeckung ist die sogenannte Zeilenabdeckung (engl. Line
Coverage). Sie gibt an, welcher Anteil der Quellcodezeilen während eines Fuzzing-Laufs

mindestens einmal ausgeführt wurde. Eine vollständige Zeilenabdeckung garantiert jedoch

nicht, dass die zugrunde liegende Logik vollständig getestet wurde, denn unterschiedliche

Eingaben innerhalb einer Zeile können zu abweichendem Verhalten führen. Eine hohe

Zeilenabdeckung signalisiert hingegen, dass ein Großteil des Codes aktiviert und potenziell

auf Fehler überprüft wurde. Beim feedbackgesteuerten, mutationsbasierten Fuzzing dient

die Zeilenabdeckung als Leitwert für die Auswahl von Seeds. Eingaben, die eine hohe

Zeilenabdeckung erzeugen, werden bevorzugt mutiert, um neue Testfälle zu erzeugen.

Auf diese Weise lassen sich auch tief im Programm liegende Funktionen systematisch

testen [WHJ15; BSM22].

Die Zweigabdeckung (engl. Branch Coverage) betrachtet zusätzlich alle logischen Verzwei-

gungen, etwa beide Pfade eines if-Statements oder sämtliche switch-Fälle. Somit liefert

sie ein detaillierteres Bild des Programmflusses und erleichtert die gezielte Optimierung

von Testeingaben. Nicht abgedeckte Verzweigungen deuten auf unzureichende Eingaben

hin [BSM22].

Da weder die Zeilen- noch die Zweigabdeckung direkt mit der Anzahl entdeckter Schwach-

stellen korreliert, werden zur objektiven Bewertung oft synthetische Bugs (engl. Synthetic
Bugs) eingesetzt. Dabei werden bekannte Fehler gezielt in das PUT eingebaut, sodass

überprüft werden kann, welche davon ein Fuzzer tatsächlich findet. Dieses Verfahren

ermöglicht einen vergleichbaren und reproduzierbaren Test der Effektivität verschiedener

Fuzzing-Strategien [Bun+21].

Der folgende Abschnitt befasst sich deshalb mit dem Thema „Effizientes Fuzzing“ und

beleuchtet diese Aspekte näher. Dabei werden auch wichtige Kennzahlen zur Bewertung

vorgestellt.

2.4.7 Effizientes Fuzzing

Im Kontext des Fuzzings bezeichnet Effizienz das Verhältnis zwischen eingesetztem Res-

sourcenaufwand, beispielsweise Zeit, Rechenleistung oder Energie, und dem erzielten

Testfortschritt. Im Unterschied dazu bezeichnet Effektivität die Fähigkeit, tatsächlich si-

cherheitsrelevante Schwachstellen oder Bugs aufzudecken [GGG22]. Ein Fuzzer kann also

sehr effizient arbeiten (z. B. durch hohe Eingabeverarbeitungsraten), ohne notwendiger-

weise effektiv zu sein, wenn er dabei keine relevanten Fehler findet.

Welche Kennzahl zur Bewertung der Effizienz herangezogen wird, hängt davon ab, welcher

Aspekt des Testfortschritts im jeweiligen Szenario erreichbar und sinnvoll messbar ist:

18

2.4 Fuzzing

• Fehlerentdeckungsrate: Ist der Quellcode zugänglich, lassen sich gezielt synthe-

tische Bugs einbauen und deren Anzahl exakt bestimmen. In diesem Fall kann die

Effizienz unmittelbar als Geschwindigkeit der Fehlerentdeckung definiert werden, da

gemessen werden kann, wie viele dieser bekannten Schwachstellen pro Zeiteinheit

aufgedeckt werden. Je schneller diese Bugs gefunden werden, desto direkter werden

die eingesetzten Ressourcen in sicherheitsrelevanten Fortschritt umgesetzt [GGG22].

• Codeabdeckung: Ist der Code nicht veränderbar oder die Anzahl der Bugs unbe-
kannt, bleibt die Codeabdeckung die praktikabelste Messgröße. Vor allem Greybox-

Fuzzer wie AFL instrumentieren den Binärcode so, dass die Abdeckung die tatsächlich

durchlaufenen Pfade widerspiegelt. Auch wenn dies durch Compiler-Optimierun-

gen nicht exakt den Quellcodezeilen entspricht, erlaubt es dennoch einen direkten

Vergleich verschiedener Ansätze hinsichtlich der erreichten Programmpfad-Abde-

ckung. Eine hohe Abdeckung weist darauf hin, dass mit den gleichen Ressourcen ein

größerer Programmteil getestet wurde, was aus Effizienzsicht vorteilhaft ist [LZZ18;

Zal19].

• Verarbeitungsrate: Selbst ohne vollständigen Fuzzer kann die Effizienz einzelner

Komponenten anhand ihrer Eingabeverarbeitungsrate bewertet werden. Besonders

auf ressourcenbeschränkten IoT-Geräten ist die Zahl der pro Sekunde verarbeiteten

Anfragen begrenzt, während virtuelle Testumgebungen höhere Raten erlauben. Je

mehr Eingaben in derselben Zeit verarbeitet werden, desto effizienter werden die

verfügbaren Ressourcen genutzt [Bör+20].

• Qualität der Eingaben:Nicht nur dieMenge, sondern auch die Vielfalt und Relevanz

der generierten Eingaben beeinflussen die Effizienz. Ungültige Eingaben aktivieren

oft nur triviale Programmteile, wodurch die Testtiefe sinkt. Werden hingegen gezielt

Eingaben generiert, die möglichst viele verschiedene Codepfade auslösen, steigt die

Wahrscheinlichkeit, kritische Teile des Programms mit begrenztem Ressourcenein-

satz zu testen [Mhi+25].

Zusammenfassend lässt sich die Effizienz beim Fuzzing also als das Verhältnis von ein-

gesetzten Ressourcen zu erzieltem Testfortschritt verstehen. Je nach Kontext kann der

Fortschritt über Fehlerfunde, Codeabdeckung, Eingabedurchsatz oder Eingabequalität

gemessen werden. Diese unterschiedlichen Perspektiven sind komplementär und verdeut-

lichen, dass Effizienz stets relativ zu den Testzielen interpretiert werden muss.

Um den Erfolg eines Fuzzers jedoch noch gezielter zu verbessern, ist es wichtig, neben der

Menge auch die Qualität der generierten Eingaben zu betrachten. Dabei spielen insbeson-

dere die syntaktische und semantische Korrektheit der Testeingaben eine entscheidende

Rolle. Auf diesen Aspekt wird im Folgenden näher eingegangen.

2.4.8 Syntaktische und semantische Korrektheit

Eingaben, Datenpakete oder Dokumente können hinsichtlich ihrer syntaktischen und

semantischen Korrektheit unterschieden werden [FS00; Ais25]:

19

2 Grundlagen

• Syntaktische Korrektheit: Die Eingabe erfüllt die formalen Strukturregeln eines

Datenformats oder Protokolls. Bei XML bedeutet dies korrekt geschlossene Tags,

gültige Attribute und konsistente Verschachtelungen. Bei Netzwerkpaketen müssen

alle erforderlichen Headerfelder vorhanden sein, die Feldlängen müssen stimmen

und die Checksummen müssen korrekt sein. Syntaktisch korrekte Eingaben werden

vom Parser akzeptiert und können vom System verarbeitet werden.

• Semantische Korrektheit: Die Eingabe ist inhaltlich konsistent und entspricht den

logischen Erwartungen des Systems. Ein XML-Dokument ist semantisch korrekt,

wenn die Feldinhalte den erwarteten Datentypen und zulässigen Wertebereichen

entsprechen. Ein Netzwerkpaket ist semantisch korrekt, wenn Sequenznummern,

Befehle oder Parameter konsistent mit dem Protokoll sind und sinnvoll interpretiert

werden können.

Für das Fuzzing bildet die syntaktische Korrektheit die notwendige Grundlage, da nur

korrekt geparste Eingaben verarbeitet werden können. Darüber hinaus steigert semanti-

sche Korrektheit die Wahrscheinlichkeit, seltene Fehlerzustände und Sicherheitslücken zu

identifizieren, insbesondere bei stark strukturierten Formaten wie XML und komplexen

Netzwerkprotokollen [Bra+08; Vis+11].

Um diese Aspekte der Korrektheit bei der Eingabegenerierung gezielt zu berücksichtigen,

wird im folgenden Abschnitt das Konzept des grammatikbasierten Fuzzings erläutert. Es

nutzt formale Grammatiken, um strukturierte und gültige Testfälle zu erzeugen.

2.5 Grammatiken für Fuzzing

Grammatikbasiertes Fuzzing ist eine spezialisierte Form des generationsbasierten Fuz-

zings. Es nutzt formale Grammatiken zur präzisen Beschreibung syntaktischer Regeln

und ermöglicht so die Erzeugung strukturell gültiger Eingaben. Dies ist besonders bei

komplexen oder stark regulierten Formaten von Vorteil [GLM08; Zel+24].

2.5.1 Aufbau der Grammatik

Eine Grammatik beschreibt eine formale Struktur, die definiert, wie gültige Zeichenketten

einer Sprache gebildet werden können. Sie besteht im Wesentlichen aus einer endlichen

Menge von Terminalsymbolen, die die konkreten Zeichen der Sprache darstellen, einer

Menge von Variablen (auch Nicht-Terminalsymbole genannt), die als Platzhalter für syn-

taktische Kategorien dienen, sowie einer Menge von Produktionsregeln, die angeben,

wie Variablen durch andere Variablen oder Terminale ersetzt werden können. Eine dieser

Variablen ist als Startsymbol ausgezeichnet und dient als Ausgangspunkt für die Erzeugung
von Zeichenketten [HMU11].

20

2.5 Grammatiken für Fuzzing

2.5.2 Formale Beschreibung von Grammatiken

Formal wird eine Grammatik 𝐺 als ein Tupel 𝐺 = (𝑉 ,𝑇 , 𝑃, 𝑆) definiert, bestehend aus:

• 𝑉 : der endlichen Menge der Variablen (Nicht-Terminalsymbole), die Platzhalter für

syntaktische Strukturen darstellen,

• 𝑇 : der endlichen Menge der Terminalsymbole, die die konkreten Zeichen der Sprache

bilden,

• 𝑃 : der endlichen Menge der Produktionsregeln, die definieren, wie Variablen durch

Terminale oder andere Variablen ersetzt werden,

• 𝑆 ∈ 𝑉 : dem Startsymbol, von dem aus die Erzeugung gültiger Zeichenketten beginnt.

Eine Produktionsregel hat die Form

𝐴 → 𝛼

wobei 𝐴 ∈ 𝑉 eine Variable und 𝛼 ∈ (𝑉 ∪𝑇)∗ eine Zeichenkette aus Terminalen und/oder

Variablen ist. Durch wiederholte Anwendung dieser Regeln lassen sich syntaktisch gültige

Zeichenketten konstruieren [HMU11].

2.5.3 Kontextfreie Grammatiken

Eine kontextfreie Grammatik ist eine spezielle Klasse formaler Grammatiken, bei der jede

Produktionsregel genau eine Variable auf der linken Seite besitzt:

𝐴 → 𝛼 mit 𝐴 ∈ 𝑉 , 𝛼 ∈ (𝑉 ∪𝑇)∗

Die Anwendbarkeit einer Regel hängt dabei nicht vom Kontext der umgebenden Symbole

ab.

Kontextfreie Grammatiken sind besonders relevant für das Fuzzing, da viele Datenformate,

Kommunikationsprotokolle und Programmiersprachen mit ihnen vollständig beschrieben

werden können. Grammatik-basierte Fuzzer können daher gezielt syntaktisch gültige

Testeingaben generieren, was dieWahrscheinlichkeit erhöht, dass diese vomZielprogramm

akzeptiert und verarbeitet werden [GLM08; HMU11].

2.5.4 Grammatik von XML

Als Beispiel für eine weit verbreitete Grammatik wurde XML gewählt. Es handelt sich um

ein standardisiertes, hierarchisch strukturiertes Datenformat, dessen Grammatik in der

XML 1.0 Specification definiert ist [Bra+08].

Ein Fuzzer, der diese Grammatik berücksichtigt, kann gültige XML-Dokumente erzeugen,

die von Parsern verarbeitet werden können. Aufgrund der breiten Nutzung von XML in

Webservices, IoT-Protokollen und Konfigurationsformaten ist grammatikbasiertes Fuzzing

in diesem Bereich besonders relevant. Fehler bei der Verarbeitung können schwerwiegende

Sicherheitslücken verursachen, beispielsweise durch XML External Entity Attacks (XXE)
oder Billion Laughs Attacks [Spä+16].

21

2 Grundlagen

2.5.5 Vorteile des grammatikbasierten Fuzzings

Grammatikbasiertes Fuzzing bietet mehrere entscheidende Vorteile:

• Höhere Eingabevalidität: Generierte Testfälle sind syntaktisch gültig und werden

daher vom PUT häufiger akzeptiert.

• Höhere Codeabdeckung: Durch gültige Eingaben lassen sich komplexe Verar-

beitungspfade testen, die zufällige Eingaben nicht erreichen. Dadurch wird tiefer

in das System vorgedrungen, wodurch auch versteckte Logik und selten genutzte

Funktionen getestet werden können.

• Effiziente Fehlerfindung: Da weniger ungültige Eingaben erzeugt werden, wird

weniger Rechenzeit auf unproduktive Testfälle verschwendet.

• Gezielte Testgenerierung: Grammatiken lassen sich erweitern oder einschränken,

um bestimmte Strukturen oder Features des PUT gezielt zu testen.

Diese Eigenschaftenmachen grammatikbasiertes Fuzzing besonders geeignet für Szenarien,

in denen stark strukturierte Eingaben verarbeitet werden, wie etwa bei Dateiformaten,

Netzprotokollen oder Skriptsprachen [GKL08].

Um die Effektivität und Analysefähigkeit beim Fuzzing weiter zu steigern, bietet die

Emulation eine flexible und kontrollierte Umgebung, in der Programme ausgeführt und

gezielt manipuliert werden können. Im folgenden Abschnitt wird dargestellt, wie die

Emulation als Ergänzung zum klassischen Fuzzing eingesetzt wird und welche Vorteile sie

insbesondere bei der Instrumentierung von Firmware und Software bietet.

2.6 Fuzzing im Emulator

Die Emulation ermöglicht die Ausführung von Programmen in einer kontrollierten Umge-

bung und bietet mehrere zentrale Vorteile für den Fuzzing-Prozess:

• Zielausführung mit Fuzzing-Hooks: Fuzzing-Hooks ermöglichen eine gezielte

Eingabesteuerung und die Analyse der Reaktionen des emulierten Systems auf

unterschiedliche Eingaben. Dadurch lassen sich potenzielle Schwachstellen und

deren Auswirkungen auf die Programmausführung untersuchen [HN17].

• Codeabdeckung durch Emulation: Die Emulation ermöglicht eine präzise Erfas-

sung von Codeabdeckungsmetriken, beispielsweise in Form von Anweisungs- oder

Zweigabdeckung. Diese Messungen liefern wertvolle Informationen darüber, wel-

che Programmteile während des Fuzzing-Prozesses ausgeführt wurden. Auf dieser

Grundlage kann die Testfallgenerierung gezielt optimiert werden, um die Abdeckung

schrittweise zu erhöhen und ungetestete Programmregionen zu erreichen [HN17].

• Registerzugriff in der Emulation: Ein wesentlicher Vorteil der Emulation ist der

direkte Zugriff auf Register und Speicherbereiche. Dadurch können die internen

22

2.7 Netzwerkprotokolle

Zustände des Programms überwacht, modifiziert und für Debugging-Zwecke ana-

lysiert werden. Diese Einblicke erleichtern die Identifikation von Speicherfehlern,

unerwarteten Zustandsübergängen oder sicherheitskritischen Abweichungen im

Kontrollfluss [Wri+21].

• Fork-Join-Mechanismen: Viele Emulatoren unterstützen Fork-Join oder Snaps-

hotting, um Ausführungszustände einzufrieren und schnell wiederherzustellen. Dies

ermöglicht parallele Testausführungen und steigert die Fuzzing-Geschwindigkeit

erheblich, da wiederholte Initialisierungen vermieden werden [MRR12].

• Determinismus und Reproduzierbarkeit: Das deterministische Verhalten vie-

ler Emulatoren sorgt dafür, dass identische Eingaben unter gleichen Bedingungen

stets dieselben Zustände und Ergebnisse erzeugen. Diese Eigenschaft erleichtert das

Debuggen und die reproduzierbare Analyse gefundener Schwachstellen [HN17].

Während die Emulation somit eine präzise Analyseumgebung für Firmware und Software

bietet, ist für die umfassende Absicherung von vernetzten Systemen auch das Verständnis

der zugrunde liegenden Kommunikationsprotokolle von zentraler Bedeutung. Das folgende

Kapitel widmet sich daher den Grundlagen und Typen von Netzwerkprotokollen, die für

die strukturierte Datenübertragung und Kommunikation in IoT-Systemen essenziell sind.

2.7 Netzwerkprotokolle

Netzwerkprotokolle bilden die Grundlage für die strukturierte Kommunikation in ver-

netzten Systemen. Sie definieren Regeln und Konventionen, die festlegen, wie Daten

zwischen verschiedenen Endpunkten übertragen und interpretiert werden [TW11]. So legt

ein Protokoll beispielsweise fest, in welchem Format und in welcher Abfolge Daten an ein

Zielsystem übermittelt werden müssen, um bestimmte Aktionen auszulösen. Ebenso regelt

es die Bedeutung und Verarbeitung der empfangenen Antworten. Dabei unterscheidet man

zwischen zustandsbehafteten Protokollen, die Verbindungsinformationen speichern und

so eine kontrollierte und zuverlässige Kommunikation ermöglichen (z. B. Transmission

Control Protocol (TCP) [Pos81b]), und zustandslosen Protokollen, die ohne solche Kontext-
informationen arbeiten (z. B. User Datagram Protocol (UDP) [Pos80]) [TC984].

Um die Vielzahl an Netzwerkprotokollen und deren Zusammenhänge zu strukturieren,

wird häufig das von der International Organization for Standardization (ISO) standardi-

sierte ISO/OSI-Referenzmodell herangezogen. Es unterteilt den Kommunikationsprozess in

sieben klar definierte Schichten (siehe Abbildung 2.6), die jeweils spezifische Aufgaben

erfüllen und über wohldefinierte Schnittstellen miteinander interagieren. Von unten nach

oben werden folgende Schichten unterschieden [Pos81b; Aun10; MS12]:

1. Bitübertragungsschicht (Physical Layer): verantwortlich für die physische Über-

tragung von Rohbits über das Übertragungsmedium. Hier werden elektrische, opti-

sche und Funk-Schnittstellen definiert. Beispiele für physische Medien sind Kupfer-

kabel, Glasfaser und Funkfrequenzen.

23

2 Grundlagen

7 Anwendung / Application

HTTP, FTP, SMTP

6 Darstellung / Presentation

TLS, SSL

5 Sitzung / Session

RPC, NetBIOS

4 Transport / Transport

TCP, UDP

3 Vermittlung / Network

IP, ICMP

2 Sicherung / Data Link

MAC, Ethernet, WLAN

1 Bitübertragung / Physical

Kupfer, Glasfaser, Funk

ISO/OSI-Referenzmodell

Bit

000101010101

Frame

MAC-Adresse

IP Datagram

IP-Adresse

TCP Segment

Portnummer

Data

Nutzdaten

Datenkapselung

Abbildung 2.6: Das ISO/OSI-7-Schichtenmodell. Quelle: frei nach [Aun10].

2. Sicherungsschicht (Data Link Layer): gewährleistet eine fehlerfreie Übertragung
zwischen zwei direkt verbundenen Netzwerkknoten. Daten werden in Frames ver-

packt, mit Prüfsummen versehen und der Zugriff auf das Übertragungsmedium wird

geregelt. Hier kommen MAC-Adressen zur eindeutigen Identifizierung von Geräten

zum Einsatz. Typische Protokolle sind Ethernet, WLAN und PPP.

3. Vermittlungsschicht (Network Layer): zuständig für die logische Adressierung,
das Routing und die Weiterleitung von Datenpaketen über Netzgrenzen hinweg. Hier

entstehen IP-Datagramme, die eine IP-Adresse enthalten, um Sender und Empfänger

eindeutig zu identifizieren. Typische Protokolle: IP, ICMP, IPSec.

4. Transportschicht (Transport Layer): stellt die Ende-zu-Ende-Kommunikation

zwischen Anwendungen sicher. Hier erfolgt die Segmentierung der Daten, ihre

Nummerierung und Zuordnung zu Portnummern. TCP sorgt für zuverlässige, ver-

bindungsorientierte Übertragungen, während UDP für schnelle, verbindungslose

Kommunikation genutzt wird, z. B. bei Streaming oder VoIP.

5. Sitzungsschicht (Session Layer): verwaltet Sitzungen zwischen Anwendungen,

steuert den Auf- und Abbau von Verbindungen und synchronisiert Datenströme. Sie

ermöglicht das Fortsetzen von Dialogen nach Unterbrechungen. Beispiele: NetBIOS,

RPC.

6. Darstellungsschicht (Presentation Layer): übersetzt Daten in ein einheitliches

Format und kümmert sich um Kodierung, Kompression und Verschlüsselung. Hier

arbeiten beispielsweise SSL/TLS sowie Datenformate wie JPEG, JSON oder ASCII.

24

2.7 Netzwerkprotokolle

7. Anwendungsschicht (Application Layer): bietet Schnittstellen für benutzernahe

Anwendungen und definiert die Bedeutung der übertragenen Daten. Hier laufen die

eigentlichen Dienste und Protokolle, z. B. HTTP, FTP, SMTP, DNS oder SNMP.

2.7.1 Struktur eines TCP-Headers

TCP operiert auf der Transportschicht (Layer 4). Ein TCP-Header enthält zentrale Steuer-

informationen, darunter:

• Quell- und Zielport: zur Identifikation der kommunizierenden Anwendungen,

• Sequenz- und Bestätigungsnummern: zur Sicherstellung der korrekten Daten-

reihenfolge und Empfangsbestätigung,

• Steuerflags: (z. B. SYN, ACK, FIN) für Aufbau, Abbau und Kontrolle der Verbindung,

• Fenstergröße: zur Regulierung der Flusskontrolle.

Diese Felder bilden die Grundlage für die Zuverlässigkeit von Protokollen. In den folgen-

den Abschnitten werden die anwendungsnahen Protokolle FTP und HTTP exemplarisch

betrachtet. Diese eignen sich besonders gut, da sie eine klare, textbasierte Struktur besit-

zen [Pos81b].

2.7.2 File Transfer Protocol (FTP)

In dieser Dissertation wird das FTP als beispielhaftes Anwendungsprotokoll herangezogen,

da seine einfache, textbasierte Struktur die Analyse unverschlüsselter Nachrichten im

Rahmen von PRE (siehe Abschnitt 2.7.5) ermöglicht. Im Gegensatz zu verschlüsselten

Alternativen wie SFTP oder FTPS können hier die Inhalte direkt untersucht werden.

FTP ist zustandsbehaftet und verwendet zwei separate Verbindungen: eine Kontrollverbin-

dung für Kommandos und Statusmeldungen sowie eine Datenverbindung für Dateiüber-

tragungen. Für diese Dissertation wird ausschließlich die Kontrollverbindung betrachtet.

Kommandos bestehen aus einem Schlüsselwort und optionalen Argumenten, Serverant-

worten aus Statuscodes und Text. Der Standard lässt sich durch implementierungsspezifi-

sche Kommandos erweitern.

Ein typischer Ablauf beginnt mit der Serverbegrüßung und der Authentifizierung mittels

USER und PASS. Ein häufiger Anwendungsfall ist der anonyme Login, bei dem der Benutzer-

name anonymous und ein beliebiges Passwort verwendet werden kann, üblicherweise guest

oder eine E-Mail-Adresse. Im Anonymous-Modus ist der Zugriff auf das Serverdateisystem

in der Regel eingeschränkt, etwa auf das Auflisten und Herunterladen von Dateien. Nach

erfolgreicher Anmeldung kann der Client beispielsweise das aktuelle Verzeichnis abfragen

(PWD) oder eine Datenverbindung aufbauen. Eine exemplarische FTP-Sitzung ist in Listing

2.1 dargestellt [PR85; DEM94].

25

2 Grundlagen

< 230-Welcome user to FTP server

< 230-ProFTPD Server (FTPD) [XXX.XXX.XXX.XXX]

< 230 Please log in.

> USER anonymous

< 331 Anonymous login ok, send email address as your password

> PASS john@doe.com

< 230 Anonymous access granted, restrictions apply

> PWD

< 257 "/" is the current directory

Listing 2.1: Eine typische FTP-Kommunikation. Client-Pakete sind mit „>“ markiert,

Server-Pakete mit „<“. Quelle: [Kie+22]

2.7.3 Hypertext Transfer Protocol (HTTP)

HTTP ist seit 1991 ein zentrales Protokoll des Internets, primär zur Übertragung von Web-

seiten. Als zustandsloses Protokoll enthält jede Anfrage alle notwendigen Informationen

zur Verarbeitung. Ein Request umfasst die Methode (z. B. GET, POST), den Pfad und die

HTTP-Version. Die Antwort enthält mindestens die Version und einen Statuscode [Nie+99].

Die Statuscodes werden dabei grob in fünf Kategorien unterteilt:

• 1xx: Information

• 2xx: Erfolg

• 3xx: Weiterleitung

• 4xx: Clientfehler

• 5xx: Serverfehler

Einige Beispiele für Statuscodes sind 200 „OK“, 301 „Moved Permanently“ und 404 „Not

Found“ [Nie+99].

HTTP-Nachrichten können zusätzliche Header-Felder transportieren, z. B. Content-Type,

User-Agent oder Cookie, und optional einen Body enthalten (z. B. HTML oder JSON).

Für diese Dissertation wird ausschließlich HTTP/1.1 betrachtet; neuere Versionen wie

HTTP/2 oder HTTP/3 werden aufgrund der erhöhten Komplexität nicht analysiert. Laut

Cloudflare entfallen aktuell etwa 50% der API-Zugriffe auf HTTP/1.1 und nur rund 12%

auf HTTP/3 [BP23].

2.7.4 Angriffsvektoren auf Netzwerkprotokolle

Fehlerhafte Implementierungen von Netzwerkprotokollen entstehen häufig durch un-

zureichende Tests, missverstandene Spezifikationen oder unbeachtete Randfälle. Solche

26

2.7 Netzwerkprotokolle

Schwachstellen bieten Angreifern Möglichkeiten, um Systeme zu destabilisieren, unerwar-

tetes Verhalten auszulösen oder unberechtigten Zugriff auf vertrauliche Daten zu erlangen.

Typische Angriffsvektoren lassen sich wie folgt kategorisieren [SWS07]:

• Denial of Service (DoS): Ein System wird durch Überlastung (z. B. hohe Anfrage-

frequenz) oder durch Ausnutzung logischer oder implementierungsbedingter Fehler

in seiner Verfügbarkeit eingeschränkt. Beispiele sind Ressourcenerschöpfung, End-

losschleifen oder speziell gestaltete Nachrichten, die intensive Verarbeitungspfade

auslösen [IHR06].

• Injections (z. B. SQL-Injection): Werden Eingaben ohne sichere Behandlung in

nachfolgende Verarbeitungsschichten eingebracht (z. B. in Datenbankabfragen), kön-

nen Angreifer Codeausführung, unautorisierten Datenzugriff oder Datenmanipula-

tionen erreichen. Solche Injections betreffen nicht nur SQL, sondern prinzipiell jede

Schicht, die Eingaben interpretiert (Command-, XPath-, OS-Injection u. ä.) [Cla09].

• Implementierungsfehler: Fehlende Längenprüfungen, inkorrekte Grenzfallbe-
handlung oder Pointer-Fehler führen zu Schwachstellen (z. B. Pufferüberlauf). His-

torische Beispiele wie der Heartbleed-Bug [Bla25] in OpenSSL zeigen, dass ungenü-

gende Prüfungen zu Auslese sensibler Speicherbereiche führen können und damit

Vertraulichkeit und Integrität gefährden [SWS07].

• Ausnutzung falscher Zustände: Das Senden von Nachrichten in falscher Rei-

henfolge oder das Erzeugen inkonsistenter Zustände kann in zustandsbehafteten

Protokollen zu unerwartetem Verhalten führen (z. B. Verarbeitungsfehler bei DELETE

vor CREATE). Fehlt eine robuste Zustandsvalidierung, können dadurch Berechtigungs-

fehler oder inkonsistente Datenzustände entstehen [SWS07].

2.7.5 Protocol Reverse Engineering (PRE)

Beim PRE wird die Spezifikation eines bislang unbekannten Kommunikationsprotokolls

systematisch aus beobachtbarem Netzwerk- oder Schnittstellenverkehr rekonstruiert.

Das Ziel besteht darin, strukturelle Informationen wie Nachrichtenformate, Feldgrenzen,

Konstanten, Nachrichtentypen und gegebenenfalls ein implizites Zustandsmodell zu extra-

hieren. Typische Ergebnisse sind eine formale Nachrichtensyntax (z. B. als Grammatik oder

Feldlayout) und ein Modell der Kontrollflusslogik (z. B. als endlicher Automat) [Won+08;

ANV11].

Der übliche PRE-Workflow umfasst das Erfassen und Vorverarbeiten von Traffic, die Seg-

mentierung von Nachrichten, die Inferenz von Feldgrenzen und Datentypen, die Induktion

von Syntaxregeln sowie das Lernen eines Zustandsmodells. Zur Umsetzung werden di-

verse Techniken kombiniert: Hierzu zählen Clusteranalyse und Feature-Engineering zur

Gruppierung ähnlicher Nachrichten, heuristische Verfahren zur Felddetektion (Delimi-

ter-Erkennung, Entropieanalyse) sowie Algorithmen zur Grammatikinduktion und formale

Lernverfahren für Automaten. Praktische Tools verknüpfen häufig passive Beobachtung

mit aktiven Maßnahmen (gezielte Anfragen), um nicht beobachtete oder verschleierte

Protokollpfade zu erschließen [CKW07; Com+09; ANV11].

27

2 Grundlagen

Protokolle lassen sich für PRE entlang zweier Dimensionen klassifizieren: textbasiert

versus binär sowie zustandslos versus zustandsbehaftet. Textbasierte Formate verwenden

druckbare Zeichen und Delimiter, während binäre Formate mit kompakten Bytefolgen,

Längenfeldern und Bitfeldern arbeiten. Mischformen sind ebenfalls möglich. Zustands-

behaftete Protokolle besitzen implizite oder explizite Zustandsmaschinen, deren Rekon-

struktion für sinnvolle, zustandsbewusste Testvektoren erforderlich ist. Bei zustandslosen

Protokollen hingegen reichen oft unabhängige Nachrichtenmutationen aus [Sch08; Bha25].

Ein erfolgreiches PRE ermöglicht eine weitergehende Analyse der Kommunikation, wie

tiefgehende Paketinspektion [Bro18] und Fuzzing [Bha22]. Beide Verfahren können effek-

tiver arbeiten, wenn sie über die detaillierte Spezifikation des Protokolls verfügen [SM07;

Com+09].

Das Vorgehen beim PRE lässt vermuten, dass KI hier ein besonders großes Potenzial bietet.

KI kann Protokolle automatisiert analysieren, verborgene Zusammenhänge erkennen und

somit die Effizienz und Tiefe der Analyseverfahren deutlich steigern. Dadurch wird PRE

zu einem wichtigen Anwendungsfeld moderner KI-Technologien.

Aufbauend darauf bietet sich der Einsatz neuronaler Netzwerke an, die komplexe Muster

in großen Datenmengen erkennen und verarbeiten können. Im folgenden Kapitel werden

daher die grundlegenden Konzepte ihrer Architekturen vorgestellt, die für KI-gestützte

Analyseverfahren von zentraler Bedeutung sind.

2.8 Neuronale Netzwerkarchitekturen

Neuronale Netze gehören zu den zentralen Methoden des maschinellen Lernens. Ihr

Grundprinzip besteht darin, Eingaben durch eine Abfolge miteinander verbundener Verar-

beitungseinheiten in Ausgaben zu überführen. Dabei werden die Verbindungen zwischen

den Einheiten mit Gewichtungen versehen, deren Anpassung es ermöglicht, aus Daten

zu lernen und Muster zu erkennen. Dieses Vorgehen erlaubt es, auch komplexe Abhän-

gigkeiten in den Eingabedaten abzubilden und für unterschiedliche Aufgaben nutzbar zu

machen [HSW+89].

Um die Funktionsweise und die Stärken dieser Modelle besser zu verstehen, ist es not-

wendig, ihre grundlegenden Architekturen zu betrachten. Im Folgenden werden daher

verschiedene Ausprägungen neuronaler Netze vorgestellt.

2.8.1 Künstliches neuronales Netz (KNN)

Künstliche Neuronale Netze (KNNs) sind rechnergestützte Modelle, die von der Funktions-

weise des menschlichen Gehirns inspiriert sind. Sie bestehen aus einer Vielzahl künstlicher

Neuronen, die in mehreren Schichten organisiert sind und über gewichtete Verbindungen

miteinander kommunizieren. Typischerweise setzt sich ein KNN, wie in Abbildung 2.7

dargestellt, aus einer Eingabeschicht, einer oder mehreren verborgenen Schichten (Hidden

Layers) und einer Ausgabeschicht zusammen [Wut24].

28

2.8 Neuronale Netzwerkarchitekturen

Eingabe-
schicht

verborgene
Schichten

Ausgabe-
schicht

Abbildung 2.7: Schematische Darstellung eines künstlichen neuronalen Netzes. Quel-

le: [Wut24]

Die Verarbeitung von Informationen erfolgt schichtweise. Die Eingabedaten werden zu-

nächst der Eingabeschicht zugeführt und dann schrittweise in den nachfolgenden Schichten

transformiert. Dabei berechnet jedes Neuron eine gewichtete Summe seiner Eingaben und

überführt diese mithilfe einer Aktivierungsfunktion in einen Ausgabewert. Dieser wird an

die nächste Schicht weitergegeben [Wut24].

Beim Training eines neuronalen Netzes werden die Verbindungen zwischen den Neuro-

nen schrittweise angepasst, um die Übereinstimmung zwischen den vorhergesagten und

den tatsächlichen Ergebnissen zu optimieren. Zu diesem Zweck kommt das sogenannte

Backpropagation-Verfahren in Kombination mit dem Gradientenabstieg zum Einsatz. Beim

Backpropagation-Verfahren wird der am Ende des Netzes entstehende Fehler rückwärts

durch alle Schichten weitergegeben. So lässt sich ermitteln, welche Verbindungen den

Fehler am stärksten beeinflussen. Diese Verbindungen werden dann gezielt angepasst. Der

Gradientenabstieg legt fest, in welche Richtung und wie stark die Gewichte verändert

werden müssen, um den Fehler zu verringern. Dabei spielt die Lernrate eine wichtige Rolle:

Ist sie zu groß, wird das Training instabil, ist sie zu klein, dauert es sehr lange, bis das

Netz lernt. Durch diesen wiederholten Prozess aus Vorwärts- und Rückwärtsrechnung

lernt das Netzwerk Schritt für Schritt, auch komplizierte Zusammenhänge in den Daten

zu erkennen, um beispielsweise Dinge zu klassifizieren, Werte vorherzusagen oder Muster

zu erkennen [Wut24].

Der Schichtaufbau ermöglicht zudem die Verarbeitung unterschiedlicher Datentypen.

Eingabeschichten nehmen Rohdaten wie Text, Bilder oder Zeitreihen auf, während tiefere

Schichten zunehmend abstraktere Merkmale extrahieren. Die anfänglich zufällig gesetzten

Gewichtungen werden über viele Iterationen hinweg optimiert, wobei Validierungsda-

29

2 Grundlagen

−5 0 5

0

0.5

1

Eingabe

A
u
sg
a
b
e

Sigmoid

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Eingabe
A
u
sg
a
b
e

Tanh

−5 0 5 10
0

5

10

Eingabe

A
u
sg
a
b
e

ReLU

Abbildung 2.8: Funktionsdiagramm der Aktivierungsfunktionen von Sigmoid, Tanh und

ReLU. Quelle: frei nach [Sha25]

ten helfen, eine Überanpassung zu vermeiden. Dabei bestimmen Struktur und Größe

des Netzwerks sowohl die Fähigkeit zur Merkmalsextraktion als auch den Trainingsauf-

wand [Wut24].

Im Folgenden werden zentrale Bausteine neuronaler Netze näher erläutert.

2.8.1.1 Aktivierungsfunktion

Aktivierungsfunktionen entscheiden darüber, ob ein Neuron „aktiviert“ wird, und be-

einflussen maßgeblich die Fähigkeit des Netzes, nichtlineare Zusammenhänge zu mo-

dellieren. Sie bestimmen, wie stark ein Neuron auf bestimmte Eingangssignale reagiert,

und sind somit von entscheidender Bedeutung für die Lernfähigkeit des Netzes. Zu den

gebräuchlichsten Funktionen zählen die in Abbildung 2.8 dargestellte Sigmoid-Funktion,

die Tanh-Funktion und die Rectified Linear Unit (ReLU) [Sha25]:

• Sigmoid-Funktion: Die Sigmoid-Funktion hat die Form 𝜎 (𝑥) = 1

1+𝑒−𝑥 und bil-

det jeden reellen Wert auf den Bereich (0, 1) ab. Dadurch eignet sie sich gut für

Ausgaben, die als Wahrscheinlichkeiten interpretiert werden sollen, insbesondere

in binären Klassifikationsaufgaben. Ein Nachteil der Sigmoid-Funktion ist jedoch,

dass sie bei großen oder kleinen Eingangswerten zu sehr flachen Gradienten führt

(Gradientenproblem), wodurch sich das Lernen in tiefen Netzwerken verlangsamen

kann [Sha25].

• Tanh-Funktion: Die Tanh-Funktion (hyperbolischer Tangens) ist definiert als

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 und transformiert Eingaben in den Bereich (−1, 1). Im Vergleich

zur Sigmoid-Funktion ist sie zentriert, was oft zu schnellerer und stabilerer Kon-

vergenz führt, da die Mittelwerte der Aktivierungen näher bei null liegen. Dennoch

leidet auch die Tanh-Funktion unter dem Vanishing-Gradient-Problem bei extremen

Eingabewerten [Sha25].

• ReLU-Funktion Die Rectified Linear Unit (ReLU)-Funktion ist definiert als 𝑓 (𝑥) =
max(0, 𝑥) und hat sich in vielen modernen neuronalen Netzen als Standard durchge-

setzt. Sie ist einfach, effizient und reduziert das Problem verschwindender Gradienten,

30

2.8 Neuronale Netzwerkarchitekturen

2

EINGABE
(28 × 28 × 1)

Convo-
lution
5×5

(24 × 24 × n1)

Max-
Pooling
2×2

(12 × 12 × n1)

Convo-
lution
5×5

(8 × 8 × n2)

Max-
Pooling
2×2

(4 × 4 × n2)

Flattened

0

1

2
. . .

9

Fully-Connected Neural Network
mit ReLU Aktivierungsfunktion

Ausgabe

Abbildung 2.9: Schematische Darstellung eines Convolutional Neural Networks. Quelle:

frei nach [Red+21]

da sie bei positiven Werten eine konstante Ableitung von 1 liefert. Ein Nachteil der

ReLU ist jedoch das sogenannte „Dying ReLU“-Problem: Neuronen, die dauerhaft

negative Eingabewerte erhalten, geben keine Aktivierung mehr weiter und „sterben“

während des Trainings ab [Sha25].

2.8.1.2 Dropout

Dropout ist eine regulierende Technik, die während des Trainings zufällig ausgewähl-

te Neuronen deaktiviert. Dadurch wird verhindert, dass sich das Netzwerk zu stark an

die Trainingsdaten anpasst (Overfitting), und die Generalisierungsfähigkeit auf neue,

unbekannte Daten wird verbessert. Dropout wirkt, indem es während des Trainings gewis-

sermaßen viele leicht unterschiedliche Versionen des Netzwerks erzeugt, die gemeinsam

trainiert werden, was die Stabilität und Robustheit des Modells erhöht [Sri+14].

2.8.1.3 Optimizer

Optimierer sind Algorithmen, die die Gewichte des neuronalen Netzes während des

Trainings so anpassen, dass der Fehler minimiert wird. Neben dem klassischen Gra-

dientenabstieg (Gradient Descent) existieren zahlreiche Varianten wie Adam [KB17],

RMSprop [HSS12] oder Adagrad [DHS11], die durch adaptive Lernraten und zusätzliche

Informationen wie Bewegungsrichtung (Momentum) die Konvergenz beschleunigen und

verbessern [Rud17].

2.8.2 Convolutional Neural Network (CNN)

Das Convolutional Neural Network (CNN) wurde wegen seiner Leistung bei Aufgaben der

Bilderkennung populär. Ein möglicher Aufbau eines CNNs ist in Abbildung 2.9 dargestellt.

Im Gegensatz zu herkömmlichen neuronalen Netzen werden die Eingabedaten in einem

CNN abschnittsweise analysiert. Dabei wird ein kleiner Bereich, das sogenannte Schiebe-

fenster oder Filter, über das gesamte Bild bewegt. In jedem Schritt untersucht dieser Filter

nur einen kleinen Teil des Bildes und erkennt darin einfache Muster, zum Beispiel Kanten

oder Farbverläufe.

31

2 Grundlagen

x Encoder z Decoder x′

Idealerweise sind Eingabe und Ausgabe identisch: x ≈ x′

Flaschenhals

Originale
Eingabe

Rekonstruierte
Eingabe

Abbildung 2.10: Schematische Darstellung eines Autoencoders. Quelle: frei nach [Wen18]

Die Gewichtungen des Filters bleiben bei dieser Bewegung gleich. Dadurch kann das

Netz dieselben Merkmale überall im Bild erkennen, unabhängig davon, wo sie auftreten.

Viele solcher Filter arbeiten gleichzeitig in verschiedenen Kanälen, um unterschiedliche

Merkmale zu erfassen.

Diese Vorgehensweise ermöglicht es dem Netzwerk, selbstständig aussagekräftige Merk-

male aus den Rohdaten zu lernen. Der früher notwendige Schritt, Merkmale manuell zu

definieren, entfällt somit.

Obwohl CNNs hauptsächlich in der Bildverarbeitung eingesetzt werden, lässt sich das

Prinzip auch auf andere strukturierte Daten anwenden, beispielsweise auf Texte, Musik

oder Binärdateien [KSH12].

2.8.3 Autoencoder (AE)

Autoencoder (AE) sind künstliche neuronale Netzwerke, die darauf ausgelegt sind, eine

Reduktion der Dimensionalität für ein gegebenes Eingabedatum zu erreichen, während

so viel Information wie möglich erhalten bleibt. Dies ist in Abbildung 2.10 dargestellt.

Während des Trainings versucht der Autoencoder, die Eingabedaten am Ausgang mög-

lichst genau zu rekonstruieren. Die Verlustfunktion misst den Unterschied zwischen den

ursprünglichen Eingabedaten und der vom Netzwerk erzeugten Rekonstruktion. Je kleiner

dieser Unterschied ausfällt, desto besser hat das Netzwerk gelernt, die wichtigsten Merk-

male der Daten zu erfassen und unwichtige Details zu verwerfen. Die Architektur selbst

enthält einen Flaschenhals in einer mittleren Schicht, um das Netzwerk dazu zu zwingen,

Daten zu komprimieren, aber rekonstruierbare Informationen zu bewahren. Die Größe der

mittleren Schicht muss die komprimierte Größe balancieren und relevante Informationen

in einer unbekannten Kodierung bewahren. Dies teilt das neuronale Netzwerk in zwei

Komponenten, nämlich den Encoder- und den Decoder-Teil. Nachdem der AE trainiert

wurde, wird das Decoderelement entfernt, sodass alle Eingabedaten nur noch in ihrer

kodierten Form zurückgegeben werden [HS06].

32

2.8 Neuronale Netzwerkarchitekturen

Generator

R
au
sc
h
en

Reale Bilder Daten

Daten

Discriminator

echt

erzeugt

Verlustfunktion

Abbildung 2.11: Schematische Darstellung eines Generative Adversarial Networks. Quelle:

frei nach [Kin21]

2.8.4 Generative Adversarial Network (GAN)

Das Generative Adversarial Network (GAN) wurde entwickelt, um ein generatives Modell

zu erzeugen, das die zugrunde liegende Verteilung der Trainingsdaten nachbildet. Wie in

Abbildung 2.11 dargestellt, besteht die Architektur aus zwei miteinander konkurrierenden

neuronalen Netzwerken.

Das erste Netzwerk, der Generator, erhält Zufallsrauschen als Eingabe und versucht, daraus

ein Bild zu erzeugen, das den echten Beispielen aus dem Trainingsdatensatz möglichst

ähnlich ist. Das zweite Netzwerk, der Diskriminator, bekommt sowohl ein echtes als auch

ein vom Generator erzeugtes Bild und soll entscheiden, welches Bild echt und welches

künstlich ist.

Die Rückmeldung des Diskriminators dient als Grundlage für die Fehlerkorrektur des

Generators: Erkennt der Diskriminator ein Bild als „künstlich“, werden die Parameter des

Generators so angepasst, dass dessen Ausgaben realistischer werden.

Durch dieses Zusammenspiel entsteht ein wettbewerbsorientierter Lernprozess, bei dem

sich beide Netzwerke gegenseitig verbessern. Der Generator erzeugt immer überzeugen-

dere Bilder und der Diskriminator erkennt immer feinere Unterschiede [Goo+14].

2.8.5 Long Short-Term Memory (LSTM)

Ein Recurrent Neural Network (RNN) ist eine Netzwerkarchitektur, bei der ein Teil des

verborgenen Zustands an den nächsten Zeitschritt zurückgeführt wird. Dadurch kann das

Netzwerk zeitliche Abhängigkeiten in den Daten erkennen.

33

2 Grundlagen

Ct−1

ht−1

Xt

×

σ

ft

+

σ tanh

×
it

Ĉt

Ct

tanh

σ ×
ot

ht

ht

Abbildung 2.12: Schematische Darstellung einer Long Short-Term Memory Zelle. Quelle:

frei nach [Che18]

Das Long Short-Term Memory (LSTM) ist eine spezielle Form des RNN, die besonders gut

darin ist, langfristige Abhängigkeiten zu erfassen, und dabei typische Probleme wie das

Verschwinden oder Explodieren von Gradienten vermeidet. Der Aufbau einer LSTM-Zelle

ist in Abbildung 2.12 dargestellt.

Eine LSTM-Zelle besteht aus einem Zellzustand (𝐶𝑡), der Informationen über viele Zeit-

schritte wie ein „Speicherband“ transportiert, sowie drei Torstrukturen, die den Informati-

onsfluss steuern:

• Vergessenstor (𝑓𝑡): entscheidet, welche Informationen aus dem Zellzustand gelöscht

werden,

• Eingangstor (𝑖𝑡): bestimmt, welche neuen Informationen aufgenommen werden,

• Ausgangstor (𝑜𝑡): legt fest, welche Informationen als Ausgabe oder für den nächsten

Zeitschritt weitergegeben werden.

Mithilfe dieser Tore kann der Zellzustand gezielt aktualisiert, gelöscht oder beibehal-

ten werden. Dadurch ist das Netzwerk in der Lage, relevante Informationen über lange

Zeiträume zu speichern.

Für die Arbeit mit Textdaten (sequentielle Buchstaben) ist es üblich, ein Wörterbuch oder

Alphabet zusammen mit einer geeigneten Einbettung zu verwenden, um die Informationen

in einen mittelgroßen Vektor für jedes Wort oder Zeichen zu kondensieren. Der Text wird

in eine Matrix der Dimensionen Länge
Text

× Länge
Embedding

umgewandelt [HS97].

2.8.6 Self-Organizing Map (SOM)

Die Self-Organizing Map (SOM) ist eine unüberwachte neuronale Architektur, deren Aus-

gabeneuronen typischerweise ein- oder zweidimensional angeordnet sind. Dadurch ist eine

34

2.8 Neuronale Netzwerkarchitekturen

· · ·

Abbildung 2.13: Schematische Darstellung einer Self-Organizing Map. Quelle: frei nach

[Sto10]

topologische Projektion der Eingabedaten möglich. Dabei werden ähnliche Datenpunkte

auf benachbarte Regionen der Karte abgebildet, sodass Clusterstrukturen sichtbar werden.

Jedes Ausgabeneuron ist durch einen Gewichtsvektor im Eingaberaum charakterisiert.

Wie in Abbildung 2.13 dargestellt, passt sich die SOM während des Trainings iterativ an

die Datenverteilung an, indem die Gewichtsvektoren verschoben und geglättet werden.

Für eine gegebene Eingabe wird das sogenannte Best Matching Unit (BMU) als Gewinner-

neuron bestimmt. Es kann als Repräsentant der Eingabe sowie für deren Indexierung oder

Klassifikation genutzt werden [Koh82].

2.8.7 Large Language Model (LLM)

Ein LLM wird auf großen Mengen von Textdaten trainiert, um Muster in natürlicher

Sprache zu erkennen und kohärente Ausgaben zu erzeugen. Die zugrunde liegende Archi-

tektur basiert auf dem Transformer-Modell und nutzt den Self-Attention-Mechanismus.

Ein Transformer ist eine speziell für die Verarbeitung von Sequenzen, wie etwa Text,

entwickelte Netzwerkarchitektur. Im Unterschied zu klassischen RNNs verarbeitet ein

Transformer alle Positionen einer Sequenz gleichzeitig. Dadurch kann er Zusammen-

hänge zwischen weit auseinanderliegenden Wörtern effizienter erfassen. Der zentrale

Mechanismus im Transformer ist die sogenannte Self-Attention: Für jedes Wort wird

berechnet, in welchem Maß es mit allen anderen Wörtern der Sequenz in Beziehung steht.

So kann das Modell die Bedeutung eines Wortes im Kontext des gesamten Satzes oder

Textes berücksichtigen und semantische Zusammenhänge effektiv erfassen. Zusätzlich

können Beziehungen zwischen Wörtern auch über lange Distanzen hinweg erfasst und

deren Bedeutung je nach Kontext unterschiedlich gewichtet werden [Vas+17]. Je nach

Modelltyp wird ein Encoder (z. B. BERT [Dev+19]), ein Decoder (z. B. GPT [Rad+19]) oder

eine Kombination aus Encoder und Decoder (z. B. T5 [Raf+20]) eingesetzt. Als Ergebnis

können LLMs das nächste Wort oder die nächste Phrase mit hoher Wahrscheinlichkeit

vorhersagen und konsistenten Text erzeugen. Zu den typischen Anwendungsbereichen

zählen unter anderem die Beantwortung von Fragen, die Textzusammenfassung sowie die

Generierung strukturierter Inhalte [Str25].

35

2 Grundlagen

2.8.7.1 Modell-Anpassung

Die ML-Community stellt eine Vielzahl vortrainierter LLMs frei zur Verfügung. Diese

umfassen häufig mehrere natürliche Sprachen (z. B. Englisch, Französisch, Deutsch) sowie

Programmiersprachen (z. B. Python, JavaScript). Plattformen wie Hugging Face
1
ermög-

lichen einen direkten Zugriff auf diese Modelle. Obwohl sie sofort eingesetzt werden

können, ist für spezifische Anwendungsfälle oft eine weitere Anpassung erforderlich, etwa

durch Fine-Tuning oder Prompt-Tuning [Str25].

2.8.7.2 Fine-Tuning

Fine-Tuning beschreibt die gezielte Anpassung der Modellparameter eines vortrainierten

LLM, um es auf eine konkrete Aufgabe oder ein spezielles Datenset abzustimmen. Dies

kann beispielsweise die Verbesserung von Fähigkeiten in der Sentiment-Analyse, der

Fragebeantwortung oder der Erzeugung strukturierter Daten (z. B. XML) umfassen. Der

Vorgang erfordert ein zusätzliches Training auf einem zielgerichteten Datensatz, um die

Parameter optimal anzupassen. Aufgrund der teils Milliarden umfassenden Parameter

aktueller Modelle ist dieser Prozess rechenintensiv, benötigt spezialisierte Ressourcen wie

Hochleistungs-Graphics Processing Units (GPUs) oder Tensor Processing Units (TPUs)

und kann über längere Zeiträume andauern [Xu+21].

2.8.7.3 Prompt-Tuning

Da die umfassende Vorschulung von LLMs bereits eine breite Sprachkompetenz ver-

mittelt, ist es oft ineffizient, alle Modellparameter neu anzupassen. Eine ressourcen-

schonendere Methode ist Prompt-Tuning, eine spezielle Parameter-Efficient Fine-Tu-

ning (PEFT)-Technik [Pat24]. Dabei werden die ursprünglichen Gewichte des Modells

eingefroren, während nur eine kleine Anzahl zusätzlicher Prompt-Parameter trainiert wird.

Mithilfe gezielter Eingabe-Ausgabepaare wird das Modell so optimiert, dass es bestimmte

Aufgaben zuverlässiger bearbeitet. Dieser Ansatz nutzt das in der Vorschulung erworbene

Wissen. Er reduziert den Anpassungsaufwand erheblich und eignet sich daher besonders

für spezialisierte Anwendungen bei komplexen Modellen [LAC21; Yon+23].

2.8.7.4 Modell-Inference

In der Inference-Phase nutzt ein LLM sein erlerntes Sprachmodell, um auf eine Eingabe

(Prompt) Antworten und Ausgaben zu generieren. Dabei werden probabilistische Vor-

hersagen genutzt, um die wahrscheinlichste Fortsetzung des Textes zu erzeugen [Pla20;

YG23]. Dies ermöglicht es dem Modell, auch auf unbekannte Daten zu reagieren und

kohärente Texte, Code oder Antworten zu erstellen. Die Effizienz und Genauigkeit des In-

ference bestimmen maßgeblich den praktischen Nutzen und die Einsatzmöglichkeiten von

1
https://huggingface.co/

36

2.9 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

LLMs. Fortschritte in Architektur, Trainingsmethoden und Rechentechnologien verbes-

sern kontinuierlich die Leistungsfähigkeit dieser Modelle und erweitern ihre industrielle

Anwendbarkeit [Str25].

Der Einsatz großer Sprachmodelle veranschaulicht die Funktionsweise probabilistischer

Verfahren zur Mustererkennung in Textdaten. Doch auch in nichttextuellen Daten müssen

Strukturen erkannt und abgegrenzt werden. Während LLMs auf Wahrscheinlichkeiten im

Sprachraum basieren, nutzen andere Verfahren einen dichtebasierten Ansatz. Im Folgenden

wird ein Algorithmus zur Identifikation beliebig geformter Cluster und zur robusten

Behandlung von Ausreißern vorgestellt.

2.9 Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) ist ein dichteba-

sierter Clustering-Algorithmus, der Datenpunkte basierend auf deren lokaler Punktdichte

in Cluster gruppiert und Ausreißer als Rauschen klassifiziert. Durch die Verwendung eines

Nachbarschaftsparameters 𝜀 und einer minimalen Punktanzahl MinPts erkennt der Algo-

rithmus zusammenhängende Regionen hoher Dichte, ohne dass die Anzahl der Cluster

im Voraus bekannt sein muss. Dies ermöglicht die Identifikation von Clustern beliebiger

Form und macht DBSCAN besonders robust gegenüber Ausreißern [Est+96].

Eine Weiterentwicklung stellt Hierarchical Density-Based Spatial Clustering of Appli-

cations with Noise (HDBSCAN) dar, ein Algorithmus, der Cluster mit variabler Dichte

identifizieren kann. Im Gegensatz zu DBSCAN, das einen globalen Dichteparameter ver-

wendet, analysiert HDBSCAN die Dichte-Struktur über verschiedene Dichtegrade hinweg

und erstellt eine Hierarchie von Clustern. Anschließend werden die stabilsten Cluster

ausgewählt, während Punkte, die keinem stabilen Cluster zugeordnet werden können, als

Ausreißer betrachtet werden. Damit entfällt die Notwendigkeit, einen festen 𝜀-Parameter

zu definieren, und HDBSCAN ist besonders anpassungsfähig an komplexe Datenstruktu-

ren [CMS13].

37

3 ESP32 Code-Injektion bei unverändertem
Kontrollfluss mittels Binary Rewriting

Der Inhalt dieses Kapitels basiert auf einer gemeinsamen Veröffentlichung mit Benjamin

Plach, Maximilian Müller, Roland Gröll, Martin Dukek und Ingmar Baumgart. Teile der

präsentierten Ergebnisse wurden bereits in der unten aufgeführten Publikation veröf-

fentlicht. Es wird ein neuartiges Binary-Rewriting-Framework für die ESP32-Plattform

vorgestellt, das es ermöglicht, zusätzlichen Code in bestehende Firmware einzufügen, ohne

deren ursprüngliche Funktionalität zu beeinträchtigen.

• Benjamin Plach, Matthias Börsig, Maximilian Müller, Roland Gröll, Martin Dukek

und Ingmar Baumgart. „Binary-Level Code Injection for Automated Tool Support

on the ESP32 Platform“. In: Secure IT Systems: 29th Nordic Conference, NordSec

2024 Karlstad, Sweden, November 6–7, 2024 Proceedings. Hrsg. von Leonardo Horn

Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls. Bd. 15396. Lecture Notes

in Computer Science. Karlstad, Sweden: Springer-Verlag, Jan. 2025, S. 121–138. isbn:

978-3-031-79006-5. DOI: 10.1007/978-3-031-79007-2_7 [Pla+25].

3.1 Einleitung

In diesem Kapitel wird ein Ansatz zur Instrumentierung von ESP32-Firmware auf Binäre-

bene vorgestellt. Das Ziel besteht darin, den Binärcode so zu erweitern, dass zusätzliche

Analyseinformationen, beispielsweise über Speicherzugriffe, Funktionsaufrufe oder den

Kontrollfluss, während der Laufzeit gewonnen werden können, ohne das ursprüngliche

Verhalten der Firmware zu verändern. Auf diese Weise wird eine Grundlage geschaffen,

um Fuzzing und Schwachstellenerkennung auch ohne Zugriff auf den Quellcode effektiv

durchzuführen.

Eine zentrale Herausforderung bestand darin, Techniken des Binary Rewriting, die bislang

ausschließlich für Complex Instruction Set Computer (CISC)-basierte x86-Architekturen

verfügbar waren, auf die RISC-basierte Xtensa-ISA des ESP32 zu übertragen. Hierzu wur-

den bestehende Patching-Strategien analysiert, angepasst und erweitert. Besondere Sorg-

falt war erforderlich, um Patches in spezifischen Bereichen, wie dem .flash.text-Segment

(Speicherbereich im Flash, in dem der ausführbare Programmcode abgelegt ist), einzufügen,

ohne den ursprünglichen Kontrollfluss der Firmware zu verändern.

Die wesentlichen Beiträge lassen sich wie folgt zusammenfassen:

39

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

• Anpassung von Binary-Rewriting-Techniken an die Xtensa-Architektur:
Übertragung und Erweiterung bestehender Patching-Strategien von x86 auf die

RISC-basierte Xtensa-ISA, um präzise Instrumentierung in ESP32-Firmware zu er-

möglichen.

• Implementierung eines eigenen Assemblers: Entwicklung eines minimalen, er-

weiterbarenAssemblers zur Unterstützung der für die Instrumentierung notwendigen

Xtensa-Befehle, einschließlich relativer Sprungbefehle und Adressberechnungen.

• Entwicklung eines statischen Binary-Rewriting-Frameworks: Aufbau eines

Frameworks, das Code-Injektionen in ESP32-Firmware erlaubt, ohne die ursprüngli-

che Funktionalität und den Kontrollfluss zu beeinträchtigen.

• Proof of Concept (PoC) für Fuzzing-Instrumentierung: Implementierung und

Evaluierung eines Tools, das Funktionsabdeckungsinformationen in modifizierte

ESP32-Binaries integriert und somit die Eignung des Frameworks für sicherheitsre-

levante Analysen belegt.

Damit trägt dieses Kapitel wesentlich zumGesamtziel dieser Dissertation bei, einemodulare

Grundlage für automatisierte Sicherheitstests von IoT-Geräten zu schaffen. Dieser Ansatz

stellt die notwendige Infrastruktur bereit, um Laufzeitinformationen effizient zu erfassen

und gezielt für nachgelagerte Fuzzing-Prozesse nutzbar zu machen.

3.2 Stand der Technik

In diesem Abschnitt werden Arbeiten vorgestellt, die unmittelbar als Grundlage für die

Umsetzung dienten. Das Ziel besteht darin, den aktuellen Stand der Technik einzuordnen,

die konzeptionelle Verwandtschaft zu verdeutlichen und den spezifischen Mehrwert des

vorgestellten Ansatzes klar herauszustellen.

Duck et al. [DGR20] entwickelten mit E9Patch einen statischen Binary Rewriter, der auf

einer Trampolin-Rewriting-Technik basiert und den langen relativen Sprung-Opcode E9

der x86-Architektur nutzt. Dieser Ansatz hat den Vorteil, dass er nur minimale Annahmen

über die zu modifizierende Binärdatei trifft und keinerlei Abhängigkeiten von Quellspra-

che, Compiler, Debugging-Informationen oder einer vollständigen Kontrollflussanalyse

benötigt. Gleichzeitig schließt die Methode Binärdateien aus, die selbstmodifizierenden

Code enthalten oder sich überschneidende Instruktionen nutzen.

Die Arbeit von Duck et al. basiert selbst zu Teilen auf der Idee von Chamith et al. [Cha+17]

und der von ihnen vorgestellten Technik des „Instruction Punning“. Dabei werden be-

stehende Maschinenbefehle so überschrieben, dass sie gleichzeitig ausführbar bleiben

aber auch als Anker für neue Sprungbefehle dienen. Dies ermöglicht das Einfügen von

Analysecode, ohne den Programmfluss zu verändern.

Der vorgestellte Ansatz basiert auf dieser Grundidee, geht jedoch in zwei wesentlichen

Punkten darüber hinaus. Zum einen wurde die Technik nicht für x86-64-Linux-Binärda-

teien eingesetzt, sondern auf die Xtensa-Architektur des ESP32 übertragen. Da diese mit

40

3.3 Design

Chip

Chip

Flash Dump extracted.bin

patched.bin

extracted.elf

patched.elf

read flash extract bin image2elf

Rewriting

elf2imagewrite flash

Esptool

ESP32-Image-Parser

Abbildung 3.1: Prozess des Binary Recovery, des Rewritings und erneuten Flashens

einem völlig anderen Befehlssatz und abweichenden Speicherstrukturen arbeitet, war teil-

weise eine methodische Neuentwicklung erforderlich. Zum anderen liegt der Fokus nicht

auf generischen Linux-Binärdateien, sondern auf proprietären IoT-Firmware-Images, die

zusätzliche Herausforderungen wie stark begrenzte Speicherressourcen mit sich bringen.

3.3 Design

Der in diesem Kapitel vorgestellte Ansatz wird im Folgenden als ESP32 Binary Rewriting

(EBR) bezeichnet, um eine konsistente Referenzierung zu ermöglichen.

Das Design besteht aus mehreren aufeinanderfolgenden Schritten: zunächst wird die

originale Binärdatei extrahiert. Anschließend erfolgt die Modifikation der Binärdatei

durch den gezielten Einsatz verschiedener Patching-Techniken. Abschließend wird die

modifizierte Binärdatei wieder auf das ESP32-Gerät geflasht.

3.3.1 Binary Recovery

Das Binary Recovery beginnt mit dem Extrahieren eines vollständigen Flash-Dumps des

ESP32-Geräts. Danachwird die Partitions-Tabelle wiederhergestellt und ihre Informationen

verwendet, um die Anwendungs-Binärdatei zu identifizieren. Eine wichtige Umwandlung

in diesem Prozess ist das Konvertieren der wiederhergestellten Anwendungs-Binärdatei

in das ELF-Dateiformat, was die anschließende Analyse und Modifikation vereinfacht. Die

allgemeine Idee dieses Extraktions- und Flash-Prozesses ist in Abbildung 3.1 dargestellt.

3.3.2 Rewriter

Der Rewriter besteht aus mehreren Patching-Taktiken, die jeweils spezifische Änderungs-
fälle im Code behandeln, sowie einer übergeordneten Strategie, die das gesamte Binärfile

41

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

<RIP:>

<+00> 32 c2 27

<+00> X6 XX XX j +0xXXXXX/4

<+03> 7c c8 ...

<RIP+0xXXXXX/4:>

<+00> ... /* patch */

<...> ... /* patch */

<...> ... /* patch */

<...> 32 c2 27 /* verschoben */

<...> R6 RR RR j +0xRRRRR/4

Abbildung 3.2: Anwendung der Jump-Taktik auf Xtensa

berücksichtigt. Die einzelnen Taktiken werden in einer festgelegten Reihenfolge ange-

wendet. Schlägt eine Methode fehl, wird automatisch die nächste ausprobiert. Ein Beispiel:

Kann die Jump-Taktik an einer Stelle keinen Patch setzen, wird als Nächstes die Punned-
Jump-Taktik verwendet.

3.3.2.1 Patching-Taktiken

Die Rewriter-Komponente ist dafür verantwortlich, die wiederhergestellte ELF-Binärdatei

zu modifizieren, um die notwendige Instrumentierung einzufügen. Hierfür werden ver-

schiedene Patching-Taktiken angewendet, um dies zu erreichen, ohne den ursprünglichen

Programmablauf zu verändern.

Jump-Taktik Die Jump-Taktik beinhaltet die Umleitung des Kontrollflusses vomursprüng-

lichen Code zur neu eingefügten Instrumentierung und dann zurück zum ursprünglichen

Code. Dies wird erreicht, indem Sprungbefehle anstelle der ursprünglichen Instrukti-

on eingefügt werden, die in den Trampolin-Code verschoben wird. Abbildung 3.2 zeigt

die Anwendung der Jump-Taktik auf die Xtensa-Architektur, wobei die folgende Syntax

verwendet wird: Die ursprüngliche Instruktion (rot) wird entfernt und durch den Sprung-

befehl (grün) ersetzt, wobei X einen beliebigen wählbaren Wert darstellt. Der Opcode

des Sprungbefehls hat sechs Bits, wodurch 18 Bits für den relativen Offset zum Zielort

übrig bleiben. Diese 18 Bits sind als fünf Xs dargestellt, wobei jedes ein halbes Byte in

hexadezimaler Kodierung repräsentiert, aber mit /4 (logische Rechtsverschiebung um

2 Bits) versehen wird, um anzugeben, dass die zwei Most Significant Bits (MSBs) abge-

schnitten werden, da sie Teil des Opcodes sind. Dieser Sprungbefehl verweist nun auf

den Beginn des Trampolins (rechte Seite in der Abbildung), an dem der Patch eingefügt

wird, einschließlich der ursprünglichen Instruktion am Ende. Die letzte Instruktion im

Trampolin zeigt auf die erste Instruktion nach dem Sprung.

Punned Jump-Taktik Die Punned Jump-Taktik ist eine Variante der Jump-Taktik, die

verwendet wird, wenn die Zielinstruktion, die durch den Sprungbefehl ersetzt werden soll,

eine kurze 16-Bit-Instruktion und keine 24-Bit-Instruktion ist. In solchen Fällen kann das

erste Byte der folgenden Instruktion in die aktuelle Instruktion integriert werden, eine

Technik, die als Instruction Punning [Cha+17] bekannt ist. Abbildung 3.3 zeigt die Punned

42

3.3 Design

<RIP:>

<+00> 9b 32

<+00> X6 XX j +0x7cXXX/4

<+02> 7c c8 ...

<RIP+0x7cXXX/4:>

<+00> ... /* patch */

<...> ... /* patch */

<...> ... /* patch */

<...> 9b 32 /* verschoben */

<...> R6 RR RR j +0xRRRRR/4

Abbildung 3.3: Anwendung der Punned Jump-Taktik auf Xtensa

<RIP:>

<+00> 9b 32

<+00> X6 XX j +0xY6XXX/4

<+02> 7c c8

<+02> Y6 YY j +0x79YYY/4

<+05> 79 33 10 ...

<RIP+0xY6XXX/4:>

<+00> ... /* patch */

<...> ... /* patch */

<...> ... /* patch */

<...> 9b 32 /* verschoben */

<...> R6 RR RR jmp +0xRRRRR/4

<RIP+0x02+0x79YYY/4:>

<+00> 7c c8 /* opfer */

<+02> S6 SS SS jmp +0xSSSSS/4

Abbildung 3.4: Anwendung der Successor Eviction-Taktik auf Xtensa

Jump-Taktik. Zusätzlich zur obigen Erklärung gibt es nun das gepunte Byte der folgenden
Instruktion (orange), das nicht geändert werden kann und den Bereich des Sprungbefehls

einschränkt. Je nach Programm kann es schwieriger sein, freien Speicherplatz für das

Trampolin zu finden. Diese Einschränkung wird bewusst in Kauf genommen, um neue

Möglichkeiten zu eröffnen: So ist es möglich, den Sprung in engen Bereichen einzufügen

und den Patch in Situationen zu verwenden, die sonst unmöglich wären.

Successor Eviction-Taktik Wenn die Punned Jump-Taktik nicht erfolgreich ist, kann die

Successor Eviction-Taktik verwendet werden, bei der auch die nächste Instruktion an einen

anderen Codebereich verschoben wird (mit einer der oben genannten Taktiken). Wenn

sowohl die ursprüngliche Instruktion als auch ihre Nachfolger verschoben werden, gibt es

zusätzliche Optionen, um ungenutzte Codepositionen zu finden. Die verschobenen Instruk-

tionen werden an eine neue Adresse innerhalb der Binärdatei verlegt, und der Kontrollfluss

wird angepasst, um sicherzustellen, dass das Programm weiterhin korrekt ausgeführt wird.

Abbildung 3.4 zeigt diese Taktik. Im Vergleich zur letzten Patching-Taktik gibt es nun zwei

Ersetzungen, die für Situationen vorgesehen sind, in denen die Instruction-Punning-Taktik

keinen geeigneten Bereich für den Trampolin-Code findet.

Neighbor Eviction-Taktik Die Neighbor Eviction-Taktik ist eine mögliche Option, falls die

Successor Eviction-Taktik fehlschlägt und ist ihr ähnlich, aber sie verschiebt eine Instruk-

43

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

<RIP:>

<+00> 9b 32

<+00> cc 10 bnez.n a0, +0x05

<+02> 7c c8 ...

<+04> 79 33 10

<+04> X6 j +0xY6YYX/4

<+05> Y6 YY j +0x39YYY/4

<+07> 39 72 ...

<RIP+0x05+0x39YYY/4:>

<+00> ... /* patch */

<...> ... /* patch */

<...> ... /* patch */

<...> 9b 32 /* verschoben */

<...> R6 RR RR j +0xRRRRR/4

<RIP+0x04+Y6YYX/4:>

<+00> 79 33 10 /* opfer */

<+03> S6 SS SS jmp +0xSSSSS/4

Abbildung 3.5: Anwendung der Neighbor Eviction-Taktik auf Xtensa

tion nach dem Patchpunkt. Dieser Ansatz, der in Abbildung 3.5 gezeigt wird, bietet noch

mehr Flexibilität bei der Suche nach ungenutzten Codepositionen. Da die Xtensa ISA kei-

nen kurzen relativen Sprung bietet, nutzt diese Taktik die bnez.n-Verzweigungsinstruktion,

einen 16-Bit-Befehl, der einen relativen Sprung ausführt, wenn ein Register ungleich null

ist. Das a0-Register enthält die Rücksprungadresse und sollte daher niemals null sein, was

zu einem garantierten Sprung führt.

3.3.2.2 Patching-Strategie

Für jede Ersetzung werden so lange nacheinander verschiedene Taktiken versucht, bis

eine erfolgreich angewendet werden kann. Wenn die letzte Taktik fehlschlägt, kann das

Patch nicht angewendet werden.

Alle Ersetzungen werden in umgekehrter Reihenfolge angewendet, das heißt, das Pat-

chen beginnt bei höheren Speicheradressen und setzt sich zu niedrigeren Adressen fort.

Dieses Vorgehen verhindert, dass nachfolgende Bytes „blockiert“ werden, die ebenfalls

verändert werden müssen. Zur Verdeutlichung sei das Beispiel der Punned Jump-Taktik in

Abbildung 3.3 betrachtet: Dort müsste auch die zweite Instruktion verschoben werden.

Würde man hingegen in normaler Reihenfolge patchen und zuerst die erste Instruktion

ändern, wäre das erste Byte der zweiten Instruktion bereits überschrieben und somit für

ein weiteres Patch nicht mehr zugänglich. Durch die umgekehrte Reihenfolge wird dieses

Problem vermieden, da die zweite Instruktion zuerst gepatcht wird und das Instruction

Punning der ersten Instruktion anschließend weiterhin korrekt mit dem neuen Byte Y6

durchgeführt werden kann.

3.4 Implementierung

Im Folgenden wird die Implementierung des im vorherigen Abschnitt besprochenen

Designs vorgestellt. Die Implementierung ist speziell auf das ESP32-WROOM-32-Modell

ausgelegt, welches eine weit verbreitete Version des ESP32 ist.

44

3.4 Implementierung

Tool Rewriter

Assembler Disassembler

ElfWrapper

ModifyElf

Abbildung 3.6: Beziehung der Hauptkomponenten des ESP32 Binary Rewriting Tools

3.4.1 Binary Recovery

Zunächst wird ein vollständiger Flash-Dump des Ziel-ESP32-Geräts mithilfe von Es-

ptool
1
extrahiert. Anschließend wird das ESP32-Image-Parser-Tool

2
verwendet, um das

Anwendungs-Image aus dem Flash-Dump zu lokalisieren und in das ELF-Format zu trans-

formieren. Da dieses Tool veraltet ist, waren mehrere Fehlerkorrekturen erforderlich, um

eine funktionsfähige Analyseumgebung bereitzustellen.

3.4.2 Rewriter

Das Rewriting-Tool ist der Hauptbeitrag und wird verwendet, um die wiederhergestellte

Binärdatei zumodifizieren und die notwendige Instrumentierung für Aufgabenwie Fuzzing

einzufügen. Abbildung 3.6 zeigt die Beziehung zu den anderen Komponenten.

Der Rewriter ist so strukturiert, dass er die zukünftige Entwicklung von Tools unter-

stützt. Es wurde ein neuer Assembler und ein Adapter für den Radare2-Disassembler

implementiert. Die ModifyElf-Bibliothek ermöglicht die Manipulation von ELF-Binär-

dateien. Sie kapselt die Komplexität des ELF-Formats und bietet sowohl eine Low-Le-

vel- als auch eine High-Level-Schnittstelle. Die Low-Level-Schnittstelle wird von der

ElfRaw-Klasse bereitgestellt, die detaillierte und präzise Modifikationen ermöglicht, wäh-

rend die ElfWrapper-Klasse eine abstraktere Schnittstelle für eine einfachere Handhabung

bietet.

3.4.2.1 Patching-Taktiken

Jede Patching-Taktik nimmt den Patch-Standort und den Patch-Code als Eingabe und

gibt zurück, ob der Patch-Versuch erfolgreich war oder nicht. Ein optionaler Parameter

ermöglicht es, die Reihenfolge zu bestimmen, sodass die verschobene Anweisung vor oder

1https://github.com/espressif/esptool/
2https://github.com/tenable/esp32_image_parser

45

https://github.com/espressif/esptool/
https://github.com/tenable/esp32_image_parser

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

nach dem Patch-Code ausgeführt wird, wobei der Standardwert die Ausführung vor dem

Patch-Code ist.

3.4.2.2 Patching-Strategie

Die Funktion mit dem Namen Patching-Strategie nimmt eine Liste von Patches und

versucht, sie in umgekehrter Reihenfolge an ihren Zielort anzuwenden. Für jeden Patch

wendet die Funktion sequenziell die verfügbaren Patching-Taktiken an. Derzeit wird zuerst

die Jump-Taktik versucht, gefolgt von der Punned Jump-Taktik.

Die Methode gibt Feedback zum Erfolg jedes Patch-Versuchs und fasst am Ende die Abde-

ckungsinformationen zusammen.

3.4.2.3 Assembler

Der Assembler erzeugt Code, der keine weitere Verlinkung erfordert. Damit der Assembler

Instruktionen mit relativen Offsets wie Sprüngen oder relativen Ladeanweisungen korrekt

kodieren kann, wird eine Startadresse zusammen mit den Anweisungen als Stream als

Eingabe verwendet.

Der Assembler unterstützt die grundlegenden Funktionen der Assemblersprache: die Ko-

dierung mehrerer Xtensa-Assembler-Anweisungen aus der Xtensa ISA-Zusammenfassung,

Assembler-Direktiven wie .align 4 für 4-Byte-Ausrichtung, Labels für Code-Standorte

und Kommentare [Cad22].

3.4.3 Flashen nach dem Binary Rewriting zurück auf das Gerät

Sobald das Rewriting abgeschlossen ist, kann die Binärdatei vom ELF-Format wieder in

das ESP-Anwendungsformat konvertiert und zurück auf das Gerät geflasht werden.

Die im Rewriting-Befehl angegebene Adresse muss die gleiche Adresse sein, von der

die Binärdatei wiederhergestellt wurde. Andernfalls kann der Bootloader die Datei nicht

finden. Diese Adresse kann in der wiederhergestellten Partitionstabelle nachgeschlagen

werden.

3.5 Proof of Concept

Der Binary Rewriter hat verschiedene Anwendungsmöglichkeiten, wie das Einfügen be-

liebigen Codes oder das Anwenden von Drittanbieter-Sicherheitspatches, ohne den Kon-

trollfluss des Originalprogramms zu ändern. Um das Potenzial des Tools zu demonstrieren,

wurde ein PoC entwickelt, das sich auf die Instrumentierung für Fuzzing konzentriert.

Dieses Tool wurde entwickelt, um das Potenzial des Binary Rewriters zu zeigen. Daher kon-

zentriert es sich nur auf das Sammeln von Abdeckungsinformationen für Funktionsaufrufe,

ohne Verzweigungen oder Schleifen zu verfolgen.

46

3.5 Proof of Concept

3.5.1 Entwicklung eines Beispiel-Tools

Drei Optionen wurden in Betracht gezogen, um die Zähler zu implementieren, die benötigt

werden, um Abdeckungsinformationen für das Fuzzing zu sammeln:

• Flash-Speicher: Die Nutzung eines ungenutzten Bereichs des Flash-Speichers zur

Speicherung von Zählervariablen kann zu Leistungsverbesserungen führen. Aller-

dings birgt dieser Ansatz Risiken, beispielsweise das Verlieren der gespeicherten

Informationen bei einem Stromausfall oder einem Geräteabsturz. Dies ist besonders

problematisch für Fuzzing, bei dem gezielt nach Abstürzen gesucht wird.

• Non-Volatile Storage (NVS)-Partition: Das Hinzufügen einer NVS-Partition zum

Firmware-Image, um Zählerinformationen zu speichern, kann eine effiziente Lösung

darstellen. Allerdings erfordert dies eine Modifikation der Partitionstabelle und die

Implementierung des NVS-Zugriffs in Assembler.

• Überwachungsnachrichten: Das Senden von eindeutigen Funktionskennungen

an ein verbundenes Gerät durch Überwachungsnachrichten ermöglicht das Zählen

von Funktionsaufrufen. Auf dem ESP32 werden Daten, die an stdout und stderr

gesendet werden, z. B. über printf, an ein Überwachungsgerät weitergeleitet. Diese

Option ist am einfachsten zu implementieren, stößt jedoch an ihre Grenzen, wenn

man Abdeckungsinformationen für alle Funktionen erfassen möchte. Der Grund

dafür ist, dass das Einfügen eines Zählers am Beginn einer Funktion wie printf und

aller von ihr aufgerufenen Funktionen eine Endlosschleife erzeugen würde.

Für den PoC wurden Überwachungsnachrichten über die printf-Funktion implemen-

tiert, da dies für die Aufgabe die natürlichste Option darstellt. Während das Fuzzing

von Standardbibliotheksfunktionen wie printf für eine umfassende Software-Sicherheit

grundsätzlich wichtig ist, stellt das Fehlen dieserMöglichkeit hier einen vernachlässigbaren

Nachteil dar, da der Fokus auf benutzerdefiniertem Anwendungscode liegt.

3.5.2 Implementierung des Beispiel-Tools

In diesem Abschnitt wird die Implementierung des Beispiel-Tools näher erläutert. Da-

bei werden das Speicherlayout und das String-Handling auf dem ESP32, die Erzeugung

von Patch-Code sowie die Auswahl vorhandener Strings und Register für die Instrumen-

tierung behandelt. Abschließend werden die Anwendungspunkte der Patches und die

Überwachungsstrategie erläutert.

3.5.2.1 Strings auf dem ESP32

Auf dem ESP32 werden Strings im Abschnitt .flash.rodata gespeichert. Die 24-Bit-In-

struktionsgröße der Xtensa-ISA erlaubt es nicht, 32-Bit-absolute Adressen direkt zu ko-

dieren, und die l32r-Instruktion, die zum Laden von 32-Bit-Werten verwendet wird, hat

einen begrenzten Bereich. Daher werden Zeiger auf Strings am Anfang des Abschnitts

47

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

.flash.text abgelegt und mit der l32r-Instruktion in Register geladen, bevor printf

aufgerufen wird.

<.flash.rodata:>

0x3f4041a8: 48 65 6c 6c 6f ; Hello

20 77 6f 72 6c ; Worl

64 21 00 ; d!\0

<.flash.text:>

0x400d0618: a8 41 40 3f ; pointer to 0x3f4041a8

0x400d500f: a1 82 ed ; l32r a10, -0x049f7

0x400d5012: e5 77 05 ; call8 <printf>

Listing 3.1: Strings auf dem ESP32

3.5.2.2 Patch-Code

Erste Versuche, benutzerdefinierte Strings im Patch-Code zu verwenden, schlugen fehl,

vermutlich aufgrund von Einschränkungen beim Zugriff auf den Speicher oder Problemen

bei der Codeausrichtung, die verhindern, dass die Hardware Bytes direkt aus demAbschnitt

.flash.text liest. Es zeigte sich jedoch, dass die Nutzung vorhandener Strings innerhalb

der Binärdatei, wie sie von Systemfunktionen verwendet werden, eine effektive Alternative

für Instrumentierungszwecke darstellt.

Es ist wichtig zu beachten, dass die Fähigkeit, benutzerdefinierte Strings in die Binärdatei

einzufügen, in bestimmten Szenarien wünschenswert sein mag, jedoch keine kritische

Anforderung für viele Formen der Sicherheitstests wie Fuzzing oder abdeckungsbasierte

Instrumentierung darstellt. Das Hauptziel des Rewriters ist es, beobachtende Instruktionen

einzufügen, ohne den Kontrollfluss der Firmware zu verändern, und dieses Ziel wird

unabhängig von der Quelle der Strings erreicht. Daher bietet die Verwendung von bereits

vorhandenen Strings eine praktische Lösung, ohne die Nützlichkeit oder Wirksamkeit des

Frameworks zu beeinträchtigen.

Daher wurden bestehende Strings in der Binärdatei verwendet, wobei mehrere Kriterien

berücksichtigt wurden:

• Verfügbarkeit:Der String muss in allen ESP32-Binärdateien vorhanden sein. Strings

in FreeRTOS, einem kleinen Betriebssystem, das häufig in ESP32-Anwendungen

verwendet wird, und in den in ESP32-Code kompilierten Funktionen erfüllen dieses

Kriterium.

• Position: Der Zeiger auf den String muss nahe genug an der l32r-Instruktion liegen,

damit diese ihn laden kann.

• Struktur: Der String muss einen 32-Bit-Integer als letzten Parameter akzeptieren.

Dadurch kann die Datenstruktur, die die aktuelle Adresse des Funktionsaufrufs

enthält, direkt ohne zusätzliche Konvertierungen ausgegeben werden.

48

3.5 Proof of Concept

Der String „W (%lu) %s: Flash clock frequency round down to %d“ wurde ausgewählt

und gekürzt. Sein Zeiger und die Adresse der printf-Funktion müssen beim Initialisieren

des Tools vorhanden sein.

Die Kernfunktion add_fuzzing_counter setzt den Patch-Code zusammen, lädt den String-

Zeiger, schneidet den String ab, lädt die Zähleradresse und ruft printf auf.

1 def add_fuzzing_counter(self, addr:int):

2 fuzzing_counter_patch = [

3 " l32r a10, " + hex(self.__addr_string_pointer),

4 " addi a10, a10, 52", # Kuerze den Anfang des Strings

5 " j jmplabel", # Springe (jump) ueber den Data Block

6 " .align 4",

7 "addrlabel: .uint32 " + hex(addr),

8 "jmplabel: l32r a11, addrlabel", # Immer -4

9 " call8 " + hex(self.__addr_printf_function)

10]

11

12 self.rewriter.add_patch(addr, fuzzing_counter_patch, moved_after_patch=

True)

Listing 3.2: Definieren des Patches

Die Register a10 und a11 können gefahrlos verwendet werden, da das Registerfenster

während des Funktionsaufrufs um 8 verschoben wurde und somit keine wichtigen Daten

überschrieben werden.

Patches werden auf die entry-Instruktion angewendet, die den Startpunkt jeder Funk-

tion markiert. Dadurch wird sichergestellt, dass jeder Zähler nur einmal pro Funkti-

onsaufruf ausgelöst wird, da der Kontrollfluss innerhalb eines Funktionsaufrufs nie zur

entry-Instruktion zurückkehrt.

3.5.2.3 Überwachung

Ein Überwachungsskript wurde implementiert, um die printf-Ausgaben auf dem Über-

wachungsgerät zu sammeln, Daten aus dem stdout-Stream zu filtern und Adressen zu

zählen, die vom Patch-Code gesendet werden. Nach einer festgelegten Zeit wird das Zählen

gestoppt und die Ergebnisse werden angezeigt.

3.5.3 Verwendung des Beispiel-Tools

Mithilfe des Beispiel-Tools kann nun Fuzzing-Instrumentierung in eine bestehende Binär-

datei eingefügt werden. Nach dem Zurückflashen auf das Gerät werden die Ergebnisse

mithilfe des Überwachungsskripts gesammelt.

49

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

Zunächst muss das Tool durch Angabe des Pfads zur extrahierten Binärdatei initialisiert

werden. Anschließend können Fuzzing-Zähler hinzugefügt werden. Der Benutzer muss

derzeit die Adressen selbst identifizieren, an denen die Zähler platziert werden sollen. Dies

kann beispielsweise mithilfe eines Disassemblers erfolgen. Diese Adressen werden über

die Methode add_fuzzing_counter eingebunden. Zudem muss das Framework darüber in-

formiert werden, wo zusätzlicher Code sicher eingefügt werden kann, ohne die bestehende

Funktionalität zu beeinträchtigen. Dies erfolgt mit der Methode add_free_space. Dieser

Schritt ist entscheidend für die Integrität und die korrekte Ausführung des Programms.

Nach Abschluss dieser Schritte können die Patches angewendet werden. Dabei werden

die neuen Instruktionen korrekt in die Binärdatei eingefügt, mit der bestehenden Co-

de-Struktur ausgerichtet und Sprünge angepasst. Abschließend muss die umgeschriebene

ELF-Binärdatei gespeichert und auf das Gerät zurückgeflasht werden.

inserter = Fuzzing_Instrumentation_Inserter(’extracted.elf’)

inserter.add_fuzzing_counter(0x400e248c)

inserter.add_fuzzing_counter(0x400d4fc0)

inserter.add_fuzzing_counter(0x400d4fdc)

inserter.add_free_space(0x400e23a8, 0x400e2489)

inserter.apply_patches()

util.save_file("patched.elf", inserter.get_elf_bytes())

Listing 3.3: Verwendung des Beispiel-Tools

Nachdem das Binary Rewriting abgeschlossen ist und die Binärdatei auf das Gerät zurück-

geflasht wurde, kann das Überwachungsskript ausgeführt werden, um die Abdeckungs-

informationen zu sammeln. Das Skript verfolgt die printf-Aufrufe, die vom Patch-Code

ausgeführt werden. Nach Abschluss des Durchlaufs werden die Ergebnisse angezeigt.

> python3 monitoring.py

[COUNTER] 0x400d4fdc

[COUNTER] 0x400d4fc0

[...]

[COUNTER] 0x400e248c

[FINISHED] Found 3 counters in 30 seconds!

Listing 3.4: Ausführen des Überwachungsskripts

3.6 Einschränkungen und Ausblick

Während dieser Forschung wurden mehrere Einschränkungen festgestellt. Eine wesent-

liche Einschränkung ist der begrenzte Speicherplatz auf dem ESP32-Gerät für Patches.

50

3.6 Einschränkungen und Ausblick

Während kleine Patches in Pufferbereichen untergebracht werden können, erfordern

größere Änderungen möglicherweise eine Erweiterung der bestehenden Codeabschnitte

innerhalb der Binärdatei oder eine Modifikation des Bootloaders, um zusätzlichen Code

beim Starten zu laden.

Ein Satz von Instruktionen, der derzeit nicht verschoben werden kann, sind Instruktionen

mit relativen Offsets, die in diese eingebettet sind. Die Umsiedlung dieser Instruktionen

würde eine Neuberechnung ihrer Offsets erfordern. Dies zu vermeiden, ist eine grundle-

gende Designphilosophie von Trampolin-Rewritern.

Die aktuelle Implementierung unterstützt nur eine begrenzte Anzahl von Assembler-In-

struktionen, was die Komplexität der anwendbaren Patches einschränkt. Darüber hinaus

sind die aktuellen Patch-Strategien auf die Jump- und Punned Jump-Taktiken beschränkt.

Die Implementierung der Taktiken Successor Eviction und Neighbor Eviction, die beide ei-

ne tiefere Integration eines Disassemblers erfordern, würde die Erfolgsrate der erfolgreich

angewendeten Patches erhöhen.

Zukünftige Arbeiten könnten sich auf die Behebung der identifizierten Einschränkungen

und die Verbesserung der Fähigkeiten des Binary Rewriters konzentrieren. Ein möglicher

Verbesserungsbereich ist die automatische Erweiterung von Binärabschnitten, insbesonde-

re des .flash.text-Abschnitts, um zusätzlichen Raum für das Patchen zu schaffen, ohne

andere Teile der Binärdatei zu beeinflussen. Darüber hinaus würde die Erweiterung der

Assembler-Unterstützung auf den vollständigen Bereich der Xtensa ISA-Instruktionen oder

die Integration eines externen Assemblers eine größere Flexibilität bei der Anwendung

komplexerer Patches bieten.

Die Patch-Taktiken Successor Eviction und Neighbor Eviction waren für das PoC-Tool

nicht erforderlich und wurden daher nicht implementiert. Komplexere Programme würden

erheblich von ihrer Implementierung profitieren. Neben diesen beiden Taktiken könnte

die Untersuchung neuer Patch-Taktiken, die spezifische Merkmale der Xtensa-Architektur

nutzen, ebenfalls die Effizienz des Rewriters steigern.

Die Reverse-Order-Patching-Strategie ist zwar effektiv, aber möglicherweise nicht in allen

Szenarien optimal. Die Verbesserung der Patch-Strategien durch Experimente mit heuris-

tischen oder zufallsgestützten Ansätzen könnte die Erfolgsrate der Patch-Anwendungen

weiter erhöhen.

Der Fuzzing-Instrumentierungs-Inserter wurde als PoC ausgewählt, da er ein vielver-

sprechender Anwendungsfall für das Binary-Rewriting-Framework ist. Wie dargestellt

wurde, zeigt das Tool großes Potenzial für Sicherheitstests von Drittanbietern, muss jedoch

weiterentwickelt werden, bevor es in realen Szenarien angewendet werden kann. Dies

könnte die automatische Erkennung der Fuzzing-Instrumentierungspositionen und die

Hinzufügung von Zählern für Schleifen und Verzweigungen umfassen.

51

3 ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting

3.7 Zusammenfassung

Mithilfe des in diesem Kapitel vorgestellten Ansatzes wurde die bestehende Lücke bei der

Unterstützung von Tools für unabhängige Sicherheitsexperten geschlossen, um proprietäre

ESP32-Firmware analysieren und testen zu können. Der neuartige Ansatz besteht in der

Entwicklung eines Binary-Rewriting-Frameworks, das erstmals die gezielte Instrumentie-

rung proprietärer ESP32-Firmware ohne Veränderung der ursprünglichen Funktionalität

und des Kontrollflusses ermöglicht. Durch die Integration von Fuzzing-Zählern und die

Nutzung von Codeabdeckungsinformationen können verschiedene Ausführungspfade

effizienter erkundet und potenzielle Sicherheitslücken gezielter identifiziert werden.

Das Framework vereinfacht den Prozess der Firmware-Analyse und -Modifikation, indem

es die extrahierte Firmware in ein besser handhabbares Format konvertiert, wodurch prä-

zise Änderungen vorgenommen werden können, während die Integrität des Originalcodes

gewahrt bleibt. Es führt neue Patch-Methoden ein, die speziell auf die Xtensa-Archi-

tektur zugeschnitten sind und etablierte Techniken an die spezifischen Bedürfnisse von

ESP32-Geräten anpassen. Die Wirksamkeit des Frameworks wurde durch ein Proof of Con-

cept demonstriert, das erfolgreich Codeabdeckungsinformationen zu ESP32-Binärdateien

hinzufügte. Dieser Ansatz umfasst das Einfügen eines Zählers, der die Anzahl der Ausfüh-

rungen eines bestimmten Codeabschnitts erfasst. Durch die Verwendung dieses Feedbacks

kann der Fuzzer verschiedene Ausführungspfade effizienter erkunden, was die Wahr-

scheinlichkeit erhöht, Fehler und Sicherheitslücken zu finden. Dies zeigt das Potenzial

für die Weiterentwicklung des Frameworks, um die Sicherheit von ESP32-Firmware zu

verbessern.

Zukünftige Arbeiten sollten sich darauf konzentrieren, die Vielseitigkeit des Frameworks

durch die Implementierung zusätzlicher Patch-Taktiken zu erweitern und neue zu ent-

wickeln, insbesondere um komplexere Patch-Szenarien anzugehen. Eine fortlaufende

Verfeinerung dieses Frameworks wird seine Fähigkeiten erweitern und die Sicherheits-

analyse von ESP32-Geräten weiter unterstützen.

3.8 Fazit

Die vorgestellten Ergebnisse zum Binary Rewriting zeigen, dass eine gezielte Instru-

mentierung von ESP32-Firmware auf Binärebene technisch realisierbar ist. Damit wurde

eine zentrale Grundlage geschaffen, um Laufzeitinformationen wie Codeabdeckung und

Kontrollfluss direkt zu erfassen und für automatisierte Sicherheitsanalysen nutzbar zu

machen.

Gleichzeitig hat sich jedoch gezeigt, dass Fuzzing und dynamische Analysen auf realer

Hardware aufgrund begrenzter Ressourcen, langsamer Ausführungszeiten und einge-

schränkter Skalierbarkeit nur eingeschränkt praktikabel sind. Die erzielten Ergebnisse

verdeutlichen somit die Notwendigkeit, ergänzende Ansätze zu verfolgen, die eine effizien-

tere und flexiblere Testdurchführung ermöglichen. Aus diesem Grund wird im folgenden

Kapitel ein Framework zur Emulation von ESP32-Firmware in QEMU vorgestellt.

52

4 Fuzzing von ESP32-Mikrocontrollern
mittels QEMU-Emulation

Für dieses Kapitel bietet eine gemeinsame Veröffentlichung mit Sven Nitzsche, Max Eisele,

Roland Gröll, Jürgen Becker und Ingmar Baumgart die Grundlage. Teile der Ergebnisse

wurden bereits in der unten genannten Publikation veröffentlicht. Es wird ein emu-

latorbasiertes Fuzzing-Framework für ESP32-IoT-Geräte vorgestellt, das es ermöglicht,

ESP32-Anwendungen effizient in virtuellen Umgebungen zu testen und Sicherheitslücken

deutlich schneller aufzudecken als durch klassisches Fuzzing auf realer Hardware.

• Matthias Börsig, Sven Nitzsche, Max Eisele, Roland Gröll, Jürgen Becker und

Ingmar Baumgart. „Fuzzing Framework for ESP32 Microcontrollers“. In: 2020 IEEE

International Workshop on Information Forensics and Security (WIFS). IEEE, Dez.

2020, S. 1–6. DOI: 10.1109/wifs49906.2020.9360889 [Bör+20].

4.1 Einleitung

Die im vorherigen Kapitel vorgestellten Techniken zur Instrumentierung auf Binärebene

haben gezeigt, dass sich ESP32-Firmware gezielt erweitern lässt, um Laufzeitinformationen

wie Codeabdeckung und Kontrollfluss direkt zu erfassen. Diese Methoden bilden die

Grundlage für automatisierte Sicherheitsanalysen, stoßen jedoch auf praktische Grenzen:

Begrenzte Hardware-Ressourcen, langsame Ausführung und eingeschränkte Skalierbarkeit

limitieren das Fuzzing direkt auf dem IoT-Gerät.

Zur Überwindung dieser Einschränkungen wird in diesem Kapitel ein Fuzzing-Framework

für die ESP32-Xtensa-Architektur vorgestellt. Es verlagert die Analyse von ESP32-Firmware

vollständig in eine emulierte Umgebung. Dieser Ansatz entkoppelt den Testprozess von

der physischen Hardware und ermöglicht umfangreiche, parallele und automatisierte

Fuzzing-Kampagnen. Damit wird ein zentraler Baustein des Gesamtziels dieser Disserta-

tion adressiert, nämlich die effiziente Identifikation von Schwachstellen in proprietärer

ESP32-Firmware.

Das Fuzzing-Framework basiert auf dem Emulator QEMU und kombiniert einen angepass-

ten ESP32-Fork1 mit einer erweiterten Implementierung von Honggfuzz2, einem QEMU-

basierten feedbackgesteuerten Fuzzer. Um dies zu ermöglichen, waren mehrere technische

1https://github.com/espressif/qemu
2https://github.com/thebabush/honggfuzz-qemu

53

https://github.com/espressif/qemu
https://github.com/thebabush/honggfuzz-qemu

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

Erweiterungen notwendig, insbesondere die Anpassung der Emulationsumgebung an die

Xtensa-Architektur und die Implementierung feingranularer Codeabdeckung-Feedback-

Mechanismen.

Die wesentlichen Beiträge lassen sich wie folgt zusammenfassen:

• Anpassung von QEMU an die Xtensa-Architektur: Erweiterung des QEMU-E-

mulators zur präzisen Ausführung von ESP32-Firmware und zur Unterstützung der

Instrumentierung für Laufzeitanalysen. Diese Funktionalität war zuvor in keinem

verfügbaren Fuzzing-Tool vorhanden.

• Integration von QEMU und Honggfuzz: Entwicklung eines kombinierten Fra-

meworks, das ESP32-spezifische Emulation mit einem QEMU-basierten feedbackge-

steuerten Fuzzer verbindet und so automatisierte Whitebox-, Greybox- und Black-

box-Fuzzing-Kampagnen ermöglicht.

• Implementierung feingranularer Codeabdeckung-Feedback-Mechanismen:
Nutzung der internen Strukturen des QEMU-Binary-Translators, um Basisblöcke

und Vergleichsinstruktionen abzufangen und an Honggfuzz weiterzugeben. Dies

erhöht deutlich die Präzision, indem die Codeabdeckung analysiert wird.

• Praktische Evaluation undMachbarkeitsnachweis:Validierung des Frameworks

anhand einer kommerziellen IoT-Lampe (LIFXMini). Dabei konnten mehrere Abstür-

ze und eine sicherheitsrelevante Nullzeiger-Dereferenzierung identifiziert werden.

Besonders hervorzuheben ist die signifikant höhere Performance: bis zu 320 Einga-

ben pro Sekunde im Greybox-Fuzzing, im Vergleich zu 80 Eingaben pro Sekunde für

reines Whitebox-Fuzzing und nur 4 Eingaben pro Sekunde mit compilerbasierter

Instrumentierung.

Das Framework unterstützt verschiedene Fuzzing-Ansätze, einschließlichWhitebox-, Grey-

box- und Blackbox-Fuzzing, und bietet dadurch eine hohe Flexibilität für unterschiedliche

Anwendungsszenarien. Das Fuzzing-Framework schließt damit eine wesentliche Lücke in

der Landschaft der verfügbaren Tools und zeigt, dass die Kombination aus Emulation und

Fuzzing die Analyse proprietärer ESP32-Firmware deutlich effizienter gestaltet.

Als Machbarkeitsnachweis wurde das Fuzzing-Framework erfolgreich eingesetzt, um

ein kommerzielles IoT-Gerät zu analysieren. Dabei konnten innerhalb weniger Minuten

mehrere Fehler und eine potenziell sicherheitskritische Schwachstelle entdeckt werden,

was die Leistungsfähigkeit und praktische Relevanz des Frameworks unterstreicht.

4.2 Stand der Technik

In diesem Kapitel werden Arbeiten vorgestellt, die entweder ähnliche methodische Ansät-

ze wie die vorliegende Dissertation verfolgen oder unmittelbar als Grundlage für deren

Umsetzung dienten. Ziel ist es, den aktuellen Stand der Technik einzuordnen, konzeptio-

nelle Verwandtschaften aufzuzeigen und den Mehrwert des vorgestellten Ansatzes klar

abzugrenzen.

54

4.3 Konzeption

Im Bereich der Integration von Fuzzern in Systememulatoren existieren relevante Vorar-

beiten. Hertz und Newsham [HN17] entwickelten mit TriforceAFL ein QEMU-basiertes

Fuzzing-Framework auf Basis von American Fuzzy Lop (AFL), das ganze Systeminstanzen

testen kann. Allerdings basiert dieses Projekt auf einer veralteten QEMU-Version, die nicht

mit der aktuellen ESP32-QEMU-Implementierung kompatibel ist. Die Grundidee dieser

Integration diente als Inspiration für die Dissertation. Sie wurde jedoch in veränderter

Form umgesetzt: Es wird eine aktuelle QEMU-Version genutzt und eine direkte Verbindung

zu einer erweiterten ESP32-Emulation hergestellt.

Voss [Vos17] hat eine Technik entwickelt, um schwer erreichbaren Code gezielt zu testen.

Hierzu wird der Code auf dem Zielsystem bis kurz vor der Verarbeitung der relevanten

Funktion ausgeführt und der gesamte Systemzustand an diesem Punkt eingefroren. An-

schließend wird dieser Zustand in einen Emulator übertragen, in dem generierte Testdaten

injiziert und die Ausführung fortgesetzt wird. Gui et al. [Gui+20] erweiterten diesen An-

satz, indem sie einen zusätzlichen Analyseprozess integrierten, der relevante Codebereiche

vor dem Fuzzing-Prozess automatisch identifiziert. Beide Arbeiten implementierten ihre

Methoden im Unicorn-Emulator [QV15], der jedoch die Xtensa-Architektur des ESP32

nicht unterstützt. Die Dissertation überträgt das Prinzip des Zustandsübertrags auf eine

QEMU-basierte ESP32-Emulation und umgeht somit diese Architekturbeschränkung.

Insgesamt greifen die in dieser Dissertation entwickelten Methoden zentrale Konzepte

bestehender Ansätze auf, wie die Integration von Fuzzern in Systememulatoren und den

gezielten Zustandsübertrag. Im Gegensatz zu bisherigen Arbeiten werden diese Konzepte

jedoch erstmals in einer aktuellen QEMU-Umgebung mit vollständiger Unterstützung

der Xtensa-Architektur des ESP32 zusammengeführt. Durch gezielte Erweiterungen der

Emulationsumgebung und die nahtlose Anbindung eines modernen Fuzzers entsteht ein

Setup, das den Funktionsumfang und die Anwendbarkeit bisheriger Lösungen deutlich

übertrifft.

4.3 Konzeption

Für dieses Konzept wurde Honggfuzz als Fuzzer ausgewählt, da er eine gute Balance

zwischen Leistungsfähigkeit, einfacher Integration und Unterstützung für verschiedene

Fuzzing-Strategien bietet. Insbesondere ermöglicht Honggfuzz die Nutzung von Feed-

back über die Codeabdeckung, um die Eingabegenerierung gezielt zu steuern und die

verschiedenen Ausführungspfade effizienter zu erreichen. Darüber hinaus verfügt er über

eine bestehende Schnittstelle zur Kommunikation mit externen Fuzzing-Hooks, was den

Einsatz auf dem ESP32 erheblich erleichtert. Ein Fuzzing-Hook ist ein kleines Programm

oder Skript, das Eingabedaten vom Fuzzer entgegennimmt, sie an das Testziel übermittelt

und dabei die Antwort bzw. die Lebenszeichen überwacht. Im Fehlerfall meldet er dies

dem Fuzzer zurück.

Fuzzing besteht aus drei Schritten: Fehlererkennung, Zielausführung und Eingabegenerie-

rung, die im Folgenden erläutert werden.

55

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

4.3.1 Fehlererkennung

Zunächst muss das Verhalten des ESP32 bei Speicherbeschädigungen untersucht werden.

Dazu wurde eine Testanwendung entwickelt, die Anfragen über die WLAN-Schnittstel-

le verarbeitet und das absichtliche Auslösen der fünf Hauptursachen für Speicherbe-

schädigungen ermöglicht (Stack- und Heap-Pufferüberlauf, unsichere Verwendung von

printf, Nullzeiger-Dereferenzierung und doppeltes Freigeben von Speicher), basierend

auf [Mue+18].

Das Schreiben außerhalb der Grenzen eines zugewiesenen Puffers ist auf dem ESP32

möglich. Puffer im Stack befinden sichmeist in der Nähe von Rücksprungadressen, während

Puffer im Heap auch neben Funktionszeigern liegen können. Das Überschreiben einer

dieser Adressen führt zu einem Absturz des Geräts, falls darauf zugegriffen wird. Werden

keine wichtigen Werte überschrieben, bleibt das ESP32 funktionsfähig und der Fehler

bleibt möglicherweise unentdeckt.

Mit Kontrolle über das erste Argument einer printf-Funktion ist es möglich, an bestimmte

Adressen auf dem Stack zu schreiben. Falls diese Adressen auf ungültige Speicherbereiche

verweisen, führt dies zu einem Absturz des Geräts, wodurch die Speicherbeschädigung

erkennbar wird.

Beim Dereferenzieren eines Nullzeigers und beim erneuten Freigeben eines bereits deallo-

kierten Speicherblocks stürzt der ESP32 immer ab. Diese Arten der Speicherbeschädigung

sind daher stets beobachtbar.

Es ist wichtig zu beachten, dass der Fuzzing-Prozess eine Speicherbeschädigung nicht

unbedingt beim ersten Auftreten erkennen muss. Während des Fuzzing-Prozesses werden

zahlreiche Eingaben getestet, sodass ein vorhandener Fehler, der zu einer Speicherbe-

schädigung führt, höchstwahrscheinlich durch verschiedene Eingaben ausgelöst werden

kann. In der Regel erfolgt die Detektion durch Beobachtung von Systemabstürzen. Im

weiteren Verlauf dieses Abschnitts wird daher auf die Identifikation von Systemabstürzen

zurückgegriffen, um durch das Fuzzing provozierte Fehler zu erkennen.

Zur Verbesserung der Fehlererkennung könnten Tools wie AddressSanitizer oder heuristi-
sche Methoden durch Emulation eingesetzt werden [Mue+18].

4.3.2 Zielausführung mit Fuzzing-Hooks

Da der ESP32 für IoT-Anwendungen entwickelt wurde, wird die Eingabe normalerweise

über die WLAN-Schnittstelle empfangen. Daher ist das Senden der Fuzzing-Daten über

WLAN die bequemste Methode beim Testen auf dem tatsächlichen Gerät. Dies geschieht

durch einen sogenannten Fuzzing-Hook, der die Fuzzing-Eingabedaten wiederholt von der

Honggfuzz-Schnittstelle abrufen und an die Netzwerkadresse des Ziels senden muss. Der

Hook muss außerdem überprüfen, ob das Ziel auf die Anfrage geantwortet hat. Falls keine

Antwort eingeht, wird angenommen, dass das Ziel abgestürzt ist, und der Fuzzing-Hook

muss ein Fehlersignal an den Fuzzer senden.

56

4.3 Konzeption

Einige Ziele erfordern möglicherweise eine zusätzliche Vitalitätsprüfung, um zu untersu-

chen, ob das Ziel durch die Anfrage nicht abgestürzt ist. Daher wird nach dem Senden der

Anfrage mit den Fuzzing-Daten eine zusätzliche Anfrage gesendet, von der bekannt ist,

dass das Ziel darauf antwortet.

4.3.3 Feedbackgesteuerte Eingabegenerierung

Für die Eingabegenerierung wird der Mutationsmechanismus von Honggfuzz verwendet.
Er kann entweder durch einfache Mutation der bereitgestellten Seed-Eingaben oder durch

zusätzliche Berücksichtigung der Codeabdeckungsinformationen des Ziels erfolgen. Fol-

gende Methoden zum Sammeln von Codeabdeckungsinformationen stehen zur Verfügung:

Compiler-generierte Instrumentierung, Binary Rewriting und Emulation.

4.3.3.1 Compiler-generierte Instrumentierung

Der ESP32-Compiler unterstützt die Instrumentierung des Codes zur Generierung von

Codeabdeckungsdaten, die dann zur Laufzeit der Anwendung im Speicher des Geräts

gespeichert werden. Um die generierten Abdeckungsdaten zu verarbeiten, muss der Fuz-

zing-Hook diese Daten nach jeder getesteten Eingabe über eine JTAG-Debugging-Ver-

bindung herunterladen und an den Fuzzer weiterleiten. JTAG ist eine standardisierte

Schnittstelle zum Testen, Debuggen und Auslesen von Chips. Über sie ist ein direkter

Zugriff auf interne Register, Speicher und Signalpfade möglich.

Leider werden bei dieser Methode der Codeinstrumentierung nur die ausgeführten Basis-

blöcke und keine Zweig- oder Pfadabdeckungen protokolliert.

4.3.3.2 Binary Rewriting zur Instrumentierung

Eine Möglichkeit, feedbackgesteuertes Greybox-Fuzzing auf dem ESP32 zu realisieren,

besteht darin, den Binärcode der Anwendung gezielt zu instrumentieren. Durch diese

Code-Modifikation können beispielsweise ausgeführte Basisblöcke oder Parameter von

Vergleichsinstruktionen erfasst und an den Fuzzer zurückgemeldet werden.

Kapitel 3.1 beschreibt den Ansatz ESP32 Binary Rewriting, der gezielte Code-Injektio-

nen auf Binärebene ermöglicht. Damit lassen sich zusätzliche Instruktionen direkt in

bestehende ESP32-Firmware einfügen, ohne deren ursprüngliche Funktionalität oder den

Kontrollfluss zu beeinträchtigen. Dieses Verfahren eröffnet grundsätzlich die Möglichkeit,

Messpunkte zur Erfassung der Codeabdeckung effizient in die Firmware einzubetten.

Allerdings ist Binary Rewriting nur eine von mehreren möglichen Strategien zur Instru-

mentierung. In dieser Dissertation werden im Folgenden weitere Ansätze betrachtet und

bewertet.

57

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

4.3.3.3 Codeabdeckung durch Emulation

Beim Ausführen einer Anwendung in einer Emulationsumgebung stehen alle Metadaten

zur Programmausführung zur Verfügung. Diese Transparenz ermöglicht es, den Programm-

zähler und Vergleichsparameter abzufangen, um eine feingranulare Codeabdeckung zu

berechnen.

Honggfuzz bietet hierfür eine modifizierte QEMU -Version (QEMU-HONGFUZZ) an, die

feedbackgesteuertes Fuzzing unterstützt. Da die ESP32-Firmware jedoch nur in einer

vollständigen Systememulation lauffähig ist, muss die offizielle ESP32-QEMU-Implemen-

tierung genutzt werden [Esp19]. Diese ist jedoch unvollständig und emuliert wesentliche

Peripherien wie WLAN nicht. Daher müssen alternative Mechanismen zur Eingabeüber-

tragung in die Anwendung entwickelt werden.

Die Nutzung einer vollständigen Systememulation für Fuzzing ist in der Forschung stark

diskutiert, insbesondere hinsichtlich der Performance. Einige Studien berichten, dass Emu-

lation zwei- bis fünfmal [Zha+18] und in Extremfällen bis zu zehnmal [Zhe+19] langsamer

sein kann als das Ausführen auf echter Hardware. Andere Arbeiten zeigen jedoch, dass

Emulatoren – gerade bei ressourcenbeschränkten Embedded-Geräten – sogar schneller

sein können als das reale System [Mue+18]. Diese möglichen Unterschiede machen ei-

ne gezielte Evaluation der Performance von ESP32-QEMU für relevante Szenarien des

Fuzzings notwendig.

4.4 Implementierung

Das Fuzzing-Framework für den ESP32 nutzt verschiedene Methoden, die speziell auf die

Einschränkungen von ressourcenarmen IoT-Geräten abgestimmt sind. Das Ziel besteht in

der Entwicklung effizienter Testverfahren, die auf realer Hardware oder in Emulationsum-

gebungen eingesetzt werden können. Je nach Verfügbarkeit des Quellcodes kommen dabei

unterschiedliche Ansätze zum Einsatz: Blackbox-Fuzzing ohne Quellcodezugriff, White-

box-Fuzzing mit vollem Zugriff sowie Greybox-Fuzzing auf Basis von Instrumentierung.

4.4.1 Blackbox-Fuzzing auf ESP32-Anwendungen

Blackbox-Fuzzing ohne Berücksichtigung der Codeabdeckung auf dem eigentlichen Gerät

ist die einfachste Methode zum Testen von ESP32-Anwendungen. Obwohl sie nicht be-

sonders vielversprechend ist, wurde sie implementiert, um eine Vergleichsgrundlage zu

schaffen.

Einige Dienste warten auf bestimmte Symbole am Ende der Eingabedaten, bevor die

Verarbeitung beginnt. Ein Header einer HTTP-Anfrage endet beispielsweise mit zwei

Zeilenumbrüchen. Falls diese Zeichen nicht empfangen werden, bleibt die Verarbeitung

der Daten stecken, was den gesamten Fuzzing-Prozess blockieren könnte. Daher müssen

58

4.4 Implementierung

diese Zeichen identifiziert und von der Fuzzing-Hook an die generierten Eingabedaten

angehängt werden, um Deadlocks zu vermeiden.

Die Absturzerkennung des Ziels muss ebenfalls an den jeweiligen Dienst angepasst wer-

den. Bei verbindungsorientierten Diensten wie TCP reicht es aus, zu überprüfen, ob die

Verbindung korrekt beendet wurde oder ob eine Antwort vom Ziel empfangen wurde. Bei

verbindungslosen Diensten wie UDP müssen komplexere Methoden verwendet werden,

um festzustellen, ob das Ziel durch die Verarbeitung der Eingabedaten abgestürzt ist.

Eine Möglichkeit besteht darin, nach jeder getesteten Eingabe eine Vitalitätsprüfung

durchzuführen. Solche Vitalitätsprüfungen sind jedoch nicht immer zuverlässig. Einge-

bettete Systeme können nach einem Absturz sehr schnell neu starten, sodass die Prüfung

fälschlicherweise eine erfolgreiche Antwort registriert.

Eine ausgefeiltere Methode zur Absturzerkennung besteht darin, Absturzsignale über eine

serielle Verbindung zum Zielgerät abzufangen. Wenn der ESP32 abstürzt, gibt er immer

eine Fehlermeldung, gefolgt von einer Neustartnachricht auf der seriellen Schnittstelle,

aus. Das Abfangen dieses Neustartsignals könnte ebenfalls eine zuverlässige Möglichkeit

zur Absturzerkennung sein.

Mit dieser Methode konnte eine einfache HTTP-Server-Anwendung für den ESP32 mit

einer Rate von etwa 30–40 Anfragen pro Sekunde getestet werden. Diese Rate ist jedoch

zu niedrig für effektives Fuzzing, da sie die Anzahl und Vielfalt der Testfälle begrenzt und

somit die Chance verringert, Fehler oder Sicherheitslücken zu finden. Zudem liefert sie bei

wiederholten ähnlichen Eingaben kaum neue Erkenntnisse. Für aussagekräftige Ergebnisse

sind deutlich höhere Durchsatzraten und abwechslungsreichere Eingaben erforderlich.

4.4.2 Whitebox-Fuzzing mit compilerinstrumentiertem Code

Die Berücksichtigung der Codeabdeckung einer getesteten Eingabe für die Eingabegene-

rierung ist notwendig, um die Effizienz des Fuzzing-Prozesses zu erhöhen. Der einfachste

Weg, die Codeabdeckung zu erfassen, besteht darin, die vom Compiler generierte Codein-

strumentierung zu nutzen. Dies geschieht, indem jede zu instrumentierende Quelldatei

mit der Compileroption -coverage neu kompiliert wird. Der Compiler fügt dadurch jedem

Basisblock Code hinzu, der zählt, wie oft er während der Laufzeit ausgeführt wurde und

speichert die Informationen im RAM.

Die Abdeckungsdaten werden dann über eine JTAG-Verbindung von dem Gerät in Hongg-
fuzz übertragen. Honggfuzz erstellt eine große Bitmap im gemeinsam genutzten Speicher,

in der die Adressen der ausgeführten Basisblöcke gespeichert werden. Jedes Bit in dieser

Bitmap entspricht einer Adresse, wobei zunächst alle Bits auf null gesetzt sind. Wird

ein Basisblock zum ersten Mal ausgeführt, wird das entsprechende Bit auf eins gesetzt.

Honggfuzz kann diese Bitänderung erkennen und speichert die auslösende Eingabe als

zusätzliches Seed im Eingabeordner.

Die Nutzung solcher Compiler-generierten Abdeckungsdaten verlangsamt den Fuzzing-

Prozess um den Faktor 10, sodass beim Fuzzing der einfachen HTTP-Serveranwendung nur

59

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

etwa 4 Anfragen pro Sekunde erreicht werden. Darüber hinaus werden mit dieser Methode

nur die ausgeführten Basisblöcke untersucht und es kann keine feingranulare Codeabde-

ckung generiert werden. Der größte Nachteil der Compiler-generierten Abdeckungsdaten

besteht jedoch darin, dass der Quellcode verfügbar sein muss.

4.4.3 Whitebox-Fuzzing mit ESP32-QEMU-FUZZ

QEMU-HONGFUZZ untersucht die Codeabdeckung einer emulierten Benutzeranwendung

und leitet sie an Honggfuzz weiter. Diese modifizierte Version von QEMU wurde in die

von Espressif bereitgestellte ESP32-QEMU-Implementierung integriert. Da beide Imple-

mentierungen auf nahezu derselben Version von QEMU basieren und Modifikationen in

verschiedenen Bereichen des Codes aufweisen, war die Zusammenführung der beiden

Codebasen unkompliziert. Das Ergebnis ist ESP32-QEMU-FUZZ (EQF), eine Version von

QEMU, die das Fuzzing von ESP32-Anwendungen ermöglicht.

Um feedbackgesteuertes Fuzzing zu ermöglichen, muss untersucht werden, welche Basis-

blöcke ausgeführt wurden, wie in Abschnitt 4.3.3 erläutert. Die binäre Übersetzungsengine

von QEMU gruppiert Anweisungen in Basisblöcke, um ihre Ausführung ohne Unterbre-

chung zu ermöglichen. Dieser Gruppierungsmechanismus wird genutzt, um Basisblöcke

für den Fuzzing-Prozess zu bestimmen.

Durch den Einsatz eines Emulators kann eine noch feingranularere Codeabdeckung erzielt

werden, indem die Parameter von Vergleichsanweisungen berücksichtigt werden. Daher

werden die beiden Parameter einer Vergleichsanweisung während der Übersetzung der

Maschinenanweisung innerhalb des Emulators abgefangen. Die ESP32-Architektur stellt

dafür die Funktionen strcmp und strcasecmp bereit, die zwei Zeichenfolgen entweder

exakt oder unter Ignorierung der Groß- und Kleinschreibung vergleichen. Alle String-

Vergleichsfunktionen befinden sich an festen Adressen im nicht veränderbaren ROM des

ESP32. Dadurch ist es möglich, die Parameter der Funktionen abzufangen, wenn eine solche

Funktion innerhalb des Emulators aufgerufen wird. Der Code von Honggfuzz muss erwei-

tert werden, um diese Parameter zusätzlich zu verarbeiten. Die Parameter und die Adresse,

von der aus die String-Vergleichsfunktion aufgerufen wird, können auf dieselbe Weise an

Honggfuzz übergeben werden wie die Parameter normaler Vergleichsanweisungen.

Zum Zeitpunkt dieser Untersuchung verfügte ESP32-QEMU noch nicht über eine Emulati-

on des integrierten WLAN-Moduls. Erst nach der Veröffentlichung der zugrunde liegenden

Publikation [Bör+20] wurde eine entsprechende Erweiterung veröffentlicht (siehe Related

Work Abschnitt 8.3). Deshalb musste auch ESP32-QEMU-FUZZ ohne diese Komponente

auskommen. Es wurde die von QEMU bereitgestellte Ethernet-Schnittstelle genutzt, um

den Emulator mit dem Netzwerk des Hosts zu verbinden. Dabei muss die Anwendung

gegen den Ethernet-Treiber gelinkt werden, wodurch diese Kommunikationsmethode

ausschließlich für Whitebox-Szenarien einsetzbar ist.

Um die Eingabedaten des Fuzzers an die Netzwerkadresse des Hosts weiterzuleiten, wird ein

Fuzzing-Hook erstellt. Dieser ist dafür verantwortlich, die Fuzzing-Eingabedaten iterativ

von Honggfuzz abzurufen und sie an die richtige Netzwerkadresse weiterzuleiten.

60

4.4 Implementierung

Zur Fehlererkennung reicht es aus, den HALT-Interrupt abzufangen, der ausgelöst wird,

wenn der ESP32-Emulator abstürzt. Dieser Interrupt signalisiert dem Emulator oder De-

bugger, dass ein kritischer Fehler oder eine Ausnahmesituation aufgetreten ist, die die

weitere Ausführung stoppt.

Diese Einrichtung bietet eine ausgezeichnete Möglichkeit für Whitebox-Fuzzing von

ESP32-Anwendungen. Für die TCP-Testanwendung wurden mit einem einzelnen Thread

auf einem Standard-Notebook etwa 80 Anfragen pro Sekunde erreicht. Daher kann davon

ausgegangen werden, dass die ESP32-QEMU-FUZZ-Implementierung hinsichtlich der

gesamten Netzwerk- und Datenverarbeitung schneller ist als das eigentliche Gerät.

Zusätzlich wird eine feingranulare Codeabdeckung für jede Eingabe zur Generierung

neuer Eingaben berücksichtigt, was die Effizienz des Fuzzing-Prozesses erhöht. Diese

Methode kann leicht skaliert werden, indem mehrere Instanzen genutzt werden. In diesem

Fall muss jede Instanz an eine eigene Netzwerkschnittstelle gebunden werden.

Mithilfe dieser Whitebox-Fuzzing-Implementierung in QEMU lassen sich automatisierte

Fuzz-Tests in moderne Continuous-Integration- und Continuous-Delivery-Entwicklungs-

zyklen integrieren. Dazu wird die Anwendung separat mit dem erforderlichen Ethernet-

Treiber sowie optionalem Platzhalter-Code für nicht emulierbare Hardwareteile kompiliert.

Dies betrifft beispielsweise spezielle Sensoren oder Aktoren, die hardwareseitig direkt

angeschlossen sind und nicht per QEMU emuliert werden können.

4.4.4 Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ

Wie bereits erwähnt, unterstützt ESP32-QEMU keineWLAN-Funktionalität. Da sich Black-

box-Firmwares mit WLAN-Funktionalität nicht emulieren lassen, ist Blackbox-Fuzzing nur

bei netzwerkloser Firmware möglich. Da ESP32-basierte Mikrocontroller jedoch häufig

gerade wegen des kostengünstigen WLAN-Moduls eingesetzt werden, stellt dies eine

erhebliche Einschränkung dar. Eine mögliche Lösung wäre die Emulation der WLAN-

Funktionalität in ESP32-QEMU. Für eine korrekte Implementierung sind jedoch detaillierte

Kenntnisse der Hardware und der Treiberanforderungen erforderlich. Leider sind die

WLAN-Treiber des IoT Development Framework (IDF) Closed Source, und es gibt keine

Dokumentation zur entsprechenden WLAN-Hardware in der Dokumentation
3
. Um die

internen Kommunikationsmechanismen zu analysieren, wäre umfangreiches manuelles

Reverse Engineering erforderlich. Daher wurde die WLAN-Funktionalität nicht imple-

mentiert und kein Blackbox-Fuzzing umgesetzt. Stattdessen wird ein Greybox-Ansatz für

das Fuzzing von Firmware-Images verfolgt.

Um Greybox-Binary-Fuzzing zu ermöglichen, wurde die Technik aus [Vos17] implemen-

tiert. Diese erlaubt es, die Datenzufuhr über Netzwerkschnittstellen zu umgehen. Dies

geschieht, indem ein Zustand des tatsächlichen Geräts nach dem Empfang der Daten

gespeichert und anschließend in die Emulation übertragen wird. Für den Fuzzing-Prozess

reicht es aus, den Code vom Beginn der Datenverarbeitung bis zu dessen Ende auszu-

führen. Dies beschleunigt den Fuzzing-Prozess zusätzlich, da irrelevante Teile nicht mehr

3https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html

61

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

ausgeführt werden. Um dies umzusetzen, müssen die Ein- und Ausstiegspunkte der Da-

tenverarbeitung innerhalb der Firmware identifiziert werden. Allerdings stellt fast jede

zufällige Bitfolge von zwei oder drei Bytes eine gültige Instruktion im Xtensa-Befehlssatz
dar. Infolgedessen können selbst professionelle Disassemblierungsprogramme wie IDA Pro
den Xtensa-Code nicht korrekt disassemblieren. Das Auffinden der Ein- und Ausstiegs-

punkte erfordert deshalb einen hohen manuellen Aufwand.

Ein Ansatz, um diese Codebereiche zu identifizieren, ist die schrittweise Ausführung

der Firmware mit GNU Debugger (GDB). Ein tiefgehendes Verständnis des Codes ist

erforderlich, das durch das Setzen von Breakpoints und die Beobachtung der Ausführung

erlangt werden kann. Das Ziel ist es, Datenverarbeitungsfunktionen und Codeabschnitte

zu finden, die sich gut für das Fuzzing eignen. Wenn der Codeabschnitt nicht an einer

einzigen Stelle endet, müssen mehrere Ausstiegspunkte definiert werden. Zudem muss

der Speicherbereich, in dem sich die Eingabedaten befinden, manuell identifiziert werden.

Sobald geeignete Ein- und Ausstiegspunkte gefunden wurden, muss der Zustand des

Zielgeräts beim Erreichen des Einstiegspunkts gespeichert werden. Der Zustand des ESP32

besteht aus den Werten der 16 Register, dem Program Counter und den 512 kB statischen

RAM. Alle diese Daten können über eine JTAG-Debugging-Verbindung ausgelesen und

somit leicht gespeichert werden. Um diesen gespeicherten Zustand in die Emulatorinstanz

zu laden, muss die QEMU-Implementierung modifiziert werden, sodass das Speicherabbild

in den entsprechenden Speicherbereich geladen und alle Registerwerte korrekt gesetzt

werden. Die Eingabedaten befinden sich dann im Speicher des Emulators und können

modifiziert werden.

Damit die Ausführung im Emulator ordnungsgemäß fortgesetzt werden kann, darf der

Zustand nicht vor Abschluss der Initialisierungsroutinen der Firmware geladen werden.

Vielmehr muss die Firmware zunächst alle wichtigen Initialisierungsroutinen durchlaufen,

um sicherzustellen, dass erforderliche Module funktionieren. Der Punkt, an dem die

Initialisierung des Betriebssystems abgeschlossen ist, wird als Setup-Punkt bezeichnet und

muss ebenfalls manuell identifiziert werden. Eine geeignete Methode, um den Setup-Punkt

einer Firmware zu bestimmen, ist die Ausführung der Firmware für einige Sekunden im

Emulator, gefolgt von einem Stopp mit dem Debugger. In der Regel befindet sich das Gerät

dann in einem Leerlaufzustand und wartet auf Eingaben.

Bei jeder Fuzzing-Iteration werden die Eingabedaten durch die vom Fuzzer generierten

Daten überschrieben, und der Längenwert wird entsprechend angepasst. Sobald einer der

definierten Ausstiegspunkte erreicht wird, beginnt der Prozess von vorn. Daher wird jede

getestete Eingabe ausgeführt, während sich der Emulator stets im exakt gleichen Zustand

befindet — einzig die Eingabedaten variieren.

Das erneute Laden des gesamten Zielgerätezustands nach jeder getesteten Eingabe bringt

jedoch einen erheblichen Performance-Nachteil mit sich. Daher wurde eine Technik na-

mens Fork Server implementiert, die im Folgenden erläutert wird.

Auf UNIX -Systemen wird der fork-Aufruf nach der copy-on-write-Richtlinie realisiert. Das
bedeutet, dass der neu erstellte Prozess den Speicher mit dem übergeordneten Prozess

62

4.5 Evaluation

Emulator starten
Bis Setup-Punkt

ausführen
Zustand laden

F
or
k

Auf Beenden
des Kind-

prozesses warten

Eingabedaten
injizieren

Bis zum
Ausstiegspunkt

ausführen
Beenden

Elternprozess

Kindprozess

Abbildung 4.1: Fork-Join-Fuzzing-Prozess

teilt und eine gesamte Speicherseite erst dann kopiert wird, wenn einer der Prozesse eine

Schreiboperation ausführt. Der Fork-Join-Fuzzing-Prozess ist in Abbildung 4.1 dargestellt.

Das Verhalten des fork-Aufrufs kann im Fuzzing-Prozess genutzt werden, um sicherzustel-

len, dass in jeder neuen Fuzzing-Iteration der gleiche Zustand des Emulators vorhanden

ist. Dazu wird ein Kindprozess unmittelbar vor der Injektion der Eingabedaten in den

Emulator erstellt. Der Elternprozess wartet mittels join-Systemaufruf auf das Beenden

des Kindprozesses. Anhand des Rückgabecodes kann bestimmt werden, ob der Kindpro-

zess aufgrund eines Absturzes oder des Erreichens eines Ausstiegspunkts beendet wurde.

Anschließend kann ein neuer Kindprozess mit neuen Eingabedaten des Fuzzers erzeugt

werden. Durch den Fork-Join-Mechanismus wird der Performance-Verlust beim erneuten

Laden des Gerätezustands erheblich reduziert. Mit diesem Mechanismus kann der oben

dargestellte Performance-Nachteil des Greybox-Binary-Fuzzings minimiert werden.

4.5 Evaluation

Im Folgenden werden die Ergebnisse der Evaluation präsentiert. Grundlage hierfür sind

eine TCP-basierte Testanwendung auf dem ESP32 sowie ein kommerzielles IoT-Gerät.

Mithilfe dieser Anwendung werden die Fehlerdetektion, Abdeckung und Stabilität der im-

plementierten Fuzzing-Methoden untersucht. Das Ziel besteht darin, die Leistungsfähigkeit

der verschiedenen Ansätze in einem praktischen Einsatzumfeld zu bewerten.

4.5.1 Fuzzing der TCP-Testanwendung

Wie in Abschnitt 4.3.1 erwähnt, wurde eine TCP-Testanwendung verwendet, um die

Implementierung von ESP32-QEMU-FUZZ zu verifizieren. Die Funktionsweise ließ sich

am Beispiel des feedbackgesteuerten Whitebox-Fuzzings überprüfen. Innerhalb weni-

ger Stunden wurde eine Eingabekombination gefunden, durch die alle implementierten

Fehler ausgelöst wurden. Zudem wurden weitere Testszenarien durchgeführt, um die

Geschwindigkeit der einzelnen Versuchsarten zu vergleichen. Die erzielten Anfragen pro

Sekunde sind in Tabelle 4.1 aufgeführt. Daraus geht hervor, dass das Fuzzing direkt auf

dem Gerät in diesem Szenario deutlich weniger Anfragen pro Sekunde verarbeiten kann

als die Emulation. Der größte Unterschied zeigt sich zwischen Whitebox-Fuzzing mit kom-

pilierinstrumentiertem Code (ca. vier Anfragen pro Sekunde) und Greybox-Fuzzing mit

63

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

Tabelle 4.1: Vergleich der Fuzzing-Versuche auf einem Intel i7-6600U basierten Stan-

dard-Notebook mit einem Kern

Test Anfragen pro Sekunde

Blackbox-Fuzzing auf ESP32-Anwendungen 40

Whitebox-Fuzzing mit Compiler-instrumentiertem Code 4

Whitebox-Fuzzing mit ESP32-QEMU-FUZZ 80

Greybox-Fuzzing mit ESP32-QEMU-FUZZ 320

ESP32-QEMU-FUZZ (ca. 320 Anfragen pro Sekunde): Hier ergibt sich eine rund 80-fache

Steigerung.

4.5.2 Greybox-Fuzzing der LIFX Mini

Um die Effektivität der implementierten Fuzzing-Methode zu beweisen, wurde sie an dem

kommerziellen Produkt LIFX Mini getestet. Die LIFX Mini ist eine smarte Glühbirne, die

einen ESP32 als Steuerungseinheit enthält. Sie ist ein typisches IoT-Endverbrauchergerät,

das über WLAN gesteuert wird. Für die Steuerung wird eine Smartphone-App angebo-

ten, mit der mehrere smarte Glühbirnen gleichzeitig verwaltet werden können. Wie bei

kommerziellen Geräten zu erwarten, ist kein Quellcode verfügbar.

4.5.2.1 Vorbereitung des Zielobjekts

Bei der ersten Untersuchung des Zielgeräts wurde festgestellt, dass der JTAG-Port deakti-

viert wurde. Die permanente Deaktivierung des JTAG-Ports ist eine Sicherheitsfunktion

des ESP32, die nicht rückgängig gemacht werden kann. Daher musste die Firmware der

Glühbirne auf eine ESP32-Entwicklungsplatine übertragen werden, um die JTAG-Ver-

bindung nutzen zu können. Der 4MB große Flash-Speicher des ESP32, der die Firmware

enthält, kann über eine serielle Verbindung ausgelesen werden. Um die Pins für die serielle

Verbindung zu erreichen, musste die Glühbirne geöffnet werden, wie Abbildung 4.2 zeigt.

Anschließend wurde die Firmware mit dem esptool ausgelesen, das von IDF bereitgestellt

wird. Das etwa 750 kB große Firmware-Image wurde anschließend in den Flash-Speicher

der ESP32-Entwicklungsplatine geschrieben, die mit einem JTAG-Adapter verbunden ist.

Dies ermöglichte es, Breakpoints an beliebigen Stellen zu setzen und den Zustand des

Geräts auszulesen.

4.5.2.2 Fuzzing des Initialisierungsprozesses

Für die erste Konfiguration betreibt die Glühbirne ihren eigenen WLAN-Zugangspunkt.

Die Smartphone-App lässt das Telefon mit diesem Zugangspunkt verbinden und eine

64

4.5 Evaluation

Abbildung 4.2: Eine demontierte LIFX Mini smarte Glühbirne.

sichere TLS-Verbindung zum Gerät über den TCP-Port 56700 herstellen. Die Anmeldeda-

ten des WLAN-Zugangspunkts des Benutzers werden somit über einen sicheren Kanal

ausgetauscht. Nach der ersten Konfiguration verbindet sich die Glühbirne mit demWLAN-

Zugangspunkt des Benutzers, und weitere Steuerbefehle werden über dieses Netzwerk

übertragen. Der Fokus des ersten Fuzzing-Ansatzes für die Glühbirne liegt auf diesem

Initialisierungsprozess.

Zunächst mussten die Ein- und Ausstiegspunkte mit GDB gefunden werden. Als nächstes

mussten der gespeicherte Gerätezustand und die Metadaten dem ESP32-QEMU-FUZZ über

die JTAG-Debugging-Schnittstelle zur Verfügung gestellt werden. Als Ergebnis konnten

mehrere Abstürze innerhalb weniger Minuten beobachtet werden. Es wurden zwei ver-

schiedene Wege gefunden, das Gerät in eine Endlosschleife zu versetzen, bei der das Gerät

etwa 30 Sekunden lang nicht nutzbar war. Nach dieser Zeit startet das Gerät neu. Dieser

Fehler könnte für DoS-Angriffe ausgenutzt werden, um das Gerät unbrauchbar zu machen.

Außerdem wurde eine Eingabe gefunden, die das Gerät zum Absturz brachte und einen

Neustart auslöste. Der Neustart scheint jedoch durch einen eingebauten Neustart-Befehl

ausgelöst zu werden. Speicherbeschädigungen oder Fehler-Signale konnten durch die

manuelle Analyse des Absturzes nicht beobachtet werden.

Nach etwa 45 Minuten explorierte der Fuzzing-Prozess keine neuen Codebereiche mehr.

Selbst das weitere Ausführen des Fuzzing-Prozesses über 72 Stunden führte zu keiner

neuen Codeabdeckung. Es kann daher davon ausgegangen werden, dass die meisten

zugänglichen Code-Teile in den ersten 45 Minuten abgedeckt wurden.

4.5.2.3 Fuzzing auf offenem TCP-Port

Nach der Initialisierung bietet die Glühbirne auch einen HTTP-Server auf TCP-Port 80 an.

Nach wenigen Minuten Fuzzing konnte eine Nullzeiger-Ausnahme gefunden werden. Die

Ausnahme resultiert aus einer unsicheren Verwendung der strchr-Bibliotheksfunktion,

die sich im nicht modifizierbaren ROM des ESP32 befindet. Wenn das Zeichen nicht im

String enthalten ist, gibt diese Funktion einen Zeiger auf das geforderte Zeichen innerhalb

65

4 Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation

des Strings oder einen Nullzeiger zurück. In diesem Fall wurde der zurückgegebene Zeiger

nicht überprüft, sondern dereferenziert, was die Ausnahme auslöste.

Es gibt bisher noch keine Arbeiten darüber, wie sich diese Nullzeiger-Ausnahmen auf

der Xtensa-Architektur ausnutzen lassen. Es wurden aber bereits mehrere Möglichkeiten

gefunden, diese Art von Ausnahmen auf anderen Architekturen auszunutzen. Nullzeiger-

Dereferenzierungen sind in der 2019 CWE Top 25 Most Dangerous Software Errors [Cor19]
auf Platz 14 gelistet. Dieser Fehler sollte daher als potenziell ernsthafte Sicherheitslücke

betrachtet werden. Die Entdeckung dieses Fehlers zeigt die Effektivität des feedbackge-

steuerten Greybox-Fuzzings.

4.6 Einschränkungen und Ausblick

Die modifizierte Version von QEMU, die in dieser Dissertation entwickelt wurde, ist auf den

ESP32 beschränkt. Sie könnte jedoch auf alle eingebetteten Systeme erweitert werden, die

von QEMU unterstützt werden. Dies würde es ermöglichen, die implementierten Methoden

für eine viel größere Anzahl von Mikrocontroller-Architekturen zu nutzen. Da QEMU

jedoch nicht alle verfügbaren Architekturen unterstützt, bleibt die Fähigkeit, beliebige

Firmware-Images vollständig zu emulieren, wie in [Mue+18] erwähnt, ein offenes Problem.

4.7 Zusammenfassung

Für einige IoT-Entwicklungsplattformen wurden in der Vergangenheit Fuzzing-Techni-

ken entwickelt. Es gab jedoch keine veröffentlichten Tools für IoT-Geräte, die auf der

ESP32-Plattform basieren. Das Ergebnis dieser Publikation ist das erste veröffentlichte

Fuzzing-Framework, das speziell für ESP32-Anwendungen entwickelt wurde. Es wurden

verschiedene Techniken zum Fuzzing von ESP32-Anwendungen in unterschiedlichen

Szenarien implementiert und bewertet. Besonders effektiv sind zwei Methoden, die auf

Fuzzing in einem Emulator statt auf dem tatsächlichen Gerät basieren.

Whitebox-Fuzzing ermöglicht automatisierte, kontinuierliche Tests während des Anwen-

dungsentwicklungsprozesses und fügt sich nahtlos in moderne, agile Entwicklungsabläufe

ein. Greybox-Fuzzing ist ein leistungsstarkes Tool für Sicherheitsanalysten und erlaubt

gezielte Analysen von Firmware-Komponenten, die als potenziell anfällig gelten. Diese

Methoden wurden an einem kommerziellen Gerät getestet und konnten innerhalb kur-

zer Zeit Fehler finden. So wurde unter anderem ein Nullzeiger-Dereferenzierungsfehler

entdeckt, der eine potenzielle Sicherheitslücke darstellt. Zwar gibt es derzeit keine ver-

öffentlichten Methoden, um diesen Fehler auf der ESP32-Plattform auszunutzen, doch

mit deren zunehmender Popularität ist es nur eine Frage der Zeit, bis Angreifer einen

finanziellen Anreiz für Exploits sehen.

66

4.8 Fazit

4.8 Fazit

Die Virtualisierung der ESP32-Firmware durch EQF hat grundlegend verändert, wie Ein-

gaben an das PUT übermittelt werden. Anstelle der langsamen und ressourcenbegrenzten

Kommunikation über WLAN oder andere physikalische Schnittstellen ermöglicht die

emulierte Umgebung eine direkte und effiziente Interaktion zwischen Fuzzer und Ziel-

system. Dadurch wird erstmals eine Infrastruktur geschaffen, die die gezielte Erzeugung,

Aufzeichnung und Analyse großer Mengen an Eingabedaten ermöglicht.

Klassische Fuzzing-Verfahren basieren häufig auf zufällig generierten Eingaben, die vom

Zielsystem sofort als ungültig verworfen werden. Dadurch bleibt der zugrunde liegen-

de Protokollzustandsraum weitgehend ungetestet, insbesondere komplexe Logikpfade

oder sicherheitskritische Schwächen bleiben unentdeckt. Die Effektivität des Testverfah-

rens steigt jedoch erheblich, wenn mehr Wissen über Aufbau, Semantik und zulässige

Strukturen der Eingaben verfügbar ist.

Vor diesem Hintergrund ergibt sich eine direkte Motivation für die Untersuchung und

automatisierte Rekonstruktion der Protokollstrukturen von ESP32-Anwendungen. Nur

durch ein gezieltes Verständnis der zugrunde liegenden Datenformate und Kommunika-

tionsprotokolle kann das Fuzzing auf semantisch valide Eingaben ausgedehnt werden.

Im nächsten Kapitel wird daher ein Ansatz zum automatisierten PRE von proprietären

Netzwerkprotokollen vorgestellt.

67

5 Protocol Reverse Engineering mittels
neuronaler Netze

Für die Inhalte dieses Kapitels wurde eine gemeinsame Veröffentlichung mit Valentin

Kiechle, Sven Nitzsche, Ingmar Baumgart, Jürgen Becker, Nico Rausch und Martin Dukek

als Grundlage verwendet. Teile der Ergebnisse wurden bereits in den unten genannten

Publikationen veröffentlicht. Es wird ein neuartiger Ansatz zum PRE vorgestellt, der auf

neuronalen Netzen basiert und somit die bisher manuellen Prozesse automatisiert. Durch

den Einsatz verschiedener neuronaler Netzarchitekturen wie CNNs, AE, GANs, LSTMs

und SOMs ermöglicht dieser Ansatz die effektive Rekonstruktion textbasierter Netzwerk-

protokolle wie HTTP und FTP. Außerdem wird untersucht, inwieweit durch maschinell

gelernte Modelle realistische Paketsequenzen generiert werden können, die gezieltes und

effektives Fuzzing ermöglichen. Zu diesem Zweck wird ein Evaluationsframework auf

Basis von ProFuzzBench entwickelt und auf die Serveranwendungen LightFTP und eine

selbst entwickelte Web-Server-Applikation angewendet.

• Valentin Kiechle, Matthias Börsig, Sven Nitzsche, Ingmar Baumgart und Jürgen

Becker. „PREUNN: Protocol Reverse Engineering using Neural Networks“. In: Pro-

ceedings of the 8th International Conference on Information Systems Security and

Privacy - ICISSP. ICISSP 2022 Best Poster Award. INSTICC. SciTePress, Feb. 2022,
S. 345–356. isbn: 978-989-758-553-1. DOI: 10.5220/0010813500003120 [Kie+22].

• Nico Rausch. „Evaluation eines Machine-Learning-basierten Ansatzes zum Protocol

Reverse Engineering für effizientes Fuzzing von Netzwerkanwendungen“. Betreuer:

Matthias Börsig und Martin Dukek, Erstgutachter: PD Dr.-Ing. Ingmar Baumgart,

Zweitgutachter: Prof. Dr. Ralf H. Reussner. Masterarbeit am Karlsruher Institut für

Technologie, Sep. 2023 [Rau23].

5.1 Einleitung

Während Deep Learning seit 2012 erhebliche Fortschritte in der automatisierten Feature

Extraction und Klassifikation erzielt hat [KSH12], blieb das Gebiet des PRE weitgehend

von diesem Trend unberührt. Die meisten Publikationen in diesem Bereich stammen aus

den Jahren 2004 bis 2013, und neuere Ansätze zur Nutzung neuronaler Netze wurden

bislang kaum untersucht.

PRE zielt darauf ab, die Spezifikation eines unbekannten Anwendungsschichtprotokolls aus

den Artefakten seiner Kommunikation zu rekonstruieren. Die gewonnenen Informationen

69

5 Protocol Reverse Engineering mittels neuronaler Netze

können in einer Vielzahl sicherheitsrelevanter Anwendungen eingesetzt werden, insbe-

sondere im Fuzzing. Das Wissen über die Nachrichtenstruktur und den internen Zustand

des Protokolls kann die Abdeckung von Fehlern und Randfällen signifikant erhöhen.

Vor diesem Hintergrund untersucht die Dissertation die Frage, ob und wie sich neuro-

nale Netze zur Automatisierung von PRE-Aufgaben einsetzen lassen. Der Fokus liegt

dabei auf der Anwendung und Evaluierung moderner Deep-Learning-Methoden für text-

basierte Netzwerkprotokolle sowie der Entwicklung eines modularen Frameworks, das

unterschiedliche Architekturen kombiniert.

Die wesentlichen Beiträge lassen sich wie folgt zusammenfassen:

• Konzeption eines modularen PRE-Ansatzes: Entwicklung eines vollständig

neuronalen, modularen Frameworks zur Protokollanalyse, das verschiedene Archi-

tekturen wie AE, CNNs, SOMs und LSTMs integriert.

• Automatisierte Feature Extraction: Einsatz von AE und CNNs zur automatischen

Identifikation syntaktischer und semantischer Features von Protokollnachrichten,

ohne manuelles Feature-Engineering.

• Clustering von Protokollnachrichten: Kombination von AE-Features mit SOMs

zur Gruppierung von Nachrichten in Nachrichtentypen. Hierdurch konnte die Clus-

tering-Qualität gegenüber einer Baseline um bis zu 19 % verbessert werden.

• Sequenzgenerierung und Zustandsmodellierung: Systematische Untersuchung

derWirksamkeit des Ansatzes anhand der Protokolle HTTP 1.1 und FTP. Verwendung

von LSTMs zur Generierung neuer, syntaktisch valider Nachrichten (bis zu 67,6 %

gültige HTTP- und 100% gültige FTP-Nachrichten) sowie zur Modellierung der

Zustandsübergänge in zustandsbehafteten Protokollen.

5.2 Stand der Technik

Ansätze des PRE lassen sich systematisch nach den verwendeten Datenquellen klassifizie-

ren. Einige Verfahren basieren ausschließlich auf der Analyse von Netzwerknachrichten,

während andere zusätzlich dynamische Laufzeitinformationen einbeziehen. Diese werden

beispielsweise durch Instrumentierung oder Tracing von Binärdateien gewonnen. Darüber

hinaus unterscheiden sich die Ergebnisse: Manche Methoden rekonstruieren lediglich das

Nachrichtenformat, während andere auch Zustandsautomaten ableiten. Eine Übersicht

der wichtigsten Ansätze gemäß dieser Kriterien zeigt Tabelle 5.1. Der vorgestellte Ansatz

positioniert sich im unteren linken Quadranten der Taxonomie und unterscheidet sich von

bestehenden Ansätzen durch eine vollständig automatisierte Kombination von Struktur-,

Kontext- und Zustandsmodellierung.

Einen der frühesten und einflussreichsten Ansätze stellt Discoverer von Cui, Kannan

und Wang [CKW07] dar. Dabei wird ausschließlich Netzwerkverkehr in Echtzeit ana-

lysiert, um eine abstrakte Protokollspezifikation zu erzeugen. Nachrichten werden dazu

in einzelne Token zerlegt, die zunächst zu kleinen Clustern gruppiert und anschließend

70

5.2 Stand der Technik

Tabelle 5.1: Taxonomie zur Klassifizierung von PRE-Ansätzen nach Anforderungen (Spal-

ten) und Ergebnissen (Zeilen)

PRE-Taxonomie Anforderungen

und Ergebnisse

Nur Netzwerknachrichten
Nachrichten und ausführbare

Binärdatei zur Laufzeit

Abgeleitetes Nachrichtenformat Discoverer [CKW07] Wondracek [Won+08]

Abgeleiteter Zustandsautomat PREUNN Prospex [Com+09]

rekursiv zusammengeführt werden. Die Annahme, dass Protokolle häufig standardisierte

Trennsymbole wie Kommas, Leerzeichen oder Zeilenumbrüche verwenden, ermöglicht die

Identifikation von Nachrichtenfeldern mittels Heuristik. Zusätzlich werden Datentypen

wie Text- oder Binärfelder abgeleitet und Abhängigkeiten zwischen einzelnen Feldern

erkannt. Damit ermöglicht Discoverer die automatische Rekonstruktion der Nachrichten-

struktur ohne jegliches Vorwissen. Allerdings bleibt dieser Ansatz auf eine oberflächliche

Strukturerkennung beschränkt und berücksichtigt weder semantische Zusammenhänge

noch komplexe Zustandsabhängigkeiten. In dieser Dissertation werden die Stärken von

Discoverer hinsichtlich der Feldidentifikation aufgegriffen und durch weitergehende Mo-

dellierungstechniken ergänzt, um eine detailliertere Darstellung komplexer Protokolle zu

ermöglichen.

Ein weiterer bedeutender Ansatz ist Prospex von Comparetti et al. [Com+09]. Dieser erwei-

tert das Discoverer-Verfahren durch eine Kombination aus Netzwerkanalyse und Laufzeit-

informationen. Hierbei werden zusätzliche Ausführungstraces von Binärdateien analysiert,

wodurch tiefere semantische Einblicke in die Protokollstruktur gewonnen werden können.

Die Methode besteht aus mehreren Schritten: Zunächst werden charakteristische Features

der Nachrichten mittels Byte-Tainting (einzelne Bytes von Daten markieren und während

der Programmausführung verfolgen) und Speicheranalyse extrahiert. Anschließend erfolgt

ein Clustering, das neben dem Format der Nachrichten auch deren erzeugte Reaktionen und

Antworten berücksichtigt. Auf dieser Grundlage wird ein Akzeptor-Automat konstruiert,

der gültige Nachrichtenfolgen modelliert. Ein Akzeptor-Automat ist ein endlicher Automat,

der prüft, ob eine Sequenz von Nachrichten den erlaubten Zuständen und Abläufen eines

Protokolls entspricht. Er akzeptiert nur gültige Sequenzen und verwirft alle ungültigen,

was insbesondere für Fuzzing von zustandsbehafteten Protokollen von Vorteil ist. Der

Automat wird anschließend mithilfe des Exbar-Algorithmus [Lan99] minimiert, um seine

Komplexität zu reduzieren. Das resultierende Modell wird schließlich in den Peach Fuzzer
1

integriert, um gezieltes und effektiveres Fuzzing zu ermöglichen. Durch die Kombination

von Netzwerkanalyse, Binärinformationen und Zustandsmodellierung liefert Prospex eine

deutlich umfassendere Spezifikation als Discoverer. Allerdings erfordert dieser Ansatz

eine aufwendige Vorverarbeitung und hängt stark von heuristischen Annahmen ab. In

dieser Dissertation werden ähnliche Grundprinzipien verfolgt, jedoch durch eine voll-

ständig automatisierte, modulare Architektur ergänzt, die explizit Kontextinformationen

berücksichtigt und dadurch robustere Modelle erzeugt.

1http://peachfuzzer.com

71

http://peachfuzzer.com

5 Protocol Reverse Engineering mittels neuronaler Netze

Neben heuristischen Ansätzen wurden in jüngeren Arbeiten vermehrt Methoden des ma-

schinellen Lernens für PRE-verwandte Aufgaben eingesetzt. Fu et al. [FC17] kombinieren

beispielsweise Blackbox-Fuzzing mit einem Sequenz-zu-Sequenz-LSTM-Modell [SVL14],

um Protokollsemantik zu erfassen und neue Eingaben zu generieren. Dieser Ansatz eröff-

net neue Möglichkeiten zum PRE, bleibt jedoch auf die Generierung syntaktisch plausibler

Nachrichten beschränkt und verzichtet auf Verfahren wie Clustering oder kontextba-

sierte Modellierung. Das GANFuzz-Framework von Hue et al. [Hu+18] nutzt hingegen

Sequence Generative Adversarial Nets (SeqGAN) [Yu+17] in Kombination mit Reinforce-

ment Learning. Für jeden Nachrichtentyp wird dabei ein separates Modell trainiert, wobei

die Typen heuristisch durch Clustering bestimmt werden. Dieser Ansatz berücksichtigt

zwar unterschiedliche Nachrichtentypen, integriert jedoch keinen konsistenten Workflow

und basiert bei der Generierung auf Symbolfolgen statt vollständigen Protokollmodel-

len. Die Dissertation greift dagegen die Ideen des Deep Learning auf und integriert sie

in einen ganzheitlichen, automatisierten Prozess, der Nachrichtenstruktur, Kontext und

Zustandsabhängigkeiten gleichzeitig modelliert.

Zusammenfassend lässt sich festhalten, dass die bestehenden Ansätze jeweils nur Teila-

spekte der Protokollspezifikation erfassen. Discoverer konzentriert sich auf die Nachrich-

tenstruktur, Prospex erweitert diese um Zustandsautomaten und Machine-Learning-ba-

sierte Verfahren verbessern die Generierungsfähigkeit syntaktisch plausibler Nachrichten.

Die in dieser Dissertation vorgestellte Methode kombiniert die Stärken dieser Ansätze

und geht darüber hinaus: Durch die explizite Integration von Kontextinformationen, den

modularen Aufbau und den Einsatz moderner Machine-Learning-Techniken wird eine

präzisere, vollständig automatisierte Rekonstruktion komplexer Protokolle ermöglicht.

Dadurch werden realistischere Eingaben für Analyse- und Fuzzing-Verfahren erzeugt.

5.3 Hauptansatz

In diesem Abschnitt wird eine neuartige Methode zur systematischen Betrachtung der

Aufgabenstruktur beim PRE vorgestellt. Um eine konsistente Referenzierung zu gewähr-

leisten, wird der in diesem Kapitel entwickelte Ansatz im Folgenden als Protocol Reverse

Engineering using Neural Networks (PREUNN) bezeichnet.

PREUNN ist in mehrere, überwiegend sequenziell auszuführende Verarbeitungsschritte

gegliedert. Die hier vorgestellte modulare Architektur orientiert sich am Vorbild klas-

sischer Verfahren des maschinellen Lernens aus der Spracherkennung [WL90]. Dabei

werden komplexe Aufgaben gezielt in Teilschritte wie Merkmalsextraktion, Clustering

und Sequenzmodellierung zerlegt. Dieses Design ermöglicht es, einzelne Subsysteme un-

abhängig voneinander zu optimieren und bei Bedarf durch leistungsfähigere Modelle zu

ersetzen. Damit unterstützt PREUNN sowohl die Anpassung an unterschiedliche neuro-

nale Netzwerkarchitekturen als auch die direkte Integration neuer KI-Methoden in den

Gesamtprozess.

72

5.3 Hauptansatz

5.3.1 Datenerfassung

Für das Trainieren neuronaler Netze wird ein repräsentativer Datensatz benötigt. Um

die Auswertung der Ergebnisse zu erleichtern, wurde ein Satz textbasierter Artefakte

von Anwendungsprotokollen als Grundlage ausgewählt. Dies ist wichtig, da mit dem

vorgestellten Ansatz kein direkter Vergleich mit klassischen PRE-Ansätzen möglich ist.

Bei einem textbasierten Protokoll lässt sich leicht manuell überprüfen, ob die generierten

Daten korrekt sind. Die gewählten Protokolle sind HTTP v1.1 und FTP, da diese häufig

verwendet werden, in großer Menge verfügbar sind und keine Verschlüsselung aufweisen.

Es werden mehrere Quellen (siehe Abschnitt 5.4.1) von Datensätzen verwendet, um eine

breitere Mischung von Implementierungen und Nachrichtenverteilungsarten abzudecken.

5.3.2 Feature Extraction

In diesem ersten Teil werden Features extrahiert, die klar unterscheidbar sind. Sowohl in

Prospex als auch in Discoverer war die Auswahl der Features ein wesentlicher Bestandteil

der Arbeit, aber die Features wurden von den Forschern ausgewählt. Es ist beabsichtigt,

diesen Prozess mit neuronalen Netzwerken zu automatisieren. Von besonderem Interesse

sind Schlüsselwörter, Interpunktion, syntaktische Zeichen und andereMuster, die zwischen

verschiedenen Nachrichten unterscheiden. Pseudo-zufällige Zeichenfolgen wie Tags und

Cookies werden vermieden, da sie in der Regel nicht mit den Protokollspezifikationen in

Verbindung stehen.

5.3.3 Reverse Engineering von Features

Beim traditionellen Reverse Engineering von Protokollen dient die Analyse dazu, Regeln,

Variablenlisten, Konstanten und Grammatiken aus Kommunikationsartefakten abzuleiten.

Bei neuronalen Netzwerken ist das erlernte Wissen hingegen intrinsisch nicht reprä-

sentativ, was eine menschliche Interpretation erschwert. Zur Bewertung der erlernten

und rekonstruierten Features durch die jeweiligen Architekturen kommt ein generativer

Bewertungsansatz zum Einsatz. Mithilfe dieser Methode werden neue Proben aus der Trai-

ningsverteilung erzeugt, wodurch Einblicke in die internen Lernprozesse der neuronalen

Netzwerke ermöglicht werden.

5.3.4 Clustering

Protokollnachrichten können normalerweise in Typen gruppiert werden, unabhängig

davon, ob das Protokoll diese Gruppen explizit spezifiziert hat oder nicht. Diese Nach-

richten können unter Verwendung von Informationen wie der sequentiellen Reihenfolge,

Funktionalität und allgemeinem Format geclustert werden. Da das Clustering verschiede-

ne Nachrichtentypen impliziert, eignet es sich besonders gut für den Einsatz neuronaler

Netzwerke [BLP05].

73

5 Protocol Reverse Engineering mittels neuronaler Netze

5.3.5 Zustandserkennung

Eine typische Kommunikationssitzung besteht aus mehreren gesendeten und empfange-

nen Nachrichten. In zustandsbehafteten Protokollen führen bestimmte Nachrichtenfolgen

zu komplexeren Zustandsübergängen zwischen den Kommunikationspartnern. Diese se-

quenziellen Muster repräsentieren einen Zustandsautomaten, der den inneren Zustand

des Protokolls beschreibt. Ein neuronales Netzwerk, das sequentielle Abhängigkeiten

erfassen kann, lernt dabei sowohl die Reihenfolge verschiedener Nachrichtentypen als

auch deren Auftretenswahrscheinlichkeiten. Auf dieser Grundlage lassen sich Metho-

den der Zeitreihenanalyse anwenden, um den jeweils nächsten Zustand des Protokolls

vorherzusagen.

5.3.6 Sequenzgenerierung

Im abschließenden Schritt werden alle trainierten Modelle zu einer generativen PREUNN-

KI zusammengeführt. Das Ziel dieser Phase besteht darin, neue Nachrichtensequenzen

zu erzeugen, die den in den Trainingsdaten beobachteten Kommunikationsmustern ent-

sprechen. Dabei berücksichtigt das Modell Kontextinformationen wie den Clusterindex

sowie sequentielle Abhängigkeiten zwischen Nachrichten, um realistische und konsistente

Sequenzen zu generieren. Durch die Integration dieser Informationen kann die KI die

zugrunde liegende Struktur und Dynamik des Protokolls nachbilden. Auf diese Weise

entstehen synthetische, aber gültige Nachrichtenfolgen, die nicht im Trainingsdatensatz

enthalten sind, jedoch ähnliche statistische und semantische Eigenschaften aufweisen.

5.4 Implementierung von PREUNN

In diesem Abschnitt werden die Implementierungsdetails des Hauptansatzes sowie die

durchgeführten Experimente zur Evaluierung verschiedener neuronaler Netzwerkarchi-

tekturen beschrieben. Die Hyperparameter der Modelle wurden auf Grundlage empirischer

Tests manuell festgelegt. Dabei erfolgte die Auswahl anhand der Trainingsstabilität, der

Konvergenzgeschwindigkeit und der erzielten Validierungsgenauigkeit. Eine systema-

tische, automatisierte Hyperparameteroptimierung wurde nicht durchgeführt, da die

verfügbare Hardware keine effiziente Exploration größerer Suchräume erlaubte.

Alle Experimente wurden in Python 3 unter Verwendung eines objektorientierten Pro-

grammieransatzes implementiert, um eine modulare Struktur und einfache Erweiterbarkeit

auf weitere Protokolle sicherzustellen. Als Deep-Learning-Framework kam PyTorch
2
zum

Einsatz. Die Entscheidung fiel zugunsten von PyTorch aufgrund seiner dynamischen

Berechnungsgraphen, der guten Integration in die Python-Umgebung sowie der hohen

Flexibilität bei der Entwicklung und dem Debugging experimenteller Modelle. Sämtliche

Experimente wurden auf einer NVIDIA-GTX-970-GPU ausgeführt.

2https://pytorch.org/

74

https://pytorch.org/

5.4 Implementierung von PREUNN

5.4.1 Datenvorverarbeitung

In den Test wurden zwei Datensätze verwendet. Der erste besteht aus der Kombinati-

on mehrerer HTTP-Quellen [Gar08; Shi+12; Goo+19; Sha+19], die ausgewählt wurden,

um verschiedene Implementierungen und Szenarien abzudecken. Der zweite Datensatz

besteht aus FTP-Nachrichten [PP03]. Bevor Experimente durchgeführt werden konnten,

wurden die Daten auf Ausreißer und Unregelmäßigkeiten untersucht. Datenengineering

nimmt in der Regel einen erheblichen Teil der Zeit in jedem Machine-Learning-Projekt

in Anspruch. Dieser Prozess konnte jedoch mit Netzwerkaufzeichnungen in Form von

pcap-Dateien (einem Format zum Speichern von Netzwerkpaketen) verkürzt werden. Das

Netzwerk-AnalysetoolWireshark
3
bietet einenweit verbreiteten Parser für die Analyse von

Netzwerkprotokollen. Es wurde mithilfe des Parsers von Wireshark nach gültigen HTTP-

und FTP-Paketen gefiltert und der Rest verworfen. Auf diese Weise wurde sichergestellt,

dass sich keine ungültigen oder fehlerhaften Pakete im Datensatz befanden.

Die Länge der Anwendungsdatagramme der Anwendungsschicht ist durch das zugrunde

liegende TCP-Protokoll begrenzt. Eine Analyse der neuen pcap-Datei zeigte, dass lange

Nachrichten nur bei Bildübertragungen (HTTP) oder benutzerdefinierten Nachrichten

(FTP) auftreten und anschließend ohne signifikanten Verlust von Informationen abge-

schnitten werden können. Das Längenlimit von 1024 Bytes wurde für alle Pakete festgelegt,

um die Eingaben des neuronalen Netzwerks zu vereinheitlichen. Nur 0,33 % der HTTP-

Daten und 0,18 % der FTP-Daten überschritten dieses Limit und wurden entsprechend

abgeschnitten. Die geringe Überschreitungsrate zeigt, dass der gewählte Grenzwert in der

Praxis eine sinnvolle Balance zwischen Datenvollständigkeit und Modellkompatibilität

darstellt.

Als weiterer Schritt in den HTTP-Experimenten wurde der gesamte Inhalt nach dem

Nachrichtenkopf entfernt. Dadurch sollten XML und andere, nicht HTTP-basierte Daten

ausgeschlossen werden. Dies wurde erreicht, indem jede Nachricht an der Stelle, an der

ein doppelter Zeilenumbruch (\r\n\r\n) auftrat, geteilt wurde. Dabei wurde nur der erste
Teil beibehalten. Der doppelte Zeilenumbruch markiert das Ende des HTTP-Headers und

den Beginn des Payloads. Somit stellt er eine einfache Methode zur gezielten Bereinigung

der Daten dar. Für die FTP-Daten wurde hingegen kein entsprechender Filter angewendet,

da die Trennung von Befehlen und Nutzdaten durch separate Steuer- und Datenkanäle

bereits sichergestellt ist.

Dataset-Bias ist eine häufige Falle bei der Entwicklung von Machine-Learning-Lösungen.

Es beschreibt eine ungleichmäßige Verteilung von Klassen innerhalb der Daten, die zu sub-

optimalem Lernen der Features in den neuronalen Netzwerken führt. Die Protokolle selbst

spezifizieren keine Klassen von Nachrichten direkt, die manuell erstellten Klassifikationen

für beide Protokolle orientieren sich jedoch an der Baseline für das Klassenungleichge-

wicht. Es ist wünschenswert, dass die neuronalen Netzwerke weiterhin lernen, welche

Typen häufiger sind als andere, aber das Ungleichgewicht in dem Datensatz ist deutlich

zugunsten von zwei oder drei häufigen Nachrichtentypen. Um die Anzahl der Nachrichten

3https://www.wireshark.org/

75

https://www.wireshark.org/

5 Protocol Reverse Engineering mittels neuronaler Netze

Abbildung 5.1: HTTP-Datensatzverteilungen in Original (blau) und ausgeglichen (grün).

Das deutliche Ungleichgewicht zugunsten einzelner Nachrichten wurde

gemildert, während dieser Typ weiterhin am häufigsten erhalten blieb.

pro Klasse auszugleichen, wurde diese Formel entwickelt:

AnzahlNachrichten pro Klasse =
√︁
AnzahlVorkommen ∗ 100

Die visualisierte Verteilung der Nachrichtentypen ist in Abbildung 5.1 und in Abbildung 5.2

zu sehen.

Für jede Klasse wurden Netzwerpakete zufällig ausgewählt, bis ein zuvor definiertes Limit

erreicht war. Dabei erfolgte eine gezielte Vervielfachung seltener Nachrichtentypen, um

in allen Klassen eine ausreichende Stichprobengröße sicherzustellen. Experimente, die

im Rahmen dieser Dissertation ohne diesen Ausgleich durchgeführt wurden, zeigten in

mehreren Fällen deutliche Anzeichen von Overfitting. Dies unterstreicht die Notwendig-

keit einer ausbalancierten Datenverteilung. Um die natürliche Häufigkeitsverteilung der

Nachrichten zu bewahren, wurden die Klassen nicht vollständig auf ein einheitliches Limit

normiert, sondern proportional zu ihrer ursprünglichen Auftretenswahrscheinlichkeit

angepasst.

5.4.2 Feature Extraction

Neuronale Netzwerke sind dafür bekannt, hochgradig flexible, selbstlernende Feature-Ex-

traktoren für unterschiedliche Aufgaben zu sein. In diesem Ansatz wird jedes Zeichen einer

Nachricht als Ganzzahlwert interpretiert und die gesamte Nachricht als eindimensionales

Bild betrachtet, sodass Verfahren aus bildbasierten Aufgaben angewendet werden können.

76

5.4 Implementierung von PREUNN

Abbildung 5.2: FTP-Datensatzverteilungen in Original (blau) und ausgeglichen (grün). Bei

drei dominanten Typen und mehreren unterrepräsentierten Typen wurde

die Umverteilung erheblich geglättet, wobei Tendenzen erhalten blieben.

Zur Feature Extraction wurden zwei Architekturen ausgewählt: ein AE und ein CNN. Die

in diesen Experimenten von den Modellen gelernten Zuordnungen von Features werden

anschließend als Eingabe für das Clustering verwendet. Aufgrund der Blackbox-Natur neu-

ronaler Netzwerke kann die Qualität der Zuordnungen von Features nicht direkt gemessen

werden. Stattdessen werden die Ergebnisse des späteren Clusterings zur Bewertung beider

Architekturen herangezogen.

Autoencoder AE arbeiten nur mit Daten fester Länge und lernen eine kompakte Darstel-

lung der Daten. Die Netzwerknachrichten, die als Daten verwendet werden, variieren in

der Länge, überschreiten jedoch in der Regel nicht 1024 Bytes. Um sie zu vereinheitlichen,

werden kürzere Nachrichten mit Nullen aufgefüllt, um eine Länge von 1024 Bytes zu

erreichen. Kleinere Tests haben ergeben, dass das Auffüllen bzw. Kürzen auf diese Länge

die Leistung des Modells nicht signifikant beeinträchtigt. Da die erwartete Ausgabe für

die AE-Architektur gleich der Eingabe ist, wird die Hamming-Distanz als Leitmaß für

den Erfolg während des Experimentierens verwendet. Der AE wurde mit den folgenden

Schichtgrößen trainiert: 1024 → 256 → 128 → 256 → 1024. Bei den Tests wurden die

Softplus-Aktivierungen verwendet und der Adam-Optimizer auf eine Lernrate von 0,0005

gesetzt. Die Verlustfunktion ist der Mean Squared Error (MSE) und die Batch-Größe =

128 für 10 Epochen. Die resultierende 128 Neuronen breite Ausgabe des Encoder-Teils

wurde als Kodierung von Features für eine Nachricht verwendet. Die Daten für dieses

Experiment wurden als Pixel interpretiert und haben anschließend eine kontinuierliche

Natur im Intervall [0, 255]. Die für Trainingsdaten mit einer Länge von 1024 Bytes er-

77

5 Protocol Reverse Engineering mittels neuronaler Netze

Klasse1: unverändert
H T T P / 1 . 1 2 0 0 O K

\r
\n

Klasse2: LängederBlöcke: 8
2 0 0 O K

\r
\n H T T P / 1 . 1

Klasse3: LängederBlöcke: 4
O K

\r
\n / 1 . 1 2 0 0 H T T P

Abbildung 5.3: Eine HTTP-Anweisung, die in 3 Klassen aufgeteilt und vermischt wurde

(unverändert sowie Blöcke der Länge 8 und 4). Die Farbe gibt die Blockgröße

an. Die Reihenfolge der Blöcke wurde zufällig angeordnet.

reichte Distanz beträgt im Durchschnitt 254,44 für HTTP und 41,28 für FTP. Die sehr

hohe Hamming-Distanz resultiert aus der kontinuierlichen Natur der Byte-Interpreta-

tionen, selbst die Füllsymbole (0) konnten nicht vollständig rekonstruiert werden. Es ist

festzustellen, dass Füllsymbole oft denselben ASCII-Wert um 1 oder 2 Werte verfehlen,

wenn die ASCII-Tabelle als Skala von 0 bis 255 interpretiert wird. In einem Bild wären

solche kleinen Farbfehler kaum wahrnehmbar. Für das Alphabet als kontinuierliche Skala

sehen die Ergebnisse oft falsch aus. Das Hauptziel eines Autoencoders ist jedoch, die

Dimensionalität von Features mit minimalem Verlust von Informationen zu reduzieren

und Muster zu lernen. In diesem Fall ist es gelungen, die Dimension von 1024 Bytes auf 128

Bytes zu reduzieren und dabei zufriedenstellende Features für die Rekonstruktion während

des Experiments zu bewahren. Die niedrigere durchschnittliche Hamming-Distanz für

FTP lässt sich durch die viel kürzere durchschnittliche Nachrichtenlänge erklären.

Convolutional Neural Network CNNs werden üblicherweise für die überwachte Bild-

klassifikation verwendet [KSH12]. Die für diese Dissertation gewählten Trainingsdaten

enthalten jedoch keine Labels, die für das überwachte Lernen verwendet werden können.

Deshalb wurde eine eigene unüberwachte Lerntechnik unter Verwendung von Datenaug-

mentation entwickelt. Bei der enwickelten Lerntechnik werden Nachrichten repliziert und

in mehrere bekannte Klassen von Augmentierungstypen modifiziert, um Informationen

über den syntaktischen Kontext zu extrahieren. Die zugrunde liegende Idee besteht darin,

dass ein CNN durch das Training an der Unterscheidung zwischen diesen Augmentie-

rungsklassen in die Lage versetzt wird, die charakteristischen Muster der Syntax effizient

zu erkennen und sich darauf adaptiv einzustellen. HTTP- oder FTP-Anweisungen werden

wiederum auf eine feste Länge von 1024 Bytes aufgefüllt/gekürzt und dann in Segmente

verschiedener Längen (1024 Bytes, 32 Bytes, 16 Bytes, 8 Bytes, 4 Bytes) unterteilt, die

dann innerhalb derselben Anweisung in zufälliger Reihenfolge eingegeben werden. Dieser

Ansatz führt zu 5 Klassen: unverändert und in Blöcke der Längen 32, 16, 8 und 4 Bytes

durcheinander gemischt. Ein vereinfachtes Beispiel wird in Abbildung 5.3 illustriert.

78

5.4 Implementierung von PREUNN

HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 11:33:55 GMT

Server: Apache/2.2.3 (Red Hat)

Last-Modified: Mon, 22 Jun 2009 21:03:26 GMT

ETag: "1ef8b2d-59-46cf634892380"

Accept-Ranges: bytes

Content-Length: 89

Vary: User-Agent

Content-Typ: image/gif

Abbildung 5.4: Beispiel einer HTTP-Anweisungs-Klassifizierung, visualisiert durch Grad-

CAM. Die aufgefüllten Nullen wurden weggelassen. Die semantisch signi-

fikanten und konsistenten Teile werden hervorgehoben, während pseu-

do-randomisierte Teile im ETag ignoriert werden. Die Textmarkierungen

in dieser Abbildung sind eine Annäherung.

Es wurde eine Architektur gewählt, die Blöcke mit 1D-Faltung, 1D-Batch-Normalisierung,

Softplus-Aktivierung und 20%-Dropout in insgesamt 5 Schichten verwendet, wobei die

Kanalgrößen wie folgt aussehen: 1 → 128 → 64 → 32 → 16 → 8. Die Klassifikations-

aufgabe wurde durch zwei vollständig verbundene Schichten durchgeführt, die nach dem

Training entfernt wurden, um eine Feature Map mit 8 ∗ 30 = 240 Neuronen zu erhalten, die

größer ist als die des Autoencoders. Eine Visualisierung der gelernten Features wird als

zusätzliche Analysemethode zur Evaluierung der Leistung verwendet. Die Visualisierung

der Pixelwichtigkeit, auch Grad-CAM [Sel+17] genannt, wird als Qualitätsmessung für die

syntaktischen Features verwendet, die vom Modell gefunden wurden. Die Experimente

zeigten gemischte Ergebnisse für HTTP und FTP. Bezüglich HTTP wird deutlich, dass

verschiedene Teile einer Protokollnachricht unterschiedlich hervorgehoben werden, siehe

Abbildung 5.4. Die hervorgehobenen Teile stimmen oft mit syntaktisch relevanten Ab-

schnitten überein, während pseudo-randomisierte Strings ignoriert werden. Dies ist genau

die Art der syntaktischen Feature Extraction, die für dieses Experiment gewünscht wird.

Die Ergebnisse für das FTP-Protokoll sind in Grad-CAM weniger deutlich sichtbar, da

die durchschnittliche Nachrichtenlänge deutlich geringer ist. Auch der Trainingsprozess

konvergierte insgesamt flacher als bei der HTTP-Variante.

5.4.3 Feature Reverse Engineering

Ein zentrales Ergebnis des PRE ist die Darstellung des Zielprotokolls in Form von Regeln

oder Clustern. Neuronale Netze erlauben jedoch keinen direkten Einblick in ihre interne

Repräsentation der erlernten Features. Um ein greifbares Ergebnis zu erhalten, das über

das Clustering und die Sequenzrekonstruktion hinausgeht, wird das Ziel verfolgt, neue

Nachrichten generieren zu können – als Beleg dafür, dass das Modell die semantischen

Strukturen tatsächlich erfasst hat.

Dazu werden generative neuronale Netzwerke genutzt und deren Ausgaben analysiert.

Dabei stehen zwei Interpretationsansätze für Textnachrichten zur Verfügung: Entweder

79

5 Protocol Reverse Engineering mittels neuronaler Netze

werden sie als Byte-Folge mit bildähnlicher Struktur dargestellt – wie bereits bei der

Feature Extraction verwendet – oder als sequenzielle Folge von ASCII-Zeichen.

Beide Varianten wurden erprobt. Für die bildähnliche Byte-Interpretation kam eine Stan-

dard-GAN-Architektur zum Einsatz, die sich an den Empfehlungen der Originalautoren

orientiert [Goo+14; RMC15]. Für die sequenzielle Interpretation wurde ein LSTM-Modell

verwendet, das um eine angepasste Embedding-Schicht ergänzt wurde, um die inhä-

rente Zufälligkeit bestimmter Protokollbestandteile (z. B. Cookies, Adressen) realistisch

abzubilden.

Generative Adversarial Net Ein GAN besteht aus zwei Netzwerken – dem Generator und

dem Diskriminator –, die parallel zueinander trainiert werden. Der Generator verwendet

vier 1D-Transponierte-Faltungsschichten mit folgenden Parametertupeln für (Kernelgröße,

Schrittweite): (2, 2), (4, 4), (8, 8) und (16, 16) in aufsteigender Reihenfolge. Die ersten drei

Schichten werden jeweils durch eine 1D-Batch-Normalisierung und eine ReLU-Aktivierung

ergänzt, während die letzte Schicht mit einer Sigmoid-Aktivierung endet. Die Kanalanzahl

ist wie folgt: 1024 → 1024 → 128 → 32 → 1.

Der Diskriminator nutzt vier 1D-Faltungsschichten mit Batch-Normalisierung (außer in

der ersten Schicht), Leaky ReLU mit einer Steigung von 0,2 sowie 20% Dropout. Das

Netzwerk endet in einer vollvernetzten Schicht mit 360 Neuronen. Die Kanalanzahl lautet:

1 → 10 → 20 → 60 → 90 → 1.

Um ein Ungleichgewicht im Training zu verhindern, wurde eine Regel implementiert:

Wenn der Fehler eines Netzwerks einen bestimmten Schwellwert überschreitet oder der
Fehler des anderen Netzwerks unter einen festgelegten Wert fällt, wird das überlegene

Netzwerk temporär vom Training ausgeschlossen, bis das andere aufholt.

Beide Netzwerke verwenden den Adam-Optimizer mit einer Lernrate von 0,0005 und den

Parametern betas = (0,5, 0,99). Als Verlustfunktion kommt Binary Cross-Entropy (BCE)

zum Einsatz.

Das Training des GAN-Modells zeigte keine signifikante Konvergenz zu einem stabi-

len Zustand. Die ungenaue Byte-zu-Bild-Interpretation begrenzt das Modell bereits von

Anfang an und in Kombination mit der inhärenten Instabilität von GAN-Architekturen

überrascht das enttäuschende Ergebnis kaum. Die Idee, Text aus einer kontinuierlichen

Datenrepräsentation zu generieren, erschien zunächst vielversprechend – insbesondere bei

der Betrachtung der statischen Struktur von Protokollen. Jedoch konnten nicht einmal die

aufgefüllten Nullen konsistent reproduziert werden (Abweichungen von etwa ±3 ASCII-
Werten). Weitere Experimente mit dieser Architektur wurden daher nicht durchgeführt.

Long Short-Term Memory LSTMs sind fortgeschrittene rekurrente Netzwerke, die auf

Sequenzen fester Länge trainiert werden. Das Auffüllen mit Nullen ist hierbei jedoch un-

geeignet, da es künstliche sequenzielle Abhängigkeiten einführen würde. Stattdessen wird

ein Trainingsskript verwendet, das mehrere Protokollnachrichten verknüpft, sodass eine

Sequenz entsteht, die mindestens viermal so lang ist wie die Zielsequenz. Anschließend

80

5.4 Implementierung von PREUNN

wird ein zufälliger Abschnitt der gewünschten Länge extrahiert. Dieses Verfahren kommt

ausschließlich während des Trainings zum Einsatz, um echte Zeichen-zu-Zeichen-Abhän-

gigkeiten zu vermitteln.

Vor und nach jeder Nachricht wird jeweils ein eindeutiges Symbol für „Start of Packa-

ge (SOP)“ bzw. „End of Package (EOP)“ eingefügt, damit das Modell unterschiedliche

Nachrichten voneinander unterscheiden kann. Die Daten werden als One-Hot-Encoding

des ASCII-Zeichensatzes dargestellt.

Die Architektur beginnt mit einer Embedding-Schicht, gefolgt von einer Faltungsschicht

mit einer Kernelgröße von 4 und einer Schrittweite von 4, um das Embedding anzupassen.

Dieser Ansatz, hier als Convolutional Embedding eingeführt, dient als Mittelweg zwischen

Zeichen- und Wort-basiertem Embedding, insbesondere bei Daten mit hoher zufälliger

Zeichenvariation.

Die Dimension des Embeddings wird dabei mit der Feature-Länge getauscht: Die Faltungs-

schicht behandelt die versteckte Breite als Kanäle und die Feature-Länge als Bilddimension,

wobei die Batch-Größe unverändert bleibt. Nach der Faltung wird diese Transposition

rückgängig gemacht, sodass ein eingebetteter Tensor mit einem Viertel der ursprünglichen

Länge entsteht. Dieser wird dann in ein einfaches, einschichtiges LSTM-Modell eingespeist.

Das Ergebnis durchläuft denselben Vorgang rückwärts: eine transponierte Faltung, ge-

folgt von einer vollvernetzten Schicht mit identischen Hyperparametern und erneutem

Dimensionswechsel. Abbildung 5.5 zeigt den Aufbau dieses Embeddings.

Diese Art der Darstellung kann als lernbares, gewichtetes 4-Gramm interpretiert werden.

Die Architektur muss jeweils nur das nächste Zeichen vorhersagen (Indexverschiebung

von 0–1023 auf 1–1024). Die Kombination aus lokalem Kontext im 4-Gramm und den

durch die Faltung verkürzten Langzeitabhängigkeiten erleichtert dem Modell das Lernen

und verbessert die Stabilität bei der Generierung.

Für das Training wird der Adam-Optimizer mit einer Lernrate von 0,005 und Standard-

parametern verwendet. Als Verlustfunktion kommt Negative Log-Likelihood (NLL) zum

Einsatz, da der Fehler auf Zeichenebene gemessen wird. Dies erfordert, dass die Eingabe-

sequenzen eine Länge besitzen, die durch vier teilbar ist.

Dieser sequenzbasierte Versuch, HTTP- und FTP-Anfragen nachzubilden, zeigt gute Er-

gebnisse. Die LSTM-Architektur konvergiert nach weniger als einer Epoche auf einen

minimalen Verlust, was auf exzellentes strukturelles Lernen und wiederkehrende Muster

hinweist. Dies lässt sich durch die Natur eines textbasierten Protokolls wie HTTP und

FTP erklären, das Schlüsselwörter, eine feste Grammatik und ein konsistentes Alphabet

verwendet. Beim Abtasten des LSTM (Buchstabe für Buchstabe) wird eine Zeichenkette

mit einer gültigen Nachricht erzeugt, die mit den SOP- und EOP-Symbolen geparst werden

kann. Die resultierenden Anfragen werden mit gültigen, aber zufälligen TCP- und IP-Hea-

dern umschlossen, um vollständige Netzwerkpakete in einer pcap-Datei zu erzeugen. Das

Netzwerk-Analysetool Wireshark
4
zeigte, dass 67,6 % der HTTP-Nachrichten gültig waren,

während die restlichen als TCP mit zufälligem Payload klassifiziert wurden. Für FTP wurde

4https://www.wireshark.org/

81

https://www.wireshark.org/

5 Protocol Reverse Engineering mittels neuronaler Netze

H T T P / 1 . 1 2 0 0 O K
\r
\n

H T T P / 1 . 1 2 0 0 P O S T
\r
\n

H T T P / 1 . 1 3 0 2 M O V E D

...
Batch von Sequenzen

Conv
4:1

Conv
4:1

Conv
4:1

Conv
4:1

Conv
4:1

Batch von 1D-Bildern
(umgedrehte Tensordimensionen) X1

X1
X1

X2
X2
X2

X3
X3
X3

X4
X4
X4

X5
X5
X5

Batch von Sequenzen X1 X2 X3 X4 X5
X1 X2 X3 X4 X5
X1 X2 X3 X4 X5

...

Abbildung 5.5: Eine Veranschaulichung des Prozesses von Convolutional 4:1, bei dem eine

Reihe von Daten durch zwei unterschiedliche Faltungen geschickt wird.

HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 13:20:25 GMT

Server: Apache

Last-Modified: Mon, 21 Jun 2010 14:18:09 GMT

ETag: "2de9573-2b-486717fb77ac0"

Accepted-Ranges: bytes

Content-Length: 43

Connection: close

Content-Type: text/html; charset=iso-8859-1

HTTP/1.1 200 OK

Date: Mon, 14 Jun 2010 13:20:25 GMT

Server: Apache

Content-Length: 43

Connection: close

Content-Type: text/html; charset=iso-8859-1

Abbildung 5.6: Zwei von LSTM generierte HTTP-Anfragen. Während die Grundstruktur

unverändert bleibt, wurden Inhalte und optionale Felder angepasst.

eine Quote von 100% erreicht, allerdings können FTP-Nachrichten recht einfach sein,

um gültig zu sein. Einige Nachrichten wiederholen sich häufig in den Trainingsdaten,

was auch in der Ausgabe dieses Experiments zu sehen ist. Zwei generierte Beispiele sind

in Abbildung 5.6 zu sehen. Diese Ergebnisse sind als eine solide Grundlage für weitere

Experimente zu sehen.

5.4.4 Clustering

Für das Clustering sind die Ergebnisse der Feature Extraction relevant, um die Datensätze

in ein kleineres Format zu kodieren. Drei SOMs wurden initialisiert und ihre Ergebnisse

verglichen: ein Basismodell mit gekürzten und aufgefüllten Nachrichten auf eine feste

Länge von 1024 Byte, ein zweites SOM-Modell unter Verwendung der AE-Kodierung

und ein drittes Modell unter Verwendung der CNN Feature Map. Diese drei Modelle

unterscheiden sich in ihrer Eingabedimension, haben aber alle eine identische Ausgabe-

kartendimension von 16 × 1 für HTTP und 64 × 1 für FTP. Die unterschiedlichen Zahlen

82

5.4 Implementierung von PREUNN

Tabelle 5.2: Übersicht über die FTP-Cluster: Die FTP-Typen wurden manuell in Cluster

von Schlüsselwörtern/Codes mit ähnlicher Bedeutung oder ähnlichem Zweck

gruppiert

0 Sonstiges (MISC)

1 ACCT, ADAT, AUTH, CONF, ENC, MIC, PASS, PBSZ, PROT, QUIT, USER

2 230, 331, 332, 530, 532

3 PASV, EPSV, LPSV

4 227, 228, 229

5 ABOR, EPRT, LPRT, MODE, PORT, REST, RETR, TYPE, XSEM, XSEN

6 125, 150, 221, 225, 226, 421, 425, 426

7 ALLO, APPE, CDUP, CWD, DELE, LIST, MKD, MDTM, PWD, RMD, RNFR,

RNTO, STOR, STRU, SYST, XCUP, XMKD, XPWD, XRMD

8 212, 213, 215, 250, 257, 350, 532

9 120, 200, 202, 211, 214, 220, 450, 451, 452, 500, 501, 502, 503, 504, 550, 551, 552, 553, 554, 555

für die Ausgabedimensionen für beide Protokolle basieren auf Experimenten und ent-

sprechen im Großen und Ganzen der Vielfalt der verschiedenen Nachrichtentypen für

jedes Protokoll. Dies kann für jedes neue Protokoll oder zu Optimierungszwecken durch

Parameter angepasst werden. Das Training wird mit einer Lernrate von 0,005 und Sigma =

1,5 für HTTP und Sigma = 3 für FTP durchgeführt. Details zu den Parametern finden sich

in der „MiniSom“-Bibliotheksdokumentation
5
.

Für diese Auswertung müssen die tatsächlichen Klassen bzw. Typen für beide Protokolle im

Voraus bekannt sein. Dies ist nicht einfach, da keines der Protokolle explizite Typen/Grup-

pen von Nachrichten festlegt, abgesehen von Anfragen und Antworten. Für HTTP haben

insbesondere die Antworten eine breite Bedeutungsrange, die für diese Analyse nach der

ersten Ziffer des jeweiligen Codes gruppiert sind, da diese eine grundlegende Bedeutung

des Codes darstellen. Das bedeutet, dass sich alle Nachrichten mit den Nummern von

200 bis 299, alle von 300 bis 399 und alle von 400 bis 499 als denselben Typ betrachten

lassen. Zusammen mit allen gültigen Schlüsselwörtern, mit denen eine HTTP-Nachricht

beginnen kann (GET, POST, HEAD, DELETE, OPTIONS, PUT, TRACE, CONNECT), ergibt

sich eine Gesamtzahl von 11 Clustern mit einem zusätzlichen „Sonstiges“-Cluster (MISC)

für Nachrichten, die keinem anderen Cluster zugeordnet werden können. Für FTP wurden

manuell Gruppen von Schlüsselwörtern und -codes mit ähnlicher Bedeutung oder ähnli-

chem Zweck definiert, wie in Tabelle 5.2 gezeigt. Dies war ein manueller Prozess, und bei

dieser beispielhaften Gruppierung bleibt sicher Optimierungsbedarf.

Für das Experimentieren mit Clustering wurde ein Multi-Modell-Ansatz verwendet. Dabei

werden drei verschiedene Konfigurationen von SOMs in Bezug auf ihre Leistung bei den

Clustering-Metriken miteinander verglichen. Als erstes wird für die 128 Neuronen breite

5https://github.com/JustGlowing/minisom

83

https://github.com/JustGlowing/minisom

5 Protocol Reverse Engineering mittels neuronaler Netze

SOM die Kodierung aus dem AE-Modell verwendet. Zweitens wird für die 240 Neuronen

breite SOM die Feature Map der CNN-Architektur verwendet. Schließlich wird als Baseline

eine rohe SOM mit 1024 Neuronen Breite als Vergleichsgrundlage verwendet.

Es wurden zwei Metriken verwendet, um die Effektivität des Clusterings für jedes Setup

zu beurteilen. Die erste ist die Genauigkeit: Wie viele erkannte Cluster stimmen mit einem

Nachrichtentyp des Protokolls mit mehr als 50 % Vertrauen überein, was als „dominantes“

Cluster bezeichnet wird. Hier wird Vertrauen definiert als der relative Anteil eines Typs

unter allen Nachrichten, die einem Cluster zugewiesen sind. Wenn es 120 Nachrichten vom

Typ A und 80 Nachrichten vom Typ B gibt, die alle in ein Cluster gepackt wurden, dann

wird das Vertrauen dieses Clusters, Typ A zu repräsentieren, mit
120

120+80 = 60 % berechnet.

Die zweite Metrik ist das durchschnittliche Vertrauen aller Cluster. Außerdem werden

beide Metriken nur für dominante Typen (größer als 50 % für einen Typ) angegeben, um

leere und sehr kleine Cluster aus dem Durchschnitt zu entfernen.

Tabelle 5.3 zeigt die Ergebnisse der Experimente. Es lässt sich festhalten, dass die Leis-

tungsfähigkeit durch die Einbindung eines AE vor der SOM deutlich erhöht wird. Beim

HTTP-Clustering steigt die Genauigkeit von 75% auf 87,5 % und das durchschnittliche

Klassifikationsvertrauen von 58,34 % auf 69,24 %. Ein vergleichbarer Effekt zeigt sich beim

FTP-Clustering: Die Architektur AE + SOM erreicht 67,19 % bzw. 86 % im dominanten Clus-

ter und übertrifft damit sowohl das Basismodell als auch CNN+ SOM.Das durchschnittliche

Vertrauen erhöht sich hierbei von 51,8 % auf 56,11 %. Einige Setups, die dedizierte Featu-

re-Extraktoren verwenden, können die Baseline signifikant übertreffen. Der AE scheint

besser für diese Aufgabe geeignet zu sein. Ein möglicher Grund dafür könnte sein, dass die

CNN-Architektur einen Workaround mit Datenaugmentation benötigte, um überhaupt ein

Training zu ermöglichen. Für weitere Experimente, die Cluster-Indizes erfordern, werden

die AE- und SOM-Architekturen zu einer Pipeline kombiniert, um Nachrichten durch

ihren Cluster-Index zu ersetzen.

5.4.5 Zustandserkennung

Um tiefere Zustände in einem Protokoll zu erkennen, werden die Korrelation von Nach-

richtenfolgen verwendet, wie sie chronologisch im Datensatz erscheinen. Dafür wurden

alle Nachrichten durch ihre zugewiesenen Cluster aus dem Clustering-Modell ersetzt. Ein

einfaches LSTM mit passenden Dimensionen zum SOM-Ausgang reicht aus, um hochkor-

relierte Sequenzen anzuzeigen, indem es das Vertrauen des Netzwerks für den möglichen

nächsten Nachrichtentyp präsentiert. Die zentrale Idee des SOM-Lernens besteht darin,

ähnliche Nachrichtentypen in der Nähe voneinander anzuordnen, sodass die Verwendung

der MSE-Verlustfunktion eine Annäherung an den korrekten Nachrichtentyp im LSTM-

Ausgang ermöglicht. Die Verwendung der Cross-Entropy (CE)-Verlustfunktion hat keine

Konvergenz gezeigt. Für das Training wurde ein Adam-Optimizer mit einer Lernrate von

0,005 und Betas = (0,3, 0,9) verwendet.

Die Anordnung ist in Abbildung 5.7 dargestellt. Eine einfache Zeitreihenprognose auf Basis

eines LSTMs liefert insbesondere für FTP vielversprechende Ergebnisse. Dort lassen sich

84

5.4 Implementierung von PREUNN

Tabelle 5.3: Ergebnisse der Clustering-Experimente im Vergleich. Gegenüber dem Ba-

sismodell lässt sich bei Verwendung des Autoencoders eine Verbesserung

erkennen.

(a) HTTP-Clustering

Architektur Genauigkeit (dominant) Durchschnittliches Vertrauen (dominant)

Baseline SOM 75% (75 %) 58,34 % (58,34 %)

CNN + SOM 68,75 % (68,75 %) 53,61 % (53,61 %)

AE + SOM 87,5 % (87,5 %) 69,24% (69,24%)

(b) FTP-Clustering

Architektur Genauigkeit (dominant) Durchschnittliches Vertrauen (dominant)

Baseline SOM 60,94 % (72,22 %) 51,8 % (61,4 %)

CNN + SOM 29,69 % (29,69 %) 18,19 % (18,19 %)

AE + SOM 67,19% (86%) 56,11% (71,82%)

implizite Protokollzustände zuverlässig modellieren. Bei 64 möglichen Clustern stimmt

das LSTM in 42% der Fälle mit dem tatsächlich folgenden Nachrichtentyp überein. Zum

Vergleich: Eine zufällige Vorhersage hätte eine Trefferwahrscheinlichkeit von lediglich

1/64 ≈ 1, 56 %.

Obwohl 42 % isoliert betrachtet nicht besonders hoch erscheinen, stellt dies im Kontext von

Fuzzing, wo zahlreiche Versuche möglich sind, eine substanzielle Reduktion des Suchraums

dar und erhöht die Effizienz zielgerichteter Testfälle deutlich.

Dieses Experiment wurde auch für das HTTP-Protokoll durchgeführt. Die Ergebnisse für

HTTP-Protokolle sind allerdings weniger beeindruckend. Von den 16 implizierten Clustern

wurden 72 % korrekt vorhergesagt. Diese Zahl ist deutlich höher als für die FTP-Protokolle,

sie basiert allerdings auf der Vorhersage der durchschnittlichen Clusterzahl, die mit der

Verzerrung des Datensatzes übereinstimmt. Anders ausgedrückt: Die Vorhersage gibt zwei

oder drei abwechselnde Typen für die GET-Nachricht an, was die Vorhersagegenauigkeit

höher treibt als bei anderen Vorhersagemustern. Der Datensatz konnte in diesem Experi-

ment nicht für Klassen ausgeglichen werden, da vermieden werden sollte, durch zufälliges

Auswählen von Nachrichten sequentielle Abhängigkeiten zu verändern. Infolgedessen

weisen die Eingabedaten für HTTP eine erhebliche Verzerrung zugunsten der GET-Nach-

richtentypen auf, wie es die Originaldaten auch tun, was letztlich dieses Verhalten des

LSTM erklärt.

Die Ergebnisse in diesem Abschnitt verdeutlichen die zentralen Risiken beim Einsatz

maschineller Lernverfahren. Dies gilt insbesondere, wenn unterschiedliche Embeddings

und Modellansätze kombiniert werden und die Bewertung ausschließlich anhand einer

vordefinierten Metrik erfolgt. Die Experimente mit dem zustandsabhängigen Protokoll

85

5 Protocol Reverse Engineering mittels neuronaler Netze

HTTP/1.1 200 POST...

HTTP/1.1

200 OK...

HTTP/1.1 302

Moved...

HTTP/1.1

200 POST...

HTTP/1.1

200 OK...

HTTP/1.1

302 Moved...

1024 Bytes

Padding/Capping

A
u
to
en
co
d
er

(A
E
)

HTTP/1.1...

128 Bytes

SOM
(16 Klassen)

1 (POST)

4 (OK)

7 (Moved)

...

Sequenz:
1, 7, 1

LSTM
Vorhersage:

4

Abbildung 5.7: Beispiele von HTTP-Anfragen und ihrer Verarbeitung für die Zustandser-

kennung.

waren hingegen erfolgreich und erfüllten das ursprüngliche Ziel. Die Übertragung der-

selben Methoden auf ein zustandsloses Protokoll führte jedoch zu deutlichen Schwächen.

Dies macht deutlich, dass die alleinige Betrachtung der Metrik zu Fehlschlüssen führen

kann, da wichtige strukturelle Unterschiede der Daten unberücksichtigt bleiben. Die Ana-

lyse beider Protokolle zeigt, dass die Metrik auf den ersten Blick irreführend wirkt. Nur

eine vertiefte, analytische Auswertung der tatsächlichen Vorhersageergebnisse ermöglicht

es, die Diskrepanzen zu erkennen und die Ergebnisse korrekt zu interpretieren. Dieses

Beispiel unterstreicht die Notwendigkeit, maschinelle Lernverfahren nicht isoliert anhand

quantitativer Kennzahlen zu bewerten, sondern die Modelle und deren Vorhersagen stets

im Kontext der zugrunde liegenden Datenstruktur zu analysieren.

5.4.6 Sequenzgenerierung

Um das Verhalten eines Protokolls vollständig nachzubilden, müssen syntaktisch korrekte

Nachrichtenmit einer realistischenVerteilung erzeugtwerden. Dazuwird ein LSTM-Modell

eingesetzt, das dem für das Feature Reverse Engineering verwendetenModell ähnelt, jedoch

um zusätzlichen Kontext erweitert wurde. Anstelle generischer SOP- und EOP-Symbole

zur Markierung von Nachrichtenbeginn und -ende werden für jede Nachricht spezielle

Symbole eingeführt, die nach Clustertyp differenziert sind. Dies führt zu 2×16 zusätzlichen
Symbolen für HTTP und 2×64 Symbolen für FTP, die demASCII-Alphabet in den jeweiligen

Setups hinzugefügt und anschließend mittels One-Hot-Encoding dargestellt werden.

Die dem LSTM zugeführten Sequenzen verwenden eine versteckte Größe von 100 Neu-

ronen in zwei Schichten, um die zusätzliche Komplexität abzubilden. Innerhalb jeder

Sequenz zeigt ein spezielles Cluster die Position von Nachrichtenbeginn und -ende durch

86

5.4 Implementierung von PREUNN

Abbildung 5.8: Ergebnisse hinsichtlich der Typverteilung für HTTP Feature Reverse Engi-

neering (blau) und Sequenzgenerierung (orange).

die entsprechenden SOP- und EOP-Symbole an. Die übrige Architektur entspricht der des

Modells für Feature Reverse Engineering, einschließlich der konvolutionalen Embeddings.

Für das Training kommen der Adam-Optimizer mit einer Lernrate von 0,005 und den

Standard-Betas sowie eine NLL-Verlustfunktion zum Einsatz.

Die beim Feature Reverse Engineering mit dem LSTM verwendete Metrik kommt auch

hier zur Anwendung. Die generierten Sequenzen wurden in HTTP- bzw. FTP-Aussagen

geparst, in gültige Protokoll-Header eingebettet und als pcap-Datei gesammelt. Eine

anschließende Validierung mit Wireshark ergab, dass 63 % der HTTP-Sequenzen und 100 %

der FTP-Sequenzen syntaktisch valide waren. Das hervorragende Abschneiden bei FTP

erklärt sich, wie bereits beim Feature Reverse Engineering, durch die vergleichsweise

einfache Struktur der FTP-Nachrichten und der Trainingsdaten.

Abbildung 5.9 zeigt die Typverteilungen für FTP sowohl beim Feature-Reverse-Engineering

als auch bei der Sequenzgenerierung und visualisiert damit den Einfluss der Cluster-Indi-

zierung auf die resultierende Verteilung. Auffällig ist eine dominante Klasse, die entweder

auf ihre geringe Komplexität oder auf eine mögliche Fehlkategorisierung innerhalb der

FTP-Typen zurückzuführen ist. Insgesamt deutet die Verteilung jedoch auf eine breitere

und ausgewogenere Typaufteilung hin.

Die im Vergleich niedrigere Validierungsrate für HTTP geht mit einer stärkeren Korrelation

zwischen Anfragen und Antworten einher (siehe Abbildung 5.8). Dieser Befund legt nahe,

dass der zusätzliche Typkontext dem Modell dabei hilft, Anfrage-Antwort-Beziehungen zu

lernen. Komplexere Abhängigkeiten im HTTP-Verkehr erschweren jedoch die vollständige

87

5 Protocol Reverse Engineering mittels neuronaler Netze

Abbildung 5.9: Ergebnisse hinsichtlich der Typverteilung für FTP Feature Reverse Engi-

neering (blau) und Sequenzgenerierung (orange).

Reproduktion. Leistungsfähigere und größere Modellarchitekturen dürften die beobachtete

Effektivität weiter steigern.

Diese Ergebnisse bilden die empirische Grundlage dafür, pro Protokoll ein Deep-Lear-

ning-basiertes Fuzzing zu realisieren, da der hier verfolgte PRE-Ansatz generalisierbar ist

und die automatische Erzeugung syntaktisch valider Testeingaben ermöglicht.

5.5 Weiterentwicklung

Im Rahmen dieser Dissertation wurden zwei aufeinander aufbauende PREUNN-Ansätze

entwickelt. Zur eindeutigen Unterscheidung wird der weiterentwickelte Ansatz im Fol-

genden sowie in der Evaluation als PREUNN2 bezeichnet. PREUNN2 wurde konzipiert,

um die Leistungsfähigkeit des ursprünglichen Modells insbesondere für die Protokolle

HTTP und FTP zu verbessern.

In diesem Abschnitt werden die konzeptionellen und technischen Erweiterungen von

PREUNN zu PREUNN2 detailliert beschrieben. Abbildung 5.10 zeigt die Gesamtarchitektur

des weiterentwickelten ML-PRE-Modells PREUNN2. Die einzelnen Komponenten der

Architektur sind farblich gekennzeichnet.

5.5.1 Vorverarbeitung der Daten

Die ursprüngliche Vorverarbeitung in PREUNN ignoriert Protokollinformationen der

Transportebene und trennt nicht zwischen Requests und Responses. Mithilfe der Aus-

88

5.5 Weiterentwicklung

Beobachteter Netzwerkverkehr

Extraktion von
Metadaten-Features

Vektorisierung des
Paketinhalts

Erkennung von
Sequenzen

Dimensionsreduktion
mittels Autoencoder

Automatisiertes Clustering
mittels HDBSCAN

Cluster-Labeling
Request / Response

Nachrichtengenerierung
(LSTM) für jeden Cluster

Sequenzgenerierung
(LSTM)

Erzeugung neuen Netzwerkverkehrs

Abbildung 5.10: Architektur des weiterentwickelten PREUNN2-Modells. Vorverarbeitung

(blau), Clustering (rot), Nachrichtengenerierung (gelb) und Sequenzgene-

rierung (grün).

89

5 Protocol Reverse Engineering mittels neuronaler Netze

wertung von TCP-Headerdaten wie Sequenznummern oder Ports sollen vollständige

Kommunikationssequenzen erkannt und die Richtung der Pakete eindeutig bestimmt

werden.

Ein zentrales Problem stellt der Balancing-Algorithmus dar, der auf manuell definier-

ten Paketklassen basiert. Dies setzt tiefes Protokollwissen voraus und widerspricht dem

automatisierten PRE-Ansatz. Zudem führt der aktuelle Algorithmus durch die strikte Be-

grenzung von Klassengrößen mitunter zum Verlust seltener, aber relevanter Pakete. Auch

das Auffüllen mit Nullen auf Maximalgröße erzeugt künstliches Rauschen, da relevante

Nutzdaten oft nur einen Bruchteil des Pakets ausmachen.

Schließlich erzeugt die bildbasierte Byte-Repräsentation eine Ähnlichkeit zwischen se-

mantisch ungleichen Zeichen. Dadurch kann die Generalisierung des Modells erschwert

werden, insbesondere in Kombination mit den Verzerrungen durch die aufgefüllten Nullen.

Zur Verbesserung und Abschwächung dieser Probleme werden relevante Metadaten bereits

bei der Paketextraktion gespeichert und normiert. Anstelle einer manuellen Klassifizierung

erfolgt eine clusterbasierte Typisierung der Pakete. Ein überarbeiteter Balancing-Ansatz

berücksichtigt nun relative Clusteranteile und soll flexibler auf unterschiedliche Datenver-

teilungen reagieren. Die Optimierungen dieser weiteren Schritte werden in den folgenden

Abschnitten detailliert beschrieben.

5.5.2 Klassifizierung von Nachrichtentypen und Zustandsübergängen

Die ursprüngliche PREUNN-Klassifizierung nutzt eine SOM, um Nachrichten zu Clustern

zusammenzufassen, die den Protokollzuständen entsprechen sollen. Diese Methode zeigt

jedoch Schwächen: Bei HTTP wurden 72% der Zustände korrekt vorhergesagt, bei FTP

lediglich 42 % (siehe Abschnitt 5.4.5). Ein Hauptproblem ist, dass viele Pakete demselben

Cluster zugeordnet werden. Zudem werden in der Vorverarbeitung alle Nachrichten

unabhängig vom TCP-Kontext betrachtet, wodurch Verbindungen nicht korrekt getrennt

werden und falsche Sequenzabhängigkeiten gelernt werden.

Zur Verbesserung wird ein mehrstufiger Ansatz gewählt: Nachrichten werden tokenisiert,

wobei häufige Token in einem Wörterbuch gespeichert und über Multi-Hot-Vektoren

repräsentiert werden. Tokens am Anfang eines Pakets, die typischerweise den Nachrich-

tentyp kodieren, werden stärker gewichtet.

Anschließend reduziert ein AE die Vektordimension und filtert irrelevante Informatio-

nen [BKG20]. Für das anschließende Clustering wird HDBSCAN verwendet, das sich

gegenüber klassischen Verfahren wie DBSCAN durch eine höhere Robustheit gegenüber

unbalancierten Daten auszeichnet. Damit lassen sich strukturell ähnliche Nachrichten wie

PASS und PASV zuverlässig unterscheiden [CMS13].

5.5.3 Erlernen des Nachrichtenaufbaus

Die in PREUNN eingesetzten LSTM-Netzwerke erzeugen syntaktisch korrekte Nach-

richten und imitieren den Aufbau realer Pakete zuverlässig, insbesondere bei weniger

90

5.5 Weiterentwicklung

restriktiven Protokollen wie HTTP und FTP. Daher wird das LSTM-Modell auch in der

Weiterentwicklung beibehalten.

Eine Schwäche des bisherigen Ansatzes liegt in der unausgewogenen Verteilung der

Trainingsdaten: Durch den Balancing-Algorithmus werden nur ausgewählte Teile der

Daten verwendet, wodurch seltene Nachrichtentypen vernachlässigt werden. Zudem

erfolgte das Training nur in einer Epoche, was für LSTM-Modelle suboptimal ist.

Zur Verbesserung wird das LSTM nun epochenbasiert trainiert. Dabei werden in je-

der Epoche neue, zufällig gesampelte Beispiele aus allen Clustern verwendet, um eine

gleichmäßigere Abdeckung aller Nachrichtentypen zu gewährleisten. Der optimierte Clus-

tering-Ansatz unterstützt dieses Sampling zusätzlich.

Als Eingabe erhält das Modell neben One-Hot-Vektoren für Zeichen auch den zugehörigen

Clusterindex. Dadurch wird ein gezieltes Generieren von Nachrichten bestimmter Typen

möglich.

5.5.4 Generierung neuer Testfälle

Die bisherige Sequenzgenerierung in PREUNN kombiniert LSTM-basiertes Lernen mit

Cluster-Markierungen, um neue Paketfolgen zu erzeugen. Grundsätzlich lassen sich da-

durch verschiedene Pakettypen korrekt kombinieren, es treten jedoch mehrere Probleme

auf. So fehlen beispielsweise oft die gültigen Startpakete USER/PASS, da das Modell aufgrund

der festen Eingabelänge von 1024 Bytes keinen sinnvollen Sequenzbeginn lernen kann. Zu-

dem führen ungenaue Clusterzuweisungen und die fehlende Trennung von TCP-Streams

im Training zu inkonsistenten Paketabfolgen. Eine Überrepräsentation häufig vorkom-

mender Pakete wie PORT verschärft das Problem zusätzlich.

Auch die pcap-Generierung ist eingeschränkt. Da jede Nachricht eine eigene IP-Adresse

und Port erhält, fehlt eine klare Zuordnung zu zusammenhängenden Kommunikationss-

trömen. Dadurch wird die Nachverfolgbarkeit und Analyse der generierten Sequenzen

erschwert.

In PREUNN2 wird deshalb ein zweistufiger Ansatz verfolgt. Zunächst erzeugt ein LSTM

auf Basis von Cluster-Indizes eine sinnvolle Paketreihenfolge. Anschließend generiert das

bereits trainierte Nachrichtenmodell zu jedem Index ein konkretes Paket. Zwar lassen sich

so keine inhaltlichen Abhängigkeiten zwischen den Nachrichten abbilden, doch solche

Verknüpfungen traten im ursprünglichen Datensatz kaum auf.

Auch die pcap-Generierung wurde verbessert: Innerhalb einer Sequenz bleiben IP-Adressen

und Ports konsistent. Mithilfe der Clusterinformationen kann außerdem automatisch

zwischen Client- und Serverpaketen unterschieden werden. So entstehen strukturierte,

realistisch wirkende Kommunikationsabläufe.

91

5 Protocol Reverse Engineering mittels neuronaler Netze

5.6 Implementierung von PREUNN2

Zur Evaluierung der zuvor identifizierten Optimierungspotenziale wird mit PREUNN2

ein alternatives ML-PRE-Modell realisiert. Es dient als Vergleich zur ursprünglichen

PREUNN-Implementierung und basiert auf TensorFlow6
mit Keras7.

5.6.1 Vorverarbeitung

Die Pakete werden anhand von Zielports gefiltert, zu TCP-Strömen gruppiert und durch

extrahierte Features wie Länge, Struktur, Richtung sowie Zeichenverteilung beschrieben.

Eine gewichtete Tokenisierung bildet den Paketinhalt als Sparse Vector ab und ermöglicht

eine differenzierte Eingaberepräsentation.

5.6.2 Clustering

Zur Dimensionsreduktion wird ein AE trainiert, dessen latente Repräsentation gemeinsam

mit denMetadaten in ein Clustering überführt wird. DerHDBSCAN-Algorithmus gruppiert

die Daten effizient und ohne Vorwissen in robuste Cluster, wobei auch seltene Pakettypen

erfasst werden.

5.6.3 Generierung neuer Pakete und Sequenzen

Ziel der Nachrichtengenerierung ist es, syntaktisch korrekte Pakete auf Basis der Cluster-

struktur zu erzeugen. Dazu wird ein LSTM-Modell mit zwei Eingaben verwendet: einem

kontextbasierten Zeichenstrom und einem Vektor für den zugehörigen Clusterindex. Mit-

hilfe dieser Informationen ist eine kontextsensitive Vorhersage des nächsten Zeichens

möglich. Die Architektur kombiniert mehrere Schichten mit Dropout und nutzt eine

Softmax-Ausgabe zur Byte-Wahrscheinlichkeitsverteilung.

Das Training erfolgt über einen Generator, der Paketsequenzen dynamisch erzeugt und

mit SOP/EOP-Markierungen versieht. So können aus ca. 250 Clustern pro Epoche über 15

Millionen Trainingsbeispiele generiert werden. Zur Generierung neuer Nachrichten wird

zunächst der Clusterindex mit einem SOP-Zeichen eingespeist. Anschließend wird iterativ

ein Zeichen generiert, bis das EOP-Zeichen erreicht ist. Eine variable Sampling-Temperatur

sorgt dabei für diversifizierte Ausgaben.

Auch für die Sequenzgenerierung kommt ein LSTM zum Einsatz. Dieser sagt auf Ba-

sis vorheriger Clusterabfolgen den nächsten Cluster voraus. Die Eingabe besteht aus

One-Hot-Vektoren der Clusterindizes, ergänzt um SOP/EOP. Aufgrund der typischen Länge

6https://www.tensorflow.org/
7https://keras.io/

92

https://www.tensorflow.org/
https://keras.io/

5.7 Evaluation

von Protokollkonversationen wird eine Kontextlänge, also die Anzahl der Input-Vekto-

ren, von 20 verwendet. Das Modell erreicht nach 20 Epochen eine stabile Trainings- und

Validierungsperformance (0,17 Categorical Cross-Entropy (CCE)).

Zur Erstellung von Fuzzing-Testfällen wird geprüft, ob die Cluster eher clientseitige oder

serverseitige Nachrichten enthalten. Somit können bei der Generierung nur solche Pakete

ausgewählt werden, die aus einem Cluster von Client-Nachrichten stammen.

5.7 Evaluation

Zur Bewertung des entwickelten Ansatzes kommt das Test-Framework ProFuzzBench zum

Einsatz. Dieses ist ein Open-Source-Benchmark für das Fuzzing von Netzwerkprotokollen.

Es unterstützt verschiedene Fuzzer, darunter auch AFLNet [NP21].

5.7.1 ProFuzzBench

Für jede Zielanwendung stellt das Framework ein Docker-Image bereit, das die Zielsoft-

ware (mit und ohne Debug-Symbolen), den Fuzzer, vorbereitete Testfälle sowie ein Skript

zur Steuerung des Fuzzing-Prozesses enthält. Dabei werden neue Testfälle erzeugt, die

Anwendung überwacht und im Anschluss die Codeabdeckung aller Testfälle ausgewertet.

Alle Daten werden automatisch erfasst und gespeichert.

Zusätzliche Skripte ermöglichen die parallele Ausführung mehrerer Fuzzing-Prozesse und

die visuelle Auswertung der Abdeckungsdaten. Die Integration eigener Zielanwendungen

ist durch die dokumentierte Struktur einfach umsetzbar.

5.7.2 AFLNet

Der mutationsbasierte Fuzzer AFLNet wurde gewählt, da dieser keine kontinuierliche Ge-
nerierung neuer Testfälle zur Laufzeit erfordert und somit eine klare Trennung zwischen

der Testfallerzeugung und dem eigentlichen Fuzzing-Prozess ermöglicht. Dies ist notwen-

dig, um eine objektive Baseline-Messung durchzuführen, bei der das ML-Modell nicht in

den Fuzzing-Prozess eingreift. Stattdessen werden vorab erzeugte Testfälle verwendet, die

durch die Extraktion aus dem Netzwerkverkehr stammen [PBR20].

5.7.3 Integration der Machine-Learning-Methoden

Zur Erweiterung des Frameworks wird ML-gestützte Testfallgenerierung in den Fuz-

zing-Prozess integriert. Dabei kommt AFLNet sowohl für die Baseline als auch für die

Evaluation zum Einsatz. Ausgangspunkt ist ein Datensatz mit TCP-Client-Paketen, aus

dem einerseits direkt Testfälle extrahiert und andererseits ein ML-Modell trainiert werden.

93

5 Protocol Reverse Engineering mittels neuronaler Netze

Dieses Modell generiert äquivalente Eingaben, die anschließend ebenfalls durch AFL-
Net mutiert werden. So lassen sich mutations- und generationsbasierte Fuzzing-Vorteile

kombinieren.

Es wurden die folgenden drei Integrationsansätze untersucht:

• Vollintegrierte Generierung: Bei der vollintegrierten Generierung werden Trai-

ning und Testfallerzeugung zur Laufzeit im Docker-Container ausgeführt. Dadurch

wird die komplette Laufzeit berücksichtigt und es entstehen unterschiedliche Mo-

delle je Instanz. Der Aufwand ist jedoch hoch, insbesondere bei rechenintensiven

Modellen wie PREUNN.

• Externe Generierung: Bei der externen Generierung werden der ML-Prozess und

das Fuzzing vollständig getrennt. Testfälle werden einmalig vorab erzeugt und beim

Start des Containers verwendet. Diese Methode ist ressourcenschonend, erlaubt

komplexe Modelle und erfasst keine Trainingszeiten, was dynamische Anpassungen

erschwert.

• Integrierte Generierung mit Vortraining: Bei der integrierten Generierung mit

Vortraining werden vortrainierte Modelle im Container genutzt, die bei Bedarf weiter

trainiert oder direkt zur Laufzeit verwendet werden können. Dieser Ansatz verbindet

Flexibilität mit realistischer Ausführung und ermöglicht eine automatische Zeiter-

fassung bei hoher Modellkomplexität.

Aufgrund des besten Verhältnisses von Aufwand, Flexibilität und Praxisnähe wird der

letzte Ansatz der integrierten Generierung mit Vortraining umgesetzt.

5.7.4 Implementierung der Fuzzing-Ziele

Für ProFuzzBench lassen sich neue Fuzzing-Ziele gemäß der Repository-Anleitung
8
in-

tegrieren. Im Folgenden werden zwei HTTP-basierte Ziele hinzugefügt: der Webserver

nginx sowie eine gezielt verwundbare, minimalistische Serverapplikation auf Basis von

Express.

5.7.4.1 Protokollimplementierungen für HTTP

HTTP wird von zahlreichen Serveranwendungen wie Apache und nginx unterstützt und

bietet sich aufgrund seiner weiten Verbreitung und standardisierten Struktur als geeignetes

Protokoll für das Benchmarking an. Diese gelten als ausgereift und gut getestet, weshalb

Fuzzing bei ihnen voraussichtlich nur begrenzte Ergebnisse liefert. Zur Validierung dieser

Annahme soll eine prototypische nginx-Implementierung eingesetzt werden. Zusätzlich

wird eine eigens entwickelte, bewusst angreifbare HTTP-Implementierung verwendet,

um gezielte Analysen zu ermöglichen und um das Serververhalten flexibel anpassen zu

können.

8https://github.com/profuzzbench/profuzzbench/blob/7779866f04/README.md

94

https://github.com/profuzzbench/profuzzbench/blob/7779866f04/README.md

5.7 Evaluation

nginx Der nginx Server kann korrekt instrumentiert und über angepasste Konfigura-

tionen gesteuert werden. Erste Experimente zeigen jedoch, dass ein Großteil des Codes

bereits beim Serverstart durchlaufen wird, wodurch spätere Fuzzing-Anfragen kaum zu-

sätzliche Abdeckung erzeugen. Zudem erschwert die aufwändige Wiederinitialisierung

pro Testfall eine präzise Auswertung. Als exploratives Fuzzing-Ziel eignet sich nginx daher

nur bedingt, kann aber als realitätsnaher Referenzpunkt dienen.

Express Zur besseren Evaluierung des Fuzzing-Verhaltens wird eine eigene HTTP-Ser-

veranwendung mit dem Express-Framework
9
entwickelt. Dieses erlaubt es, Endpunkte

gezielt mit vordefinierten Fehlern und ungewöhnlichem Verhalten auszustatten, beispiels-

weise durch bewusste Abstürze, Timeouts oder inkonsistentes Antwortverhalten. Der

gesamte Datenverkehr sowie auftretende Fehlerzustände werden protokolliert [Exp25].

Da eine klassische Instrumentierung bei JavaScript nicht möglich ist, wird die Codeab-

deckung zur Laufzeit über externe Tools erfasst. Diese Messung erfolgt in Intervallen,

um die Performance nicht zu beeinträchtigen. Die Anwendung lässt sich vollständig in

ProFuzzBench integrieren und stellt eine leichtgewichtige, gut kontrollierbare Umgebung

zur Analyse des entwickelten Fuzzing-Ansatzes dar.

5.7.4.2 Protokollimplementierungen für FTP

Auf verbreitete FTP-Server wie ProFTPD und Filezilla Server wird zugunsten einer leich-

ter analysierbaren Alternative verzichtet. Stattdessen wird LightFTP10 eingesetzt, da es
in mehreren Studien [AC22; NP21; Nat22] als Fuzzing-Ziel dient, Open Source ist und

vielfältige Konfigurationsmöglichkeiten bietet.

5.7.5 Auswertung der Ergebnisse

Zur Bewertung des ML-gestützten PREs wurden Fuzzing-Tests mit AFLNet auf den Zie-

len LightFTP und Express durchgeführt, um die Effizienz von PREUNN und PREUNN2

zu testen. Als Baseline dient eine zufällige Auswahl von 100 TCP-Sequenzen aus dem

Trainingsdatensatz.

5.7.5.1 Fuzzing von Express

Beim Fuzzing des Express-Servers wurden je acht Instanzen pro Strategie zwölf Stunden

lang ausgeführt. Aufgrund der geringeren Diversität der HTTP-Daten wurden pro Instanz

nur 50 Testfälle generiert. Während PREUNN ursprünglich für HTTP entworfen wurde,

musste PREUNN2 ohne spezielle Anpassungen auf das Protokoll generalisieren.

9https://expressjs.com/
10https://github.com/hfiref0x/LightFTP

95

https://expressjs.com/
https://github.com/hfiref0x/LightFTP

5 Protocol Reverse Engineering mittels neuronaler Netze

Abbildung 5.11: Verlauf der Codeabdeckung beim Fuzzing von Express mit den Testfall-

strategien Baseline (blau), PREUNN (orange) und PREUNN2 (grün).

Trotzdem lieferte PREUNN2 durchweg die beste Codeabdeckung und in allen Instanzen

zuverlässige Ergebnisse von über 80 %. Eswar zudem der einzige Ansatz, der in jeder Instanz

Abstürze und Hänger identifizieren konnte. PREUNN schnitt besser ab als die Baseline,

erreichte jedoch weniger konstante Resultate als PREUNN2. In der Zeilenabdeckung lag

die Baseline im Mittel leicht vorne.

Eine Analyse der gefundenen Abstürze zeigt, dass alle Strategien unterschiedliche Fehler-

arten entdecken. PREUNN2 identifizierte den Absturz durch einen ungültigen Date-Header,

die Baseline entdeckte einen Dateizugriffsfehler und nur PREUNN fand beide. Zwei weitere

bekannte Abstürze wurden von keiner Methode erfasst – vermutlich aufgrund fehlender

Repräsentation in den Trainingsdaten oder zu kurzer Laufzeit.

Insgesamt erzielte PREUNN2 die besten Ergebnisse. Der Test zeigt jedoch auch, dass

eine hohe Codeabdeckung nicht automatisch zu einer besseren Fehlersuche führt. Am

sinnvollsten erscheint daher eine Kombination aus beobachteten Netzwerkdaten und

ML-generierten Testfällen.

5.7.5.2 Fuzzing von LightFTP

Für das LightFTP-Ziel wurden je acht Fuzzing-Instanzenmit den drei Testfallgenerierungen

gestartet. Alle Versuche liefen parallel über einen Zeitraum von ebenfalls zwölf Stunden.

Die Dauer der Testfallgenerierung hatte dabei keinen nennenswerten Einfluss auf die

Ergebnisse.

96

5.7 Evaluation

Abbildung 5.12: Verlauf der Codeabdeckung beim Fuzzing von LightFTP mit den Testfall-

generierungen Baseline (blau), PREUNN (orange) und PREUNN2 (grün).

PREUNN2 erzielte über die Laufzeit hinweg die stabilsten Resultate und erreichte im Mittel

die höchste Codeabdeckung mit 48 % Zweig- und 67,6 % Zeilenabdeckung. In der Zwei-

gabdeckung wurde es allerdings vereinzelt von der zufallsbasierten Baseline übertroffen,

die mit 68,4 % auch den höchsten Einzelwert bei der Zeilenabdeckung erzielte. Insgesamt

zeigte sich PREUNN2 jedoch effizienter: 95 % der maximalen Zweigabdeckung wurden in

sieben von acht Instanzen erreicht, gegenüber nur zwei bei der Baseline und keiner bei

PREUNN.

Keiner der Versuche führte zu echten Abstürzen oder Hängern. Auffällige Testfälle in der

Baseline wurden vom Fuzzer fälschlich als Absturz klassifiziert, da sie besonders lange

Antwortzeiten simulierten, ohne das Ziel tatsächlich zu blockieren.

Die ursprüngliche PREUNN-Implementierung lag in denmeistenMetriken zurück. Ursache

dafür waren schwächere Startsequenzen und weniger realistische Nachrichtenfolgen, die

zu längeren Laufzeiten und geringerer Fuzzing-Effektivität führten. Dennoch erreichte

PREUNN teilweise eine höhere Zeilenabdeckung als die Baseline, was auf die strukturierte

Generierung zurückzuführen ist.

Ein klarer Sieger lässt sich nicht ausmachen. Während PREUNN2 konsistente Ergebnisse

mit schneller Abdeckung liefert, erreicht die zufällige Baseline in Einzelfällen bessere

Spitzenwerte. Eine kombinierte Strategie erscheint daher vielversprechend.

97

5 Protocol Reverse Engineering mittels neuronaler Netze

5.8 Zusammenfassung

Im Rahmen dieser Dissertation wurden zwei neuartige Ansätze zur protokollbasier-

ten Rekonstruktion entwickelt. PREUNN und die darauf aufbauende Weiterentwicklung

PREUNN2. Beide nutzen Deep-Learning-Architekturen, um automatisch die Struktur und

Semantik von Netzwerkprotokollen wie HTTP v1.1 und FTP zu rekonstruieren und daraus

realistische, kontextabhängige Testfälle zu generieren. Damit lösen sie das Problem, dass

die Schritte nicht mehr manuell ausgeführt werden müssen und die Daten leichter für

Fuzzing verwendet werden können. Somit ist sichergestellt, dass der Fuzzer gültige Test-

fälle verwenden kann und keine Zeit mit ungültigen Eingaben verschwendet, die direkt

verworfen werden.

Die Ansätze kombinieren unterschiedliche Deep-Learning-Architekturen: Autoencoder für

die Feature-Extraktion, LSTMs für das Reverse Engineering von Features und Zustands-

wahrnehmung, sowie Self-Organizing Maps für das Clustering. Durch die Integration von

NLP-Techniken in PREUNN2 können zusätzlich semantisch korrekte und kontextabhängi-

ge Kommunikationssequenzen erzeugt werden. Der modulare Aufbau erlaubt auch die

Nutzung moderner Architekturen wie BERT und eröffnet Perspektiven für den Einsatz

von Reinforcement Learning, um automatisierte Fuzzer für beliebige nachrichtenbasierte

Formate zu entwickeln.

Zur Evaluation wurde das ProFuzzBench-Framework erweitert, das mehrere Serverim-

plementierungen und Netzwerkprotokolle integriert. In den Fuzzing-Tests erzielten ML-

generierte Testfälle eine höhere und stabilere Codeabdeckung als zufällig ausgewählte

Sequenzen aus realen Netzwerkmitschnitten:

• Express: PREUNN2 erzielte durchweg die höchste und stabilste Codeabdeckung

(>80 %) und identifizierte zuverlässig Abstürze und Hänger. PREUNN erzielte bessere

Ergebnisse als die zufällige Baseline, war jedoch weniger konsistent als diese.

• LightFTP: PREUNN2 lieferte über alle Instanzen hinweg die stabilsten Resultate,

mit durchschnittlich 48% Zweigabdeckung und 67,6 % Zeilenabdeckung. Wenige

Spitzenwerte wurden vereinzelt von der zufälligen Baseline übertroffen, insgesamt

war PREUNN2 jedoch effizienter.

Die Analyse der generierten Sequenzen zeigt, dass 63 % der HTTP- und 100% der FT-

P-Sequenzen als gültig erkannt wurden. Dies unterstreicht die Fähigkeit der Ansätze,

realistische Protokollnachrichten zu modellieren. Begrenzungen ergeben sich vor allem

durch Overfitting bei längeren Trainingsläufen, unbalancierte Trainingsdaten und eine

begrenzte Cluster-Prägnanz.

5.9 Fazit

In diesem Kapitel wurde untersucht, inwiefern sich klassische Deep-Learning-Modelle

wie AE und LSTMs für das PRE eignen. Die Ergebnisse zeigen, dass neuronale Netze Kom-

munikationsmuster erkennen, Protokollzustände modellieren und realistische Testfälle

98

5.9 Fazit

generieren können. Insbesondere in Kombination verschiedener Architekturen konnten

syntaktisch valide und semantisch konsistente Nachrichtenfolgen erzeugt werden. Dies

stellt einen wichtigen Fortschritt für die gezielte Testfallgenerierung dar.

Allerdings zeigen die Experimente auch Grenzen: Klassische Deep-Learning-Modelle

haben Schwierigkeiten, komplexe, hierarchisch strukturierte Daten über längere Sequen-

zen hinweg präzise zu erfassen. LLMs und Transformer-Architekturen bieten hier neue

Möglichkeiten. Aufgrund ihrer Fähigkeit, Grammatik, Kontext und Abhängigkeiten in

strukturierten Eingaben besser zu erfassen, eignen sie sich besonders für die Verarbeitung

von Protokollen und Formaten, die sich durch eine klare, formale Struktur auszeichnen.

Daher wird im folgenden Kapitel untersucht, wie LLM-basierte Verfahren für die Generie-

rung von Eingaben in Fuzzing-Szenarien eingesetzt werden können. Dies knüpft direkt an

das Ziel dieser Dissertation an, automatisierte Verfahren zur effizienten Sicherheitsanalyse

komplexer IoT-Systeme zu entwickeln.

99

6 Effizientes grammatikbasiertes Fuzzing
mittels Large Language Models

Der Inhalt dieses Kapitels basiert auf einer gemeinsamen Veröffentlichung mit Ibrahim

Mhiri, Akim Stark und Ingmar Baumgart. Teile der Ergebnisse wurden bereits in der unten

genannten Publikation veröffentlicht. Es wird ein neuartiger Ansatz zur Kombination

von LLMs mit grammatikbasiertem Fuzzing vorgestellt. Ziel ist es, die automatisierte

Generierung zielgerichteter Eingaben effizienter zu gestalten und damit die Testabdeckung

deutlich zu erhöhen.

• Ibrahim Mhiri, Matthias Börsig, Akim Stark und Ingmar Baumgart. „How to Train

Your Llama – Efficient Grammar-Based Application Fuzzing Using Large Language

Models“. In: Secure IT Systems: 29th Nordic Conference, NordSec 2024 Karlstad, Swe-

den, November 6–7, 2024 Proceedings. Hrsg. von Leonardo Horn Iwaya, Liina Kamm,

Leonardo Martucci und Tobias Pulls. Bd. 15396. Lecture Notes in Computer Science.

Karlstad,Sweden: Springer-Verlag, Jan. 2025, S. 239–257. isbn: 978-3-031-79006-5.

DOI: 10.1007/978-3-031-79007-2_13 [Mhi+25].

6.1 Einleitung

Die Ergebnisse von PREUNN im letzten Kapitel zeigen, dass sich mithilfe von PRE realisti-

sche Eingaben für Netzwerkprotokolle erstellen lassen. Dadurch lassen sich die Grenzen

klassischer, rein zufallsbasierter Fuzzing-Ansätze überwinden. Dennoch gibt es zahlreiche

Szenarien, in denen hochstrukturierte Eingaben erforderlich sind und eine reine Protokol-

lanalyse nicht ausreicht. Für diese Fälle hat sich grammatikbasiertes Fuzzing etabliert, das

auf formalen Beschreibungen basiert und syntaktisch korrekte Testfälle generiert.

Jüngste Fortschritte im Bereich der LLMs eröffnen zudem neue Perspektiven. Modelle

wie LLaMA2 [Tou+23] können komplexe Abhängigkeiten innerhalb strukturierter Da-

ten erfassen und kontextbewusst neue Sequenzen generieren. Für das Fuzzing bedeutet

dies einen Paradigmenwechsel: Anstelle manuell definierter Grammatiken können LLMs

dynamisch Eingaben erzeugen, die sowohl syntaktisch gültig als auch semantisch konsis-

tent sind. Dadurch lassen sich potenziell tiefere Zustandsräume erreichen und versteckte

Schwachstellen identifizieren, die klassischen Methoden bislang verborgen geblieben sind.

Das Ziel dieses Kapitels besteht darin, das Potenzial von LLMs für die Generierung gram-

matikalisch korrekter Eingaben im Kontext des Fuzzings zu untersuchen. Aufbauend

darauf lässt sich der Beitrag wie folgt zusammenfassen:

101

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

• Adaption eines vortrainierten LLaMA-2-13B-Modells: Ein vortrainiertes LLa-

MA-2-13B-Modell wurde mithilfe von Prompt-Tuning und Fine-Tuning an das XML-

Format angepasst. Das Ziel bestand darin, Eingaben zu generieren, die sowohl syn-

taktisch als auch semantisch korrekt sind.

• Integration von LLMs in AFL: Das angepasste Modell wurde in den bekann-

ten feedbackgesteuerten Fuzzer AFL integriert. Dadurch können die generierten

Eingaben direkt in den Fuzzing-Prozess eingespeist werden, ohne dass manuelle

Grammatikdefinitionen erforderlich sind.

• Implementierung einer dynamischen Feedback-Schleife: Es wurde ein konti-

nuierlicher Feedback-Mechanismus implementiert, der erfolgreiche Testfälle iden-

tifiziert und an das LLM zurückführt. Auf diese Weise kann das LLM während des

Fuzzings weiter optimiert werden.

• Evaluation und Ergebnisse: Die Ansätze wurden anhand der XML-Parser libxml2

und TinyXML-2 evaluiert. Das LLM-basierte Fuzzing erzielte eine bis zu sechsmal

höhere Codeabdeckung als ein reines AFL-Setup und übertraf einen klassischen

grammatikbasierten Fuzzing-Ansatz (Nautilus in Verbindung mit AFL) um bis zu

50 %. Außerdem wurden drei neue Zeitüberschreitungen in libxml2 entdeckt.

Die zentrale Herausforderung besteht darin, die Ausdrucksstärke generativer Modelle mit

den spezifischen Anforderungen des Fuzzings in Einklang zu bringen. LLMs eröffnen zwar

neue Freiheitsgrade bei der Sequenzgenerierung, gleichzeitig muss jedoch sichergestellt

sein, dass die erzeugten Eingaben auch dem geforderten Format entsprechen. Die Evalua-

tion zeigt, dass LLM-basierte Ansätze klassische grammatikbasierte Verfahren nicht nur

ergänzen, sondern in vielen Fällen deutlich übertreffen können.

Dieses Kapitel trägt zum Gesamtziel der Dissertation bei, nämlich zur Effizienzsteigerung

des Fuzzings durch die Erforschung KI-gestützter Methoden. Diese Methoden sollen die

Automatisierung der Sicherheitsanalyse komplexer IoT-Systeme unterstützen und die

Testabdeckung verbessern.

6.2 Stand der Technik

In diesem Abschnitt werden verwandte Arbeiten vorgestellt, um den Stand der Technik

einzuordnen und die Unterschiede zum vorgestellten Ansatz herauszuarbeiten. Dieser

entstand zeitgleich und unabhängig vonmehreren anderen Projekten, die das Potenzial von

LLMs für Fuzzing untersuchten, was die Aktualität und Vielfalt des Themas unterstreicht.

Hu et al. [HZY23] präsentieren ChatFuzz eine Erweiterung von Greybox-Fuzzern wie

AFL++, die generative KI integriert. Das System nutzt das LLMChatGPT, umXML-Eingaben

zu generieren, die den Formatspezifikationen strukturierter Programme entsprechen.

Fine-Tuning oder Prompt-Tuning werden jedoch nicht eingesetzt, was zu einer geringeren

Testabdeckung führt. Der in diesem Kapitel vorgestellte Ansatz geht darüber hinaus, indem

er verschiedene Tuning-Strategien gezielt untersucht und optimiert, um die Qualität der

generierten Eingaben zu steigern.

102

6.3 Entwurf

Zhang et al. [Zha+24b] stellen LLAMAFUZZ vor und zeigen ebenfalls, dass LLMs in der

Lage sind, strukturierte Eingaben für Fuzzing zu generieren. Ihr Fokus liegt auf dem

Fine-Tuning von LLMs zur Mutation bestehender Seed-Eingaben, wobei AFL++ als Baseline

dient. Im Gegensatz dazu fokussiert sich der in diesem Kapitel vorgestellte Ansatz nicht

allein auf Mutationen, sondern trennt die initiale Eingabegenerierung durch das LLM klar

von der nachgelagerten Mutation durch den Fuzzer. Zudem werden sowohl Prompt-Tuning

als auch Fine-Tuning systematisch verglichen, um die effektivste Strategie zu ermitteln.

Xia et al. [Xia+24] beschreiben mit Fuzz4All ein generisches Fuzzing-Framework, das LLMs

für unterschiedliche Zielprogramme nutzt. Es besteht aus einer Autoprompting-Phase und

einer Fuzzing-Schleife, die Eingaben generiert. Das Ziel ist ein möglichst breiter Einsatz,

etwa auch für das Testen von Compilern. Der in diesem Kapitel vorgestellte Ansatz zeichnet

sich dadurch aus, dass er auf ein spezifisches Eingabeformat optimiert ist. Dadurch ist eine

tiefere, an das Format angepasste Analyse möglich.

Zusammenfassend zeigt die Literatur, dass LLMs bereits auf unterschiedliche Weise in

Fuzzing-Workflows eingesetzt wird. Der nachfolgend vorgestellte Ansatz erweitert den

aktuellen Stand der Technik, indem er eine klare Trennung von Generierung und Mutation

vornimmt, den Schwerpunkt auf die effiziente Erstellung strukturierter Eingabedaten legt

und verschiedene Tuning-Methoden hinsichtlich ihrer Leistungsfähigkeit bewertet.

6.3 Entwurf

Der im Folgenden als How to Train Your Llama (HTTYL) bezeichnete Prototyp dient der

systematischen Untersuchung unterschiedlicher Trainingsmethoden für LLMs sowie dem

Vergleich ihrer Effektivität. Der Entwurf basiert auf einem spezialisierten Eingabegenerator

für XML-Parser, dessen Ziel die Erzeugung semi-valider (syntaktisch gültiger, jedoch

fehlerhafter) XML-Pakete unter Einsatz von ML-Techniken ist.

Als Fuzzing-Engine wurde AFL gewählt, da es eine kompakte Codebasis mit hoher Anpas-

sungsfähigkeit verbindet und somit eine flexible Erweiterung ermöglicht. Im Gegensatz

dazu integriert AFL++ zahlreiche Weiterentwicklungen, weist jedoch eine signifikant er-

höhte Komplexität auf, wodurch die Implementierung eigener Modifikationen erschwert

wird. Um den Fokus auf die Schnittstelle zwischen ML und Fuzzer zu legen, wurde daher

AFL als Grundlage der experimentellen Umsetzung eingesetzt.

AFL steuert den Fuzzing-Prozess, übermittelt Eingaben an den XML-Parser, überwacht des-

sen Verhalten und protokolliert Abstürze, Zeitüberschreitungen sowie Anomalien. Seitens

des ML wird ein LLM benötigt, das kontextfreie Grammatiken verarbeiten und komplexe

Eingaben generieren kann. Hierfür wurde das frei verfügbare LLaMA-2-13B-Modell aus-

gewählt, das sich insbesondere durch die effiziente Generierung komplexer Strukturen

auszeichnet.

Die Konzentration auf XML bietet mehrere Vorteile: Das menschenlesbare Format er-

laubt eine unmittelbare Validierung der Ergebnisse, die strukturierte Natur erleichtert

die Evaluation und Identifikation von Parser-Schwachstellen und die weite Verbreitung

103

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

Model Tuning

Model Integration

Training
Data

Training
Approach

Model Integration

Model-Fuzzer
Interaction

Inference
Strategy

Model Inference

🦙
Llama2 Model

AFL

AFL Fuzzer

Fuzzing Setup

Abbildung 6.1: Übersicht über den vorgestellten Ansatz

gewährleistet vielfältige Testfälle. Zudem ermöglicht die formale Repräsentierbarkeit

von XML-Grammatiken einen direkten Vergleich mit grammatikbasierten Fuzzern und

schafft somit eine belastbare Benchmark zur Bewertung der Effektivität des Ansatzes. Die

Abbildung 6.1 veranschaulicht das Konzept des Lösungsansatzes. Hierbei werden zwei

Haupteingaben erfordert: ein LLM, im Beispiel Llama2, und das Fuzzing-Tool, in diesem

Fall AFL. Die Methode besteht aus drei Phasen:

• Modell-Tuning: Zunächst wird die Fähigkeit des Modells verfeinert, die Einga-

begrammatik des Zielprogramms zu verarbeiten, indem ein optimaler Datensatz

und eine Trainingsmethode ausgewählt werden. Diese Phase resultiert in einem

LLM, das auf die Verarbeitung von Eingabestrukturen abgestimmt ist, die für das

Zielprogramm relevant sind, was seine Effizienz bei der Generierung sinnvoller

Eingabevariationen erhöht.

• Modell-Inferenz: Nach dem Tuning wird diese Phase durchgeführt, um Testein-

gaben für den Fuzzing-Prozess zu erzeugen. Der Schwerpunkt liegt hier auf der

Anwendung einer strategischen Inferenzmechanik, die die Erzeugung vielfältiger

Testfälle ermöglicht.

• Modell-Integration: Dieser letzte Schritt stellt sicher, dass das Modell reibungslos

mit dem Fuzzing-Tool zusammenarbeitet. Es wird ein einfacher Ansatz beschrieben,

um das LLM direkt in den Fuzzing-Prozess einzubinden, mit dem Ziel einer nahtlosen

Zusammenarbeit zwischen den beiden.

Dieser strukturierte Ansatz resultiert in einem umfassenden Fuzzing-Framework, das

ein LLM enthält, das auf die Erzeugung gezielter Testeingaben abgestimmt ist, und eine

AFL-Instanz, die auf die effektive Nutzung dieser Eingaben ausgerichtet ist.

6.3.1 Datensatz

Es wurde ein Datensatz zusammengestellt, der sowohl bösartige als auch harmlose XML-

Dateien enthält. Insgesamt wurden 56 bösartigen XML-Dateien gefunden, die hauptsäch-

lich XXE-Injection-Payloads enthalten und reale Anwendungsschwachstellen ausnutzen.

104

6.3 Entwurf

Sie wurden aus der Exploit-Datenbank
1
extrahiert. Für die harmlosen Dateien wurde das

KIT-Motion-Language-Dataset
2
verwendet, aus dem zufällig 100 XML-Dateien ausgewählt

wurden, um eine ausgewogene Mischung aus bösartigen und harmlosen Beispielen zu

gewährleisten.

Obwohl der Trainingsdatensatz vergleichsweise klein ist, ist es herausfordernd, eine

größere Vielfalt unterschiedlicher bösartiger XML-Dateien zu erhalten. Der geringe Anteil

an harmlosen XML-Dateien sollte jedoch kein Problem darstellen, da Llama2 bereits auf

großen Mengen öffentlich verfügbarer XML-Dateien aus dem Internet trainiert wurde.

Dadurch verfügt das Modell über eine solide Grundlage für das Verständnis der XML-

Struktur.

6.3.2 Trainingsansatz

Die Trainingsphase umfasst zunächst die Beschaffung von Daten, die den Zielen des

Projekts entsprechen. Dazu wird das generative LLM eingesetzt, um AFL mit einer ausge-

wogenen Mischung aus harmlosen und bösartigen Beispielen zu versorgen. Somit wird

eine gründliche Bewertung der Funktionalität des Zielprogramms ermöglicht. Nach der

Vorbereitung des Datensatzes wird die optimale Methode zum Modell-Tuning ausgewählt.

Da Fine-Tuning erhebliche Rechenressourcen erfordert, stellt Prompt-Tuning eine weniger

ressourcenintensive Alternative dar, da hierbei nur ein Teil des Modells angepasst wird.

Aufgrund dieser Überlegungen wird Prompt-Tuning priorisiert, während Fine-Tuning als

robuste Vergleichsbasis dient.

6.3.3 Inferenzstrategie

Inferenzstrategien zur Erzeugung von Fuzzing-Beispielen fallen im Allgemeinen in zwei

primäre Kategorien: Sampling-basierte Strategien, die den Eingaberaum mithilfe von

Zufall erkunden, und deterministische Strategien, die einen vordefinierten Algorithmus

oder eine Heuristik verwenden. Deterministischen Strategien, die für gegebene Token

und Wahrscheinlichkeitspaare dieselben Sequenzen erzeugen, fehlt die notwendige Va-

riabilität für eine effektive Fuzzing-Testung. Eine solche Vorhersehbarkeit, kombiniert

mit Skalierungsproblemen im Zusammenhang mit Speicher und Ausführungszeit, macht

deterministische Strategien für diese Anwendung unpraktisch. Der ausgewählte Ansatz ist

daher die Top-k-Sampling-Methode, die zur Kategorie der Sampling-basierten Strategien

gehört. Die Anpassungsfähigkeit der Top-k-Sampling-Methodeake macht sie ideal für die

Erzeugung einer Vielzahl von Fuzzing-Eingaben, was eine umfassendere Bewertung der

Schwachstellen des Zielprogramms ermöglicht. Diese Technik beinhaltet die Auswahl der

Top-k-wahrscheinlichsten Token bei jedem Schritt, wodurch Zufall in den Prozess einge-

führt wird, um eine vielfältige Menge generierter XML-Beispiele zu gewährleisten. Der

1https://www.exploit-db.com/
2https://motion-annotation.humanoids.kit.edu/dataset/

105

https://www.exploit-db.com/
https://motion-annotation.humanoids.kit.edu/dataset/

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

AFL
Read inputGenerate XML

Run

Input
Folder🦙

Tuned Llama2

Abbildung 6.2: Integration des LLM in den Fuzzing-Test

Hauptvorteil dieser Methode besteht darin, dass sie ein Gleichgewicht zwischen der Erzeu-

gung vielfältiger Eingaben und der Aufrechterhaltung eines effizienten und handhabbaren

Auswahlprozesses aufrechterhält. Dieses Gleichgewicht ist für Fuzzing-Anwendungen

von entscheidender Bedeutung, bei denen sowohl die Vielfalt der Eingaben als auch die

Praktikabilität ihrer Erzeugung wichtig sind.

6.3.4 Modell-Integration

Nach der Vorbereitung des LLM für die Inferenz wird eine Integrationsstrategie beschrie-

ben, die eine Einbindung des Modells in den Fuzzing-Test ermöglicht. Im Unterschied

zu herkömmlichen Tools, die auf vordefinierten Grammatiken basieren, ist durch diese

Integration ein direkter Zugriff auf generierte XML-Beispiele möglich, die in den Fuzzing-

Prozess einfließen.

Hierzu wird AFL entsprechend angepasst, um eine nahtlose Übertragung der generier-

ten Beispiele zu gewährleisten. Dies wird in Abschnitt 6.4 ausführlich beschrieben. Wie

in Abbildung 6.2 dargestellt, erzeugt das Llama2-Modell eine vordefinierte Anzahl von

XML-Beispielen. Diese werden direkt in ein Eingabeverzeichnis geschrieben, das von AFL

für die Fuzzing-Tests verwendet wird. Der Vorgang erfolgt zyklisch, wobei während der

gesamten Dauer des Fuzzing-Tests kontinuierlich neue Beispiele generiert und von AFL

bewertet werden. Der Zyklus startet mit dem LLM, das AFL initiiert, um eine Fuzzing-

Sitzung zu starten, die über einen definierten Zeitraum (z. B. 24 Stunden) läuft. Die für

die LLM-Berechnungen benötigte Anfangszeit wird dabei nicht von der Fuzzing-Dauer

abgezogen, da sie vorab berechnet werden kann. Nach Ablauf des Zeitraums wird die

Beispielerzeugung beendet und AFL schließt den Vorgang ab. Dies kann entweder durch

ein direktes Stopp-Signal des LLM oder durch einen vordefinierten Timeout-Mechanismus

erfolgen, der zu Beginn der Tests festgelegt wurde.

6.3.5 Feedback-Schleife

Ein integrierender Bestandteil des Systems, wie in Abbildung 6.3 dargestellt, ist die Feed-

back-Schleife, die die Leistung des LLMüber die Zeit verbessert.Während des Fuzzing-Tests

106

6.4 Implementierung

AFL🦙
Tuned Llama2

Input

Samples
led to new
coverage

OutputLearn

Abbildung 6.3: Llama2 lernt durch eine Feedback-Schleife

wird das LLM anhand der Rückmeldungen des Fuzzers angepasst. Die Feedback-Schleife

analysiert die Ergebnisse von AFL, um XML-Beispiele zu identifizieren, die zur Entde-

ckung neuer Schwachstellen oder Pfade im Zielprogramm beitragen. Diese Beispiele

werden erneut in den Trainingsprozess des LLM eingespeist, wodurch dessen Fähigkeit zur

Generierung relevanter Testfälle kontinuierlich verbessert wird. Dieser iterative Zyklus

ermöglicht eine fortlaufende Verfeinerung der Modellausgaben und eine Anpassung an

die sich entwickelnde Landschaft potenzieller Schwachstellen in der Zielsoftware.

6.4 Implementierung

Es wurde ein PoC entwickelt, der die Synergien zwischen dem LLaMA-2-13B-Modell

und AFL für ein erweitertes Fuzzing-Framework demonstriert. Der PoC zeigt die prak-

tische Anwendung der Integration eines LLM mit einem führenden Fuzzing-Tool, um

Software-Schwachstellen durch strukturierte XML-Eingaben aufzudecken.

6.4.1 Modelltraining und Integration mit AFL

Das LLM wird zunächst auf einem kuratierten Datensatz trainiert, um realistische XML-

Eingaben für den Fuzzing-Prozess zu erzeugen. Sowohl Fine-Tuning als auch Prompt-Tu-

ning kommen zum Einsatz, um ein Gleichgewicht zwischen Modellleistung und Rechen-

aufwand zu gewährleisten. Anschließend wird das trainierte Modell in AFL integriert,

sodass generierte Testfälle automatisch in den Fuzzing-Zyklus eingespeist werden. Auf

diese Weise kann das System kontinuierlich neue Eingaben erzeugen und direkt deren

Effektivität bei der Aufdeckung von Schwachstellen evaluieren.

107

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

6.4.1.1 Fine-Tuning

Ein vollständiges Fine-Tuning des Llama2-Modells wurde durchgeführt, wobei das Modell

aufgrund seines ausgewogenen Verhältnisses von Rechenaufwand und Leistung ausge-

wählt wurde. Der Fine-Tuning-Prozess erstreckte sich über drei Epochen bei einer Lernrate

von 0,003, die empirisch bestimmt wurde, um ein Gleichgewicht zwischen einer schnellen

Anpassung des Modells und dem Risiko von Overfitting zu gewährleisten. Das Training

erfolgte anhand eines kuratierten Datensatzes, wie in Abschnitt 6.3.1 beschrieben.

6.4.1.2 Prompt-Tuning

Zusätzlich wurde ein Prompt-Tuning-Ansatz unter Verwendung der Transformers-Bi-

bliothek
3
implementiert. Dieser Ansatz basiert auf demselben kuratierten Datensatz wie

zuvor. Zur Evaluierung wurden zwei unterschiedliche Kontextlängen getestet: 3072 und

4096 Tokens. Während mit 3072 Tokens Eingaben bis zu dieser Länge verarbeitet werden

können, ermöglicht die Einstellung von 4096 Tokens die Verarbeitung längerer Abfra-

gen. Die größere Kontextlänge kann Ausgaben generieren, die potenziell detaillierter und

konsistenter sind.

6.4.2 Kontinuierlicher Datenintegrationsmechanismus

Eine im Rahmen der Dissertation erstellte Erweiterung des AFL-Frameworks beinhal-

tet die Implementierung eines kontinuierlichen Datenintegrationsmechanismus. Dieser

unterscheidet sich von traditionellen Fuzzing-Methoden. AFL kann somit neue Testfäl-

le dynamisch während des Fuzzing-Prozesses anwenden, anstatt sich auf eine statische

Eingabemenge zu verlassen.

Zu diesem Zweck wurde die Funktion read_testcases() von AFL so modifiziert, dass re-

gelmäßig ein vordefiniertes Eingabeverzeichnis gescannt wird. Bereits verarbeitete Samples

werden verfolgt und übersprungen, um Redundanzen zu vermeiden und die Effizienz zu

steigern. Zusätzlich werden Testfälle, die neue eindeutige Pfade oder Programmabstürze

erzeugen, sowohl im internen AFL Seed Pool als auch in einem vordefinierten Verzeichnis

gespeichert. Dieses Verzeichnis dient als Repository für Beispiele, die später über den

Feedback-Mechanismus zur Verbesserung des LLM verwendet werden.

6.4.3 Optimierungstechnologien

Zur Verbesserung der Skalierbarkeit und Effizienz kommen Optimierungstechnologien wie

Accelerate [Gug+22], DeepSpeed [Ras+20] und Zero [Raj+21] zum Einsatz. Diese Techno-

logien ermöglichen die schnelle Ausführung des LLM auf weit verbreiteter Hardware und

steigern die Effizienz von Training und Nutzung großer neuronaler Netzwerke.

3https://github.com/huggingface/transformers

108

https://github.com/huggingface/transformers

6.5 Evaluation

6.4.4 Dynamischer Feedback-Mechanismus

Ein dynamischer Feedback-Mechanismus überprüft die Ergebnisse jeder Fuzzing-Iteration.

AFL verarbeitet die vom LLM generierten XML-Dateien und beginnt mit dem Fuzzing.

Die Analyse bewertet die Effektivität verschiedener XML-Dateien, um diejenigen zu

identifizieren, die neue Ausführungspfade oder Abstürze verursachen. Effektive Dateien

werden an das LLM zurückgeführt, während ineffektive im AFL Seed Pool verbleiben,

jedoch nicht für das Modelltraining genutzt werden.

Im nächsten Schritt wird das LLM auf den ausgewählten Samples prompt-getunt, um die

Generierung neuer XML-Beispiele für nachfolgende Fuzzing-Tests zu optimieren. Dieser

iterative Zyklus ermöglicht eine kontinuierliche Verbesserung der Testeffektivität. Gleich-

zeitig integriert AFL die neuen XML-Dateien in den Seed Pool und setzt den normalen

Betrieb fort, wobei die Suche nach neuer Codeabdeckung aktiv weitergeführt wird.

6.5 Evaluation

Zur Bewertung des Ansatzes wurde der in Abschnitt 6.4 entwickelte PoC eingesetzt. Da

die Rechenanforderungen für das Training und die Nutzung von LLMs sehr hoch sind,

hatten die Entwicklungsumgebung und die Hardware einen entscheidenden Einfluss auf

die Ergebnisse.

Verwendet wurde ein Server mit einer NVIDIA A100-Grafikkarte (80 GB VRAM), 720

GB RAM, 2,03 TB Speicherplatz und einem AMD EPYC 75F3-Prozessor. Jede Fuzzing-Sit-

zung wurde 24 Stunden lang durchgeführt. Dabei wurde der Zugriff auf GPU-Ressourcen

ermöglicht und die Fuzzing-Testung auf einen einzelnen CPU-Kern beschränkt (Stan-

dard-Einstellung von AFL), um die Vergleichbarkeit zwischen den Läufen zu gewährleisten.

In realen Szenarien stellen Ressourcen typischerweise keinen Engpass für Fuzzing-Tests

dar. Das parallele Ausführen von AFL auf mehreren Kernen skaliert jedoch nicht linear,

da Ergebnisse und Daten zwischen den einzelnen Instanzen geteilt werden müssen, was

zusätzlichen Overhead verursacht.

Die Fuzzing-Einrichtung wurde gegen mehrere Zielprogramme getestet, darunter libxml2

und TinyXML-2.

6.5.1 Bewertungsmetriken

Für die Bewertung wurden die von AFL bereitgestellten Metriken herangezogen:

• Gesamtzahl der gefundenen Pfade: Diese Metrik stellt die Gesamtzahl der ein-

deutigen Pfade dar, die während des Fuzzing-Tests innerhalb des Zielprogramms

gefunden wurden.

• Abstürze: Dies sind eindeutige Testfälle, die zu fatalen Fehlern im getesteten Pro-

gramm führen, wie z.B. SIGSEGV, SIGILL, SIGABRT usw.

109

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

• Zeitüberschreitungen: Zeitüberschreitungen sind eindeutige Testfälle, die dazu

führen, dass die Rückmeldung des PUT zeitlich überschritten wird. Die Standard-

Zeitbegrenzung von AFL vor einer Klassifizierung als Zeitüberschreitung beträgt

eine Sekunde.

Zur Bewertung wurden zwei weit verbreitete XML-Parser libxml2 und TinyXML-2 her-

angezogen. Anstelle absichtlich eingeführter Fehler wurden reale Programme getestet,

da künstliche Fehler die Subtilität echter Fehler nicht ausreichend abbilden. Wenn keine

Fehler gefunden werden, was häufig der Fall ist, da Programme bereits gründlich getestet

oder gepatcht wurden, dient die Codeabdeckung (Gesamtzahl der gefundenen Pfade) als

zuverlässigster Indikator für die Tiefe der Programmuntersuchung.

6.5.2 Experimentelle Ansätze

Zur Evaluierung des Prototyps wurden mehrere experimentelle Ansätze getestet:

• AFL-Fuzzing: Dieser Ansatz verwendet die native Funktionalität des AFL-Fuzzing-
Tools, wobei die Trainingsdaten für das LLM als Eingabe verwendet werden.

• Vortrainiertes LLM-Fuzzing: Diese Methode verwendet das unveränderte vortrai-

nierte LLaMA-2-13B-Modell als Eingabegenerator für AFL

• Fine-Tuned LLM-Fuzzing: Diese Methode verwendet eine Fine-Tuned Version von

Llama2, um Eingaben für AFL bereitzustellen.

• Prompt-Tuned LLM-Fuzzing: Dieser Ansatz verwendet ein Prompt-Tuned Llama2-

Modell.

• LLM-Fuzzing mit Feedback-Schleife: Diese Methode verwendet ein Prompt-Tu-

ned Llama2-Modell, um Eingabe-Samples für AFL bereitzustellen. Zusätzlich unter-

zieht sich dieses Modell während des Fuzzing-Tests einem Echtzeit-Prompt-Tuning

mit Feedback vom Fuzzer. Vor allem Samples, die zur Entdeckung neuer Pfade führen,

werden in das Prompt-Tuning mit einbezogen.

• Nautilus4 in Kombination mit AFL: Nautilus 2.0, ein grammar-basierter Einga-

begenerator, erzeugt syntaktisch korrekte XML-Daten, die anschließend von AFL

ausgeführt werden. AFL misst dabei die Codeabdeckung und identifiziert Abstürze

oder Hänger. Für die Experimente wurde das mit Nautilus bereitgestellte Beispiel

einer XML-Struktur (grammar_py_example.py5) verwendet. Die Synchronisation er-

folgt nur in eine Richtung: AFL kann Eingaben von Nautilus übernehmen, aber nicht

umgekehrt.

Diese Ansätze erlauben den Vergleich der Effektivität und Effizienz unterschiedlicher

Methoden innerhalb des Fuzzing-Frameworks.

4https://github.com/nautilus-fuzz/nautilus
5https://github.com/nautilus-fuzz/nautilus/blob/mit-main/grammars/grammar_py_example.py

110

https://github.com/nautilus-fuzz/nautilus
https://github.com/nautilus-fuzz/nautilus/blob/mit-main/grammars/grammar_py_example.py

6.5 Evaluation

0 3 6 9 12 15 18 21 24
0

3,000

6,000

9,000

12,000

Stunden

A
n
za
h
l
P
fa
d
e

AFL Fuzzer
Vortrainiertes LLM Fuzzing
Fine-Tuned LLM Fuzzing

Prompt-Tuned LLM Fuzzing (3072)

Prompt-Tuned LLM Fuzzing (4096)
LLM Fuzzing mit Feedback-Schleife

Nautilus + AFL Fuzzer

0 3 6 9 12 15 18 21 24
0

1,000

2,000

3,000

4,000

5,000

Stunden

A
n
za
h
l
P
fa
d
e

AFL Fuzzer
Vortrainiertes LLM Fuzzing
Fine-Tuned LLM Fuzzing

Prompt-Tuned LLM Fuzzing (3072)

Prompt-Tuned LLM Fuzzing (4096)
LLM Fuzzing mit Feedback-Schleife

Nautilus + AFL Fuzzer

Abbildung 6.4: Gesamtzahl der gefundenen Pfade bei den verschiedenen Ansätze in

libxml2 (links) und TinyXML-2 (rechts) über 24 Stunden

6.5.3 Experimentelle Ergebnisse

Abbildung 6.4 zeigt die Anzahl der vom Fuzzer gefundenen Pfade in libxml2 und TinyXML-2

über 24 Stunden. Die LLM-basierten Fuzzing-Methoden übertreffen den traditionellen

AFL-Ansatz. Alle AFL-Varianten, die mit einem LLM integriert wurden, zeigten eine höhere

Leistung als AFL allein, wobei Prompt-Tuned LLMs die beste Verbesserung erzielte.

Für libxml2 wurden folgende Anzahlen an Pfaden gefunden: traditionelles AFL 1698, LL-

M-Fuzzing 10705, Prompt-Tuned LLM (mit 4096 Token Kontextlänge) 8203, Prompt-Tuned

LLM (mit 3072 Token Kontextlänge) 11290, Fine-Tuned LLM 6719 und Nautilus + AFL 4826.

Für TinyXML-2 wurden folgende Ergebnisse erzielt: traditionelles AFL 411, LLM-Fuzzing

894, Prompt-Tuned LLM (mit 4096 Token Kontextlänge) 4745, Prompt-Tuned LLM (mit

3072 Token Kontextlänge) 5000, Fine-Tuned LLM 924 und Nautilus + AFL 1396.

Die vergleichsweise geringe Leistung des Fine-Tuned-Modells ist auf die nur drei Trai-

ningsläufe zurückzuführen. Aufgrund der begrenzten Hardware-Ressourcen waren nicht

mehr Trainingsläufe möglich. Prompt-Tuned-Modelle zeigten eine höhere Fähigkeit, neue

Muster von XML-Dateien zu erlernen, insbesondere aus den bösartigen Beispieldateien.

Dadurch verbesserten sich Abdeckung und Leistung. Eine Erhöhung der Kontextlän-

ge kann die Leistung zwar weiter optimieren, führt jedoch unter Umständen zu einem

Overhead, der die 24-Stunden-Performance beeinträchtigt, wie in Abbildung 6.4 gezeigt.

In den Tests zeigte die Kombination aus AFL und dem Prompt-Tuned LLM (3.072 Token

Kontext) die beste Leistung. Das Feedback-Schleifen-Modell lag leicht darunter, da regel-

mäßige Trainingsphasen die Generierung von Samples unterbrachen. Die Unterschiede

111

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

0 3 6 9 12 15 18 21 24
0

1

2

3

Stunden

E
in
zi
ga
rt
ig
e
H
ä
n
ge
r AFL Fuzzer

Vortrainiertes LLM Fuzzing
Fine-Tuned LLM Fuzzing

Prompt-Tuned LLM Fuzzing (3072)

Prompt-Tuned LLM Fuzzing (4096)
LLM Fuzzing mit Feedback-Schleife

Nautilus + AFL Fuzzer

Abbildung 6.5: Gefundene Zeitüberschreitungen in libxml2 für die verschiedenen Ansätze

über 24 Stunden

Modell Vortrainiertes Modell Fine-Tuned Modell Prompt-Tuned Modell Feedback-Schleifen-Modell

Gesamtzahl der generierten Samples pro Lauf 6060 Samples 980 Samples 13980 Samples 2390 Samples

Generierungszeit eines Samples 14,04 Sekunden 89,49 Sekunden 5,99 Sekunden -

Tabelle 6.1: Gesamtzahl der generierten Samples pro Fuzzing-Test

zwischen den Prompt-Tuned-LLMs mit 3.072 und 4.096 Token-Kontext lassen sich ver-

mutlich auf den Overhead durch die größere Kontextlänge zurückführen, welcher die

Performance über 24 Stunden beeinflusste.

Abbildung 6.5 zeigt die Anzahl der Zeitüberschreitungen, die während des 24-stündigen

Fuzzing-Tests von libxml2 auftraten. Die Prompt-Tuned-Fuzzing-Ansätze erzielten mit

bis zu drei eindeutigen Zeitüberschreitungen die besten Ergebnisse. Das Feedback-Schlei-

fen-Modell lag mit einer Zeitüberschreitung knapp dahinter. Traditionelles AFL-Fuzzing,

vortrainiertes LLM-Fuzzing und das Fine-Tuned LLM-Modell führten dagegen während

des gesamten Testzeitraums zu keinen Zeitüberschreitungen.

Für TinyXML-2 wurden unabhängig vom eingesetzten Ansatz keine Zeitüberschreitun-

gen festgestellt. Außerdem waren in beiden getesteten Programmen keine Abstürze zu

beobachten.

Tabelle 6.1 zeigt die Gesamtzahl der generierten Samples pro Lauf sowie die für die

Erstellung eines einzelnen Samples erforderliche Zeit der verschiedenen LLM-basierten

Ansätze. Die Unterschiede in der Generierungszeit erklären die Abweichungen in der

Gesamtzahl der Samples.

So generierte das vortrainierte Llama2-Modell 6.060 Samples innerhalb von 24 Stunden.

Das Fine-Tuning-Modell erzeugte hingegen nur 980 Samples. Dies ist auf die erhöhte

Komplexität und den zusätzlichen Aufwand durch das Fine-Tuning zurückzuführen. Mit

13.980 Samples erreichte das Prompt-Tuned-Modell (3072 Token Kontext) die höchste

Anzahl und demonstrierte die Effizienz des Prompt-Tuning-Ansatzes. Dieser passt das

Modell gezielt an einen Anwendungsfall an, ohne zusätzliche Komplexität einzuführen.

112

6.6 Einschränkungen und zukünftige Arbeiten

Top-k-Wert 5 25 50 150 250

Vortrainiertes LLM 13,12 Sek. 14,04 Sek. 14,34 Sek. 14,56 Sek. 14,68 Sek.

Fine-Tuned LLM 89,82 Sek. 89,49 Sek. 90,67 Sek. 89,52 Sek. 91,35 Sek.

Prompt-Tuned LLM 5,05 Sek. 5,99 Sek. 6,5 Sek. 6,97 Sek. 7,32 Sek.

Tabelle 6.2: Einfluss der Top-k-Variation auf die XML-Generierungszeit

Die Feedback-Schleifen-Variante erzielte eine geringere Anzahl an Samples, da das Modell

während der Fuzzing-Tests regelmäßig Trainingsphasen durchlief, in denen die Generie-

rung von Eingaben pausiert wurde.

6.5.4 Inferenzbewertung

Ein zentrales Merkmal der Inferenzbewertung ist die Laufzeit. Die erforderliche Zeit für

jedes Modell, um eine XML-Datei zu generieren, wurde aufgezeichnet und in diesem

Teil der Bewertung dargestellt. Die Tabelle 6.2 zeigt die für verschiedene Top-k-Werte

erforderliche Zeit für jedes Modell, um ein XML-Beispiel in Sekunden zu generieren.

Ein hoher Top-k-Wert kann die Generierungszeit von XML-Beispielen beeinflussen (mit

leichten Variationen). Allerdings zeigt diese Tabelle auch ein interessantes Verhalten: die

Generierungszeit von XML-Beispielen kann je nach Modelltyp (Fine-Tuned, Prompt-Tuned

oder vortrainiert) erheblich variieren. Wie aus diesen Ergebnissen ersichtlich wird, ist

Prompt-Tuned LLM das schnellste Modell, während das Fine-Tuned-Modell unabhängig

von den Top-k-Werten die längste Zeit benötigt.

6.6 Einschränkungen und zukünftige Arbeiten

Es gibt mehrere Einschränkungen, die die Ergebnisse beeinflussen können:

• Neuere LLMs wie Llama3, Llama4 oder Code Llama könnten potenziell bessere Er-

gebnisse liefern, da sie auf umfangreicheren und aktuelleren Trainingsdaten basieren

und über eine größere Anzahl an Parametern verfügen. Der Fokus dieser Dissertation

lag jedoch auf der Machbarkeit und nicht auf der Optimierung der Leistung.

• Die Auswahl der verwendeten Sprachmodelle war durch die verfügbare Hardware

begrenzt. Größere Modelle könnten eine höhere Testabdeckung und ein besseres

Verständnis komplexer Eingaben ermöglichen.

• Das Trainingsdatenset bestand aus 56 bösartigen und 100 harmlosen XML-Beispielen.

Eine Variation der Datentypen und des Verhältnisses von bösartigen zu harmlosen

Beispielen könnte die Effektivität des Ansatzes steigern.

• Die gewählte Top-k-Sampling-Strategie minimiert die Sample-Generierungszeit,

erfordert jedoch weitere Optimierung. Ein ausgewogenes Verhältnis von Gene-

113

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

rierungszeit und Sample-Qualität könnte durch Parameter-Tuning und alternative

Inferenzmethoden erreicht werden.

• Die Feedback-Lernschleife beeinflusst die Anzahl der generierten Samples während

der Fuzzing-Tests. Eine Optimierung über asynchrone Lern- und Generierungspro-

zesse könnte die Effizienz steigern.

Zusammenfassend verdeutlichen diese Ergebnisse das Potenzial der Integration von LLMs

in Fuzzing-Methoden, weisen jedoch auch auf Bereiche hin, die für zukünftige Arbeiten

weiter optimiert werden können.

Zukünftige Arbeiten eröffnen eine Vielzahl von Forschungsmöglichkeiten, die auf den

Ergebnissen dieser Dissertation aufbauen. Mögliche Forschungsrichtungen umfassen:

• Erforschung von KI-Alternativen: Untersuchung der Machbarkeit alternativer

KI-Modelle, wie z.B. GANs und Sequence to Sequence (Seq2Seq)-Modelle, zur Stei-

gerung der Effizienz von Fuzzing-Tests. Zusätzlich könnte der Einsatz von LoRA die

Fine-Tuning-Ergebnisse verbessern, da damit LLMs auch auf kleinen Datensätzen

effektiv trainiert werden können, was in dieser Dissertation eine Einschränkung

darstellte.

• LLM-basiertes Mutation-basiertes Fuzzing: Es könnte erforscht werden, wie

sich LLMs nutzen lassen, um die Mutationsstrategien fortschrittlicher Fuzzer wie

AFL zu ergänzen. Das Ziel besteht darin, das kontextuelle Verständnis von LLMs

effektiv zu nutzen, um Mutationen zu steuern und somit die Testfallgenerierung und

Schwachstellenentdeckung zu verbessern.

• Domänen-spezifische Anpassung: Die Anwendbarkeit des Ansatzes auf Eingaben
jenseits von XML, insbesondere in Programmenmit domänenspezifischen Grammati-

ken, sollte untersucht werden. Dies erfordert eine Anpassung der Fine-Tuning-Phase

unter Verwendung geeigneter Samples des Zielbereichs, etwa zum Lernen von PDF-

Strukturen. Ziel könnte dabei die Erforschung geeigneter Formate und Methodo-

logien für die Integration des Ansatzes in unterschiedliche Anwendungsdomänen

sein.

Die Bewertung in Abschnitt 6.5 zeigt das Potenzial eines einfachen, vortrainierten Llama2-

Modells, automatisierte Tests zu unterstützen und die Effizienz von Fuzzing-Tests für

sicherheitskritische Anwendungen, wie beispielsweise XML-Parser, zu erhöhen.

Zukünftige Arbeiten könnten darüber hinaus die in Abschnitt 6.6 aufgeführten Ein-

schränkungen adressieren. Die Nutzung aktueller LLM-Versionen, die Optimierung der

Top-k-Sampling-Strategie, der parallele Einsatz zusätzlicher Hardware-Ressourcen sowie

das Training auf größeren und diverseren Datensätzen könnten die Anwendbarkeit und

Leistungsfähigkeit des vorgeschlagenen Ansatzes weiter verbessern.

114

6.7 Zusammenfassung

6.7 Zusammenfassung

In dieser Dissertation wurde ein neuartiger Ansatz zur Integration von LLMs in Fuz-

zing-Workflows untersucht. Das Ziel bestand darin, die Effizienz und die Testabdeckung

signifikant zu verbessern. Die Kombination eines Fuzzers mit einem LLM erwies sich als

deutlich effektiver als der alleinige Einsatz klassischer Fuzzer und übertraf sogar gramma-

tikbasierte Ansätze. Während traditionelle Fuzzer stark von Mutationen abhängig sind,

generieren LLMs komplexe Eingaben auf Basis gelernter Muster und ermöglichen dadurch

tiefere Einblicke in die Programmlogik.

Die Experimente konzentrierten sich auf XML-Dateien, da deren klar definierte Syntax

eine systematische Testgenerierung erleichtert. Der in Abschnitt 6.3 vorgestellte Ansatz

basiert auf der Evaluierung verschiedener Trainingsstrategien, darunter Fine-Tuning und

Prompt-Tuning. Als leistungsfähigster Ansatz hat sich prompt-getuntes LLM-Fuzzing

erwiesen, da die Grammatik implizit vom Sprachmodell erlernt wird und keine manuelle

Spezifikation erforderlich ist. Dadurch ist die Generierung syntaktisch korrekter und

semantisch aussagekräftiger Testfälle selbst für unbekannte oder komplexe Formate mög-

lich. Die Anpassungsfähigkeit des Ansatzes erstreckt sich über XML hinaus auf Formate

wie PDF, sodass vielfältige automatisierte Tests in unterschiedlichen Softwaresystemen

möglich sind.

Der entwickelte Proof of Concept integriert das Llama2-Modell in das Fuzzing-Framework

AFL. Tests mit den XML-Parsers libxml2 und TinyXML-2 zeigten eine deutlich höhere

Code-Pfad-Abdeckung im Vergleich zu klassischen Methoden. Außerdem wurden drei

bislang unbekannte Zeitüberschreitungen in libxml2 entdeckt, was die Effektivität des

Ansatzes bei der Aufdeckung neuer Schwachstellen bestätigt.

Durch die direkte Nutzung generativer Modelle lassen sich hochwertige Testfälle dyna-

misch erzeugen, wodurch sich die Effizienz und Genauigkeit klassischer Fuzzing-Methoden

deutlich steigern lassen. Die Ergebnisse belegen, dass LLM die Entdeckung neuer Aus-

führungspfade beschleunigen, die Testabdeckung erweitern und bisher verborgene Fehler

aufdecken können. Damit leistet diese Arbeit einen wichtigen Beitrag zur Weiterent-

wicklung automatisierter Sicherheitsanalysen und zeigt das Potenzial der Kombination

klassischer Fuzzing-Techniken mit generativen KI-Methoden auf.

6.8 Fazit

Die Untersuchungen in diesem Kapitel haben gezeigt, dass sich LLMs für die Generierung

hochstrukturierter Eingaben im Fuzzing einsetzen lassen. Durch die Anpassung eines

vortrainierten LLaMA-2-13B-Modells auf XML-Daten und die Integration eines adaptiven

Feedback-Mechanismus konnten syntaktisch korrekte und kontextbewusste Eingaben

erzeugt werden.

Die größte Herausforderung bestand darin, die Balance zwischen der Flexibilität generati-

ver Modelle und den Anforderungen des Fuzzings zu finden. Denn die erzeugten Sequenzen

115

6 Effizientes grammatikbasiertes Fuzzing mittels Large Language Models

mussten sowohl gültig als auch effizient für die Pfadexploration sein. Dies verdeutlichen

die Ergebnisse: LLMs ergänzen klassische grammatikbasierte Ansätze sinnvoll und können

in bestimmten Szenarien deren Reichweite übertreffen.

Aufbauend auf diesen Erkenntnissen wird im folgenden Kapitel ein theoretisches Konzept

präsentiert, das die entwickelten Methoden zu einem einheitlichen Ansatz zusammenführt.

116

7 Ansatz für ein integriertes
Fuzzing-Framework

In den vorangegangenen Kapiteln wurden vier eigenständige Ansätze entwickelt. Die-

se adressieren unterschiedliche Herausforderungen beim Fuzzing von IoT-Geräten und

decken verschiedene Ebenen des Fuzzing-Prozesses ab.

• ESP32 Binary Rewriting (EBR) ermöglicht die gezielte Instrumentierung der

Firmware direkt auf Binärebene, um beispielsweise Codeabdeckung oder Laufzeit-

schutzmechanismen zu erfassen (siehe Kapitel 3).

• ESP32-QEMU-FUZZ (EQF) stellt eine emulationsbasierte Testumgebung bereit,

die den Zugriff auf interne Systemzustände erlaubt, die Auswertung beschleunigt

und parallele Fuzzing-Durchläufe auf leistungsfähiger Hardware ermöglicht (siehe

Kapitel 4).

• Protocol Reverse Engineering using Neural Networks (PREUNN) rekonstru-
iert unbekannte Netzwerkprotokolle automatisch und generiert syntaktisch valide

Eingaben für Fuzzing-Tests (siehe Kapitel 5).

• How to Train Your Llama (HTTYL) nutzt Large Language Models, um varianten-

reiche und syntaktisch korrekte Testfälle für strukturierte Datenformate wie XML

oder JSON zu erzeugen (siehe Kapitel 6).

Da diese Techniken komplementäre Aspekte des Fuzzing-Prozesses optimieren, bietet es

sich an, ihre Interaktion in einem integrierten Ansatz zu betrachten. Ziel dieses Kapitels

ist es daher, einen konzeptionellen Rahmen zu skizzieren, der die vorgestellten Verfahren

modular kombiniert und flexibel an unterschiedliche Anwendungsszenarien anpasst. Zur

besseren Verständlichkeit werden die einzelnen Ansätze imWeiteren einheitlich alsModule
bezeichnet. In dieser Dissertation wird keine praktische Implementierung vorgenommen.

Stattdessen werden nur theoretisch die Machbarkeit und das Potenzial der Kombination

aufgezeigt.

7.1 Konzeptionelle Integration der Module

Die vier entwickelten Module adressieren unterschiedliche Ebenen des Fuzzing-Prozes-

ses und können flexibel miteinander kombiniert werden. Dabei steht die vollständige

Modularität des Ansatzes im Vordergrund: Jedes Modul ist optional und kann je nach

Anwendungsszenario individuell eingesetzt oder weggelassen werden.

117

7 Ansatz für ein integriertes Fuzzing-Framework

7.1.1 Flexiblität der Module

Das zentrale Konzept dieses Ansatzes ist die Modularität. Jedes Modul bringt einen spezi-

fischen Nutzen:

• EBR: Instrumentierung auf Binärebene, etwa zur Erfassung von Codeabdeckung

oder zur Integration von Laufzeitschutzmechanismen.

• EQF: Emulationsumgebung mit Zugriff auf interne Systemzustände und Unterstüt-

zung paralleler Fuzzing-Instanzen.

• PREUNN: Rekonstruktion proprietärer Netzwerkprotokolle und Generierung syn-

taktisch valider Pakete.

• HTTYL: Grammatikbasiertes Fuzzing strukturierter Eingaben wie XML oder JSON

mithilfe von LLMs.

Dank dieser Modularität können je nach Zielsystem, Datenformat und Testumfang maß-

geschneiderte Fuzzing-Workflows definiert werden. Der Ansatz stellt somit keinen starren

Framework-Entwurf dar, sondern eine flexible Sammlung kombinierbarer Bausteine.

7.1.2 PREUNN und HTTYL als parallele Module

PREUNN undHTTYL sind anwendungsspezifische Erweiterungen, die in der Regel parallel

betrachtet werden sollten:

• PREUNN kann dann verwendet werden, wenn ein IoT-Gerät über proprietäre Netz-

werkprotokolle angesprochen wird. Es ermöglicht die automatisierte Rekonstruktion

der Protokollstruktur und generiert syntaktisch valide Netzwerkpakete für gezieltes

Fuzzing.

• HTTYL kann verwendet werden, wenn das Zielsystem strukturierte Eingaben wie

XML- oder JSON-Dokumente verarbeitet. Es erzeugt variantenreiche, syntaktisch

korrekte Testfälle, die gezielt komplexe Parserlogik prüfen.

Ebenso denkbar ist ein kombiniertes Szenario, beispielsweise wenn ein IoT-Gerät ein

proprietäres Netzwerkprotokoll nutzt, das eingebettete XML-Dokumente in bestimm-

ten Feldern erwartet. In einem solchen Fall könnten PREUNN und HTTYL gemeinsam

eingesetzt werden, um sowohl die Protokollstruktur als auch die eingebetteten Daten

gezielt zu testen. In der Praxis ist es jedoch meist effizienter, diese Schritte nacheinander

durchzuführen. Zunächst wird die Protokollebene vollständig abgedeckt und anschließend

werden potenziell fehleranfällige Verarbeitungen strukturierter Eingaben gezielt geprüft.

7.1.3 Kombination der Module

Die flexible Kombinierbarkeit der Module ermöglicht die Realisierung verschiedener Fuz-

zing-Workflows. Ein Überblick ist in Abbildung 7.1 zu sehen. Besonders relevant sind zwei

praxisnahe Integrationsszenarien:

118

7.2 Diskussion und Interpretation der Ergebnisse

EBR EQF

PREUNN

HTTYL

ESP32 Code-Injektion bei
unverändertem Kontrollfluss
mittels Binary Rewriting

Fuzzing von ESP32-
Mikrocontrollern

mittels QEMU-Emulation

Protocol Reverse Engineering
mittels neuronaler Netze

Effizientes grammatikbasiertes Fuzzing
mittels Large Language Models

Abbildung 7.1: Modularer Aufbau des Fuzzing Frameworks

1. EBR + EQF + PREUNN: Dieses Setup ist geeignet, wenn das Zielgerät über ein

unbekanntes oder proprietäres Netzwerkprotokoll kommuniziert. PREUNN erzeugt

valide Netzwerkpakete, während EBR für gezielte Instrumentierung sorgt und EQF

eine skalierbare Emulation auf leistungsfähiger Hardware ermöglicht.

2. EBR + EQF + HTTYL: Dieses Szenario ist geeignet, wenn die getestete Software

strukturierte Eingaben wie XML oder JSON verarbeitet. HTTYL generiert syntak-

tisch korrekte Testfälle, EBR liefert tiefe Einblicke in die Codeabdeckung und EQF

ermöglicht paralleles Fuzzing ohne physische Hardware.

In beiden Fällen können einzelne Module bei Bedarf weggelassen werden. So lassen sich

beispielsweise EBR oder EQF auch unabhängig voneinander nutzen: EBR für instrumen-

tiertes Fuzzing direkt auf realer Hardware oder EQF für emulationsbasiertes Fuzzing ohne

Eingriff in die Firmware. PREUNN und HTTYL kommen nur dann zum Einsatz, wenn die

Art der Eingaben dies erfordert.

7.2 Diskussion und Interpretation der Ergebnisse

Die vollständige Integration aller vier Module wurde im Rahmen dieser Dissertation nicht

praktisch umgesetzt, da ihr Nutzen stark vom jeweiligen Anwendungsszenario abhängt

und teilweise größere Anpassungen der einzelnen PoCs nötig wären (wie in Abschnitt 7.3

119

7 Ansatz für ein integriertes Fuzzing-Framework

beschrieben). Die Machbarkeit und das Potenzial einer modularen Kombination wurden

aufgezeigt, die umfassende Evaluation der konkreten Leistungsfähigkeit war jedoch nicht

die Zielsetzung.

Die theoretische Analyse verdeutlicht, dass eine flexible Integration der entwickelten Mo-

dule das Fuzzing von IoT-Geräten erheblich effizienter gestalten könnte. EBR ermöglicht

eine präzise Instrumentierung der Firmware und liefert dadurch gezielte Laufzeitinfor-

mationen. EQF bietet eine skalierbare und performante Emulationsumgebung, die hohe

Testdurchsätze erlaubt. Mit PREUNN lassen sich semantisch gültige Netzwerkpakete

automatisiert generieren, während HTTYL strukturierte Eingaben wie XML-Dateien syn-

taktisch und semantisch korrekt erzeugt. Alle Module sind optional und können abhängig

vom Anwendungsfall flexibel kombiniert oder weggelassen werden.

Die in dieser Dissertation präsentierten Ergebnisse und Kennzahlen basieren auf der

Evaluierung einzelner Module. Eine experimentelle Validierung der vollständigen Syste-

mintegration wurde bislang nicht durchgeführt. Dennoch lassen die Resultate eindeutig

erkennen, dass die modulare Kombination der entwickelten Module das Potenzial hat,

die Testabdeckung deutlich zu erhöhen, Fuzzing-Prozesse gezielter zu steuern und die

Gesamteffizienz signifikant zu verbessern. Eine Kombination von EQF und HTTYL könnte

für IoT-Geräte, die XML-Dateien verarbeiten, in einer virtuellen Umgebung im Vergleich

zum herkömmlichen Blackbox-Fuzzing auf der ESP32-Plattform eine Effizienzsteigerung

um den Faktor 50 ermöglichen (siehe Ergebnisse aus Abschnitt 4.5 und Abschnitt 6.5).

Diese Verbesserung resultiert primär aus einer erhöhten Anzahl verarbeiteter Anfragen

pro Sekunde sowie einer qualitativ hochwertigeren Eingabegenerierung. Durch zusätzliche

Parallelisierung der Module ließe sich dieser Effekt voraussichtlich noch weiter verstärken.

Ein direkter Vergleich mit bestehenden Fuzzing-Frameworks erfolgt an dieser Stelle nicht,

da keine existierende Arbeit alle vier betrachtetenModule in vergleichbarer Tiefe integriert.

Stattdessen werden im folgenden Kapitel (Kapitel 8) verwandte Arbeiten diskutiert, die

einzelne Teilaspekte dieser Dissertation adressieren.

7.3 Limitationen

Trotz der vielversprechenden Ergebnisse des vorgestellten integrierten Ansatzes zur Si-

cherheitsanalyse von IoT-Geräten gibt es mehrere Einschränkungen, die die allgemeine

Anwendbarkeit und Skalierbarkeit der Module begrenzen.

Die Untersuchungen wurden bewusst auf die ESP32-Plattform mit Xtensa-Architektur

fokussiert, da alle entwickelten Patch-Methoden sowie das Binary-Rewriting-Framework

speziell auf deren Befehlssatz, Speicherlayout und Toolchain zugeschnitten sind. Eine

Übertragung auf andere Architekturen wäre zwar prinzipiell möglich, erfordert jedoch

eine vollständige Anpassung der Instruktionsdekodierung, der Patch-Strategien und der

Emulatorintegration.

Die einzelnen Komponenten wurden vorwiegend in Form von experimentellen Machbar-

keitsstudien entwickelt. Die Verfahren sind komplex und müssen weiter ausgebaut werden,

120

7.3 Limitationen

um einen stabilen und praktischen Einsatz zu ermöglichen. So ist das ESP32 Binary Re-

writing aktuell beispielsweise nur auf einen eingeschränkten Funktionsumfang begrenzt,

da nur die am häufigsten verwendeten sowie die für das PoC notwendigen Instruktionen

umgesetzt wurden. Dies wiederum schränkt die Möglichkeiten der Firmware-Instrumen-

tierung ein. Für den produktiven Gebrauch ist eine umfassendere Unterstützung sämtlicher

Firmware-Funktionen erforderlich.

Die Testbreite der angewandten Module ist ebenfalls begrenzt. PREUNNwurde ausschließ-

lich an textbasierten Protokollen wie HTTPs und FTPs getestet. Ob es auf weit verbreitete

binäre Protokolle wie MQTT übertragbar ist, bleibt offen. Ebenso wurde grammatikbasier-

tes Fuzzing mit LLMs nur mit XML-Daten geprüft. Dabei wurde die Annahme getroffen,

dass sich die Methodik auf komplexere Formate wie PDF übertragen lässt. Diese Annahme

könnte sich in der Praxis jedoch als nicht immer zutreffend erweisen, da unterschiedliche

Dateiformate spezifische Anforderungen an die Modellierung stellen.

Außerdem bringen LLMs eigene Herausforderungen mit sich. So sind für das Training

von LLM große Mengen hochwertiger Daten nötig, deren Qualität die Genauigkeit der

generierten Testfälle und damit die Fuzzing-Effizienz direkt beeinflusst. Ein weiterer Punkt

ist, dass sich die LLM-Forschung sehr schnell weiterentwickelt. In dieser Dissertationwurde

Llama2 verwendet, das inzwischen um neuere Modelle ergänzt wurde. Fortschrittliche

Trainingsmethoden wie Low-Rank Adaptation (LoRA) [Hu+22], die ein effizientes Training

mit kleineren Datensätzen ermöglichen, wurden bisher ebenfalls noch nicht integriert.

Sie bieten jedoch vielversprechende Ansätze für die Zukunft, um die Effizienz weiter zu

steigern.

Schließlich ist auch die fehlende praktische Umsetzung des integrierten Ansatzes als Li-

mitation dieser Dissertation zu verstehen, da die konkrete Implementierung stark vom

jeweiligen Anwendungsszenario abhängt. Der Fokus lag auf der Darstellung der grund-

sätzlichenMachbarkeit und nicht auf einer umfassenden Evaluation der Leistungsfähigkeit,

weshalb der theoretische Ansatz nicht praktisch evaluiert wurde.

121

8 Verwandte Arbeiten

Die Arbeiten, die bereits als direkte Grundlage für die vorgestellten Ansätze dienten oder

methodisch eng verwandt sind, wurden in den jeweiligen Kapiteln behandelt. Beiträge,

die später entstanden oder nur lose verwandt sind, werden hier gesammelt, um die wis-

senschaftliche Einordnung der Dissertation zu ermöglichen. In den letzten Jahren sind

zahlreiche Arbeiten erschienen, die einzelne Aspekte dieser Dissertation berühren, et-

wa durch thematische Überschneidungen oder ähnliche Techniken, aber methodisch oft

andere Wege verfolgen. Für die Einordnung dieser Dissertation wurden gezielt Beiträge

berücksichtigt, die inhaltlich und methodisch anschlussfähige Weiterentwicklungen dar-

stellen und so den Kontext und die Relevanz der vorliegenden Dissertation verdeutlichen.

Eine zentrale Inspirationsquelle für diese Dissertation ist die Untersuchung von Muench

et al. [Mue+18], in der zentrale Herausforderungen beim Fuzzing eingebetteter Systeme

identifiziert werden. Dazu zählen insbesondere das Fehlen vollständiger System-Emulato-

ren für die jeweilige Zielplattform und die Schwierigkeit, auftretende Fehler zuverlässig zu

beobachten. Fuzzing in einem Emulator bietet den Vorteil einer transparenten Ausführung,

wodurch sowohl die Fehlererkennung als auch die Erfassung der Codeabdeckung möglich

wird. Auf diesen Beobachtungen basiert die Konzeption dieser Dissertation: So wurde das

Binary Rewriting entwickelt, um gezielt Analyse- und Instrumentierungscode in Firm-

ware einzufügen. Die QEMU-basierte Fuzzing-Emulation, wie sie in dieser Dissertation

behandelt wurde, ermöglicht dagegen eine kontrollierte und messbare Ausführung auf der

Zielarchitektur.

8.1 Binary Rewriting

Für das Binary Rewriting existiert eine Vielzahl von Tools, die für unterschiedliche Archi-

tekturen und Zielsetzungen entwickelt wurden. Einige Systeme, wie beispielsweise Lancet
von Van Put et al. [Put+05], Vulcan von Srivastava, Edwards und Vo [SEV01] und OM von

Wall und Srivastava [WS92] fokussieren sich auf Leistungsoptimierungen, etwa durch das

Einfügen effizienterer Instruktionen oder die Umstrukturierung von Code. Andere wie

Zipr von Hawkins et al. [Haw+17], RevARM von Kim et al. [Kim+17] oder CFI CaRE von

Nyman et al. [Nym+17] zielen auf die Erhöhung der Sicherheit ab, beispielsweise durch

das Hinzufügen von Schutzmechanismen oder Kontrollfluss-Integritätsprüfungen. Ob-

wohl diese Ansätze unterschiedliche Ziele verfolgen, teilen sie mit dem hier vorgestellten

Ansatz das grundlegende Prinzip, bestehenden Binärcode zu transformieren, ohne dessen

wesentlichen Kontrollfluss zu verändern.

123

8 Verwandte Arbeiten

In der Literatur wird zwischen dynamischen und statischen Binary-Rewritern unterschie-

den. Dynamische Rewriter wie Dynamo von Bala, Duesterwald und Banerjia [BDB99],

STRATA von Scott et al. [Sco+03] und Pin von Luk et al. [Luk+05] ändern den Code unmit-

telbar vor seiner Ausführung. Dies ermöglicht eine flexible Instrumentierung, erfordert

jedoch eine kontinuierliche Anpassung zur Laufzeit und ist daher für Embedded-Plattfor-

men wie den ESP32 ungeeignet.

Statische Rewriter hingegen arbeiten vollständig vor der Ausführung. Dabei lassen sich

zwei Untergruppen unterscheiden: IR-basierte Tools wie mctoll von Yadavalli und Smith

[YS19] und revng von Di Federico, Payer und Agosta [FPA17] übersetzen Binärcode in

eine Zwischensprache wie LLVM IR, um Analysen und Optimierungen durchzuführen.

Andererseits gibt es Disassembler wie ddisasm, Retrowrite und Uroboros, die den Rückbau

in Assemblercode und den anschließendenWiederaufbau zu einer modifizierten Binärdatei

ermöglichen. Beiden Ansätzen ist gemein, dass die ursprüngliche Binärstruktur häufig

nicht vollständig erhalten bleibt. Für sicherheitsrelevante Analysen, wie die in dieser

Dissertation durchgeführten, ist jedoch eine möglichst hohe Strukturtreue entscheidend,

um präzise und reproduzierbare Ergebnisse zu erzielen.

Umfassende Übersichtsarbeiten, etwa vonWenzel et al. [Wen+19] und Schulte et al. [SBF22],

dokumentieren zwar ein reiches Ökosystem an Binary-Rewriting-Tools, doch wird darin

deutlich, dass keiner der bestehenden Ansätze die Xtensa-Architektur unterstützt, die im

ESP32 zum Einsatz kommt.

Der hier vorgestellte Ansatz schließt diese Lücke, indem er bestehende Binary-Rewriting-

Methoden gezielt auf die Xtensa-Architektur überträgt und erweitert. Dabei bleibt der

Kontrollfluss unverändert und die ursprüngliche Struktur der Binärdatei wird vollständig

bewahrt. So entsteht einerseits eine klare Anschlussfähigkeit an bestehende Arbeiten und

andererseits wird ein bislang ungelöstes Problem betrachtet.

8.2 Hardware Fuzzing von IoT-Geräten

Ein Ansatz, der direkt auf die Instrumentierung von Binärdateien abzielt, ist QASan von

Fioraldi et al. [FDQ20]. Bei diesem Ansatz werden Binärdateien mit dem Quick Address

Sanitizer (QASan) instrumentiert, einem Tool zur Laufzeitüberprüfung von Speicherfehlern

wie Pufferüberlauf oder Use-After-Free. Dadurch wird ermöglicht, auch vorkompilierte

Programme auf Speicherfehler zu testen, ohne dass der Quellcode vorliegt. Im Gegen-

satz dazu konzentriert sich diese Dissertation nicht auf reine Funktionen zum Schutz

des Arbeitsspeichers, sondern auf die flexible Integration beliebigen Codes, um den Fuz-

zing-Prozess gezielt zu unterstützen.

Ein weiterer Ansatz, der Fuzzing auf unterschiedlichen Mikrocontrollern ermöglicht, ist

GDBFuzz von Eisele et al. [Eis+23]. Hierbei werden Hardware-Debugschnittstellen wie

GDB genutzt, um Codeabdeckung-Feedback aus uninstrumentiertem Firmware-Binärcode

zu gewinnen. Während GDBFuzz auf reale Hardware und vorhandene Debug-Interfaces

124

8.3 IoT Fuzzing mittels Emulation

angewiesen ist, erlaubt der in dieser Dissertation vorgestellte Ansatz die direkte Instrumen-

tierung des Firmware-Codes. Dadurch entfällt die Abhängigkeit von externen Schnittstellen

und eine flexiblere Analyse auf Mikrocontrollern wie dem ESP32 wird möglich.

Darüber hinaus geben verschiedene Übersichtsarbeiten einen umfassenden Überblick

über bestehende Fuzzing-Techniken für IoT-Geräte. Maialen Eceiza-Olaizola et al. [EFI21]

analysieren aktuelle Ansätze und identifizieren zentrale Herausforderungen beim Fuz-

zing eingebetteter Systeme. Touqir et al. [Tou+24] liefern eine systematische Übersicht

über Fuzzing-Techniken in IoT-Umgebungen, bewerten deren Effektivität und zeigen be-

stehende Forschungslücken auf. Diese beispielhaft aufgeführten Arbeiten verdeutlichen

die zunehmende Relevanz spezialisierter Fuzzing-Methoden für die Sicherheit vernetzter

IoT-Geräte.

8.3 IoT Fuzzing mittels Emulation

Zum Zeitpunkt der in Kapitel 4 beschriebenen Arbeiten unterstützte die Standardimple-

mentierung von ESP32-QEMU noch keine Emulation des integrierten WLAN-Subsystems.

Inzwischen ist jedoch ein quelloffener Fork von QEMU
1
verfügbar, der durch Reverse

Engineering der bislang undokumentierten WLAN-Register des ESP32 eine native Nach-

bildung dieses Subsystems ermöglicht. So ist es nun möglich, die ESP32-Firmware und

die dazugehörigen Treiber in einer vollständig emulierten Umgebung auszuführen, ohne

dass weitere Hardware-Peripherie emuliert werden muss. Diese Implementierung kon-

zentriert sich allerdings ausschließlich auf die Emulation der ESP32-Firmware, während

die vorliegende Dissertation den Schwerpunkt auf umfangreiche Fuzzing-Kampagnen in

der emulierten Umgebung legt.

Einen verwandten, aber enger gefassten Ansatz als den in dieser Dissertation vorgestellten

Emulationsansatz verfolgen Bogad und Huber [BH19] in ihrer Arbeit Harzerroller. Sie
beschreiben, wie sie partielle Emulation einsetzen, um Firmware-Bilder des ESP8266 – dem

Vorgänger des ESP32 – zu fuzzen. Dabei werden nur bestimmte Teile der Firmware in einer

emulierten Umgebung ausgeführt, während andere auf der realen Hardware verbleiben.

Dies ermöglicht die gezielte Untersuchung spezifischer Firmware-Bereiche, limitiert jedoch

die Möglichkeiten zur vollständigen Automatisierung und umfassenden Erfassung der

Codeabdeckung, wie sie in dieser Dissertation angestrebt werden.

Mehrere Übersichtsarbeiten zum Fuzzing mittels Emulation von IoT-Geräten liefern eine

wichtige Grundlage zur Einordnung des in dieser Dissertation vorgestellten Ansatzes. Li

et al. [LZZ18] liefern eine umfassende Übersicht zu Methoden der Schwachstellenent-

deckung mit besonderem Fokus auf feedbackgesteuertes Fuzzing. Ihre Analyse zeigt die

Wirksamkeit dieser Technik in verschiedensten Anwendungskontexten und unterstreicht

damit die Relevanz einer präzisen Messung der Codeabdeckung für den Erfolg von Fuz-

zing-Kampagnen. Der in dieser Dissertation vorgestellte Ansatz greift diesen Befund auf,

indem er Informationen zur Codeabdeckung nicht nur passiv auswertet, sondern sie aktiv

in den Fuzzing-Workflow integriert, um die Testgenerierung gezielt zu steuern.

1https://github.com/esp32-open-mac/qemu

125

https://github.com/esp32-open-mac/qemu

8 Verwandte Arbeiten

Yun et al. [Yun+22] geben in Fuzzing of Embedded Systems: A Survey einen breiten Überblick
über den gesamten Fuzzing-Prozess eingebetteter Systeme. Sie betonen die Bedeutung von

QEMU-Anpassungen für spezifische Hardware und gehen dabei auf Firmware-Dumping,

Interface-Modellierung und Emulationstechniken ein. Darauf aufbauend identifizieren

Eisele et al. [Eis+22] in Embedded Fuzzing: A Review of Challenges, Tools, and Solutions
zentrale Herausforderungen beim Fuzzing von IoT-Geräten. Dazu zählen begrenzte Res-

sourcen, die Emulation spezialisierter Hardware und die Firmware-Instrumentierung. Die

Autoren vergleichen verschiedene Emulationsformen sowie die Nutzung von Schnittstel-

len wie UART und JTAG. Beide Arbeiten liefern wertvolle Übersichten und Analysen,

entwickeln jedoch keine neuen Fuzzing-Programme oder spezifische Implementierungen.

Das Buch Fuzzing Against the Machine von Nappa und Blázquez [NB23] beschreibt all-

gemeine Fuzzing- und Emulationskonzepte, insbesondere mit QEMU, und teilt damit die

Grundidee dieser Dissertation. Es bleibt jedoch auf einer generischen Ebene und behandelt

weder die ESP32-Plattform noch die Xtensa-Architektur, während der hier vorgestellte

Ansatz gezielt auf diese spezialisiert ist.

Diese aufgeführten Übersichtsarbeiten zeigen deutlich, dass grundlegende Konzepte wie

Emulation und Firmware-Verarbeitung zwar gut erforscht sind, es im Bereich der spezifi-

schen Plattformanpassungen (z. B. Xtensa/ESP32) sowie in der Kombination statischer

Instrumentierung mit Fuzzing in Emulationen jedoch noch erhebliche Forschungslücken

gibt.

8.4 Fuzzing von Netzwerkprotokollen

Dem Erlernen und Fuzzing von Netzwerkprotokollen widmet sich ein eigener Forschungs-

zweig, in dem zunehmend maschinelles Lernen und modellbasierte Verfahren zum Einsatz

kommen.

Ansätze zur Klassifikation unbekannter Protokolle liefern wichtige Grundlagen für die

Analyse von Netzwerkverkehr. Jung und Jeong [JJ20] trainieren ein Deep-Belief-Netz-

werk auf statistisch gewonnenen Merkmalen, um Nachrichten mit hoher Genauigkeit zu

klassifizieren. Lopez-Martin et al. [Lop+17] kombinieren Convolutional und Recurrent

Neural Networks zur Kategorisierung von IoT-Verkehr, Michael et al. [Mic+17] nutzen

neuronale Netze zur Erkennung unterschiedlicher Protokolle, und Li et al. [Li+18] setzen

mit dem Byte Segment Neural Network (BSNN) Byte-Segmente ein, um Protokollstrukturen

präzise zu identifizieren. Diese Arbeiten liefern wertvolle methodische Grundlagen für die

Dissertation, fokussieren sich jedoch nicht auf die Generierung neuer Eingaben für das

Fuzzing.

Für das Fuzzing selbst haben Pham et al. [PBR20] mit AFLNET den ersten Greybox-Fuzzer

speziell für zustandsbehaftete Netzwerkprotokolle vorgestellt. Basierend auf aufgezeich-

netem Client-Server-Verkehr erzeugt AFLNET Nachrichtensequenzen, die gezielt mutiert

werden, um die Codeabdeckung und Zustandsabdeckung zu erhöhen. Durch das Ler-

nen eines State-Machine-Modells erreicht AFLNET eine deutlich höhere Abdeckung als

126

8.5 Grammatik-basiertes Fuzzing

klassische mutationsbasierte Fuzzer und demonstriert, dass modellbasierte Verfahren das

Fuzzing komplexer Protokolle erheblich verbessern können.

PULSAR von Gascón et al. [Gas+15] ist ein modellbasiertes Fuzzing-Tool für zustandsbe-

haftete Netzwerkprotokolle. Es verwendet Markov-Modelle und Clustering, um Zustands-

maschinen abzuleiten, verzichtet jedoch auf den Einsatz neuronaler Netze. Während sich

PULSAR auf die Testgenerierung auf Basis von Zustandsmodellen konzentriert, liegt der

Fokus dieser Dissertation auf der automatisierten Protokollanalyse und der Generierung

neuer Netzwerkpakete.

Die Forschungsergebnisse von PREUNN wurden mehrfach aufgegriffen und weiterent-

wickelt, um die automatisierte Protokollanalyse zu verbessern. PREIUD von Ning et

al. [Nin+23] nutzt unüberwachtes Clustering und tiefe neuronale Netze, um Nachrichten-

typen, Feldgrenzen und Abhängigkeiten zu erkennen, während CNNPRE von Garshasbi

und Teimouri [GT23] Convolutional Neural Networks einsetzt, um aus Rohdaten von

Netzwerkpaketen Muster und Feldgrenzen zu extrahieren. Beide Ansätze konzentrieren

sich auf die Analyse und Segmentierung von Nachrichten, nicht jedoch auf die direkte

Testfallerzeugung.

ProsegDL von Zhao et al. [Zha+22] erweitert dies, indem es Feldgrenzen automatisch aus

Rohdaten lernt und unbekannte Protokollstrukturen rekonstruiert. DL-ProS2 [Zha+24c]
integriert U-Net, ein siamesisches Netzwerk und BiLSTM-CRF, um Feldgrenzen und se-

mantische Informationen zu extrahieren. Ergänzt wird dies durch eine wissensbasierte

Verkehrssimulation, die Protokollwissen aus öffentlichen Dokumenten, wie RFCs, einbe-

zieht. Empirische Ergebnisse zeigen hohe Präzision und Recall bei der Analyse unbekann-

ter Protokolle. AEMK/EAEAP von Nemati et al. [NMT24] nutzt Autoencoder-basiertes

Clustering, um Nachrichtenmuster und semantische Beziehungen zwischen Nachrichten

zu identifizieren. Alle diese Deep Learning-Ansätze fokussieren sich auf Analyse und

Clustering, während die Testfallerzeugung nicht im Vordergrund steht.

Insgesamt zeigen diese Arbeiten, dass lern- und modellbasierte Verfahren die Analyse und

das Fuzzing komplexer Netzwerkprotokolle erheblich verbessern können. Sie liefern vor

allem methodische Konzepte und Übersichten, während die Entwicklung plattformspezifi-

scher Fuzzing-Frameworks, wie sie in dieser Dissertation erfolgt, außerhalb ihres Fokus

liegt.

8.5 Grammatik-basiertes Fuzzing

Grammatikbasierte Verfahren verfolgen das Ziel, strukturell valide Eingaben zu generie-

ren, um eine höhere Code- und Zustandsabdeckung zu erzielen und somit verborgene

Fehlerzustände aufzudecken.

Havrikov et al. [Hav+14] stellen mit XMLMate einen evolutionären Testgenerator vor, der

auf XML-Schemas und vorhandenen Beispielen basiert. Durch die Anwendung geneti-

scher Operatoren wie Mutation, Rekombination und Selektion werden strukturkonforme

XML-Dokumente erzeugt, die sich gezielt für Robustheitstests von Parsern eignen.

127

8 Verwandte Arbeiten

Höschele et al. [HKZ17] schlagen mit AUTOGRAM einen Ansatz zur Grammatikinduk-

tion vor: Beginnend mit wenigen Beispielen werden Datenflüsse analysiert und mittels

Membership-Queries kontextfreie Grammatiken konstruiert, die sowohl formal korrekt

als auch menschenlesbar sind und sich unmittelbar für Fuzzing einsetzen lassen.

Gopinath et al. [Gop+18] gehenmit PYGMALION noch einen Schritt weiter und zeigen, dass

Grammatiken auch ohne Beispielinputs induziert werden können. Über systematisches

Parserfuzzing werden dabei sukzessive gültige Eingaben (z. B. JSON, URLs) aufgebaut, die

als Grundlage für weitere Tests dienen.

Pavese et al. [Pav+18] erweitern grammatikbasiertes Sampling um probabilistische Inver-

sion: Neben häufigen Strukturen werden gezielt seltene, aber syntaktisch gültige Eingaben

generiert, um ungewöhnliche Programmzweige zu erreichen und Robustheitsprobleme

sichtbar zu machen.

Für strukturierte Binärformate zeigt Fioraldi et al. [FDC20] mit WEIZZ, dass Schluss-
folgerungen über die Grammatik in Kombination mit Fuzzing valide und diversifizierte

Eingaben erzeugen, was die Effektivität bei komplexen Formaten deutlich steigert.

Einen praxisnahen Ansatz verfolgen Dutra et al. [DGZ23] mit FormatFuzzer. Hierbei wer-
den binäre Templates (z. B. aus dem 010 Editor) in Parser und Generatoren übersetzt,

wodurch komplex strukturierte Eingaben wie MP4- oder ZIP-Dateien erzeugt werden

können. In Kombination mit AFL gelang so die Entdeckung bislang unbekannter Schwach-

stellen in FFmpeg und Timidity.

Einen anderen Ansatz verfolgt GDBMiner von Eisele et al. [Eis+25], das Eingabegramma-

tiken direkt aus Binärprogrammen extrahiert. Mithilfe des GNU-Debuggers (GDB) wird

bytegenau analysiert, welche Eingabeteile von welchen Programmabschnitten verarbeitet

werden, woraus präzise Grammatikregeln abgeleitet werden.

Amaya Zamudio et al. [ASZ25] untersuchen schließlich sprachbasierte Fuzzer, die formale

Spezifikationen für die Testfallgenerierung nutzen. Der derzeit führende Ansatz, ISLa, setzt
auf symbolisches Constraint-Solving und erzeugt damit hochpräzise, jedoch langsame

Eingaben. Mit FANDANGO schlagen die Autoren eine suchbasierte Alternative auf Basis

genetischer Algorithmen vor, die Constraints effizient erfüllt und dabei eine deutlich höhere

Geschwindigkeit erreicht. Zudem erlaubt FANDANGO die Formulierung von Constraints

direkt in Python, was eine größere Ausdrucksstärke und Flexibilität bietet.

Zusammenfassend legen die dargestellten Arbeiten die Grundlagen für effektives Fuz-

zing dar. Durch umfassende Kenntnisse der Eingabegrammatiken lässt sich die gezielte

Erzeugung gültiger Testfälle systematisch realisieren. Unabhängig davon, ob dies mittels

evolutionärer Verfahren, Parser-Fuzzing, Template-basierter Ansätze oder debuggerge-

stützter Extraktion geschieht, führt eine grammatikorientierte Testfallgenerierung zu

einer höheren Code- und Zustandsabdeckung. Insbesondere in IoT-Szenarien, in denen

strukturierte Daten dominieren, erhöht grammatikbasiertes Fuzzing die Testeffizienz und

steigert die Wahrscheinlichkeit, sicherheitsrelevante Schwachstellen aufzudecken.

128

8.6 Fuzzing mittels Machine Learning

8.6 Fuzzing mittels Machine Learning

Der Einsatz vonML im Fuzzing hat in den letzten Jahren erheblich an Bedeutung gewonnen.

Das Ziel besteht darin, die Eingabegenerierung zu optimieren, um eine umfassendere Code-

und Zustandsabdeckung sowie eine effizientere Schwachstellenentdeckung zu erreichen.

Einen der ersten konkreten Vorschläge machten Godefroid, Peleg und Singh [GPS17] mit

Learn&Fuzz. Dabei werden Eingabeformate aus Beispieldaten gelernt und anschließend

zur automatisierten Testfallgenerierung genutzt. Dieser Ansatz verdeutlicht, wie ML-

Techniken eingesetzt werden können, um strukturierte Eingaben gezielt und systematisch

zu erzeugen.

Spätere Arbeiten schlagen eine Brücke zwischen klassischen ML-Ansätzen und modernen

LLM-Verfahren. So untersuchen Yang et al. [Yan+23], wie LLMs für das Whitebox-Com-

piler-Fuzzing eingesetzt werden können, und markieren damit eine Übergangsarbeit.

Ein weiterer Schritt in diese Richtung ist KernelGPT von Yang et al. [YZZ23], das Ker-

nel-Fuzzing durch die automatische Ableitung von Syzkaller-Spezifikationen erweitert.

Syzkaller ist ein state-of-the-art feedbackgesteuerter Fuzzer für Betriebssystem-Kernel. Er

deckt System-Call-APIs mittels formaler Spezifikationen ab und ermöglicht dadurch eine

systematische Generierung von Testfällen.

Die Forschung zu LLM-basiertem Fuzzing entwickelt sich besonders dynamisch. Deng et

al. [Den+23] schlagen mit TitanFuzz ein generatives Verfahren vor, das Saatprogramme für

Deep-Learning-APIs erzeugt und Mutationen mithilfe eines Multi-Armed-Bandit-Algorith-

mus steuert. In einer Folgestudie erweitern Deng et al. [Den+24] diesen Ansatz zu FuzzGPT,
das variierte Eingabeprogramme automatisch generiert und zahlreiche Bugs in PyTorch

und TensorFlow aufdeckt. Liu et al. [LMC23] demonstrieren einen LLM-gestützten Ansatz

zur automatisierten Ableitung von Fuzzing-Zielen, während Le Mieux et al. [Lem+23] mit

CodaMosa zeigen, dass LLMs im Rahmen des Search-Based Software Testing (SBST) genutzt

werden können, um aus bestehenden Testfällen neue abzuleiten und so die Testabdeckung

zu erhöhen. Auch im Bereich des Protokollfuzzings finden LLMs Anwendung. Meng et

al. [Men+24] stellen mit ChatAFL einen Fuzzer vor, der aus Beispieldaten Protokollregeln

extrahiert, Eingabesequenzen vervollständigt und gezielt mutiert. Dies führt zu einer

deutlich höheren Code- und Zustandsabdeckung und zur Entdeckung mehrerer bislang

unbekannter Schwachstellen. Im Gegensatz zum Ansatz in der Dissertation, der sich auf

XML-Parser konzentriert, liegt hier der Fokus auf Netzwerkprotokollen.

Parallel zu diesen Arbeiten ist eine Reihe von Übersichtsarbeiten entstanden, die den

Forschungsstand systematisieren. Salem und Song [SS19] analysieren grammatikbasierte

Techniken und betonen deren Bedeutung für die Erzeugung strukturierter Eingaben. Wang

et al. [Wan+20a] bieten eine umfassende Klassifikation ML-basierter Fuzzing-Ansätze und

zeigen deren Einsatz in verschiedenen Szenarien. Wu [Wu22] untersucht systematisch

grammatikbasierte Verfahren und bewertet ihr Potenzial in Kombination mit ML. Neuere

Meta-Arbeiten betrachten explizit den Einsatz von LLMs: Yu et al. [Jia+24] identifizieren

fünf zentrale Herausforderungen beim Fuzzing mit LLMs, darunter die Abhängigkeit von

Prompt-Sensitivität, die Sicherstellung der Gültigkeit und Vielfalt generierter Eingaben,

die fehlende Standardisierung von Evaluationsmethoden, die Kostenfrage bei großem

129

8 Verwandte Arbeiten

Rechenaufwand sowie die Notwendigkeit robuster Benchmarks. Huang et al. [Hua+25]

geben schließlich einen breiten Überblick über den aktuellen Stand: Von 14 untersuchten

Arbeiten nutzen fünf LLMs für Prompt Engineering, zehn für Seed-Mutation und zwei für

die Sammlung und Analyse von Ausgaben.

Insgesamt verdeutlichen diese Arbeiten, dass der Einsatz von Machine Learning (insbeson-

dere LLMs) im Fuzzing ein stark wachsendes Forschungsfeld darstellt. Die Kombination

von LLMs mit grammatikbasierten Methoden bietet dabei ein erhebliches Potenzial, um

die Testeffizienz zu steigern und komplexe Schwachstellen systematisch aufzudecken.

8.7 Optimierung des Fuzzing-Prozesses

Ein effizienter Fuzzing-Prozess zeichnet sich nicht nur durch eine hohe Testabdeckung,

sondern auch durch schnelle und ressourcenschonende Abläufe aus. Zahlreiche Arbeiten

zeigen, wie gezielte Optimierungen die Performance deutlich steigern können.

Fioraldi et al. [Fio+20] demonstrieren dies mit AFL++, das durch inkrementelle Verbes-

serungen bei Mutation, Scheduler-Design und Codeinstrumentierung die Performance

gegenüber dem Original-AFL erheblich erhöht. Dabei werden Erkenntnisse aus der aktu-

ellen Fuzzing-Forschung direkt in die Implementierung übernommen.

Ein anderer Ansatz, der die Effektivität von Fuzzer-Ensembles zeigt, ist EnFuzz von Chen

et al. [Che+19]. Durch ensemblebasierte Seed-Synchronisation werden mehrere komple-

mentäre Fuzzer synergistisch eingesetzt, was sowohl die Codeabdeckung als auch die

Entdeckung von Abstürzen verbessert.

Wang et al. [Wan+19] stellen mit NeuFuzz einen pfadbasierten Graybox-Fuzzer vor, der

ein tiefes neuronales Netz zur gezielten Priorisierung von Seeds nutzt. Das Modell lernt

aus vielen „vulnerablen“ und „sicheren“ Pfaden verborgene Merkmale und vergibt eine

höhere „Mutation Energy“ an Seeds, die vermutlich fehleranfällige Pfade abdecken.

She et al. [She+19] verfolgen mittels NEUZZ einen datengetriebenen Ansatz: Durch Pro-
gram Smoothing in Kombination mit neuronalen Surrogatmodellen werden gradienten-

basierte Eingaben generiert, die eine schnellere Entdeckung von Bugs ermöglichen und

gleichzeitig die Kantenabdeckung signifikant erhöhen. Im Gegensatz dazu adressieren

Nagy und Hicks [NH19] mit Full-Speed Fuzzing primär den Laufzeit-Overhead. Es wer-

den ausschließlich jene Testfälle instrumentiert, die tatsächlich eine Veränderung der

Codeabdeckung bewirken. Dadurch wird die benötigte Rechenzeit deutlich reduziert.

Böhme et al. [BMC20] verfolgen mit Entropic einen informations-theoretischen Ansatz:

Jeder generierte Testinput wird nach seinem erwarteten Informationsgehalt bewertet. Da-

durch werden Seeds, die neue oder seltene Programmpfade abdecken, häufiger ausgewählt

und mutiert. Auf diese Weise werden Bugs effizienter entdeckt und die Codeabdeckung

beschleunigt. In LibFuzzer führte dies zu signifikanten Verbesserungen bei der Entdeckung

neuer Programmbahnen und Fehler.

130

8.7 Optimierung des Fuzzing-Prozesses

Jauernig et al. [Jau+23] setzen evolutionäre Strategien ein. Das Programm DARWIN passt

Mutationswahrscheinlichkeiten adaptiv an und verbessert dadurch die Bug-Findung und

die Testabdeckung.

Diese Arbeiten verdeutlichen, wie Prozessoptimierung im Fuzzing durch intelligente

Mutationsstrategien, effizientes Tracing oder den Einsatz von Fuzzer-Ensembles erreicht

werden kann. Der Fokus dieser Dissertation liegt hingegen auf der Entwicklung einer

modularen Architektur, die bestehende Fuzzer als austauschbare Module integriert und so

Fortschritte aus der aktuellen Forschung direkt nutzbar macht.

131

9 Zusammenfassung und Ausblick

In diesem Kapitel werden die zentralen Ergebnisse dieser Dissertation zusammengefasst

und ein Ausblick auf zukünftige Entwicklungen im Bereich des Fuzzings ressourcenbe-

schränkter IoT-Geräte gegeben. Der Fokus liegt dabei sowohl auf den einzelnen Beiträgen

der Dissertation als auch auf deren Zusammenspiel innerhalb eines übergreifenden Fra-

meworks.

9.1 Zusammenfassung

DieDissertation adressiert die zentrale Herausforderung, Fuzzing für ressourcenbeschränk-

te IoT-Geräte am Beispiel des ESP32 effizienter, flexibler und skalierbarer zu gestalten.Wäh-

rend bestehende Arbeiten meist nur isolierte Aspekte betrachten, wird hier ein integrativer

Ansatz verfolgt. Es wurden vier eigenständige Verfahren (Module) entwickelt, implemen-

tiert und evaluiert, die gemeinsam die Grundlage für ein konzeptionelles Framework bilden.

Die Komponenten sind modular ausgelegt und können je nach Anwendungsfall miteinan-

der kombiniert werden. Auf diese Weise ergibt sich ein flexibles Architekturprinzip.

Das erste Modul, ESP32 Binary Rewriting (EBR), überträgt Konzepte, die bislang nur für

Architekturen wie ARM und x86 verfügbar waren (beispielsweise e9patch), erstmals auf

die Xtensa-Architektur des ESP32. Dieses Verfahren ermöglicht das Einfügen von beliebi-

gem Code in bestehende Firmware-Binaries, insbesondere von Instrumentierungen, ohne

deren ursprüngliche Funktion zu beeinträchtigen. Während der Programmausführung

können somit Informationen zu Speicherzugriffen, Funktionsaufrufen und Kontrollflüssen

erfasst und direkt an den Fuzzer übermittelt werden. Die Evaluierung belegt, dass die

Instrumentierungen korrekt arbeiten und die Integrität der Firmware erhalten bleibt (siehe

Kapitel 3).

Ein weiteres Modul ist ESP32-QEMU-FUZZ (EQF), das die vollständige Emulation von

ESP32-Firmwares adressiert. Das Ziel bestand darin, verschiedene unvollständige Ansätze

wie ESP32-QEMU und QEMU-Fuzz zu konsolidieren und eine funktionsfähige Umgebung

bereitzustellen, die trotz fehlender Hardwarekomponenten wie WLAN eine automatisierte

Testung ermöglicht. Das resultierende System erlaubt erstmals die vollständige Emulati-

on beliebiger ESP32-Firmwares und zeigt eine erhebliche Effizienzsteigerung: Während

hardwarebasiertes Fuzzing nur vier bis 40 Eingaben pro Sekunde ermöglicht, erreicht EQF

bis zu 320 Eingaben pro Sekunde, was einer Beschleunigung um den Faktor 80 entspricht

(siehe Kapitel 4).

133

9 Zusammenfassung und Ausblick

Darüber hinauswurdemit Protocol Reverse Engineering usingNeural Networks (PREUNN)

ein Modul entwickelt, das die manuell durchgeführte Aufgabe des Protocol Reverse En-

gineering proprietärer Netzwerkprotokolle automatisiert. Die Herausforderung hierbei

lag in der Auswahl und Kombination geeigneter neuronaler Netze, um Protokollstruktu-

ren ohne vorhandene Spezifikation zuverlässig zu rekonstruieren. Die Methode erlaubt

erstmals die implizite Rekonstruktion von Protokollinformationen und die Generierung

syntaktisch wie semantisch korrekter Netzwerkpakete. In der Evaluation erzielte PREUNN

eine Erfolgsquote von 67,6 % für HTTP und 100% für FTP, was die Testabdeckung im

Vergleich zu zufälligen Ansätzen signifikant erhöht (siehe Kapitel 5).

Ein ergänzendes Modul ist How to Train Your Llama (HTTYL), welches den Einsatz von

LLMs für grammatikbasiertes Fuzzing untersucht. Die zentrale Herausforderung bestand

darin, LLMs so in bestehende Testabläufe einzubinden, dass sie gezielt syntaktisch und

semantisch korrekte Eingaben erzeugen. Im Gegensatz zu prototypischen Lösungen wie

ChatFuzz integriert HTTYL LLMsmodular in den Fuzzing-Prozess und ermöglicht dadurch

eine kontrollierte Zusammenarbeit zwischen Fuzzer und Modell. Die Evaluierung zeigt

deutliche Verbesserungen: Eine um 50% höhere Programmflussabdeckung gegenüber

klassischen grammatikbasierten Fuzzern sowie eine bis zu sechsmal höhere Abdeckung

im Vergleich zu Fuzzing ohne LLM (siehe Kapitel 6).

Schließlich werden die vier Verfahren in einem Ansatz für ein integriertes Fuzzing-Frame-

work (AiFF) konzeptionell zusammengeführt. Diese modulare Plattform erlaubt flexible

Kombinationen: So können EBR, EQF und PREUNN gemeinsam für protokollzentrier-

tes Fuzzing eingesetzt werden, während sich EBR, EQF und HTTYL für strukturierte

Dateiformate eignen. Durch den modularen Aufbau lassen sich die Komponenten an un-

terschiedliche Szenarien anpassen und unabhängig voneinander weiterentwickeln (siehe

Kapitel 7).

Insgesamt liefert diese Dissertation ein Rahmenkonzept, das wesentliche Fortschritte im

Fuzzing ressourcenbeschränkter IoT-Geräte erzielt. Die wichtigsten Ergebnisse sind:

• EBR: universelle Instrumentierungsfähigkeit für Xtensa-Firmware bei vollständiger

Wahrung der Firmware-Integrität.

• EQF: deutliche Effizienzgewinne mit bis zu 320 Eingaben pro Sekunde (Faktor 80 ge-

genüber hardwarebasiertem Fuzzing) durch vollständige Emulation und integriertes

Fuzzing.

• PREUNN: automatisierte Protokollrekonstruktion mit 67,6 % gültigen HTTP-Paketen

und 100% gültigen FTP-Paketen; signifikant höhere Testabdeckung als zufällige

Ansätze.

• HTTYL: 50 % höhere Programmflussabdeckung als klassische grammatikbasierte

Fuzzer und bis zu Faktor 6 höhere Abdeckung gegenüber Fuzzing ohne LLM.

Im Gegensatz zu bisherigen Arbeiten, die nur isolierte Teilaspekte wie Binary Rewriting,

Emulation, Protokollanalyse oder Dateigenerierung behandeln, verfolgt diese Dissertation

erstmals einen integrierten, modularen Ansatz dieser Aspekte.

134

9.2 Ausblick und zukünftige Arbeiten

9.2 Ausblick und zukünftige Arbeiten

Die Ergebnisse dieser Dissertation verdeutlichen das Potenzial einer kombinierten Nutzung

von Binary Rewriting, Emulation, PRE und LLMs für das Fuzzing von IoT-Geräten. Auf-

bauend auf dem entwickelten Prototyp erscheint es naheliegend, die vorgestellten Module

in einer einheitlichen Plattform zu integrieren. Eine solche modulare und reproduzierbare

Architektur würde die systematische Analyse der Wechselwirkungen zwischen den einzel-

nen Verfahren ermöglichen und zugleich eine Grundlage für standardisierte Benchmarks

und Metriken schaffen. Damit ließe sich die Effektivität verschiedener Modulkombinatio-

nen empirisch evaluieren und deren Einsatz in unterschiedlichen Anwendungsszenarien

fundiert bewerten.

Im Zentrum der weiteren Forschung steht daher die praktische Umsetzung des AiFF-

Konzepts als lauffähige Plattform. Diese sollte eine einheitliche Schnittstellenarchitektur,

umfassendes Logging sowie Mechanismen zur Reproduzierbarkeit von Experimenten

bieten. Ergänzend ist die Definition geeigneter Evaluationsmetriken notwendig, die sowohl

strukturelle Abdeckung als auch Performance, Robustheit und Fehlerraten erfassen. Darauf

aufbauende Fallstudien mit realistischen Testumgebungen könnten die Praxistauglichkeit

der entwickelten Ansätze belegen.

Ein zweiter Schwerpunkt betrifft die Erweiterung des Plattform- und Architektursupports.

Hierzu zählt insbesondere die Portierung von EBR und EQF auf zusätzliche IoT-relevante

Prozessorarchitekturen sowie die vollständige Abdeckung des Xtensa-Befehlssatzes. Auf

diese Weise ließe sich eine lückenlose Instrumentierung von Firmware realisieren und

gleichzeitig die Übertragbarkeit der Ansätze auf heterogene Systeme gewährleisten. Dar-

über hinaus erscheint es sinnvoll, den Einfluss unterschiedlicher Netzwerktopologien und

Laufzeitumgebungen auf die Wirksamkeit der Protokollrekonstruktion und des Fuzzings

systematisch zu untersuchen.

Auch auf der Ebene der Eingabeverarbeitung ergeben sich vielfältige Perspektiven. Die

Weiterentwicklung von PREUNN und dessen Anpassung an komplexe Protokolle soll

es ermöglichen, mithilfe robuster Methoden zur Feature-Extraktion die Qualität auto-

matisch rekonstruierter Protokollstrukturen weiter zu verbessern und deren Einsatz in

dynamischen Netzwerkumgebungen effizient zu evaluieren. Parallel dazu sollte HTTYL

um die Fähigkeit erweitert werden, strukturierte Datenformate wie PDF, SQL-Dumps oder

proprietäre Binärdateien zu generieren und zu mutieren. Um die syntaktische und seman-

tische Korrektheit der erzeugten Testfälle sicherzustellen, sind ergänzende Mechanismen

zur Validierung erforderlich.

Ein weiteres zukunftsträchtiges Forschungsfeld bildet der Einsatz von LLMs für die Gene-

rierung und Modellierung strukturierter Eingaben. Aufbauend auf den in dieser Disserta-

tion erzielten Ergebnissen könnten LLMs gezielt für spezifische Datenformate optimiert

werden. Moderne Trainingsansätze wie LoRA versprechen dabei eine Steigerung der

Testqualität bei gleichzeitig reduzierten Trainingskosten. Offene Fragen betreffen insbe-

sondere Strategien zur Maximierung der Vielfalt fehlerverursachender Testfälle, Methoden

zur Vermeidung von Überanpassung sowie Verfahren zur zuverlässigen Bewertung der

semantischen Korrektheit generierter Eingaben.

135

9 Zusammenfassung und Ausblick

Langfristig besteht die Perspektive, die entwickelten Konzepte in eine offene und modulare

Fuzzing-Tool-Sammlung zu überführen. Diese würde sowohl die Wiederverwendbarkeit

einzelner Komponenten als auch die Vergleichbarkeit zukünftiger Forschungsergebnisse

unterstützen. Eine solche Plattform könnte als Referenzimplementierung dienen und

zugleich die Basis für großangelegte empirische Studien bilden.

136

Begriffsdefinitionen

In dieser in deutscher Sprache verfassten Dissertation werden zahlreiche Fachbegriffe

verwendet, die sich ursprünglich im Englischen etabliert haben. Bei der Übersetzung

wurde darauf geachtet, Begriffe beizubehalten, für die es im Deutschen keine adäquaten

Entsprechungen gibt oder deren deutsche Übersetzung im wissenschaftlichen Sprachge-

brauch nicht üblich ist. Einige Begriffe wurden nicht übersetzt, weil sie auch im Deutschen

weit verbreitet sind oder weil eine Übersetzung zu Bedeutungsunklarheiten führen könnte

– insbesondere bei mehrdeutigen englischen Begriffen wie „security“ und „safety“. Da

außerdem einige Fachbegriffe bereits in ihrer Ursprungssprache unterschiedliche Interpre-

tationen zulassen, werden im Folgenden die für diese Dissertation gültigen Definitionen

erläutert.

1D-Batch
Eine Gruppe von eindimensionalen Eingabesequenzen, die gemeinsam durch ein neu-

ronales Netzwerk verarbeitet werden.

1D-Batch-Normalisierung
Die Anwendung der Batch-Normalisierung (siehe unten) speziell auf eindimensionale

Daten, z. B. Sequenzen oder Zeitreihen, um die Trainingsstabilität und Konvergenz zu

verbessern.

1D-Faltung
Die Operation, bei der ein Filter (Kernel) über eindimensionale Daten verschoben wird,

um lokale Merkmale zu extrahieren.

1D-Faltungsschichten
Neurale Netzwerk-Layer, die eindimensionale Convolutionen auf sequenzielle Daten

anwenden, um lokale Muster und Features zu extrahieren.

1D-Transponierte-Faltungsschichten
Layer, die die Inverse der 1D-Faltung durchführen, um Daten zu vergrößern oder re-

konstruktive Aufgaben wie bei Autoencodern zu unterstützen.

4-Gramm
Eine Sequenz von vier aufeinanderfolgenden Elementen, wie Zeichen, Wörter oder

Tokens, die in Text- oder Sequenzanalysen verwendet wird, um Muster oder Abhängig-

keiten zu erfassen.

Adam-Optimizer
Ein iterativer Optimierungsalgorithmus im maschinellen Lernen, der die Lernrate für

jeden Parameter automatisch anpasst und vergangene Gradienteninformationen be-

rücksichtigt.

137

Begriffsdefinitionen

AddressSanitizer (ASan)
Ein Laufzeitanalyse-Tool, das durch Compiler-Instrumentierung zusätzliche Speicher-

grenzenprüfungen und sogenannte Stack Canaries einfügt, um Speicherfehler wie Puffer-

überläufe, Use-after-Free, Nullzeigerzugriffe und Speicherlecks (siehe unten) zuverlässig

zu erkennen.

Augmentation
Eine Technik im maschinellen Lernen, bei der Trainingsdaten künstlich erweitert oder

verändert werden, z. B. durch Rotation, Skalierung oder Hinzufügen von Rauschen, um

die Modellrobustheit und Generalisierung zu verbessern.

Batch-Größe
Die Anzahl der Trainingsbeispiele, die in einem Durchgang (Iteration) eines Optimie-

rungsalgorithmus verarbeitet werden.

Batch-Normalisierung
Ein Verfahren, das die Aktivierungen innerhalb eines Layers normalisiert, um die Trai-

ningsstabilität zu erhöhen und die Konvergenz zu beschleunigen.

Binary Cross-Entropy (BCE)
Spezialform der Cross-Entropy (CE) Verlustfunktion (siehe unten) für binäre Klassifika-

tionsaufgaben.

Binary Recovery
Verfahren zur teilweisen oder vollständigen Wiederherstellung von Programmcode aus

Binärdateien, häufig im Kontext von Reverse Engineering oder Malware-Analyse.

Binary Rewriting
Ein Verfahren, bei dem bestehende Binärdateien analysiert und gezielt modifiziert

werden, etwa durch Einfügen von Patches, Hooks oder Sprüngen, ohne das ursprüngliche

Programmverhalten zu zerstören.

Categorical Cross-Entropy (CCE)
Spezialform der Cross-Entropy (CE) Verlustfunktion (siehe unten) für Mehrklassen-

Klassifikationsaufgaben

Clustering
Ein Verfahren des maschinellen Lernens, bei dem Datenpunkte anhand ihrer Ähnlichkeit

automatisch in Gruppen (Cluster) zusammengefasst werden, ohne dass vorher definierte

Klassen bekannt sind.

Code Location Problem
Eigenname für das Problem, an welchen Stellen im Programmcode eigene Änderungen

eingefügt werden können, ohne die Funktionalität zu beeinträchtigen.

Code-Injektion
Bezeichnet das Einschleusen von Code in ein Programm, meist mit dem Ziel, uner-

wünschte Operationen auszuführen.

138

Codeabdeckung
Ein Maß dafür, welcher Anteil des Programmcodes während eines Tests tatsächlich

ausgeführt wird.

Compiler
Ein Programm, das Quellcode in ausführbaren Maschinencode übersetzt und dabei

verschiedene Optimierungen vornimmt.

Cross-Entropy (CE) Verlustfunktion
Eine allgemeine Verlustfunktion (siehe unten) für Klassifikationsaufgaben, die die Ab-

weichung zwischen vorhergesagten Wahrscheinlichkeitsverteilungen und den tatsäch-

lichen Zielverteilungen anhand des negativen Logarithmus der korrekten Klasse misst.

Datensatz
Eine Sammlung von Samples (siehe unten), die für Training, Validierung oder Testen

von maschinellen Lernmodellen verwendet wird.

Debugging-Schnittstelle
Hard- oder Software-Schnittstelle, die den Zugriff auf interne Zustände eines Systems

ermöglicht, z. B. über JTAG (siehe unten), um die Fehleranalyse und Diagnose zu er-

leichtern.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
Ein dichtebasiertes Clustering-Verfahren, das Cluster als zusammenhängende Regionen

hoher Punktdichte identifiziert und Punkte in dünn besiedelten Bereichen als Ausreißer

markiert.

Embedding
Eine Vektordarstellung von Daten, z. B. von Wörtern, Tokens oder Codefragmenten,

in einem kontinuierlichen Merkmalsraum, um semantische Ähnlichkeiten messbar zu

machen.

Emulation
Verfahren, bei dem Hardware oder Software eines Systems vollständig nachgebildet

wird, um Programme in einer kontrollierten Umgebung auszuführen.

Epoche
Ein kompletter Durchlauf durch den gesamten Trainingsdatensatz während des Trai-

nings eines maschinellen Lernmodells.

ESP32
Ein kostengünstiger, stromsparender Mikrocontroller mit integriertem WLAN- und

Bluetooth-Support, der häufig in IoT-Geräten eingesetzt wird.

Feature Extraction
Der Prozess, bei dem ein Modell relevante Merkmale aus den Rohdaten identifiziert und

extrahiert.

Feature Map
Die Ausgabedarstellung eines Layers in einem neuronalen Netzwerk, die die aus den

139

Begriffsdefinitionen

Eingabedaten extrahierten Merkmale für jeden Kanal abbildet und als Input für nach-

folgende Layer dient.

Feature Reverse Engineering
Analyse bestehender Software oder Hardware, um ihre Funktionalitäten und Eigen-

schaften zu identifizieren und zu verstehen.

Feature
Ein einzelnes erkennbares Muster oder eine charakteristische Eigenschaft in den Einga-

bedaten, das von einem neuronalen Netzwerk extrahiert wird.

Feedbackgesteuertes Fuzzing
Eine Fuzzing-Technik, bei der die Generierung von Testeingaben durch Informationen

über die bisher abgedeckten Programmstellen gesteuert wird.

Fine-Tuned LLM
Ein Large Language Model (LLM) (siehe unten), das durch gezieltes Nach-Training an

spezifische Aufgaben oder Domänen angepasst wurde.

Fine-Tuning
Methode des maschinellen Lernens, bei der ein vortrainiertes Modell durch Training

auf spezifischen Daten weiter spezialisiert wird.

Firmware
Software, die dauerhaft auf Hardwarekomponenten gespeichert ist und deren grundle-

gende Funktionalität steuert.

Flashen
Bezeichnet das (Über-)Schreiben bzw. Ersetzen der Firmware eines Geräts durch eine

neue Version, meist mittels spezieller Tools oder Bootloader.

Fork
Eine Kopie eines Softwareprojekts oder Repositories, die unabhängig vom Original

weiterentwickelt werden kann, häufig genutzt, um eigene Änderungen vorzunehmen

oder Beiträge zurück zum Originalprojekt vorzuschlagen.

Framework
Eine strukturierte Sammlung von Bibliotheken, Konventionen und Tools, die die Ent-

wicklung spezifischer Anwendungen oder Systeme erleichtert.

Fuzzing
Eine Testtechnik, bei der Programme automatisiert mit vielen ungültigen, zufälligen

oder unerwarteten Eingaben getestet werden, um Schwachstellen aufzudecken. Der

Begriff wird im Deutschen bereits verwendet.

Hamming-Distanz
EinMaß zur Bestimmung der Unterschiedlichkeit zweier gleich langer Bit- oder Zeichen-

ketten, definiert als die Anzahl der Positionen, an denen sich die Symbole unterscheiden.

Heap
Ein dynamischer Speicherbereich, aus dem Programme während der Laufzeit Speicher-

blöcke anfordern und wieder freigeben können.

140

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
Eine Erweiterung von Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) (siehe oben), die hierarchisches Clustering mit dichtebasierter Clusterbildung

kombiniert, um Cluster unterschiedlicher Dichte robuster zu erkennen und Ausreißer

effizient zu identifizieren.

Hook
Eine Technik, bei der bestehender Code gezielt umgeleitet oder erweitert wird, indem

vor, nach oder anstelle von Funktionsaufrufen zusätzlicher Code ausgeführt wird.

Hyperparameter
Einstellbare Parameter eines maschinellen Lernmodells, die nicht während des Trainings

gelernt werden, sondern vorab festgelegt werden, wie Lernrate, Batch-Größe oder Anzahl

der Layer.

Inferenz
Der Prozess, bei dem ein trainiertes Modell neue Eingabedaten verarbeitet, um Vorher-

sagen, Klassifikationen oder andere Ausgaben zu erzeugen.

Instrumentierung
Technik, bei der zusätzlicher Code in ein Programm eingefügt wird, um Laufzeitinfor-

mationen wie Codeabdeckung, Variablenwerte oder Kontrollfluss zu messen, ohne die

ursprüngliche Programmlogik zu verändern.

Jump
Ein Sprungbefehl in einem Programm, der den Kontrollfluss an eine andere Stelle im

Code überträgt.

JTAG
Ein Standard für die Debugging- und Testschnittstelle von Mikrocontrollern und inte-

grierten Schaltkreisen, der Zugriff auf interne Register, Speicher und die Steuerung des

Programmschritts ermöglicht.

Konvolutionelles Embedding
Eine dichte Vektorrepräsentation von Eingabedaten, die durch die Anwendung von

Convolutional-Layern erzeugt wird und lokale Muster sowie Merkmale der Daten in

einem niedrigdimensionalen Raum abbildet.

Large Language Model (LLM)
Maschinelle Lernmodelle, die auf der Verarbeitung und Generierung natürlicher Sprache

in großem Maßstab basieren. Aufgrund fehlender etablierter deutscher Übersetzungen

wird der englische Begriff verwendet.

Latente Repräsentation
Die komprimierte Darstellung der Eingabedaten, die ein Autoencoder nach der Enco-

dierung gelernt hat, also die wichtigsten Merkmale oder Informationen, die das Modell

zur Rekonstruktion der Daten benötigt.

Leaky ReLU
Eine Variante der Rectified Linear Unit (ReLU)-Aktivierungsfunktion (siehe unten), bei

141

Begriffsdefinitionen

der negative Eingaben nicht vollständig auf null gesetzt, sondern mit einem kleinen

Faktor skaliert werden, um das Problem verschwindender Gradienten zu reduzieren.

LLaMA-2-13B-Modell
Ein LLM (siehe oben) der zweiten LLaMA-Generation von Meta mit 13 Milliarden

Parametern.

Mean Squared Error (MSE)
Ein Maß für die mittlere quadratische Abweichung zwischen vorhergesagten und tat-

sächlichen Werten.

Multi-Hot-Vektor
Ein Vektor, bei demmehrere Positionen denWert 1 haben und alle anderen 0 sind. Häufig

verwendet, um mehrere aktive Kategorien oder Merkmale gleichzeitig zu repräsentieren.

Negative Log-Likelihood (NLL)
Eine Verlustfunktion im maschinellen Lernen, die die Wahrscheinlichkeit der richtigen

Zielwerte maximiert, indem sie den negativen Logarithmus der Modellwahrscheinlich-

keiten berechnet.

Neighbor Eviction
Eine Patching-Taktik (siehe unten), bei der eine benachbarte Instruktion verschoben

oder überschrieben wird, um Platz für zusätzlichen Patch-Code oder neue Sprungziele

zu schaffen.

Network Trace
Aufzeichnung und Analyse von Netzwerkkommunikation, um Datenflüsse, Protokoll-

nutzung oder Fehlverhalten von Anwendungen nachzuvollziehen.

Neuron
Eine grundlegende Verarbeitungseinheit in künstlichen neuronalen Netzen, die Eingaben

gewichtet summiert, eine Aktivierungsfunktion anwendet und so eine Ausgabe erzeugt,

die an andere Neuronen weitergegeben wird.

Nullzeiger
Ein Zeiger, der auf keine gültige Speicheradresse zeigt, üblicherweise mit dem Wert null

initialisiert.

Nullzeigerzugriff (engl. Null Pointer Dereference)
Ein Laufzeitfehler, der entsteht, wenn ein Programm versucht, über einen Zeiger mit

dem Wert Null auf Speicher zuzugreifen, was typischerweise zu einem Absturz führt.

One-Hot-Encoding
Eine Technik zur Darstellung kategorialer Daten als binäre Vektoren, bei denen ge-

nau eine Position den Wert 1 hat und alle anderen 0, um die Daten für maschinelle

Lernmodelle nutzbar zu machen.

One-Hot-Vektor
Eine Vektordarstellung, bei der genau eine Komponente den Wert 1 hat und alle anderen

0, die häufig zur Kategorisierung diskreter Werte verwendet wird.

142

Opcode
Kurzform für „Operation Code“. Bezeichnet den Teil einer Maschineninstruktion, der

angibt, welche Operation die CPU ausführen soll, z. B. Addition, Vergleich oder Sprung.

Overfitting
Ein Effekt beim maschinellen Lernen, bei dem ein Modell die Trainingsdaten zu genau

lernt und dadurch Muster auswendig statt verallgemeinerbar erfasst, was zu schlechterer

Leistung auf neuen, unbekannten Daten führt.

Parser
Ein Programm oder Modul, das strukturierte Daten (z. B. Quellcode, XML oder JSON)

analysiert und in eine für die Weiterverarbeitung geeignete Form überführt.

Patching-Strategie
Übergeordneter Plan für das Einfügen, Ersetzen oder Entfernen von Programmcode in

einem Binärprogramm, z. B. zur Laufzeitmanipulation oder Fehlerkorrektur.

Patching-Taktiken
Konkrete Methoden innerhalb einer Patching-Strategie (siehe oben), etwa Hooking

(siehe oben), Überschreiben von Sprungzielen oder binäre Erweiterung von Funktionen.

Prompt-Tuned LLM
Ein LLM (siehe oben), das durch gezielte Optimierung seiner Antworten anhand vordefi-

nierter Eingabeaufforderungen (Prompts, siehe oben) an spezifische Aufgaben angepasst

wurde.

Prompt-Tuning
Trainingsmethode, bei der nur die Prompts (siehe oben) oder deren Einbettungen opti-

miert werden, ohne die zugrunde liegenden Modellparameter zu verändern.

Prompt
Text- oder Dateneingaben, die einem Modell wie einem LLM gegeben werden, um eine

gewünschte Antwort, Vorhersage oder Handlung zu erzeugen.

Proof of Concept (PoC)
Ein einfacher Demonstrator oder Prototyp, mit dem die technische Machbarkeit einer

Idee oder Angriffsmethode gezeigt wird.

Protokoll
Bezieht sich in dieser Dissertation auf Netzwerkprotokolle, also standardisierte Kom-

munikationsregeln zwischen Systemen [Pos81a].

Pufferüberlauf (engl. Buffer Overflow)
Ein Fehler, bei dem mehr Daten in einen Speicherpuffer geschrieben werden, als dieser

aufnehmen kann, was zu Speicherüberschreibungen und potenziell zu sicherheitskriti-

schen Schwachstellen führt.

Punned Jump
Eine Patching-Taktik (Siehe oben), bei der der Sprungbefehl Teile der nachfolgenden

Instruktion überlagert, um zusätzliche Möglichkeiten für Sprungziele zu schaffen.

143

Begriffsdefinitionen

Reinforcement Learning
Ein Lernverfahren, bei dem ein Agent durch Interaktion mit einer Umgebung schritt-

weise lernt, optimale Aktionen auszuführen, indem er für erfolgreiches Verhalten Be-

lohnungen und für Fehler Bestrafungen erhält.

ReLU
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als ReLU(𝑥) = max(0, 𝑥),
die negative Eingaben auf null setzt und positive unverändert lässt.

Retrieval-Augmented Generation (RAG)
Bezeichnet eine KI-Technik, die LLMs (siehe oben) mit externen Datenquellen kombi-

niert, um genauere, aktuellere und relevantere Antworten zu generieren.

Reverse-Engineering
Bezeichnet die Analyse und Rekonstruktion bestehender Systeme oder Software. Der

Begriff ist im Deutschen gebräuchlich und wird nicht übersetzt.

Reverse-Order-Patching-Strategie
Eine Strategie, bei der Patches rückwärts im Code platziert werden (z. B. vom Ende zum

Anfang), um Konflikte zu minimieren oder Platz effizient zu nutzen.

Rewriter
Programme oder Tools, die bestehende Binärdateien analysieren und gezielt modifizieren,

etwa durch Einfügen von Sprüngen, Code oder Hooks.

Sample
Ein einzelnes Datenobjekt, das für Training, Test oder Analyse in einem maschinellen

Lernmodell verwendet wird.

Seed Pool
Eine Sammlung von Seeds (siehe oben) für weiteres Fuzzing (siehe oben).

Seed
Eine initiale Eingabedatei oder Datenstruktur, die als Ausgangspunkt für die Generierung

neuer Testeingaben beim Fuzzing (siehe oben) dient.

Sigmoid-Funktion
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als 𝜎 (𝑥) = 1

1+𝑒−𝑥 , die
Eingaben auf den Bereich (0, 1) abbildet.

Softplus
Eine glatte, differenzierbare Aktivierungsfunktion im maschinellen Lernen, definiert

als Softplus(𝑥) = ln(1 + 𝑒𝑥), die eine stetige Approximation der ReLU-Funktion (siehe

oben) darstellt.

Sparse Vector
Ein dünnbesetzter Vektor, der zu einem Großteil aus Nullen besteht und nur wenige

relevante Werte enthält.

Speicherleck (engl. Memory Leak)
Ein Fehler, bei dem ein Programm reservierten Speicher nicht wieder freigibt, was im

144

Laufe der Zeit zu einem steigenden Speicherverbrauch und möglichen Leistungsproble-

men oder Abstürzen führt.

Stack
Ein Speicherbereich, der für die Verwaltung von Funktionsaufrufen, lokalen Variablen

und Rücksprungadressen genutzt wird. Daten werden nach dem LIFO-Prinzip (Last In,

First Out) abgelegt.

Successor Eviction
Eine Patching-Taktik (siehe oben), bei der die aktuelle Instruktion und ihre direkt

folgende Nachfolgerinstruktion an einen anderen Codebereich verschoben werden. Der

Kontrollfluss wird angepasst, um Platz für zusätzlichen Patch-Code zu schaffen und die

Programmlogik beizubehalten.

Synthetische Bugs
Künstlich eingefügte Fehler in Software, die gezielt zur Evaluierung und zum Bench-

marking von Testverfahren wie Fuzzing (siehe oben) verwendet werden.

Tanh-Funktion
Eine Aktivierungsfunktion im maschinellen Lernen, definiert als tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , die
Eingaben auf den Bereich (-1, 1) abbildet.

Time-to-Market (TTM)
Die Zeit, die ein Produkt vom Konzept bis zur Markteinführung benötigt. Dies führt zu

einem Dilemma, da die Sicherheit vernachlässigt wird, um eine kürzere Time-to-Market

(TTM) zu erreichen.

Token
Eine kleinste bedeutungstragende Einheit in Textdaten, die von Sprachmodellen verar-

beitet wird, z. B. ein Wort, ein Satzzeichen oder ein Teilwort.

Tool
Eine Software oder ein Hilfsprogramm, das für eine spezifische Aufgabe eingesetzt wird,

z. B. zur Analyse, Modifikation oder Überprüfung von Binärcode.

Top-k-Sampling
Eine Sampling-Strategie bei der Text- oder Sequenzgenerierung, bei der das Modell nur

aus den k wahrscheinlichsten nächsten Token auswählt.

(Un)überwacht
Bezieht sich beim maschinelles Lernen auf das Training mit (un)beschrifteten Daten,

um Muster mit bzw. ohne Vorgaben zu erlernen.

Use-after-Free
Ein Speicherfehler, bei dem auf einen bereits freigegebenen Speicherbereich zugegriffen

wird, was zu undefiniertem Verhalten, Abstürzen oder der Ausführung von Schadcode

führen kann.

Verlustfunktion
Eine Funktion, die den Unterschied zwischen den vorhergesagten Ausgaben eines

145

Begriffsdefinitionen

Modells und den tatsächlichen Zielwerten quantifiziert und somit als Grundlage für die

Optimierung der Modellparameter dient.

Vitalitätsprüfung
Verfahren zur Laufzeitüberwachung. Mittels dieser Prüfungen wird sichergestellt, dass

bestimmte Programmteile oder Kontrollflüsse erreichbar und aktiv sind oder korrekt

ausgeführt werden können.

XML-Parser
Ein spezieller Parser (siehe oben), der XML-Datenstrukturen analysiert und in eine

weiterverarbeitbare Form umwandelt.

Xtensa
Eine energieeffiziente, anpassbare Mikroprozessorarchitektur von Tensilica, häufig in

IoT-Geräten wie dem ESP32 (siehe oben) eingesetzt.

XXE-Injection (XML External Entity Injection)
Eine Sicherheitslücke in XML-Verarbeitungsroutinen, bei der bösartige externe En-

titäten in XML-Dokumenten eingebracht werden können, was zu einer Ausführung

unerwünschter Aktionen führt.

Zeilenabdeckung
Eine Metrik der Codeabdeckung, die angibt, wie viele einzelne Programmzeilen min-

destens einmal ausgeführt wurden.

Zweigabdeckung
Eine Metrik der Codeabdeckung, die überprüft, wie viele Verzweigungen (z. B. if-

Bedingungen) im Programmcode durchlaufen wurden.

146

Abbildungsverzeichnis

2.1 NMCU-ESP32: Ein ESP32 auf einem NodeMCU-Entwicklungsboard. . . . 9

2.2 Der Build- und Flash-Prozess der ESP32-Firmware 11

2.3 Das Code Location Problem . 12

2.4 Trampolin-Rewriter bieten eine Lösung für das Code Location Problem . 14

2.5 Schematische Darstellung von feedbackgesteuertem Fuzzing 17

2.6 Das ISO/OSI-7-Schichtenmodell . 24

2.7 Schematische Darstellung eines künstlichen neuronalen Netzes 29

2.8 Aktivierungsfunktionen von Sigmoid, Tanh und ReLU 30

2.9 Schematische Darstellung eines Convolutional Neural Networks 31

2.10 Schematische Darstellung eines Autoencoders 32

2.11 Schematische Darstellung eines Generative Adversarial Networks 33

2.12 Schematische Darstellung einer Long Short-Term Memory Zelle 34

2.13 Schematische Darstellung einer Self-Organizing Map 35

3.1 Prozess des Binary Recovery, des Rewritings und erneuten Flashens . . . 41

3.2 Anwendung der Jump-Taktik auf Xtensa 42

3.3 Anwendung der Punned Jump-Taktik auf Xtensa 43

3.4 Anwendung der Successor Eviction-Taktik auf Xtensa 43

3.5 Anwendung der Neighbor Eviction-Taktik auf Xtensa 44

3.6 Beziehung der Hauptkomponenten des ESP32 Binary Rewriting Tools . . 45

4.1 Fork-Join-Fuzzing-Prozess . 63

4.2 Eine demontierte LIFX Mini smarte Glühbirne. 65

5.1 HTTP-Datensatzverteilungen . 76

5.2 FTP-Datensatzverteilungen . 77

5.3 Eine HTTP-Anweisung, die in 3 Klassen aufgeteilt und vermischt wurde 78

5.4 Beispiel einer HTTP-Anweisungs-Klassifizierung 79

5.5 Eine Veranschaulichung des Prozesses von Convolutional 4:1 82

5.6 Zwei von LSTM generierte HTTP-Anfragen 82

5.7 Beispiele von HTTP-Anfragen und ihrer Verarbeitung für die Zustandser-

kennung. 86

5.8 HTTP Feature Reverse Engineering vs. Sequenzgenerierung 87

5.9 FTP Feature Reverse Engineering vs. Sequenzgenerierung 88

5.10 Architektur von PREUNN2 . 89

5.11 Verlauf der Codeabdeckung beim Fuzzing von Express-Fuzzing-Ziels . . 96

5.12 Verlauf der Codeabdeckung beim Fuzzing des LightFTP-Fuzzing-Ziels . . 97

147

Abbildungsverzeichnis

6.1 Übersicht über den vorgestellten Ansatz 104

6.2 Integration des LLM in den Fuzzing-Test 106

6.3 Llama2 lernt durch eine Feedback-Schleife 107

6.4 Gesamtzahl der gefundenen Pfade der verschiedenen Ansätze 111

6.5 Gefundene Zeitüberschreitungen in libxml2 112

7.1 Modularer Aufbau des Fuzzing Frameworks 119

148

Tabellenverzeichnis

2.1 Übersicht über verschiedene 32-Bit-Mikrocontroller 8

2.2 Technische Spezifikationen des ESP32-WROOM-32 [Esp25c] 10

4.1 Vergleich der Fuzzing-Versuche . 64

5.1 Taxonomie zur Klassifizierung von PRE-Ansätzen nach Anforderungen

(Spalten) und Ergebnissen (Zeilen) . 71

5.2 Übersicht über die FTP-Cluster . 83

5.3 Ergebnisse der Clustering-Experimente zum Vergleich 85

6.1 Gesamtzahl der generierten Samples pro Fuzzing-Test 112

6.2 Einfluss der Top-k-Variation auf die XML-Generierungszeit 113

149

Listings

2.1 Eine typische FTP-Kommunikation . 26

3.1 Strings auf dem ESP32 . 48

3.2 Definieren des Patches . 49

3.3 Verwendung des Beispiel-Tools . 50

3.4 Ausführen des Überwachungsskripts . 50

151

Eigene Arbeiten

[Bau+19] Ingmar Baumgart, Matthias Börsig, Niklas Goerke, Timon Hackenjos,

Jochen Rill und Marek Wehmer. „Who Controls Your Energy? On the

(In)Security of Residential Battery Energy Storage Systems“. In: 2019 IEEE
International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids, SmartGridComm 2019, Beijing, China, October 21-23,
2019. IEEE, Okt. 2019, S. 1–6. doi: 10.1109/smartgridcomm.2019.8909749.
url: https://doi.org/10.1109/SmartGridComm.2019.8909749.

[Bör+20] Matthias Börsig, Sven Nitzsche, Max Eisele, Roland Gröll, Jürgen Becker

und Ingmar Baumgart. „Fuzzing Framework for ESP32 Microcontrollers“.

In: 2020 IEEE International Workshop on Information Forensics and Security
(WIFS). IEEE, Dez. 2020, S. 1–6. doi: 10.1109/wifs49906.2020.9360889. url:
https://ieeexplore.ieee.org/document/9360889.

[Kie+22] Valentin Kiechle,Matthias Börsig, Sven Nitzsche, Ingmar Baumgart und

Jürgen Becker. „PREUNN: Protocol Reverse Engineering using Neural Net-

works“. In: Proceedings of the 8th International Conference on Information
Systems Security and Privacy - ICISSP. ICISSP 2022 Best Poster Award.
INSTICC. SciTePress, Feb. 2022, S. 345–356. isbn: 978-989-758-553-1. doi:

10.5220/0010813500003120. url: https://www.scitepress.org/Link.

aspx?doi=10.5220/0010813500003120.

[Kna+25] Leonard Knapp, Sven Nitzsche, Matthias Börsig, Alexandru Vasilache, Ing-

mar Baumgart und Juergen Becker. „Efficacy of Spiking Neural Networks for

Intrusion Detection Systems“. In: 2025 International Conference on Cyberse-
curity and AI-Based Systems (Cyber-AI). IEEE Computer Society, Sep. 2025,

S. 89–95. doi: 10.1109/Cyber-AI66431.2025.11233776.

[Mhi+25] IbrahimMhiri,Matthias Börsig, Akim Stark und Ingmar Baumgart. „How to

Train Your Llama – Efficient Grammar-Based Application Fuzzing Using Lar-

ge Language Models“. In: Secure IT Systems: 29th Nordic Conference, NordSec
2024 Karlstad, Sweden, November 6–7, 2024 Proceedings. Hrsg. von Leonardo

Horn Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls. Bd. 15396.

Lecture Notes in Computer Science. Karlstad, Sweden: Springer-Verlag, Jan.

2025, S. 239–257. isbn: 978-3-031-79006-5. doi: 10.1007/978-3-031-79007-

2_13. url: https://dx.doi.org/10.1007/978-3-031-79007-2_13.

[Pla+25] Benjamin Plach, Matthias Börsig, Maximilian Müller, Roland Gröll, Martin

Dukek und Ingmar Baumgart. „Binary-Level Code Injection for Automated

Tool Support on the ESP32 Platform“. In: Secure IT Systems: 29th Nordic Con-
ference, NordSec 2024 Karlstad, Sweden, November 6–7, 2024 Proceedings. Hrsg.

153

https://doi.org/10.1109/smartgridcomm.2019.8909749
https://doi.org/10.1109/SmartGridComm.2019.8909749
https://doi.org/10.1109/wifs49906.2020.9360889
https://ieeexplore.ieee.org/document/9360889
https://doi.org/10.5220/0010813500003120
https://www.scitepress.org/Link.aspx?doi=10.5220/0010813500003120
https://www.scitepress.org/Link.aspx?doi=10.5220/0010813500003120
https://doi.org/10.1109/Cyber-AI66431.2025.11233776
https://doi.org/10.1007/978-3-031-79007-2_13
https://doi.org/10.1007/978-3-031-79007-2_13
https://dx.doi.org/10.1007/978-3-031-79007-2_13

Eigene Arbeiten

von Leonardo Horn Iwaya, Liina Kamm, Leonardo Martucci und Tobias Pulls.

Bd. 15396. Lecture Notes in Computer Science. Karlstad, Sweden: Springer-

Verlag, Jan. 2025, S. 121–138. isbn: 978-3-031-79006-5. doi: 10.1007/978-3-

031-79007-2_7. url: https://dx.doi.org/10.1007/978-3-031-79007-2_7.

154

https://doi.org/10.1007/978-3-031-79007-2_7
https://doi.org/10.1007/978-3-031-79007-2_7
https://dx.doi.org/10.1007/978-3-031-79007-2_7

Weitere Literatur

[AAZ25] Atif Ali, Syed Adnan Ali und Nawal Zaheer. „The Role of ESP32 in Enabling

Industry 4.0 and 5.0: A Comprehensive Narrative Review of Edge Intelligence,

Human-Centric Automation, and Sustainable Innovation“. In: Preprints (Aug.
2025). doi: 10.20944/preprints202508.0014.v1. url: https://doi.org/10.

20944/preprints202508.0014.v1.

[AC22] Anastasios Andronidis und Cristian Cadar. „SnapFuzz: high-throughput

fuzzing of network applications“. In: Proceedings of the 31st ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis. ISSTA 2022. Virtual,

South Korea: Association for Computing Machinery, 2022, S. 340–351. isbn:

9781450393799. doi: 10.1145/3533767.3534376. url: https://doi.org/10.

1145/3533767.3534376.

[AIB11] Andrea Arcuri, Muhammad Zohaib Iqbal und Lionel Briand. „Random tes-

ting: Theoretical results and practical implications“. In: IEEE Transactions on
Software Engineering 38.2 (2011), S. 258–277.

[Ais25] Gudur Aishwarya. Elements of Network protocol. https : / / www .

geeksforgeeks . org / computer - networks / elements - of - network -

protocol/. Juli 2025.

[ANV11] João Antunes, Nuno Neves und Paulo Veríssimo. „Reverse Engineering of

Protocols from Network Traces“. In: Proceedings of the 2011 18th Working
Conference on Reverse Engineering. WCRE ’11. IEEE Computer Society, Okt.

2011, S. 169–178. isbn: 9780769545820. doi: 10.1109/WCRE.2011.28.

[ASZ25] José Antonio Amaya Zamudio, Marius Smytzek und Andreas Zeller. „FAN-

DANGO: Evolving Language-Based Testing“. In: Journal of the ACM (JACM).
Bd. 2. ISSTA. New York, NY, USA: Association for Computing Machinery,

Juni 2025. doi: 10.1145/3728915. url: https://doi.org/10.1145/3728915.

[Aun10] Benjamin Aunkofer. Open System Interconnection – Referenzmodell. https:
/ / www . der - wirtschaftsingenieur . de / index . php / open - system -

interconnection-referenzmodell/. Jan. 2010.

[Ban+19] Andrew Banks, Ed Briggs, Ken Borgendale und Rahul Gupta. MQTT Version
5.0. Standard v5.0. OASIS Message Queuing Telemetry Transport (MQTT)

TC, März 2019. url: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-

v5.0.html.

155

https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.20944/preprints202508.0014.v1
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1145/3533767.3534376
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://www.geeksforgeeks.org/computer-networks/elements-of-network-protocol/
https://doi.org/10.1109/WCRE.2011.28
https://doi.org/10.1145/3728915
https://doi.org/10.1145/3728915
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://www.der-wirtschaftsingenieur.de/index.php/open-system-interconnection-referenzmodell/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Weitere Literatur

[BDB99] Vasanth Bala, Evelyn Duesterwald und Sanjeev Banerjia. Transparent Dy-
namic Optimization: The Design and Implementation of Dynamo. 1999. url:
https://homes.cs.washington.edu/~bodik/ucb/cs703-2002/papers/

dynamo-full.pdf.

[BH19] Katharina Bogad und Manuel Huber. „Harzer Roller: Linker-Based Instru-

mentation for Enhanced Embedded Security Testing“. In: Proceedings of the
3rd Reversing and Offensive-Oriented Trends Symposium. ROOTS’19. Vienna,

Austria: Association for Computing Machinery, 2019. isbn: 9781450377751.

doi: 10.1145/3375894.3375897. url: https://doi.org/10.1145/3375894.

3375897.

[Bha22] Soumalya Bhattacharyya. Understanding Fuzzing in Software Testing. https:
//www.analyticssteps.com/blogs/understanding- fuzzing- software-

testing. Analytics Steps. Nov. 2022.

[Bha25] Sakshi Bhakhra. Difference Between Stateless and Stateful Protocol. https:
//www.geeksforgeeks.org/computer- networks/difference- between-

stateless-and-stateful-protocol/. Juli 2025.

[BKG20] Dor Bank, Noam Koenigstein und Raja Giryes. Autoencoders. März 2020. doi:

10.48550/arXiv.2003.05991.

[Bla25] Blackduck, Inc. The Heartbleed Bug. https://www.heartbleed.com/. März

2025.

[BLP05] Fernando Bação, Victor Lobo und Marco Painho. „Self-organizing maps as

substitutes for k-means clustering“. In: International Conference on Computa-
tional Science. Springer. 2005, S. 476–483.

[Blu23] Bluetooth SIG. Bluetooth Core Specification. Version 5.4. Bluetooth Special

Interest Group. 2023. url: https://www.bluetooth.com/specifications/

bluetooth-core-specification/.

[BMC20] Marcel Böhme, Valentin J M Manès und Sang Kil Cha. „Boosting fuzzer effi-

ciency: an information theoretic perspective“. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Virtual Event USA: ACM, Nov.

2020.

[BP23] David Belson und Lucas Pardue. Examining HTTP/3 usage one year on. https:
//blog.cloudflare.com/http3-usage-one-year-on/. Juni 2023.

[Bra+08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler und François

Yergeau. Extensible Markup Language (XML) 1.0. Fifth Edition. W3C. Nov.

2008. url: https://www.w3.org/TR/xml/.

[Bro18] Chris Brook. What is Deep Packet Inspection? How It Works, Use Cases for
DPI, and More. https://digitalguardian.com/blog/what-deep-packet-
inspection-how-it-works-use-cases-dpi-and-more. Dez. 2018.

156

https://homes.cs.washington.edu/~bodik/ucb/cs703-2002/papers/dynamo-full.pdf
https://homes.cs.washington.edu/~bodik/ucb/cs703-2002/papers/dynamo-full.pdf
https://doi.org/10.1145/3375894.3375897
https://doi.org/10.1145/3375894.3375897
https://doi.org/10.1145/3375894.3375897
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.analyticssteps.com/blogs/understanding-fuzzing-software-testing
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://www.geeksforgeeks.org/computer-networks/difference-between-stateless-and-stateful-protocol/
https://doi.org/10.48550/arXiv.2003.05991
https://www.heartbleed.com/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://blog.cloudflare.com/http3-usage-one-year-on/
https://blog.cloudflare.com/http3-usage-one-year-on/
https://www.w3.org/TR/xml/
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more

[BSI25] BSI. Botnetze – Auswirkungen und Schutzmaßnahmen. https://www.bsi.
bund . de / DE / Themen / Verbraucherinnen - und - Verbraucher / Cyber -

Sicherheitslage / Methoden - der - Cyber - Kriminalitaet / Botnetze /

botnetze_node.html. 2025.

[BSM22] Marcel Böhme, László Szekeres und Jonathan Metzman. „On the reliabi-

lity of coverage-based fuzzer benchmarking“. In: Proceedings of the 44th
International Conference on Software Engineering. ICSE ’22. Pittsburgh, Penn-

sylvania: Association for Computing Machinery, 2022, S. 1621–1633. isbn:

9781450392211. doi: 10.1145/3510003.3510230. url: https://doi.org/10.

1145/3510003.3510230.

[Bun+21] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson

und Tim Leek. „Evaluating Synthetic Bugs“. In: Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security. ASIA CCS ’21.

Virtual Event, Hong Kong: Association for Computing Machinery, 2021,

S. 716–730. isbn: 9781450382878. doi: 10.1145/3433210.3453096. url: https:

//doi.org/10.1145/3433210.3453096.

[Cad22] Cadence Design Systems, Inc. Xtensa®Instruction Set Architecture (ISA) Sum-
mary. Modification: 737871. https://www.cadence.com/content/dam/

cadence - www / global / en _ US / documents / tools / silicon - solutions /

compute-ip/isa-summary.pdf. Apr. 2022.

[Cad24] Cadence Design Systems, Inc. Xtensa LX7 Processor. https://www.cadence.
com/en_US/home/resources/product- briefs/xtensa- lx7- processor-

pb.html. 2024.

[Cad25] Cadence Design Systems, Inc. Xtensa LX6 Customizable DPU. https : / /
www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-

Xtensa-LX6-datasheet.pdf. 2025.

[Cha+17] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro und Ryan R. Newton.

„Instruction punning: lightweight instrumentation for x86-64“. In: SIGPLAN
Not. 52.6 (Juni 2017), S. 320–332. issn: 0362-1340. url: https://doi.org/10.
1145/3140587.3062344.

[Che+19] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, MingzheWang, Chijin Zhou,

Xun Jiao und Zhuo Su. „EnFuzz: Ensemble Fuzzing with Seed Synchroni-

zation among Diverse Fuzzers“. In: 28th USENIX Security Symposium (USE-
NIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, S. 1967–

1983. isbn: 978-1-939133-06-9. url: https://www.usenix.org/conference/

usenixsecurity19/presentation/chen-yuanliang.

[Che18] Guillaume Chevalier. LARNN: Linear Attention Recurrent Neural Network.
2018. arXiv: 1808.05578 [cs.LG]. url: https://arxiv.org/abs/1808.05578.

[Cho13] Fred Chow. „Intermediate representation“. In: Communications of the ACM
56.12 (Dez. 2013), S. 57–62. issn: 1557-7317. doi: 10.1145/2534706.2534720.

url: http://dx.doi.org/10.1145/2534706.2534720.

157

https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-Kriminalitaet/Botnetze/botnetze_node.html
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/silicon-solutions/compute-ip/isa-summary.pdf
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.cadence.com/en_US/home/resources/product-briefs/xtensa-lx7-processor-pb.html
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://www.electronicspecifier.com/wp-content/uploads/2025/07/Cadence-Xtensa-LX6-datasheet.pdf
https://doi.org/10.1145/3140587.3062344
https://doi.org/10.1145/3140587.3062344
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://arxiv.org/abs/1808.05578
https://arxiv.org/abs/1808.05578
https://doi.org/10.1145/2534706.2534720
http://dx.doi.org/10.1145/2534706.2534720

Weitere Literatur

[Cir25] Circuitlabs. Chapter 8: Understanding ESP32 Boot Process. https : / /

circuitlabs.net/understanding-esp32-boot-process/. Mai 2025.

[CKW07] Weidong Cui, Jayanthkumar Kannan und Helen J Wang. „Discoverer: Au-

tomatic Protocol Reverse Engineering from Network Traces.“ In: USENIX
Security Symposium. 2007, S. 1–14.

[Cla09] Justin Clarke. SQL injection attacks and defense. Elsevier, 2009. doi: 10.1016/
B978-1-59749-424-3.X0001-1.

[Cle+20] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, Da-

vid Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi und Mathias

Payer. „HALucinator: Firmware Re-hosting Through Abstraction Layer Emu-

lation“. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, S. 1201–1218. isbn: 978-1-939133-17-5. url: https://

www.usenix.org/conference/usenixsecurity20/presentation/clements.

[CMS13] Ricardo J. G. B. Campello, Davoud Moulavi und Joerg Sander. „Density-

Based Clustering Based on Hierarchical Density Estimates“. In: Advances
in Knowledge Discovery and Data Mining. Hrsg. von Jian Pei, Vincent S.

Tseng, Longbing Cao, Hiroshi Motoda und Guandong Xu. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, S. 160–172. isbn: 978-3-642-37456-2.

[Com+09] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel und En-

gin Kirda. „Prospex: Protocol specification extraction“. In: 2009 30th IEEE
Symposium on Security and Privacy. IEEE. 2009, S. 110–125.

[Con23] Connectivity Standards Alliance. Zigbee Specification. Connectivity Standards
Alliance. 2023. url: https://csa-iot.org/wp-content/uploads/2023/04/

05-3474-23-csg-zigbee-specification-compressed.pdf.

[Cor19] Mitre Corporation. 2019 CWE Top 25 Most Dangerous Software Errors. https:
//cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html. 2019.

[DB25] Sena Dikici und Turgay Tugay Bilgin. „Advancements in automated program

repair: a comprehensive review“. In: Knowledge and Information Systems 67.6
(2025), S. 4737–4783. issn: 0219-3116. doi: 10.1007/s10115-025-02383-9.

[DEM94] Peter Deutsch, Alan Emtage und April Marine. How to Use Anonymous FTP.
Techn. Ber. 1635. Internet Engineering Task Force (IETF), März 1994. 13 S.

doi: 10.17487/RFC1635. url: https://www.rfc-editor.org/info/rfc1635.

[Den+23] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang und Ling-

ming Zhang. Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. 2023. arXiv: 2212 . 14834
[cs.SE]. url: https://doi.org/10.48550/arXiv.2212.14834.

158

https://circuitlabs.net/understanding-esp32-boot-process/
https://circuitlabs.net/understanding-esp32-boot-process/
https://doi.org/10.1016/B978-1-59749-424-3.X0001-1
https://doi.org/10.1016/B978-1-59749-424-3.X0001-1
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://csa-iot.org/wp-content/uploads/2023/04/05-3474-23-csg-zigbee-specification-compressed.pdf
https://csa-iot.org/wp-content/uploads/2023/04/05-3474-23-csg-zigbee-specification-compressed.pdf
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doi.org/10.1007/s10115-025-02383-9
https://doi.org/10.17487/RFC1635
https://www.rfc-editor.org/info/rfc1635
https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2212.14834
https://doi.org/10.48550/arXiv.2212.14834

[Den+24] Y. Deng, C. Xia, C. Yang, S. Zhang, S. Yang und L. Zhang. „Large Language

Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing

Deep Learning Libraries“. In: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. ICSE ’24. Lisbon, Portugal: IEEE Compu-

ter Society, Apr. 2024, S. 830–842. url: https://doi.org/10.1145/3597503.

3623343.

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee und Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. url: https://arxiv.org/abs/1810.04805.

[DGR20] Gregory J. Duck, Xiang Gao und Abhik Roychoudhury. „Binary rewriting

without control flow recovery“. In: Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementati-
on, PLDI 2020, London, UK, June 15-20, 2020. Hrsg. von Alastair F. Donaldson

und Emina Torlak. ACM, 2020, S. 151–163. url: https://doi.org/10.1145/

3385412.3385972.

[DGZ23] Rafael Dutra, Rahul Gopinath und Andreas Zeller. „FormatFuzzer: Effective

Fuzzing of Binary File Formats“. In: ACM Trans. Softw. Eng. Methodol. 33.2
(Dez. 2023). issn: 1049-331X. doi: 10.1145/3628157. url: https://doi.org/

10.1145/3628157.

[DHS11] John Duchi, Elad Hazan und Yoram Singer. „Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization“. In: Journal of Machine
Learning Research 12.61 (2011), S. 2121–2159. url: http://jmlr.org/papers/
v12/duchi11a.html.

[EFI21] Maialen Eceiza-Olaizola, Jose Luis Flores und Mikel Iturbe. „Fuzzing the

Internet of Things: A Review on the Techniques and Challenges for Efficient

Vulnerability Discovery in Embedded Systems“. In: IEEE Internet of Things
Journal PP (Feb. 2021), S. 1–1. doi: 10.1109/JIOT.2021.3056179.

[Eis+22] Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth und Giam-

paolo Bella. „Embedded fuzzing: a review of challenges, tools, and solutions“.

In: Cybersecurity 5 (Sep. 2022). doi: 10.1186/s42400-022-00123-y.

[Eis+23] Max Eisele, Daniel Ebert, Christopher Huth und Andreas Zeller. „Fuzzing

Embedded Systems using Debug Interfaces“. In: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA 2023. Seattle, WA, USA: Association for Computing Machinery, 2023,

S. 1031–1042. doi: 10.1145/3597926.3598115. url: https://doi.org/10.

1145/3597926.3598115.

[Eis+25] Max Eisele, Johannes Hägele, Christopher Huth und Andreas Zeller. „GDB-

Miner: Mining Precise Input Grammars on (Almost) Any System“. In: Leibniz
Transactions on Embedded Systems 10.1 (2025), 1:1–1:26. issn: 2199-2002. doi:
10.4230/LITES.10.1.1. url: https://drops.dagstuhl.de/entities/

document/10.4230/LITES.10.1.1.

159

https://doi.org/10.1145/3597503.3623343
https://doi.org/10.1145/3597503.3623343
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3628157
https://doi.org/10.1145/3628157
https://doi.org/10.1145/3628157
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1109/JIOT.2021.3056179
https://doi.org/10.1186/s42400-022-00123-y
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.1145/3597926.3598115
https://doi.org/10.4230/LITES.10.1.1
https://drops.dagstuhl.de/entities/document/10.4230/LITES.10.1.1
https://drops.dagstuhl.de/entities/document/10.4230/LITES.10.1.1

Weitere Literatur

[Eli22] Michael Eling. Der ESP32: Ein leistungsstarker Mikrocontroller für IoT-
Anwendungen. https://techgeeks.de/der-esp32-ein-leistungsstarker-
mikrocontroller-fuer-iot-anwendungen/. Dez. 2022.

[Esp18] Espressif. Espressif Achieves the 100-Million Target for IoT Chip Shipments.
https : / / www . espressif . com / en / news / Espressif _ Achieves _ the _

Hundredmillion_Target_for_IoT_Chip_Shipments. 2018.

[Esp19] Espressif. QEMU fork with ESP32 support. https://github.com/espressif/
qemu. 2019.

[Esp23] Espressif Systems. ESP8266EX Datasheet. Version 7.0. https : / / www .

espressif.com/sites/default/files/documentation/0a- esp8266ex_

datasheet_en.pdf. Juni 2023.

[Esp25a] Espressif Systems. ESP32 Series Datasheet. Version 5.0. https : / / www .

espressif.com/sites/default/files/documentation/esp32_datasheet_

en.pdf. Aug. 2025.

[Esp25b] Espressif Systems. ESP32-C3 Series. Version 2.2. https://www.espressif.

com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf.

2025.

[Esp25c] Espressif Systems. ESP32-WROOM-32 Datasheet. Version 3.6. https://www.

espressif.com/sites/default/files/documentation/esp32-wroom-32_

datasheet_en.pdf. Aug. 2025.

[Est+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander und Xiaowei Xu. „A density-

based algorithm for discovering clusters in large spatial databases with noise“.

In: Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, S. 226–231.

[Exp25] Express.js Team. Express 5.x - API Reference. https://expressjs.com/en/
api.html. 2025.

[FC17] Rong Fan und Yaoyao Chang. „Machine learning for black-box fuzzing of

network protocols“. In: International Conference on Information and Commu-
nications Security. Springer. 2017, S. 621–632.

[FDC20] Andrea Fioraldi, Daniele Cono D’Elia und Emilio Coppa. „WEIZZ: Automatic

Grey-Box Fuzzing for Structured Binary Formats“. In: Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA 2020. Virtual Event, USA: Association for Computing Machinery,

2020, S. 1–13. isbn: 9781450380089. doi: 10.1145/3395363.3397372. url:

https://doi.org/10.1145/3395363.3397372.

[FDQ20] Andrea Fioraldi, Daniele Cono D’Elia und Leonardo Querzoni. „Fuzzing Bina-

ries for Memory Safety Errors with QASan“. In: 2020 IEEE Secure Development
(SecDev). 2020, S. 23–30. doi: 10.1109/SecDev45635.2020.00019.

160

https://techgeeks.de/der-esp32-ein-leistungsstarker-mikrocontroller-fuer-iot-anwendungen/
https://techgeeks.de/der-esp32-ein-leistungsstarker-mikrocontroller-fuer-iot-anwendungen/
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://github.com/espressif/qemu
https://github.com/espressif/qemu
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://expressjs.com/en/api.html
https://expressjs.com/en/api.html
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/SecDev45635.2020.00019

[Fie00] Roy Thomas Fielding. „Architectural Styles and the Design of Network-based

Software Architectures“. AAI9980887. Diss. University of California, Irvine,

2000. isbn: 0599871180. url: https://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm.

[Fio+20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt und Marc Heuse. „AFL++ :

Combining Incremental Steps of Fuzzing Research“. In: 14th USENIX Work-
shop on Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

url: https : / / www . usenix . org / conference / woot20 / presentation /

fioraldi.

[For20] Fortune Business Insights. Internet of Things (IoT) Market Size, Share and
Industry Analysis By Platform (Device Management, Application Management,
Network Management), By Software & Services (Software Solution, Services), By
End-Use Industry (BFSI, Retail, Governments, Healthcare, Others) And Regional
Forecast, 2020-2027. 2020.

[FPA17] Alessandro Di Federico, Mathias Payer und Giovanni Agosta. „rev.ng: a

unified binary analysis framework to recover CFGs and function boundaries“.

In: Proceedings of the 26th International Conference on Compiler Construction,
Austin, TX, USA, February 5-6, 2017. Hrsg. von Peng Wu und Sebastian Hack.

ACM, 2017, S. 131–141. url: http://dl.acm.org/citation.cfm?id=3033028.

[FS00] Wenfei Fan und Jérôme Siméon. „Integrity constraints for XML“. In: Pro-
ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. PODS ’00. Dallas, Texas, USA: Association
for Computing Machinery, 2000, S. 23–34. isbn: 158113214X. doi: 10.1145/

335168.335172. url: https://doi.org/10.1145/335168.335172.

[GAJ24] Matthew G. Gaber, Mohiuddin Ahmed und Helge Janicke. „Malware Detec-

tion with Artificial Intelligence: A Systematic Literature Review“. In: ACM
Comput. Surv. 56.6 (Jan. 2024). issn: 0360-0300. doi: 10.1145/3638552. url:
https://doi.org/10.1145/3638552.

[Gar08] Simson Garfinkel. Nitroba University Harassment Scenario. Dataset: https:
/ / digitalcorpora . org / corpora / scenarios / nitroba - university -

harassment-scenario. Digital Corpora, Nov. 2008.

[Gas+15] Hugo Gascón, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp und

Konrad Rieck. „Pulsar: Stateful Black-Box Fuzzing of Proprietary Network

Protocols“. In: International Conference on Security and Privacy in Communi-
cation Systems. Springer. Springer International Publishing, 2015, S. 330–347.
isbn: 978-3-319-28865-9.

[GGG22] Rahul Gopinath, Philipp Görz und Alex Groce. Mutation Analysis: Answering
the Fuzzing Challenge. 2022. arXiv: 2201.11303 [cs.SE]. url: https://arxiv.
org/abs/2201.11303.

161

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
http://dl.acm.org/citation.cfm?id=3033028
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/335168.335172
https://doi.org/10.1145/3638552
https://doi.org/10.1145/3638552
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://arxiv.org/abs/2201.11303
https://arxiv.org/abs/2201.11303
https://arxiv.org/abs/2201.11303

Weitere Literatur

[GKL08] Patrice Godefroid, Adam Kiezun undMichael Y. Levin. „Grammar-based whi-

tebox fuzzing“. In: SIGPLAN Not. 43.6 (Juni 2008), S. 206–215. issn: 0362-1340.
doi: 10.1145/1379022.1375607. url: https://doi.org/10.1145/1379022.

1375607.

[GLM08] Patrice Godefroid, Michael Y. Levin und DavidMolnar. „AutomatedWhitebox

Fuzz Testing“. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008. Bd. 8. The Internet Society, Nov. 2008, S. 151–166. url:
https://www.microsoft.com/en-us/research/publication/automated-

whitebox-fuzz-testing/.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David War-

de-Farley, Sherjil Ozair, Aaron Courville und Yoshua Bengio. „Generative

adversarial nets“. In: Advances in neural information processing systems. 2014,
S. 2672–2680.

[Goo+19] Young-Hoon Goo, Kyu-Seok Shim, Min-Seob Lee und Myung-Sup Kim. HTTP
and DNS traffic traces for experimenting of protocol reverse engineeringmethods.
http://dx.doi.org/10.21227/tpqf-fe98. 2019. doi: 10.21227/tpqf-fe98.

[Gop+18] Rahul Gopinath, Björn Mathis, Mathias Höschele, Alexander Kampmann und

Andreas Zeller. Sample-Free Learning of Input Grammars for Comprehensive
Software Fuzzing. 2018. arXiv: 1810.08289 [cs.SE]. url: https://arxiv.

org/abs/1810.08289.

[GPS17] Patrice Godefroid, Hila Peleg und Rishabh Singh. „Learn&Fuzz: Machine

learning for input fuzzing“. In: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). Los Alamitos, CA, USA: IEEE

Computer Society, 2017, S. 50–59. url: https://doi.org/10.1109/ASE.

2017.8115618.

[GT23] Javad Garshasbi und Mehdi Teimouri. „CNNPRE: A CNN-Based Protocol

Reverse Engineering Method“. In: IEEE Access 11 (2023), S. 116255–116268.
doi: 10.1109/ACCESS.2023.3325391.

[Gug+22] Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary

Mueller, Sourab Mangrulkar, Marc Sun und Benjamin Bossan. Accelerate:
Training and inference at scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate. 2022.

[Gui+20] Zhijie Gui, Hui Shu, Fei Kang und Xiaobing Xiong. „FIRMCORN: Vulnerabi-

lity-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution“. In:

IEEE Access 8 (2020), S. 29826–29841.

[Gup19] Aditya Gupta. The IoT Hacker’s Handbook: A Practical Guide to Hacking the
Internet of Things. en. 1. Aufl. APress, Apr. 2019, S. 340. isbn: 1484242998.
doi: 10.1007/978-1-4842-4300-8.

[Has+19] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal

und Biplab Sikdar. „A Survey on IoT Security: Application Areas, Security

Threats, and Solution Architectures“. In: IEEE Access PP (Juni 2019), S. 1–1.

doi: 10.1109/ACCESS.2019.2924045.

162

https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
http://dx.doi.org/10.21227/tpqf-fe98
https://doi.org/10.21227/tpqf-fe98
https://arxiv.org/abs/1810.08289
https://arxiv.org/abs/1810.08289
https://arxiv.org/abs/1810.08289
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ACCESS.2023.3325391
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.1007/978-1-4842-4300-8
https://doi.org/10.1109/ACCESS.2019.2924045

[Hav+14] Nikolas Havrikov, Matthias Höschele, Juan Pablo Galeotti und Andreas Zeller.

„XMLMate: evolutionary XML test generation“. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Enginee-
ring. FSE 2014. Hong Kong, China: Association for Computing Machinery,

2014, S. 719–722. isbn: 9781450330565. doi: 10.1145/2635868.2661666. url:

https://doi.org/10.1145/2635868.2661666.

[Haw+17] William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong und

Jack W. Davidson. „Zipr: Efficient Static Binary Rewriting for Security“. In:

47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2017, Denver, CO, USA, June 26-29, 2017. IEEE Computer

Society, 2017, S. 559–566. url: https://doi.org/10.1109/DSN.2017.27.

[HKZ17] Matthias Höschele, Alexander Kampmann und Andreas Zeller. Active Lear-
ning of Input Grammars. 2017. arXiv: 1708.08731 [cs.PL]. url: https://

arxiv.org/abs/1708.08731.

[HMU11] John E. Hopcroft, Rajeev Motwani und Jeffrey D. Ullman. Einführung in die
Automatentheorie, Formale Sprachen und Komplexitätstheorie. de. 3., aktua-
lisierte Auflage. Pearson Studium. Harlow, England: Pearson Deutschland,

Feb. 2011, S. 256. isbn: 9783868940824. url: https://elibrary.pearson.de/

book/99.150005/9783863265090.

[HN17] Jesse Hertz und Tim Newsham. Project Triforce: Run AFL On Everything.
Whitepaper. https://www.nccgroup.com/research- blog/whitepaper-

project-triforce-run-afl-on-everything-2017/. NCC Group, Apr. 2017.

[HS06] Geoffrey E. Hinton und R. Salakhutdinov. „Reducing the Dimensionality of

Data with Neural Networks“. In: Science 313 (2006), S. 504–507.

[HS97] Sepp Hochreiter und Jürgen Schmidhuber. „Long short-term memory“. In:

Neural computation 9.8 (1997), S. 1735–1780.

[HSS12] Geoffrey Hinton, Nitish Srivastava und Kevin Swersky. Lecture 6e – RMSProp:
Divide the gradient by a running average of its recent magnitude. http://
www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

University of Toronto. 2012.

[HSW+89] Kurt Hornik, Maxwell Stinchcombe, Halbert White u. a. „Multilayer feedfor-

ward networks are universal approximators.“ In: Neural networks 2.5 (1989),
S. 359–366.

[Hu+18] Zhicheng Hu, Jianqi Shi, YanHong Huang, Jiawen Xiong und Xiangxing Bu.

„GANFuzz: a GAN-based industrial network protocol fuzzing framework“. In:

Proceedings of the 15th ACM International Conference on Computing Frontiers.
2018, S. 138–145.

[Hu+22] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,

Shean Wang, Lu Wang und Weizhu Chen. „LoRA: Low-Rank Adaptation of

Large Language Models“. In: ICLR 1.2 (2022), S. 3. url: https://arxiv.org/

abs/2106.09685.

163

https://doi.org/10.1145/2635868.2661666
https://doi.org/10.1145/2635868.2661666
https://doi.org/10.1109/DSN.2017.27
https://arxiv.org/abs/1708.08731
https://arxiv.org/abs/1708.08731
https://arxiv.org/abs/1708.08731
https://elibrary.pearson.de/book/99.150005/9783863265090
https://elibrary.pearson.de/book/99.150005/9783863265090
https://www.nccgroup.com/research-blog/whitepaper-project-triforce-run-afl-on-everything-2017/
https://www.nccgroup.com/research-blog/whitepaper-project-triforce-run-afl-on-everything-2017/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Weitere Literatur

[Hua+25] Linghan Huang, Peizhou Zhao, Huaming Chen und Lei Ma.On the Challenges
of Fuzzing Techniques via Large Language Models. 2025. arXiv: 2402.00350
[cs.SE]. url: https://arxiv.org/abs/2402.00350.

[HZY23] Jie Hu, Qian Zhang und Heng Yin. Augmenting Greybox Fuzzing with Genera-
tive AI. 2023. arXiv: 2306.06782 [cs.CR]. url: https://doi.org/10.48550/

arXiv.2306.06782.

[IHR06] Internet Architecture Board, Mark J. Handley und Eric Rescorla. Internet
Denial-of-Service Considerations. Techn. Ber. 4732. Internet Engineering Task

Force (IETF), Dez. 2006. 38 S. doi: 10.17487/RFC4732. url: https://www.rfc-

editor.org/info/rfc4732.

[Jau+23] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf und

Ahmad-Reza Sadeghi. „DARWIN: Survival of the fittest fuzzing mutators“.

In: Proceedings 2023 Network and Distributed System Security Symposium. San

Diego, CA, USA: Internet Society, 2023.

[Jia+24] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng Shen,

Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, ShanShan Li und Quan Zhang.

When Fuzzing Meets LLMs: Challenges and Opportunities. 2024. arXiv: 2404.
16297 [cs.SE]. url: https://arxiv.org/abs/2404.16297.

[JJ20] YoungGiu Jung und Chang-Min Jeong. „Deep neural network-based auto-

matic unknown protocol classification system using histogram feature“. In:

The Journal of Supercomputing 76.7 (2020), S. 5425–5441.

[KB17] Diederik P. Kingma und Jimmy Ba. Adam: A Method for Stochastic Optimi-
zation. 2017. arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.

6980.

[Kim+17] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon, Brendan

Saltaformaggio, Xiangyu Zhang und Dongyan Xu. „RevARM: A Platform-A-

gnostic ARM Binary Rewriter for Security Applications“. In: Proceedings of
the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA,
December 4-8, 2017. ACM, 2017, S. 412–424. url: https://doi.org/10.1145/

3134600.3134627.

[Kin21] Jörg Kindermann. Generative Adversarial Networks (GANs) für maschinel-
le Übersetzung. https://lamarr- institute.org/de/blog/generative-
neuronale-modelle-gan/. Juni 2021.

[Koh82] Teuvo Kohonen. „Self-organized formation of topologically correct feature

maps“. In: Biological cybernetics 43.1 (1982), S. 59–69.

[Kre16] Brian Krebs. Source Code for IoT Botnet ‘Mirai’ Released. https : / /

krebsonsecurity.com/2016/10/source- code- for- iot- botnet- mirai-

released/. Okt. 2016.

164

https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.17487/RFC4732
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc4732
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/2404.16297
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3134600.3134627
https://doi.org/10.1145/3134600.3134627
https://lamarr-institute.org/de/blog/generative-neuronale-modelle-gan/
https://lamarr-institute.org/de/blog/generative-neuronale-modelle-gan/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

[KSH12] Alex Krizhevsky, Ilya Sutskever und Geoffrey E Hinton. „ImageNet Classifi-

cation with Deep Convolutional Neural Networks“. In: Advances in Neural
Information Processing Systems 25. Hrsg. von F. Pereira, C. J. C. Burges, L.

Bottou und K. Q. Weinberger. Curran Associates, Inc., 2012, S. 1097–1105.

url: http://papers.nips.cc/paper/4824- imagenet- classification-

with-deep-convolutional-neural-networks.pdf.

[KY24] Low Choon Keat und Tan Xuan Ying. „Artificial Intelligence-Based Email

Spam Filtering“. In: Journal of Advanced Research in Artificial Intelligence
& It’s Applications 2.2 (Dez. 2024). doi: 10.5281/zenodo.14264139. url:

https://doi.org/10.5281/zenodo.14264139.

[LAC21] Brian Lester, Rami Al-Rfou und Noah Constant. The Power of Scale for
Parameter-Efficient Prompt Tuning. 2021. arXiv: 2104.08691 [cs.CL]. url:

https://doi.org/10.48550/arXiv.2104.08691.

[Lan99] Kevin J Lang. „Faster algorithms for finding minimal consistent DFAs“. In:

NEC Research Institute, Tech. Rep (1999).

[Lem+23] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri und Siddhar-

tha Sen. „CodaMosa: Escaping Coverage Plateaus in Test Generation with

Pre-Trained Large Language Models“. In: Proceedings of the 45th Interna-
tional Conference on Software Engineering. ICSE ’23. Melbourne, Victoria,

Australia: IEEE Press, 2023, S. 919–931. isbn: 9781665457019. url: https:

//doi.org/10.1109/ICSE48619.2023.00085.

[Li+18] R. Li, X. Xiao, S. Ni, H. Zheng und S. Xia. „Byte Segment Neural Network

for Network Traffic Classification“. In: 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS). 2018, S. 1–10. doi: 10.1109/IWQoS.
2018.8624128.

[Lia+18] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen und Jian Zhang.

„Fuzzing: State of the Art“. In: IEEE Transactions on Reliability 67.3 (2018),

S. 1199–1218. doi: 10.1109/TR.2018.2834476.

[LMC23] Dongge Liu, Jonathan Metzman und Oliver Chang. AI-Powered Fuzzing:
Breaking the Bug Hunting Barrier. https://security.googleblog.com/
2023/08/ai-powered-fuzzing-breaking-bug-hunting.html. Google Open

Source Security Team. Aug. 2023.

[Lop+17] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas und Jaime

Lloret. „Network traffic classifier with convolutional and recurrent neural

networks for Internet of Things“. In: IEEE Access 5 (2017), S. 18042–18050.

[Luk+05] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser,

P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi und Kim M. Ha-

zelwood. „Pin: building customized program analysis tools with dynamic

instrumentation“. In: Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005. Hrsg. von Vivek Sarkar und MaryW. Hall. ACM, 2005, S. 190–200.

url: https://doi.org/10.1145/1065010.1065034.

165

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.5281/zenodo.14264139
https://doi.org/10.5281/zenodo.14264139
https://arxiv.org/abs/2104.08691
https://doi.org/10.48550/arXiv.2104.08691
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/IWQoS.2018.8624128
https://doi.org/10.1109/IWQoS.2018.8624128
https://doi.org/10.1109/TR.2018.2834476
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://doi.org/10.1145/1065010.1065034

Weitere Literatur

[LZZ18] Jun Li, Bodong Zhao und Chao Zhang. „Fuzzing: a survey“. In: Cybersecurity
1.1 (2018), S. 6.

[Men+24] Ruijie Meng, Martin Mirchev, Marcel Böhme und Abhik Roychoudhury.

„Large Language Model guided Protocol Fuzzing“. In: Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS). 2024.

[Mic+17] A. Michael, E. Valla, Natinael Solomon Neggatu und A. Moore.Network traffic
classification via neural networks. Techn. Ber. UCAM-CL-TR-912. University

of Cambridge, Computer Laboratory, Sep. 2017. url: https://www.cl.cam.

ac.uk/techreports/UCAM-CL-TR-912.pdf.

[Mil21] Saša Miličević. ESP32 Based Devices. https://templates.blakadder.com/
esp32.html. Jan. 2021.

[MRR12] Michael McCool, Arch D. Robison und James Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Elsevier/Morgan Kaufmann,

Juni 2012, S. 1–432. isbn: 0124159931.

[MS12] ChristophMeinel und Harald Sack. „Die Grundlage des Internets: TCP/IP-Re-

ferenzmodell“. In: Internetworking: Technische Grundlagen und Anwendun-
gen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, S. 31–67. isbn:

978-3-540-92940-6. doi: 10 . 1007 / 978 - 3 - 540 - 92940 - 6 _ 2. url: https :

//doi.org/10.1007/978-3-540-92940-6_2.

[Mue+18] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon und Davide

Balzarotti. „What You Corrupt Is Not What You Crash: Challenges in Fuzzing

Embedded Devices.“ In: NDSS. 2018.

[Nat22] Roberto Natella. „StateAFL: Greybox Fuzzing for Stateful Network Servers“.

In: Empirical Software Engineering 27.7 (2022), S. 191. issn: 1573-7616. doi:

10.1007/s10664-022-10233-3. url: https://doi.org/10.1007/s10664-

022-10233-3.

[NB23] Antonio Nappa und Eduardo Blázquez. Fuzzing Against the Machine. en.
Birmingham, England: Packt Publishing, Mai 2023.

[NH19] Stefan Nagy und Matthew Hicks. „Full-Speed Fuzzing: Reducing Fuzzing

Overhead through Coverage-Guided Tracing“. In: IEEE Symposium on Securi-
ty and Privacy (Oakland). Mai 2019, S. 787–802. doi: 10.1109/SP.2019.00069.

[Nie+99] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,

Paul J. Leach und Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
Techn. Ber. 2616. Internet Engineering Task Force (IETF), Juni 1999. 176 S.

doi: 10.17487/RFC2616. url: https://www.rfc-editor.org/info/rfc2616.

[Nin+23] Bowei Ning, Xuejun Zong, Kan He und Lian Lian. „PREIUD: An Industrial

Control Protocols Reverse Engineering Tool Based on Unsupervised Lear-

ning and Deep Neural Network Methods“. In: Symmetry 15.3 (2023). issn:

2073-8994. doi: 10.3390/sym15030706. url: https://www.mdpi.com/2073-

8994/15/3/706.

166

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.pdf
https://templates.blakadder.com/esp32.html
https://templates.blakadder.com/esp32.html
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/978-3-540-92940-6_2
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.3390/sym15030706
https://www.mdpi.com/2073-8994/15/3/706
https://www.mdpi.com/2073-8994/15/3/706

[NMT24] Mohaddese Nemati, Shiva Mahmoudzadeh und Mehdi Teimouri. „Enhanced

Autoencoder-Based Clustering for Message Analysis in Binary Protocols“. In:

2024 14th International Conference on Computer and Knowledge Engineering
(ICCKE). 2024, S. 302–307. doi: 10.1109/ICCKE65377.2024.10874790.

[NP21] Roberto Natella und Van-Thuan Pham. „ProFuzzBench: a benchmark for

stateful protocol fuzzing“. In: Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA 2021. Virtual,

Denmark: Association for Computing Machinery, 2021, S. 662–665. isbn:

9781450384599. doi: 10.1145/3460319.3469077. url: https://doi.org/10.

1145/3460319.3469077.

[Nym+17] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi und N. Asokan. „CFI CaRE:

Hardware-supported Call and Return Enforcement for Commercial Micro-

controllers“. In: CoRR abs/1706.05715 (2017). arXiv: 1706.05715. url: http:

//arxiv.org/abs/1706.05715.

[Pat24] Harsh Pathak. Parameter-efficient fine-tuning (PEFT) and how it’s diffe-
rent from fine-tuning. https://medium.com/@harshnpathak/parameter-
efficient- fine- tuning- peft- and- how- its- different- from- fine-

tuning-3f6b95c73bac. Juli 2024.

[Pav+18] Esteban Pavese, Ezekiel Soremekun, Nikolas Havrikov, Lars Grunske und

Andreas Zeller. Inputs from Hell: Generating Uncommon Inputs from Common
Samples. 2018. arXiv: 1812.07525 [cs.SE]. url: https://arxiv.org/abs/

1812.07525.

[PBR20] Van-Thuan Pham, Marcel Böhme und Abhik Roychoudhury. „AFLNET: A

Greybox Fuzzer for Network Protocols“. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). 2020, S. 460–
465. doi: 10.1109/ICST46399.2020.00062.

[Pla20] Patrick von Platen. How to generate text: using different decoding methods
for language generation with Transformers. März 2020. url: https : / /

huggingface.co/blog/how-to-generate.

[Pos80] Jon Postel. User Datagram Protocol. Techn. Ber. 768. Internet Engineering Task
Force (IETF), Aug. 1980. 3 S. doi: 10.17487/RFC0768. url: https://www.rfc-

editor.org/info/rfc768.

[Pos81a] Jon Postel. RFC 791: Internet Protocol. Request for Comments 791. Internet

Engineering Task Force (IETF), Sep. 1981. doi: doi.org/10.17487/RFC0791.

url: https://www.rfc-editor.org/rfc/rfc791.

[Pos81b] Jon Postel. Transmission Control Protocol. Techn. Ber. 793. Internet Engi-
neering Task Force (IETF), Sep. 1981. 91 S. doi: 10.17487/RFC0793. url:

https://www.rfc-editor.org/info/rfc793.

[PP03] Ruoming Pang und Vern Paxson. Lawrence Berkeley National Laboratory -
FTP - Packet Trace. Dataset: https://ee.lbl.gov/anonymized-traces.html.
Lawrence Berkeley National Laboratory, Jan. 2003.

167

https://doi.org/10.1109/ICCKE65377.2024.10874790
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1145/3460319.3469077
https://arxiv.org/abs/1706.05715
http://arxiv.org/abs/1706.05715
http://arxiv.org/abs/1706.05715
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://medium.com/@harshnpathak/parameter-efficient-fine-tuning-peft-and-how-its-different-from-fine-tuning-3f6b95c73bac
https://arxiv.org/abs/1812.07525
https://arxiv.org/abs/1812.07525
https://arxiv.org/abs/1812.07525
https://doi.org/10.1109/ICST46399.2020.00062
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://doi.org/doi.org/10.17487/RFC0791
https://www.rfc-editor.org/rfc/rfc791
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/info/rfc793
https://ee.lbl.gov/anonymized-traces.html

Weitere Literatur

[PR85] Jon Postel und Joyce Kathleen Reynolds. File Transfer Protocol. Techn. Ber.
959. Internet Engineering Task Force (IETF), Okt. 1985. 69 S. doi: 10.17487/

RFC0959. url: https://www.rfc-editor.org/info/rfc959.

[Put+05] Ludo Van Put, Bjorn De Sutter, Matias Madou, Bruno De Bus, Dominique

Chanet, Kristof Smits und Koen De Bosschere. „LANCET: a nifty code editing

tool“. In: Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis For Software Tools and Engineering, PASTE’05, Lisbon, Portugal,
September 5-6, 2005. Hrsg. von Michael D. Ernst und Thomas P. Jensen. ACM,

2005, S. 75–81. url: https://doi.org/10.1145/1108792.1108812.

[QV15] NguyenAnhQuynh undDangHoang Vu.Unicorn-The ultimate CPU emulator.
https://www.unicorn-engine.org/. 2015.

[Rad+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei und Ilya

Sutskever. „Language models are unsupervised multitask learners“. In: Ope-
nAI Blog 1.8 (2019), S. 9. url: https://cdn.openai.com/better-language-

models/language_models_are_unsupervised_multitask_learners.pdf.

[Raf+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li und Peter J. Liu. „Exploring the limits of

transfer learning with a unified text-to-text transformer“. In: J. Mach. Learn.
Res. 21.1 (Jan. 2020). issn: 1532-4435.

[Raj+21] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith und Yu-

xiong He. „ZeRO-infinity: breaking the GPU memory wall for extreme scale

deep learning“. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. SC ’21. St. Louis,

Missouri: Association for Computing Machinery, 2021. isbn: 9781450384421.

url: https://doi.org/10.1145/3458817.3476205.

[Ras+20] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase und Yuxiong He. „De-

epSpeed: System Optimizations Enable Training Deep Learning Models with

Over 100 Billion Parameters“. In: Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. KDD ’20. Virtual

Event, CA, USA: Association for Computing Machinery, 2020, S. 3505–3506.

isbn: 9781450379984. url: https://doi.org/10.1145/3394486.3406703.

[Ras24] Raspberry Pi Ltd. Raspberry Pi Pico Datasheet. build-version: eec2b0c-clean.
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf. Okt.

2024.

[Rau23] Nico Rausch. „Evaluation eines Machine-learning-basierten Ansatzes zum

Protocol Reverse Engineering für effizientes Fuzzing von Netzwerkanwen-

dungen“. Betreuer: Matthias Börsig und Martin Dukek, Erstgutachter: PD

Dr.-Ing. Ingmar Baumgart, Zweitgutachter: Prof. Dr. Ralf H. Reussner. Mas-

terarbeit. Postfach 6980, 76128 Karlsruhe: Karlsruher Institut für Technologie,

Sep. 2023.

168

https://doi.org/10.17487/RFC0959
https://doi.org/10.17487/RFC0959
https://www.rfc-editor.org/info/rfc959
https://doi.org/10.1145/1108792.1108812
https://www.unicorn-engine.org/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3394486.3406703
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

[Red+21] Monalika Padma Reddy, Sheba Selvam, Meghana Achandar und Ashwitha

NA. „Human Activity Recognition using 3D CNN“. In: Turkish Online Journal
of Qualitative Inquiry (TOJQI) 12.7 (2021), S. 12898–12908. doi: 10.13140/RG.
2.2.20520.49923. url: https://tojqi.net/index.php/journal/article/

view/6572/4681.

[RMC15] Alec Radford, Luke Metz und Soumith Chintala. „Unsupervised representa-

tion learning with deep convolutional generative adversarial networks“. In:

arXiv preprint arXiv:1511.06434 (2015).

[Rud17] Sebastian Ruder.An overview of gradient descent optimization algorithms. 2017.
arXiv: 1609.04747 [cs.LG]. url: https://arxiv.org/abs/1609.04747.

[Sai11] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
Techn. Ber. 6120. Internet Engineering Task Force (IETF), März 2011. 211 S.

doi: 10.17487/RFC6120. url: https://www.rfc-editor.org/info/rfc6120.

[SBF22] Eric Schulte, Michael D. Brown und Vlad Folts. „A Broad Comparative Eva-

luation of x86-64 Binary Rewriters“. In: CSET 2022: Cyber Security Experimen-
tation and Test Workshop, Virtual Event, 8 August 2022. ACM, 2022, S. 129–144.

url: https://doi.org/10.1145/3546096.3546112.

[SBV23] Andrei Simion, Calin Bira und Valentin-Gabriel Voiculescu. „Embedded plat-

form characterization for interface throughput and computing power in

common 8/16/32-bit platforms“. In: Advanced Topics in Optoelectronics, Micro-
electronics, and Nanotechnologies XI. Hrsg. von Marian Vladescu, Razvan D.

Tamas und Ionica Cristea. Bd. 12493. International Society for Optics und

Photonics. SPIE, 2023, S. 1249323. doi: 10.1117/12.2643278. url: https:

//doi.org/10.1117/12.2643278.

[Sch08] Henning Schulzrinne. Textual vs. Binary Protocols. https : / / www . cs .

columbia.edu/sip/textual-binary.html. Jan. 2008.

[Sco+03] Kevin Scott, Naveen Kumar, S. Velusamy, Bruce R. Childers, JackW. Davidson

und Mary Lou Soffa. „Retargetable and Reconfigurable Software Dynamic

Translation“. In: 1st IEEE / ACM International Symposium on Code Generation
and Optimization (CGO 2003), 23-26 March 2003, San Francisco, CA, USA. Hrsg.
von Richard Johnson, Tom Conte und Wen-mei W. Hwu. IEEE Computer

Society, 2003, S. 36–47. url: https://doi.org/10.1109/CGO.2003.1191531.

[Sel+17] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh und Dhruv Batra. „Grad-CAM: Visual Explanations

from Deep Networks via Gradient-based Localization“. In: Proceedings of the
IEEE international conference on computer vision. 2017, S. 618–626.

[SEV01] Amitabh Srivastava, Andrew Edwards und Hoi Vo. Vulcan: Binary Transfor-
mation In A Distributed Environment. 2001. url: https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf.

[SGA07] Michael Sutton, Adam Greene und Pedram Amini. Fuzzing: Brute Force Vul-
nerability Discovery. Boston, MA: Addison-Wesley Educational, Juni 2007,

S. 576. isbn: 9780321446114.

169

https://doi.org/10.13140/RG.2.2.20520.49923
https://doi.org/10.13140/RG.2.2.20520.49923
https://tojqi.net/index.php/journal/article/view/6572/4681
https://tojqi.net/index.php/journal/article/view/6572/4681
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.17487/RFC6120
https://www.rfc-editor.org/info/rfc6120
https://doi.org/10.1145/3546096.3546112
https://doi.org/10.1117/12.2643278
https://doi.org/10.1117/12.2643278
https://doi.org/10.1117/12.2643278
https://www.cs.columbia.edu/sip/textual-binary.html
https://www.cs.columbia.edu/sip/textual-binary.html
https://doi.org/10.1109/CGO.2003.1191531
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-50.pdf

Weitere Literatur

[Sha+19] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak und Ali A Ghorbani.

„Developing Realistic Distributed Denial of Service (DDoS) Attack Data-

set and Taxonomy“. In: 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE. 2019, S. 1–8.

[Sha05] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated
Values (CSV) Files. Techn. Ber. 4180. Internet Engineering Task Force (IETF),

Okt. 2005. 8 S. doi: 10.17487/RFC4180. url: https://www.rfc-editor.org/

info/rfc4180.

[Sha25] Sanjeev Sharma. Tanh vs. Sigmoid vs. ReLU. https://www.geeksforgeeks.
org/deep-learning/tanh-vs-sigmoid-vs-relu/. Juli 2025.

[SHB14] Zach Shelby, Klaus Hartke und Carsten Bormann. The Constrained Appli-
cation Protocol (CoAP). Techn. Ber. 7252. Internet Engineering Task Force

(IETF), Juni 2014. 112 S. doi: 10.17487/RFC7252. url: https://www.rfc-

editor.org/info/rfc7252.

[She+19] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray und

Suman Jana. „NEUZZ: Efficient Fuzzing with Neural Program Smoothing“.

In: 2019 IEEE Symposium on Security and Privacy (SP). 2019, S. 803–817. doi:
10.1109/SP.2019.00052.

[Shi+12] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee und Ali A Ghorbani. „Toward de-

veloping a systematic approach to generate benchmark datasets for intrusion

detection“. In: computers & security 31.3 (2012), S. 357–374.

[SM07] Karen Scarfone und Peter Mell. Guide to Intrusion Detection and Prevention
Systems (IDPS). Techn. Ber. Special Publication 800-94. Gaithersburg, MD:

National Institute of Standards und Technology (NIST), Feb. 2007. url: https:

//csrc.nist.gov/publications/detail/sp/800-94/final.

[Spä+16] Christopher Späth, Christian Mainka, Vladislav Mladenov und Jörg Schwenk.

„SoK: XML Parser Vulnerabilities“. In: 10th USENIX Workshop on Offensi-
ve Technologies (WOOT 16). Austin, TX: USENIX Association, Aug. 2016.

url: https://www.usenix.org/conference/woot16/workshop-program/

presentation/spath.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever und

Ruslan Salakhutdinov. „Dropout: A Simple Way to Prevent Neural Networks

from Overfitting“. In: Journal of Machine Learning Research 15.56 (2014),

S. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[SS19] Hamad Ali Al Salem und Jia Song. „A Review on Grammar-Based Fuzzing

Techniques“. English. In: International Journal of Computer Science and Securi-
ty (IJCSS) 13.3 (Juni 2019). Hrsg. von Editor, S. 114–123. issn: 1985-1553. url:

http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-

1481.

[STM25] STMicroelectronics. STM32F401xD STM32F401xE Datasheet. DS10086 Rev 4.
https://www.st.com/resource/en/datasheet/stm32f401re.pdf. Jan. 2025.

170

https://doi.org/10.17487/RFC4180
https://www.rfc-editor.org/info/rfc4180
https://www.rfc-editor.org/info/rfc4180
https://www.geeksforgeeks.org/deep-learning/tanh-vs-sigmoid-vs-relu/
https://www.geeksforgeeks.org/deep-learning/tanh-vs-sigmoid-vs-relu/
https://doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://doi.org/10.1109/SP.2019.00052
https://csrc.nist.gov/publications/detail/sp/800-94/final
https://csrc.nist.gov/publications/detail/sp/800-94/final
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
http://jmlr.org/papers/v15/srivastava14a.html
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-1481
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-1481
https://www.st.com/resource/en/datasheet/stm32f401re.pdf

[Sto10] Dan (Mcld) Stowell. Somtraining.svg. https://commons.wikimedia.org/
wiki/File:Somtraining.svg. Mai 2010.

[Str25] Cole Stryker. What are large language models (LLMs)? https://www.ibm.

com/think/topics/large-language-models. Sep. 2025.

[SVL14] Ilya Sutskever, Oriol Vinyals und Quoc V Le. „Sequence to sequence learning

with neural networks“. In: Advances in neural information processing systems.
2014, S. 3104–3112.

[SWS07] Anoop Singhal, TheodoreWinograd und Karen Scarfone.Guide to Secure Web
Services. Techn. Ber. Special Publication 800-95. https://nvlpubs.nist.gov/

nistpubs/legacy/sp/nistspecialpublication800-95.pdf. Gaithersburg,

MD: National Institute of Standards und Technology (NIST), Aug. 2007.

[TC984] ISO TC97. „Basic reference model“. In: International Standard, ISO/IS 7498
(1984).

[TDM08] A. Takanen, J.D. Demott und C. Miller. Fuzzing for Software Security Testing
and Quality Assurance. Artech House information security and privacy series.

Artech House, 2008. isbn: 9781596932159. url: https://books.google.de/

books?id=tMuAc_y9dFYC.

[TG00] Caroline Tice und Susan L. Graham. Key Instructions: Solving the Code Locati-
on Problem for Optimized Code. Research Report. https://www.researchgate.
net / publication / 2432347 _ Key _ Instructions _ Solving _ the _ Code _

Location_Problem_for_Optimized_Code. 130 Lytton Avenue, Palo Alto,

California 94301: Compaq Systems Research Center, Sep. 2000, S. 30.

[Tou+23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,

Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale u. a. Llama 2: Open foundation and fine-tuned chat models. 2023. arXiv:
2307.09288 [cs.CL]. url: https://doi.org/10.48550/arXiv.2307.09288.

[Tou+24] Asma Touqir, Faisal Iradat, Abdur Rakib, Nazim Taskin, Hesamaldin Jadid-

bonab, Zaheeruddin Asif und Olivier Haas. Systematic Review of Fuzzing in
IoT: Evaluating Techniques, Vulnerabilities, and Research Gaps. Aug. 2024. doi:
10.21203/rs.3.rs-4963553/v1.

[TW11] Andrew S. Tanenbaum und David Wetherall. Computer networks. 5th ed.

Boston: Prentice Hall, 2011. isbn: 9780133485936. url: https://learning.

oreilly.com/library/view/-/9780133485936/?ar.

[Uni20] Unit 42. 2020 Unit 42 IoT Threat Report. https://unit42.paloaltonetworks.
com/iot-threat-report-2020. 2020.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser und Illia Polosukhin. „Attention is All you

Need“. In: Advances in Neural Information Processing Systems. Hrsg. von I.

Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan

und R. Garnett. Bd. 30. Curran Associates, Inc., 2017. url: https://arxiv.

org/abs/1706.03762.

171

https://commons.wikimedia.org/wiki/File:Somtraining.svg
https://commons.wikimedia.org/wiki/File:Somtraining.svg
https://www.ibm.com/think/topics/large-language-models
https://www.ibm.com/think/topics/large-language-models
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-95.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-95.pdf
https://books.google.de/books?id=tMuAc_y9dFYC
https://books.google.de/books?id=tMuAc_y9dFYC
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://www.researchgate.net/publication/2432347_Key_Instructions_Solving_the_Code_Location_Problem_for_Optimized_Code
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.21203/rs.3.rs-4963553/v1
https://learning.oreilly.com/library/view/-/9780133485936/?ar
https://learning.oreilly.com/library/view/-/9780133485936/?ar
https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Weitere Literatur

[Vis+11] Arun Viswanathan, Alefiya Hussain, Jelena Mirkovic, Stephen Schwab und

John Wroclawski. „A Semantic Framework for Data Analysis in Networked

Systems“. In: 8th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 11). Boston, MA: USENIX Association, März 2011. url:

https://www.usenix.org/conference/nsdi11/semantic-framework-data-

analysis-networked-systems.

[Vos17] Nathan Voss. afl-unicorn: Part 2 Fuzzing the ’Unfuzzable’. https : / /

hackernoon . com / afl - unicorn - part - 2 - fuzzing - the - unfuzzable -

bea8de3540a5. Nov. 2017.

[Wan+19] Yunchao Wang, Zehui Wu, Qiang Wei und Qingxian Wang. „NeuFuzz: Effi-

cient Fuzzing With Deep Neural Network“. In: IEEE Access 7 (2019), S. 36340–
36352. doi: 10.1109/ACCESS.2019.2903291.

[Wan+20a] Yan Wang, Peng Jia, Luping Liu, Cheng Huang und Zhonglin Liu. „A sys-

tematic review of fuzzing based on machine learning techniques“. In: PLOS
ONE 15.8 (Aug. 2020), S. 1–37. url: https://doi.org/10.1371/journal.

pone.0237749.

[Wan+20b] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao

Wu und Purui Su. „Not All Coverage Measurements Are Equal: Fuzzing by

Coverage Accounting for Input Prioritization“. In: 27th Annual Network and
Distributed System Security Symposium, NDSS 2020. San Diego, California,

USA: The Internet Society, Feb. 2020, S. 17. doi: 10.14722/ndss.2020.24422.

[Wat+16] AndrewWaterman, Yunsup Lee, David A. Patterson und Krste Asanović. The
RISC-V Instruction Set Manual, Volume I: User Level ISA, Version 2.1. Technical
Report UCB/EECS-2016-118. https://www2.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-118.html. Electrical Engineering und Computer

Sciences University of California at Berkeley, März 2016.

[Wen+19] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich und Edgar R. Weippl.

„From Hack to Elaborate Technique - A Survey on Binary Rewriting“. In:

ACM Comput. Surv. 52.3 (2019), 49:1–49:37. url: https://doi.org/10.1145/
3316415.

[Wen18] Lilian Weng. From Autoencoder to Beta-VAE. https://lilianweng.github.
io/posts/2018-08-12-vae/. Aug. 2018.

[WHJ15] Jorge Wong-Mozqueda, Robert Haines und Caroline Jay. „Is Code Quality

Related to Test Coverage?“ In: Proceedings of the International Workshop on
Sustainable Software Systems Engineering. Jan. 2015, S. 2.

[WL90] Alexander Waibel und Kai-Fu Lee, Hrsg. Readings in Speech Recognition. First
Edition. San Mateo, CA: Morgan Kaufmann, 1990. isbn: 1558601244.

[Won+08] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel und Engin

Kirda. „Automatic Network Protocol Analysis.“ In: NDSS. Bd. 8. 2008, S. 1–14.

172

https://www.usenix.org/conference/nsdi11/semantic-framework-data-analysis-networked-systems
https://www.usenix.org/conference/nsdi11/semantic-framework-data-analysis-networked-systems
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://doi.org/10.1109/ACCESS.2019.2903291
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.14722/ndss.2020.24422
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://doi.org/10.1145/3316415
https://doi.org/10.1145/3316415
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/

[Wri+21] Christopher Wright, William A. Moeglein, Saurabh Bagchi, Milind Kulkarni

und Abraham A. Clements. „Challenges in Firmware Re-Hosting, Emulation,

and Analysis“. In: ACM Comput. Surv. 54.1 (Jan. 2021). issn: 0360-0300. doi:
10.1145/3423167. url: https://doi.org/10.1145/3423167.

[WS92] David W. Wall und Amitabh Srivastava. A Practical System for Intermodule
Code Optimization at Link-Time. 1992. url: https://web.stanford.edu/
class/cs343/resources/om.pdf.

[Wu22] Ziwei Wu. „A Study of Grammar-Based Fuzzing Approaches“. California

Polytechnic State University, 2022. url: https://digitalcommons.calpoly.

edu/theses/2476.

[Wut24] Laurenz Wuttke. Künstliche Neuronale Netzwerke: Definition, Einführung,
Arten und Funktion. https : / / datasolut . com / neuronale - netzwerke -

einfuehrung/. Feb. 2024.

[Xia+24] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel und

Lingming Zhang. Fuzz4All: Universal Fuzzing with Large Language Models.
2024. arXiv: 2308.04748 [cs.SE]. url: https://doi.org/10.48550/arXiv.

2109.05687.

[Xu+21] Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang

Huang und Fei Huang. Raise a Child in Large Language Model: Towards
Effective and Generalizable Fine-tuning. 2021. arXiv: 2109.05687 [cs.CL].

url: https://doi.org/10.48550/arXiv.2109.05687.

[Yan+23] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh

Jabbarvand und Lingming Zhang.White-box Compiler Fuzzing Empowered
by Large Language Models. 2023. arXiv: 2310.15991 [cs.SE]. url: https:

//doi.org/10.48550/arXiv.2310.15991.

[YG23] Anil Yemme und Shayan Srinivasa Garani. „A Scalable GPT-2 Inference

Hardware Architecture on FPGA“. In: 2023 International Joint Conference
on Neural Networks (IJCNN). IEEE. Los Alamitos, CA, USA: IEEE Computer

Society, 2023, S. 1–8. url: https://doi.org/10.1109/IJCNN54540.2023.

10191067.

[Yon+23] Zheng Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji,

David Ifeoluwa Adelani, Khalid Almubarak, M Saiful Bari, Lintang Sutawi-

ka, Jungo Kasai, Ahmed Baruwa, Genta Winata, Stella Biderman, Edward

Raff, Dragomir Radev und Vassilina Nikoulina. BLOOM+1: Adding Language
Support to BLOOM for Zero-Shot Prompting. Hrsg. von Anna Rogers, Jordan

Boyd-Graber und Naoaki Okazaki. Toronto, Canada, Juli 2023. url: https:

//aclanthology.org/2023.acl-long.653.

[YS19] S. Bharadwaj Yadavalli und Aaron Smith. „Raising binaries to LLVM IR with

MCTOLL (WIP paper)“. In: Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded
Systems, LCTES 2019, Phoenix, AZ, USA, June 23-23, 2019. Hrsg. von Jian-Jia

173

https://doi.org/10.1145/3423167
https://doi.org/10.1145/3423167
https://web.stanford.edu/class/cs343/resources/om.pdf
https://web.stanford.edu/class/cs343/resources/om.pdf
https://digitalcommons.calpoly.edu/theses/2476
https://digitalcommons.calpoly.edu/theses/2476
https://datasolut.com/neuronale-netzwerke-einfuehrung/
https://datasolut.com/neuronale-netzwerke-einfuehrung/
https://arxiv.org/abs/2308.04748
https://doi.org/10.48550/arXiv.2109.05687
https://doi.org/10.48550/arXiv.2109.05687
https://arxiv.org/abs/2109.05687
https://doi.org/10.48550/arXiv.2109.05687
https://arxiv.org/abs/2310.15991
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.1109/IJCNN54540.2023.10191067
https://doi.org/10.1109/IJCNN54540.2023.10191067
https://aclanthology.org/2023.acl-long.653
https://aclanthology.org/2023.acl-long.653

Weitere Literatur

Chen und Aviral Shrivastava. ACM, 2019, S. 213–218. url: https://doi.org/

10.1145/3316482.3326354.

[Yu+17] Lantao Yu, Weinan Zhang, Jun Wang und Yong Yu. „Seqgan: Sequence gene-

rative adversarial nets with policy gradient“. In: Thirty-first AAAI conference
on artificial intelligence. 2017.

[Yun+22] Joobeom Yun, Fayozbek Rustamov, Juhwan Kim und Youngjoo Shin. „Fuzzing

of Embedded Systems: A Survey“. In: ACM Comput. Surv. 55.7 (Dez. 2022).
issn: 0360-0300. doi: 10.1145/3538644. url: https://doi.org/10.1145/

3538644.

[YZZ23] Chenyuan Yang, Zijie Zhao und Lingming Zhang. KernelGPT: Enhanced
Kernel Fuzzing via Large Language Models. 2023. arXiv: 2401.00563 [cs.CR].

url: https://doi.org/10.48550/arXiv.2401.00563.

[Z-W21] Z-Wave Alliance. Z-Wave Specifications. Z-Wave Alliance. 2021. url: https://

z-wavealliance.org/development-resources-overview/specification-

for-developers/.

[Zal19] Michal Zalewski. AFL Documentation. Version 2.53b. https : / / afl - 1 .

readthedocs.io/_/downloads/en/latest/pdf/. Juli 2019.

[Zel+24] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser und Christian

Holler. The Fuzzing Book. CISPA Helmholtz Center for Information Security,

2024. url: https://www.fuzzingbook.org/.

[Zha+18] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu und Erxue Min. „Ptfuzz:

Guided fuzzing with processor trace feedback“. In: IEEE Access 6 (2018),

S. 37302–37313.

[Zha+22] Sen Zhao, Jinfa Wang, Shouguo Yang, Yicheng Zeng, Zhihui Zhao, Hongsong

Zhu und Limin Sun. „ProsegDL: Binary protocol format extraction by deep

learning-based field boundary identification“. In: 2022 IEEE 30th International
Conference on Network Protocols (ICNP). IEEE. 2022, S. 1–12.

[Zha+24a] Ao Zhang, Yiying Zhang, Yao Xu, Cong Wang und Siwei Li. „Machine Lear-

ning-Based Fuzz Testing Techniques: A Survey“. In: IEEE Access 12 (2024),
S. 14437–14454. doi: 10.1109/ACCESS.2023.3347652.

[Zha+24b] Hongxiang Zhang, Yuyang Rong, Yifeng He und Hao Chen. LLAMAFUZZ:
Large Language Model Enhanced Greybox Fuzzing. 2024. arXiv: 2406.07714
[cs.CR]. url: https://arxiv.org/abs/2406.07714.

[Zha+24c] Sen Zhao, Shouguo Yang, Zhen Wang, Yongji Liu, Hongsong Zhu und Limin

Sun. „Crafting Binary Protocol Reversing via Deep Learning With Knowled-

ge-Driven Augmentation“. In: IEEE/ACM Transactions on Networking 32.6

(2024), S. 5399–5414. doi: 10.1109/TNET.2024.3468350.

[Zhe+19] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu und

Limin Sun. „FIRM-AFL: high-throughput greybox fuzzing of iot firmware

via augmented process emulation“. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, S. 1099–1114.

174

https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://arxiv.org/abs/2401.00563
https://doi.org/10.48550/arXiv.2401.00563
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://www.fuzzingbook.org/
https://doi.org/10.1109/ACCESS.2023.3347652
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://doi.org/10.1109/TNET.2024.3468350

	Kurzzusammenfassung
	Abstract
	Abkürzungsverzeichnis
	Einleitung
	Motivation
	Zielsetzung und wissenschaftlicher Beitrag
	Aufbau der Dissertation

	Grundlagen
	Besonderheiten von IoT-Geräten
	Architekturen und Protokolle von IoT-Geräten
	Herausforderungen beim Fuzzing von IoT-Geräten

	ESP32 Mikrocontroller
	Architektur
	Firmware
	Xtensa ISA

	Rewriting
	Code Location Problem
	Binary Rewriting

	Fuzzing
	Definition von Fuzzing
	Ungültige Eingaben
	Fuzzing-Szenarien
	Eingabegenerierung
	Feedbackgesteuertes Fuzzing
	Codeabdeckung und Messbarkeit von Fuzzing
	Effizientes Fuzzing
	Syntaktische und semantische Korrektheit

	Grammatiken für Fuzzing
	Aufbau der Grammatik
	Formale Beschreibung von Grammatiken
	Kontextfreie Grammatiken
	Grammatik von XML
	Vorteile des grammatikbasierten Fuzzings

	Fuzzing im Emulator
	Netzwerkprotokolle
	Struktur eines TCP-Headers
	File Transfer Protocol (FTP)
	Hypertext Transfer Protocol (HTTP)
	Angriffsvektoren auf Netzwerkprotokolle
	Protocol Reverse Engineering (PRE)

	Neuronale Netzwerkarchitekturen
	Künstliches neuronales Netz (KNN)
	Convolutional Neural Network (CNN)
	Autoencoder (AE)
	Generative Adversarial Network (GAN)
	Long Short-Term Memory (LSTM)
	Self-Organizing Map (SOM)
	Large Language Model (LLM)

	Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

	ESP32 Code-Injektion bei unverändertem Kontrollfluss mittels Binary Rewriting
	Einleitung
	Stand der Technik
	Design
	Binary Recovery
	Rewriter

	Implementierung
	Binary Recovery
	Rewriter
	Flashen nach dem Binary Rewriting zurück auf das Gerät

	Proof of Concept
	Entwicklung eines Beispiel-Tools
	Implementierung des Beispiel-Tools
	Verwendung des Beispiel-Tools

	Einschränkungen und Ausblick
	Zusammenfassung
	Fazit

	Fuzzing von ESP32-Mikrocontrollern mittels QEMU-Emulation
	Einleitung
	Stand der Technik
	Konzeption
	Fehlererkennung
	Zielausführung mit Fuzzing-Hooks
	Feedbackgesteuerte Eingabegenerierung

	Implementierung
	Blackbox-Fuzzing auf ESP32-Anwendungen
	Whitebox-Fuzzing mit compilerinstrumentiertem Code
	Whitebox-Fuzzing mit ESP32-QEMU-FUZZ
	Blackbox- und Greybox-Fuzzing mit ESP32-QEMU-FUZZ

	Evaluation
	Fuzzing der TCP-Testanwendung
	Greybox-Fuzzing der LIFX Mini

	Einschränkungen und Ausblick
	Zusammenfassung
	Fazit

	Protocol Reverse Engineering mittels neuronaler Netze
	Einleitung
	Stand der Technik
	Hauptansatz
	Datenerfassung
	Feature Extraction
	Reverse Engineering von Features
	Clustering
	Zustandserkennung
	Sequenzgenerierung

	Implementierung von PREUNN
	Datenvorverarbeitung
	Feature Extraction
	Feature Reverse Engineering
	Clustering
	Zustandserkennung
	Sequenzgenerierung

	Weiterentwicklung
	Vorverarbeitung der Daten
	Klassifizierung von Nachrichtentypen und Zustandsübergängen
	Erlernen des Nachrichtenaufbaus
	Generierung neuer Testfälle

	Implementierung von PREUNN2
	Vorverarbeitung
	Clustering
	Generierung neuer Pakete und Sequenzen

	Evaluation
	ProFuzzBench
	AFLNet
	Integration der Machine-Learning-Methoden
	Implementierung der Fuzzing-Ziele
	Auswertung der Ergebnisse

	Zusammenfassung
	Fazit

	Effizientes grammatikbasiertes Fuzzing mittels Large Language Models
	Einleitung
	Stand der Technik
	Entwurf
	Datensatz
	Trainingsansatz
	Inferenzstrategie
	Modell-Integration
	Feedback-Schleife

	Implementierung
	Modelltraining und Integration mit AFL
	Kontinuierlicher Datenintegrationsmechanismus
	Optimierungstechnologien
	Dynamischer Feedback-Mechanismus

	Evaluation
	Bewertungsmetriken
	Experimentelle Ansätze
	Experimentelle Ergebnisse
	Inferenzbewertung

	Einschränkungen und zukünftige Arbeiten
	Zusammenfassung
	Fazit

	Ansatz für ein integriertes Fuzzing-Framework
	Konzeptionelle Integration der Module
	Flexiblität der Module
	PREUNN und HTTYL als parallele Module
	Kombination der Module

	Diskussion und Interpretation der Ergebnisse
	Limitationen

	Verwandte Arbeiten
	Binary Rewriting
	Hardware Fuzzing von IoT-Geräten
	IoT Fuzzing mittels Emulation
	Fuzzing von Netzwerkprotokollen
	Grammatik-basiertes Fuzzing
	Fuzzing mittels Machine Learning
	Optimierung des Fuzzing-Prozesses

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick und zukünftige Arbeiten

	Begriffsdefinitionen
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Listings
	Eigene Arbeiten
	Weitere Literatur

