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ABSTRACT

The heat equation is often used to inpaint dropped data in inpainting-based lossy compression schemes. We propose
an alternative way to numerically solve the heat equation by an extended Krylov subspace method. The method is
very efficient with respect to the computation of the solution of the heat equation at large times. And this is exactly
what is needed for decoding edge-compressed pictures by homogeneous diffusion.

1 | Introduction

Inpainting-based compression of images refers to the idea of identifying prominent data in an image and storing only
this data. All other data is disregarded and, when needed, reconstructed by inpainting. In particular, we will consider
edge-based compressed images, where the edges of an image, together with adjacent gray/color data, are stored [1-4].
This idea can be seen as a second-generation image coding method where the properties of the human visual system
are taken into account [5]. The edge-based compression works very well for cartoon-like images [6]. To improve the
quality of the reconstruction for natural images, we also compress images based on dithering [7]. Dithering also works
due to the perception of images by the human visual cortex. We will work with these two basic coding techniques. But
since our new contribution refers to the decoding, more advanced coding techniques [8, 9] can easily be combined with
our approach. We would also like to mention that, while our proposal deals with homogeneous diffusion, the proposed
method might be carried over to more general linear evolution equations, e.g., in image registration [10], and to nonlinear
partial differential equations used for inpainting by the help of exponential integrators, in which the linear part is solved
as proposed in this work. More information on exponential integrators might be found in the survey by Hochbruck and
Ostermann [11], and information on advanced image inpainting methods by partial differential equations can be found
in Schoenlieb’s book [12].

To review the basic idea of inpainting-based compression of images, let f : Q — R be a given gray-scale picture. f(x)
refers to the intensity of light and Q is the rectangular domain of the picture. In a color picture, any channel is treated
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FIGURE1 | Sketch of the compression scheme: In the encoding step, the original picture is reduced to a subset, in the decoding
phase, the original is reconstructed from this subset. (a) Original, (b) compression, and (c) reconstruction.

in the same way. After the compression of the picture, the intensities are only known on a subdomain K C Q. This
splits the image into a known part K and an unknown part Q \ K. To flag the stored pixels efficiently, we will use the

function
1 forx e K,
c(x) =

0 forxe Q\ K,

which we will refer to as inpainting mask. With the help of the inpainting mask, the compressed image f,. can be writ-
ten as f. = c¢f. In the middle of Figure 1, such a compressed picture of the picture on the left-hand side is shown.
Only the pixels that are not black are stored. This data is sufficient for the reconstruction on the right-hand side of
Figure 1.

For the reconstruction, we inpaint the missing data by the heat equation. The system reads

du(x, 1) = (1 — c(X)Au(x, 1), in Q x [0, o),
0,u(x,1) =0, in 0Q x [0, 00),

with Neumann boundary conditions and the compressed image
u(x,0) = c(x) f(x), xeQ,

as initial data. The reconstructed picture is the solution u(x, t) of the above PDE at a large time 7. The new contribution
is an efficient method to solve the discretized heat equation at a prescribed time ¢, directly. The discretization of the heat
equation leads to a huge system of ordinary differential equations

y =Ay, y0)=b, 1)

where b are the pixels of the compressed image written as a vector according to the chosen enumeration of the pixels.
Here and in the following, we will not make a difference between the image data written as a vector or as an array of
pixel values. It should be clear from the context which one is meant. The reconstructed image y() at time ¢ is given by the
matrix exponential times the vector b, i.e., y(f) = ¢'4b.

Recently, rational Krylov subspace methods have been found to be an excellent choice for the approximation of the matrix
exponential, i.e., the solution of (1) at time 7. Rational Krylov subspaces were first considered by Axel Ruhe [13, 14]. They
also turned out to be useful in inverse problems [15-18]. If A is an operator or an arbitrarily large matrix with a field of
values in the left complex half-plane, the matrix exponential times a vector can be approximated reliably for an arbitrary
time ¢ > 0 under reasonable assumptions on the vector [19-22]. If the matrix A is symmetric and the field-of-values is
on the negative real axis, then rational Krylov methods are known that converge fast without any restrictions on the
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vector [23, 24]. For finite subintervals of the negative real line, even super-linear convergence is obtained [25]. Rational
Krylov approaches are a rich class of methods that might use different poles across the rational Krylov iterations [26, 27].

Our matrix A is not symmetric, but nevertheless allows for the use of a well-chosen rational Krylov subspace such that
fast convergence is obtained. We will approximate the solution of system (1) in extended Krylov subspaces of the form

E.((yI — A7, b) =span{b, Ab, (yI — A)~'b,--- ,(yI — A)""*?b},

where y > 0 [19, 28, 29]. After the computation of an orthonormal basis V,, € R"™" of this space and the compression
S,, = VI AV, of the huge matrix A to a small m x m matrix, the Krylov approximation f,, is given by

T
£, = blIV,¢Se,, e =(10-.0) €r". @

This way, the solution of the huge system (1) is reduced to the solution of a small system of size m X m, i.e., to the com-
putation of e’Swe,. For this purpose, methods for small matrices can be used [30, 31]. It will turn out that a small m is
sufficient for arbitrarily large matrices A. The choice of the subspace that leads to this favorable property is intricate due
to two restrictions. A good error estimate is necessary to estimate the accuracy of the method, and the computation of the
vectors (y I — A)~"b requires the efficient solution of linear systems. This can be done by multigrid methods.

The paper is organized as follows: After the introduction in this section, the encoding of pictures is briefly discussed
in Section 2. In Section 3, the discretization of the heat equation is described. The new decoding scheme and the main
result—that it works independently of the size of the picture for a given large time r—are shown in Section 4. The
multigrid method adapted to our purposes as an efficient method to solve the linear systems is discussed in Section 5.
Numerical experiments with the decoding scheme as an illustration of our method are conducted in Section 6. Here and
everywhere else, we will use pictures of the Kodak lossless color image suite [32]. The work closes with a brief conclusion
as Section 7.

2 | Encoding

In this section, we briefly describe the encoding. The basic idea is to determine a binary mask c of the same size as the
picture that indicates which of the gray/color values are stored. The choice of this mask determines the compression. The
fewer pixels we have to store, the higher the compression will be. The choice of the mask is also important for the obtain-
able quality of the reconstructed image. We consider two basic methods to determine a good mask for a later inpainting
of the picture. For simplicity, we will not consider the generation of more elaborate masks by advanced coding techniques
[8, 9]. Our new decoding algorithm works with any mask c. For the demonstration of our approach, the two basic masks
will suffice.

2.1 | Edge Detection

Edges are very important for the perception of images by the human brain [33]. Therefore, one often starts with detecting
edge information in an image. One classic and often used idea is to identify edges as zero-crossings of the Laplacian
of an image that has been smoothed by a Gaussian filter, the Marr-Hildreth edge detector [34]. For a color picture,
f=(f. 1o f 3)T, the Laplacian is defined as the sum of the Laplacians over all channels. The modulus of the Laplacian is
defined as the sum of the absolute values of the Laplacians over all channels. The idea is to store the pixels with a large
modulus of the Laplacian. To remove zero-crossings that arise from small oscillations in the image, the magnitude of
the gradient of the image at every pixel is used in addition. All edges are removed where the gradient is below a certain
threshold. This is basically the idea of the Canny edge detector [35]. If one uses the above idea for natural images, the highly
textured parts of the image are strongly emphasized in contrast to the background. This can be seen in the reconstruction
(d) of Figure 2. The background seems to be too blurred.

2.2 | Dithering

To improve the representation of smoother regions, it is proposed to choose the edge data proportional to the absolute
value of the Laplacian [36]. To follow this suggestion, we use Floyd -Steinberg dithering [7] for the modulus of the Lapla-
cian. This method also allows for a simple method to prescribe the percentage of the pixels to be stored. For example, if
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FIGURE2 | On the top left is the original picture. The modulus of the Laplacian of the Gaussian-filtered original image is shown
as a gray-scale picture on the top right. The binary mask on the bottom left has been chosen such that 10% of the pixels with the largest
modulus of the Laplacian (white pixels) are contained. The reconstruction according to the mask can be seen on the bottom right. (a)
Original, (b) modulus of Laplacian, (c) mask, (d) reconstruction.

one wishes to store 10% of the pixels, the largest modulus of the Laplacian in the picture is scaled such that the average
corresponds to a tenth of the value of a white pixel. If the maximal value of a white pixel is 255, the average corresponds
to 0.1 x 255 = 25.5. In the course of the Floyd - Steinberg dithering, about 10% of the pixels will automatically be stored.

In the following, we will refer to the first method as edge-based compression and the second one as dithering-based com-
pression. Dithering improves the display of the background in the reconstructed image, as can be seen in Figure 3. The
edge-based compression is superior for cartoon-like images, vector graphics, pictograms, and letters, where the edges are
the most important image feature. The dithering might be superior for natural images, as shown above.

3 | Discretization

For decoding the compressed pictures, the N, X N, pixels of the original picture are interpreted as a finite-difference
approximation to the heat equation. The mask ¢ turns into a binary mask, where 1 indicates that the pixel has been
stored. Every such pixel is treated as a discretized Dirichlet boundary condition with the pixel value as the boundary
value. Any boundary pixel, which is not a stored pixel, is treated as a homogeneous Neumann boundary. The Laplacian
is discretized by the standard stencil

1
0 ) 0
h_ |1 2, 2
y x y y
1
0 = 0
4 0f 20 Numerical Linear Algebra with Applications, 2026
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applied. (a) Dithering (10%), (b) reconstruction.

The mask has been chosen such that the modulus of the Laplacian has been scaled to 10% and dithering has been

13

>

[N

where A and b are as follows,

The matrix R,

[2 1010
310 1
0000
00-21
0000
010 1-2

1
0

1
0
0

Example of image with dimension 3 X 2 and its row-major numbering.

with grid constants &, h, in x, y-direction, respectively. The stencil is applied to every pixel that has not been stored.
As usual in image processing, we will assume that the grid constants are one in both directions on the finest grid,
which corresponds to the original picture. We illustrate the discretization by the small example in Figure 4. The gray
pixels indicate the stored pixels, i.e., the Dirichlet boundary data, where the mask c is one. The discretized heat
equation reads

y = Ay,

100000
010000
000100
000001

selects, by multiplication from the left-hand side, the rows of the matrix A that correspond to inner pixels where the
Laplacian stencil is applied. R” blows a vector that corresponds to the inner pixels up to the full size of our picture while
setting the boundary pixels to zero. The projector P = R” R projects to the orthogonal complement of the space spanned
by b. As a consequence, PA = A. Furthermore, RR” = I,,, where I,, designates the m x m identity matrix. With the help
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of the matrices R and R”, respectively, a symmetric matrix A, can be extracted from the matrix A as well as a reduced

sym
Vectorbsym,
-2 1 1 0
1 -3 0 O
_ T _ _
Agm = RART = | o o0l by, = RADb,
0O 0 0 -2

that allow for an alternative representation of the solution of system (4) given in Lemma 1.
Lemmal. The exact solution of Equation (4) can be written as

y(t) = e“b=b+ R (1¢,(tAgy)bgy). (5)
where @,(z) = (e — 1)/ z.

Proof. 1t is well known that the matrix exponential solves the ordinary differential equation (4). Hence, from here, we
obtain

y(t) = b =b+1p,(tA)Ab = b + ¢, (tPA)PAb = b + R' (19, (1 Ay )by ).
by PA = A and the fact that
@ (R"RA)R" = R"¢,(RAR")

according to Corollary 1.34 on page 21 in Higham’s book [31]. O

In the alternative representation (5) of the solution, one can see that the stored pixels in b are never altered due to the
properties of R, which is also true for the exact solution of (4), of course. It follows from the Gershgorin disk theorem
that A, has only negative eigenvalues and is therefore invertible. (Strictly speaking, A, has only negative eigenvalues
as soon as at least one boundary pixel exists in the interior of the rectangular domain of the picture.) From the stencil, one
can easily read off that the matrix A, is symmetric. Based on these facts, the following theorem shows that (y I — A) is
invertible for all y > 0, which is crucial for our decoding method.

Lemma 2. Fory > 0, we have .

GI-A't==-T+ 1RT(yI — A.) 'RA.
Yy v

sym
Proof. 'We compute

(yl—A)<11 + lRT(yl - Asym)‘lRA> = 1(;/1 - A)+ l(yl — AR"(yI — Agyy) ' RA
yoor Y Y

—r-Lag lP(yl - AR"(yI — Agy) 'RA=1T - Ly lRT(yJ — Agm)(7 1 = Ag) ' RA
Y Y Y Y
—r-Yaylpa=1
Y Y 0

4 | Decoding by the Extended Krylov Subspace Method

Extended Krylov subspaces for invertible matrices use the matrix as well as its inverse [19, 28, 29]. Let C be an invertible
matrix and b a vector of a suitable dimension. Then the extended Krylov subspace &£, (C, b) is defined as

85((:, b) = span{b, C—lb’ o C—qb’ Cb, o Cp_lb},

Due to Lemma 2, yI — A is invertible and hence we can set C = (yI — A)~!. We will use extended Krylov subspaces where
q is always one of the following forms

EN(T — A b)=E'_((yI — A7\, b) = span{b, Ab, (yI — A)'b, - ,(yI — A)"*?b).
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Note, that we have used that span{b, (yI — A)b} = span{b, Ab}, here. We start by computing an orthonormal basis V,, €
R™m of the extended Krylov subspace by Algorithm 1. Then, we compute the compression .S,, = VT AV, € R™" of the
large matrix A, and finally the Krylov approximation £, as given in Equation (2). To understand the properties of the Krylov
algorithm, we study the algorithm via the symmetric matrix A the initial vector bg,,,, and the alternative solution
representation (5).

sym> sym>

The computation of the basis V,, by Algorithm 1 can be compared with the symmetric Lanczos method for a related Krylov
subspace as outlined in Lemma 3.

Lemma3. Let W, ,=[wy,---,w,_ ;] be the (symmetric) Lanczos basis for the Krylov subspace

> YWm—1

Kooy (r I = Agy) ™" byyy) according to Algorithm 2. Then, the orthonormal basis for the extended Krylov subspace
E,((yI = A)7',b) = span{b, Ab,(yI — A)~'b,--- ,(yI — A)""**b}

according to Algorithm 1 reads

V= [V, ....v,] = [vi, R"W,,_4]. v, = ﬁb.

Proof. The idea of the following proof is to compare the (non-symmetric) Arnoldi-like algorithm with the
(non-symmetric) Arnoldi algorithm (cf. algorithm 6.1 in Saad’s book [37]) for the standard Krylov space
K,y (v I = Agy) ™" by ). The (non-symmetric) Arnoldi-like algorithm and the (non-symmetric) Arnoldi algorithm are
the same as the symmetric Lanczos-like Algorithm 1 and the symmetric Lanczos algorithm 2, respectively, with the
difference that the for-loop j runs from j =0, ..., m. In the (non-symmetric) Arnoldi-like algorithm, we compute i im
for j =1,...,m, which guarantees that the generated vectors are perpendicular to each other. The (non-symmetric)

Arnoldi-like algorithm leads to the following. Let v, = mb, which is the obvious start. Then

ALGORITHM1 | Symmetric Lanczos-like algorithm.

Setv, =b/|b|l,v,=0
form =1,2,3,...do
if m = 1 then
u = Av,
else
u= Il - Ay,
end if
forj=m—-1,mdo
hjm =(u,v;)
end for

Vo =u—~h —h v,

mmvm m—1,mYm—1
Vm+l = Vm+l/hm+l,m’ hm+l,m = ||Vm+1 ”

end for

ALGORITHM 2 | Symmetric Lanczos.

Set w, = bsym/”bsym“!
form =1,2,3,...do
u= @l - Ay 'w,
for j=m—1,mdo
hjm = (u, Wj)
end for

Wy =u— hmmwm - hm—l,mwm—l

wm+l = Wm+l/hm+l,m’ hm+l,m = ”Wm+l ”
end for
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1 1
Av, = —Ab=—R"b_,,
T IIb]| v
1
hy, =viAv, = b’ Ab = b" PAb = 0,
T b2 HMP
. 1
Vv, = AVl — hl’lvl = mRTbsym’
Byl
hy = IV, = ,
2 2 IIb]|
1 . r 1 T
2 h21 2 ”bsym” !

Our statement is proved for m = 2. For m > 3, we have

_1 _
ViV, + = (va)T(yI Agm) ' RAV,, =0,

_ 1 1
hy =Vl —A) v, = V1T<;I + ;RT(yl — Agm)” 1RA>
since vlTvm =0and Rv, =0.Forj =2,...,m, we obtain

_ 1, 1 _ 1 1 _
R = JT(yI -A) v, = va<—1 +=R'(yI - Agyp) 1RA>vm = ;vavm + —(Rvj)T(yI — Aym) ' RAv,

1

= —(RT O'R"w, |+ (RRT ) (71 — Agym) ' RAR" W, ;w Wi+ %wjr_l(yl—ASym) "AgmWi -
With the help of the relation
(1] = Age) HAg = =1 +y(rT — Agy) ™, (6)
we conclude
h;, = %wf_lwm_l + %wjf_ (~T+y(rT = Ay) )Wy =W (] = Agy)'W, ;= ?zm_lqj_l, ji=2,...,m

By (6), we also have
-1 1 1.7 -1 (1 1 -1 T -1
(1= A7, = ( Z1 4 DRI = Ag) RA PV, = RT( 21 20T = Ag)™ Ay | Wy = R G7T = Agn) W,

Finally, we find

m+1 =@l-A)" V - Zhjm 1 hlmvl = RT()/I - Asym)_lwm—l - Z/I\Ij—l,m—lRij—l

j=2 j=
m—1
T -1 N T

=R"( /1 = Agy) "W,y = DRy W, | = RTW,

=1
aswellas h,,, ,, = IV, 41|l = |lW, || = A,,,,_; and
vm+1 T Wm T
Vine1 = h =R = =R W,,.

m+1,m hm,m—l

We have now proved the statement of our lemma for the (non-symmetric) Arnoldi algorithms. Since the matrix

yI - Asym)‘1 is symmetric, the (non-symmetric) Arnoldi algorithm automatically reduces to the symmetric Lanc-
zos algorithm (cf. section 6.6 of Saad’s book [37]). Hence, }\lj—l,m—l =0 for j—1<m-3, and we obtain h;, =
forj <m-2. O

The first m steps of Algorithm 1 and the first m — 1 steps of Algorithm 2 can be written compactly as

[Avi. T = A7 vy v, )] = Vi V] Hy ot = Ag) T W W] = Wy W [ H
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respectively, where H,, is of dimension (m + 1) X m and ﬁm_l is of dimension m X (m — 1). Here and elsewhere, we assume
that the algorithm did not break down. In case of a br?kdown, the breakdown is lucky. The exact solution of the heat
equation is available in this case. Both matrices, H,, and Hm 1> are unreduced upper Hessenberg matrices that contain the
values computed in the algorithms and are otherwise set to zero. Hence, more exactly, both matrices are tridiagonal due

to Lemma 3. With H,, and fIm_l, we designate the matrices with dimensions m X m and (m — 1) X (m — 1), respectively.

‘We then have
0 o gyl . N
H = ~ , =h,e,=————e,, and HT ,=H
m lﬁ Hm_l 21%1 ”b” 1 m—1 m—1

The following lemma relates the compression S,, = VI AV, of A in the extended Krylov subspace to the compression

Sy =W 1AWy of Agy, in the Krylov space K, (7 I — Agyn) ™" Byyn)-
Lemmad. LetS, =W 1\AgmW,1- Then, for S,, = V.l AV, , one can find
0 0 1 ”bsym”
S, = _ , i=—Ww" b, =
lﬁ Sm_ll bl ™ T b

with e, € R™1, and therefore, yI — S, is invertible for all y > 0.

Proof. By Lemma 3, one obtains

T Lp" Lb"Ab Lb"AR™W,_,
S, =VTAV, = [Lb RTW,H] A[Lb RTW,H] = | Ivl [ Ab ARTW,_ ] =| e Iib]
m IIbll Il W,z_lR Il ol WT RAb WT RARTW

Since for any v € R”, Av has zeros where b has entries and vice versa, b’ Ab = 0 and mbTART W,,_1 = 0is a zero row

vector of length m — 1. Furthermore,

.1 s 1 .7 Ibymll . 1bgymI
a=—Ww =——W = w, = e
bl 1 bl "t b Tt bl
and
Sy =W RAR'W, , =W AW,
Hence

0
YI_sz ly~ S ]
-ayl-5,,

is invertible, since y > 0 and S,,_; is a symmetric, negative-definite matrix, by Lemma 5, and yI — S,,_; therefore is a
symmetric positive-definite matrix. O

Lemma5. S, _, isasymmetric and negative-definite matrix.

Proof. The symmetry follows directly from the symmetry of Agym

ST = (W A W,) =W AL W, =W AW, =S,

m— sym —1""sym sym

Since Agyp,, is symmetric and has only negative eigenvalues, the field-of-values of A, is given as

F(ASym) = [Amin> Amax] C (—=00,0),

where

A = min A4, A = max A
e . M eo(Agm)
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and o (A, ) is the set of eigenvalues. Hence, for the field-of-values of S, 1
e
5 Y7 Sy .
F(Sm—l) = {Tl | 0#yeC 1} c F(Asym) = [Amin’ imax]’
YUy

since

yHW AsyrnW 1Y _ yH W,ﬁlAsyme—ly _ XHAsme X=W y

yiy yIWH W, 1y xHx m-17"

Hence, since o(S,,_,) C F(S,_,), all eigenvalues of S, _, are negative and §,,_, is negative definite. O

Lemma6. Let S, =V AV,, be the compression of A. With E =[0,1,,_,] € R™V" let H, | = EH,,E". Then H,,_,
is invertible and one may compute the compression S,, by the values computed in Algorithm 1 as follows

H 1

W Av, y)H

m+1 mlmleml

0 0 Byl - ~
S, = _ , = e, €R™, and S, =yI-H' +h
lﬁ Sm—l] Ib]| 1 1 m—1 m+1,m

Proof.  According to Lemma 4, the structure is as stated in this lemma, where

St =W AguW,_

sym

By formula (5.8) in Grimm [21], we obtain that ﬁm_l in the relation on the right-hand side of (7) is invertible as well as

Spa =Wl AW,y =yI—H +h (WA ,w,—yH e, e H-1.

As outlined in the discussion following formula (7), the values H,, computed in Algorithm 1 relate to the ones com-
puted by Algorithm 2, collected in H,,_,,as H,_, = EH, ET. Therefore, hm me1 =Py pandv? AV, =w! RAR"w, =
wl A
m

symW,, conclude the proof of our lemma. ]

The following theorem states that the boundary pixels are correctly set in the first Krylov step and not altered afterwards
due to the properties of the matrix RT. An alternative representation of the Krylov approximation is given with the help
of the ¢,-function analogous to Lemma 1.

Theorem 1. The Krylov approximation to the matrix exponential times vector, e'4b, in the Krylov subspace

E,((yI — A)~1,b) reads
|||:)||VmetSme1 =b+ RT(||bsym||Wm_1t(p1(tSm_1)e1).

Proof. With the help of Lemma 4, one obtains

and hence

s pye( 00 0 1 1
ere =€ Tl ck-1. sk J&B1 =€t £ ke 1 al = & e | T | Ibgmll & -
kS, a s, Y 1t 19, (1S),-)0 o [ P1ES )€

Finally, one obtains

1Byl
] O | P B TR AN G ey
Wtq’l(t m-1)€1
=b+ R (||bgyy, IW, 110, (tS,,_e;).
m]
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The comparison of the exact solution with the Krylov approximation via the alternative representation by the ¢,-function
leads to the error bound in Theorem 2. The ¢,-function can be approximated uniformly for matrices/operators with
field-of-values in the left half-plane [21]. Here we obtain even better bounds due to the symmetry of the matrix at which
the function is evaluated [24, 38, 39].

Theorem 2. The error of the Krylov approximation £, = ||b||V,,e"S»e; in the extended Krylov subspace £, ((y I —tA)~!,b)
with y > 0 to the solution of (1) reads, for m > 2 andt > 0,

lle”b —£,I| < 2¢E, ()b

sym”s

with
E,(y)= rg}ai’f}l“% =l (—0015
where || - ||y o) designates the supremum norm on (—oo, 0] and the space
Pm—2
Ry = {(},_r"m | s € pm—Z}

is the space of rational functions of the indicated form and dimension m — 1. Here, P,,_, is the space of polynomials with
degree less than or equal to m — 2.

Proof. With Lemma 1 and Theorem 1, one obtains
¢b—f£, = tR" () (tAgy)bym — by IW, 10,25, )e,).
Hence, by the exactness property in the Krylov space KC,,_;((yI — tAsym)‘l, by), namely

r(tAgm)bgym = ||bsym||W,,,_lr(tS‘m_l)e1

sym

forallr e R one obtains

m—1>

”etAb - fm” < t” ((pl(tAsym) - r(tAsym))bsym” + t”bsym”” (r(tSm—l) - (pl(tgm—l))elll
< 2|b

sym” ' . n}axojlqol(z) - r(2)].

min

€R,,_1 2E(—0 O
Note that E, (y) depends neither on the chosen # > 0 nor on the size of the matrix A. With the same ideas as in van den
Eshof and Hochbruck [24], Table 1 of optimal values of y with respect to the minimization of the error can be numerically
computed with the help of a simple transform and the Remez algorithm. Note that there is a subtle issue about scaling.
One has to use the Krylov subspace as given in Theorem 2. Alternatively, one might use the space &, ((¥I — A)~!, b) with
7 = Yopt/t for the simple reason that &,((yI —tA)~™',b) = £m((%l — A)~1,b). We refer the reader to van den Eshof and
Hochbruck [24] for details.

We illustrate the bounds and the necessity of the scaling numerically. We use an all-white square gray-scale picture of size
1024 x 1024. The Canny-like edge detector then produces the mask with all boundary pixels set to one and all interior
points set to zero. That is, the compressed picture has a white boundary and all pixels in the interior are black. For this
simple example, the solution of the inpainting by the heat equation can be computed at any time # > 0 by fast transforms.
In Figure 5, we show the error bound of Theorem 1 with the optimal choices of y according to Table 1 as a black solid line
and the error of the approximation with respect to the Krylov subspace &,,((7I — A)~!,b) with 7 = Yopt/1 @sin the theorem
as green circle-marked line for r = 25, ¢ = 102, and ¢t = 10*, respectively. The red diamond-marked line corresponds to the
extended Krylov subspace &,,((I — A)~!, b). That is, y is set to one and not scaled. For ¢ = 25, the approximation for small
dimensions of the space with y fixed to one is clearly worse than the error bound, in contrast to the properly scaled
Krylov subspace. For t = 102, and t = 10*, the approximation of the space with y fixed to one does not improve for larger
dimensions of the Krylov subspace, either.

Since the eye can not distinguish very small deviations, the error bound in Theorem 1 and our experiment suggest that
an extended Krylov subspace of a small dimension and with the optimal choice of y is sufficient for image processing
purposes. This will be confirmed in Section 6 by numerical experiments with real pictures.
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TABLE1 | Numerical approximation to the optimal value of y, vy, and the error E,,(y,,) for the optimal choice of y, dimension
m of the extended Krylov subspace, and #/ss linear system solves by the multigrid method.

#lss m E,(Yopt) Yopt #lss m E, (Yopt) Yopt
1 3 2.6-1072 1.5 11 13 5.3-1077 8.5
2 4 6.6-1073 3.5 12 14 1.8-1077 10
3 5 221073 5.5 13 15 5.7-1078 11.5
4 6 6.9-107* 3.5 14 16 2.5-1078 10
5 7 2.0-107* 5 15 17 8.6-107° 11.5
6 8 8.9-107° 7 16 18 3.1-107° 13
7 9 2.8-107° 8.5 17 19 1.3-107° 11.5
8 10 1.0-107° 6.5 18 20 4.8-10710 13
9 11 3.8-107° 8.5 19 21 1.9-10710 14.5
10 12 1.1-107° 10 20 22 8.3-107!! 16

10113 T 0

1074 - 1 104 i

10790 | 0k T wse o T

3 6 9 12 15 18 21 36 9 12 15 18 21 3 6 9 12 15 18 21

FIGURE5 | Error bound of Theorem 1 (black) solid line for the optimal choice of y, error of the extended Krylov subspace approx-
imation to the compressed all-white picture for the optimal y (green) circle-marked line, and error of the extended Krylov subspace
with y fixed to one (red) diamond-marked line vs. dimension of the Krylov subspaces for t = 25 on left-hand side, ¢ = 10? in the middle,
t = 10* on the right-hand side.

5 | Implementation Details
For the efficient computation of v! = (yI — A®)~'b", we use the multigrid method applied to the system
BRvh = pP, BP = (yI — AM).

The superscript h indicates that the matrices and vectors belong to the finest grid, which corresponds to the original
image. To efficiently implement the multigrid method, we operate on discrete images [6, 40]. For the application of the
multigrid method, we look at a fine grid Q" with N® = N} x N} pixels, where N and N correspond to the number of
pixelsin x- and y-direction, respectively. The grid spacingis denoted by h = (A, hy)T. On the finest grid (4, hy)T = (1,17,
which is a popular choice in image processing. For the next coarser grid, one would like to double the grid spacing in both
directions. This is only possible for powers of two. To include other grids, we define the coarser grid Q" with the spacings
H=(H,H)", with

Nh b

_ X _ y
Ho=h—%  H=h—5

X y

where NH = [Nf(‘ /2] and NyH = [N;’ /2] are the number of pixels in each direction in the coarse grid, where [-] denotes
the ceiling function. For the restriction, the coarse pixel is the average of the fine pixels according to the area of the fine
pixel that contributes to the coarse pixel. The prolongation reverses this process. For the restriction matrix 1111{ and the
prolongation matrix I}, one has the relation

o hr NINY  hihy
w=al’ 0= R =g
Xy ¥y

Restriction and prolongation are illustrated in Figure 6.
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FIGURE 6 | Example for the restriction and prolongation.

1 0 IH sgn

0.25 E—— 1

ch Ifeh cH

FIGURE 7 | Example for the restriction applied to the inpainting mask.

1 0 1]:{ sgn
0.5 E—— 1

0 1

ch Ifeh cH
0 8 1 ;’ 1 - o

3 _— 0

4 0

rh Ifie® ri

FIGURES8 | Computation of the coarse residual r*. As for the fine residual, the coarse residual is set to zero for known pixels.

Since we have two different sorts of pixels, we also have to apply the restriction and prolongation to our binary inpainting
mask c. We therefore adapt the restriction of the inpainting by applying the element-wise sign function to the restricted
inpainting mask

M = sgn(Zfich).
This is also illustrated in Figure 7.

With these two definitions, we obtain a natural definition of the coarse matrix A®. We can simply use the standard stencil
for the Laplace operator with respect to the grid spacing H = (H,, H,)". For the multigrid method, we also need to com-
pute the restriction of the fine residual r. With the Hadamard product o, the restriction of the fine residual to the coarse
residual is

M= (T -, T=q,-- 1)

The residual needs to be set to zero for known pixels (known according to the coarse inpainting mask ¢*). This is illus-
trated in Figure 8.

To apply nested iteration to obtain a good starting value for the multigrid cycles, we also need a restriction for the
right-hand side b". Here we use

b" = (I (chbM) o (1),
where @ is element-wise division with the exception that a division by zero leads to zero. This is illustrated in Figure 9.

To motivate this choice of the restriction for the right-hand side, we illustrate the restriction of b with the reweighting and
without in Figure 10. Since division by very small numbers might be instable, the values of I;Ich are set to zero below a
certain tolerance ¢, 0 < ¢ < 1, before the operator @ is applied. More exactly, we use

L 1if (Iffeh),; > e,
Y 0 else.
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1 0 [:I sgn
0.5 _— 1
0 1
ch Ifch c
6 0 o 6 0 [:I QIch
2.5 _— 5
2 4 0 4
ph chobh I:I (chObh) bH

FIGUREY9 | Computation of the coarse right-hand side b*.

(b)

FIGURE 10 | Restriction oftheright-handside b". The top row shows the restriction with the reweighting, the bottom row without.
Without reweighting, the colors lose intensity on the coarser grids. (a) b®, b = (1]11‘1(ch°bh)) %) (Illfch) ... with normalization, (b) b",
Ilflbh,,.. without normalization.

With these preparations, we state the full multigrid method as Algorithm 5. It consists of nested iteration (cf. Algorithm 4)
for a good starting vector followed by several u-cycles (cf. Algorithm 3). The u-cycle for x4 = 1 is also called V'-cycle and
the p-cycle with p = 2 is also called W-cycle. The damped Jacobi method is used for the pre- and post-relaxation steps
with a damping constant 2/3. The default is v; = 4 and v, = 4. As a stopping criterion for the multigrid method, we use
the relative norm of the residual set to a small value (default = 10719),

6 | Numerical Experiments

In this section, we present some experiments with our decoding scheme. In the first subsection, we show that the new
method outperforms standard time-integration methods. That the method compares to other (linear) edge-compressing
schemes is shown in the second subsection. Finally, we demonstrate the use of our scheme on a real-world
device.
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ALGORITHM 3 | p-cycle (v® = MG(V?, bY)).

if QM = coarsest grid then
solve Bhv® = b" by direct solver
else
relax v, times BMuP = b® with given starting value v"
= (T - cH) o [HB" - Bhvh)
vil=0
vi = MG(VH, r?) 4 times
correct v = v + JhvH
relax v, times BMuP = b® with starting value v®
end if

ALGORITHM 4 | Nested iteration (v® = NI(b)).

if Q" = coarsest grid then
solve Bv® = b by direct solver

else

b = (IH(chbM) @ (IHch)
end if
vH = NI(b™)

prolongate v* = If,vH
Vi = MG(VP, b") v, times

ALGORITHM 5 | Full multigrid (v® = FMG(V?, bY)).

vt = NI(bY)
vh = MG(vh, bP) k times

6.1 | Performance of the Integrator

Basically, we have to compute the solution y(#) of the system of ordinary differential equations (1) for a large time ¢. After
subdividing the interval [0, ] in n subintervals, the standard and most-used methods to approximate this solution are the
implicit (or backward) Euler method

yO = (yoI —A)7)'by, v ==, (8)

n
t
and the Crank-Nicolson method

YO~ (T + AT = A7),y =2, ©)
The larger n, the more accurate the approximation. To apply both methods, we have to solve n linear systems of the
same type as for the Krylov method. Since this is the largest workload, we compare the methods with respect to the
number of necessary solutions of linear systems of this type. For our edge-compressed all-white square test picture of
Section 4, the relative error in the Euclidean norm is shown in the top row of Figure 11. For the edge-compressed
image obtained from the original image on the left-hand side of Figure 12, the relative error is shown in the bot-
tom row of Figure 11. For t = 25, t = 10%, and 7 = 103, the errors of the methods vs. the number of required solu-
tions of the large linear system are shown. For larger ¢, the Crank-Nicolson method becomes worse (which is a
known behavior due to stability considerations), while the backward Euler scheme remains unaffected. For large
t and an approximation error of about 1073, the implicit Euler scheme needs to solve 1000 linear systems of the
type (yI — A)x = b, while the Krylov method only needs 8. This is a factor of 125 times faster. This clearly demon-
strates our main contribution that the Krylov method can solve homogeneous inpainting problems with a significantly
improved speed.
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100 B 100 - 10° -
1073 b 107> 8 10-5 |
10—]0 Lol ol 1l 10—]0 Lol vl 1ol 10—10 Lol vl ]
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FIGURE11 | Error of the implicit Euler scheme (red) diamond-marked line, error of the Crank—Nicolson method (orange)

square-marked line, and the rational Krylov subspace method with optimal gamma (green) solid line vs. number of solutions of the
linear system for ¢ = 25 on the left-hand side, t = 10? in the middle, r = 10° on the right-hand side. The top row corresponds to the
edge-compressed all-white square image and the bottom row corresponds to the edge-compressed image obtained from the original
image on the left-hand side of Figure 12.

(a) (b)

FIGURE 12 | (a)Shows the original image and (b) shows the reconstruction by computing the solution of the heat equation up to
time ¢ = 107. (a) Original image, (b) reconstruction at ¢ = 10.

6.2 | Quality of Compression

To ensure that decoding the edge-compressed pictures by the Krylov method does not affect the quality of the recovered
image, we provide experiments with pictures of the Kodak lossless true color image suite (cf. Franzen [32]). To measure
the deviation of the decoded compressed picture from the original picture, we use the mean-square error (MSE). For two
color pictures u, v e R™-VN-3 with three color channels and dimension M x N, the mean-square error is given as

1 3 M N
MSE(u, v) := WZZZ(ui,j,k — 00

We use p = 2 in Algorithm 3, which corresponds to the W-cycle, and 4 pre- as well as post-relaxation steps. For the nested
iteration to obtain a good starting value, we use v, = 1 in Algorithm 4. For these pictures, we use 7 levels in the multigrid
method.

We found that for a large time ¢ = 107, the extended Krylov subspace with dimension m = 3 is sufficient to provide a
good reconstruction. This means that only one solution of a linear system with the multigrid method is necessary. For
the optimal y = 1.5/¢ and picture kodimO07 of the test suite, the original picture and the reconstruction can be seen in
Figure 12 on the left-hand and right-hand side, respectively.
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TABLE2 | Comparison of the quality of the reconstruction for the proposed decoding scheme for dithering-based as well as
edge-based compressed images of the test suite.

dithering-based edge-based dithering-based edge-based

img bpp MSE PSNR bpp MSE PSNR img bpp MSE PSNR bpp MSE PSNR
01 2.37 161.42 26.05 217 16439 2597 13 2,70 261.84 23.95 299 286.27 23.56
02 2.23  26.63 33.88 199 64.59  30.03 14 263 7751 2924 250 101.81 28.05
03 2.18 14.23 36.60 1.66 50.11  31.13 15 234 2698 33.82 1.86 7444 2941
04 237 2631 33.93 211 47.98 31.32 16 2.09 35.29 32.65 1.81 63.26 30.12
05 2.74 144.67 26.53 2.43 165.88 2593 17 2.28  22.83 3455 1.92 53.52 30.85
06 2.34  86.72 28.75 2.00 148.47 26.41 18 2.71 74.10 29.43 2.57 12092 27.31
07 2.38  22.65 34.58 145 62.19 30.19 19 230 52.76 30.91 1.70 106.74  27.85
08 2.68 271.95 23.79 1.99 282.04 23.63 20 2.05 22.22 34.66 1.28 68.80 29.76
09 216  20.77 34.96 1.19 51.70 31.00 21 236  49.72 31.17 172 111.10 27.67
10 222 2290 34.53 1.61 46091 31.42 22 2.59  42.20 31.88 242 72.10 29.55
11 241  53.89 30.82 2.06 86.52 28.76 23 236  9.86 38.19 1.88 39.84 3213
12 213  20.24 35.07 1.77 39.67 3215 24 257 102.71 28.01 2.18 153.04 26.28

avg 238  68.77 31.58 1.97 102.60 28.77

The image has been compressed by the dithering-based method. The same observation turned out to be true for the whole
test set and for dithering-based as well as edge-based compression of the images. We present the results in Table 2. Here,
we also state the peak signal-to-noise ratio (PSNR),

255
PSNR(u, V) =10 - logw m [dB],

which is the most commonly used measure for the quality of reconstructions in lossy compression schemes. We also state
the compression rate in bits per pixel (bpp), which refers to the average number of bits needed to encode each image pixel.
The original pictures are RGB pictures using 8 bits per color channel, which gives 24 bpp in the original pictures. Better
values are marked in bold. The averages (avg) over all values are shown in the last row.

The results in Table 2 show that the decoding method is sufficiently accurate.

6.3 | Performance on an Everyday Device

High compression rates are particularly important for embedded devices like smartphones, smart TV sets, and smart
watches, where storage is limited. Nowadays, these devices include embedded GPUs (Graphics Processing Units), which
allow for accelerating image processing tasks considerably. The industry standard to accelerate graphics by the use of these
GPUs is OpenGL ES (Open Graphics Library for Embedded Systems) managed by the non-profit Khronos group [41]. For
our experiment, we will use the version OpenGL ES 3.2, which is available on 88.6% of the devices running Android as of
the April 23,2024 [42] as well as the version OpenGL ES 3.1 with the extension GL_EXT_color_buffer_float, which allows
rendering to float textures attached to a framebuffer. Our approach, with the implementation details given in Section 5,
perfectly fits the OpenGL application interface. Pictures are treated as textures that are operated on in a parallel manner
by the use of vertex and fragment shaders. Turning the matrices into sparse formats would not lead to algorithms that can
be easily ported to embedded GPUs. We first used a desktop computer with an NVIDIA GeForce RTX 3060/PCle/SSE2.
OpenGL ES 3.2 is available on this GPU. The arithmetic mean of ten run-times of our program to decode the 512 x 512
RGB picture in the middle of Figure 1 to the picture on the right-hand side of Figure 1 was 0.014 s. The dimension of the
system (1) is 786,432 for this picture. On a notebook with the integrated graphics processor Intel(R) HD Graphics 620
(KBL GT2), the arithmetic mean of ten run-times was 0.049 s. OpenGL ES 3.2 is also available on this graphics processor.
As an embedded device, we used a Samsung Galaxy J4+ smartphone running Android version 9 (Pie) with a Qualcomm
Adreno 308 GPU, with the same picture. This phone allows for version OpenGL ES 3.1 with GL_EXT_color_buffer_float
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FIGURE 13 | Experiment on a smartphone. (a) Compression, (b) reconstruction.

extension. The C code was compiled with the native development toolkit for Android systems [43]. The transition from
the left-hand side of Figure 13 to the right-hand side of Figure 13 took about 0.718 s in average. With less than a second,
this seems to be fast enough to decode edge-compressed pictures stored on this phone in a real-life application. We also
tested our algorithm on a high-end smartphone with a Qualcomm Adreno 740 GPU running Android version 14. This
phone supports OpenGL ES 3.2 and the decoding took 0.034 s, measured as the arithmetic mean of ten runs. At that speed,
touching the compression on the left-hand side of Figure 13 immediately turns the image to the reconstruction on the
right-hand side of Figure 13. The experience is smooth, and one does not even notice the slightest delay.

7 | Conclusion

We presented an efficient method to solve inpainting problems by homogeneous diffusion based on extended Krylov
subspaces. Error bounds for the approximation of the linear heat equation up to a prescribed large time ¢ are given and
numerically verified. The method is applicable to all inpainting problems of this type. We studied the problem of decoding
edge-based and dithering-based compressed images, where the boundaries for the inpainting problems are especially
challenging.
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