KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-Objective Reinforcement Learning with Shielding for Control and Safety in Power Grids

Demirel, Gökhan ORCID iD icon 1; Grafenhorst, Simon ORCID iD icon 1; Ohm, Jakob 1; Schäfer, Benjamin ORCID iD icon 1; Förderer, Kevin ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Traditional model-based methods relying on precise modeling are sensitive to errors and rapidly changing conditions, causing unstable control. Furthermore, real-world problems often involve conflicting objectives, requiring multi-objective reinforcement learning (MORL) in order to facilitate adaptability. However, MORL and single-objective RL (SORL) research often address these challenges separately due to the lack of a unified framework. To bridge this gap, we present eGridLVGym, an open-source collection of two test environments for managing low-voltage grids. The first environment models a household with rooftop photovoltaics, battery storage, electric vehicle charging, and a heat pump. The second extends this to a feeder grid with seven points of common coupling, representing diverse portfolios of distributed energy resources. These environments support system-wide flexibility dispatch while ensuring safety through soft and hard constraints that penalize or restrict unsafe actions. We evaluate eight state-of-the-art SORL algorithms (A2C, DDPG, PPO, SAC, TD3, Recurrent PPO, TQC, and TRPO), a grid code shielding approach, and the MORL algorithm CAPQL. ... mehr


Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 2770-5331
KITopen-ID: 1000189331
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in ACM SIGEnergy Energy Informatics Review
Verlag Association for Computing Machinery (ACM)
Band 5
Heft 3
Seiten 93–104
Schlagwörter multi-objective reinforcement learning, energy management, voltage control
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page