KIT | KIT-Bibliothek | Impressum | Datenschutz

Advanced Deep Reinforcement Learning for Heat Pump Control in Residential Buildings

Demirel, Gökhan ORCID iD icon 1; Ekin, Ömer ORCID iD icon 1; Liu, Jianlei 1; Spatafora, Luigi ORCID iD icon 1; Förderer, Kevin ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Residential heating is a significant contributor to carbon emissions. Replacing conventional on/off and heating curve controls with smart strategies is essential for decarbonization. This paper presents eight state-of-the-art control strategies for residential air-source heat pumps in the open-source environment LLECBuildingGym, which emulates the heat pump house at the Living Lab Energy Campus (LLEC). We compare three rule-based controllers (fuzzy, PI, and PID), a model-predictive controller (MPC), and four advanced deep reinforcement learning (RL) algorithms (A2C, DDPG, PPO, and SAC) in a 1R1C thermal building model with continuous heating and cooling control. The model captures nonlinear thermal dynamics using Euler discretization, models sensor uncertainties as reflected Wiener processes and integrates dynamic electricity tariffs. We define single-objective (temperature) and multi-objective tasks that minimize thermal discomfort and energy costs. An extensive ablation study identifies the best performing RL algorithm configuration that reduces cost by 6% compared to rule-based controllers, outperforms MPC by 1% and underperforms MPC with perfect prediction by less than 4%.


Originalveröffentlichung
DOI: 10.1109/ISGTEurope64741.2025.11305332
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 20.10.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2504-0
KITopen-ID: 1000189332
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in 2025 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Valletta, 20th-23rd October 2025
Veranstaltung 15th IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT 2025), Valletta, Malta, 20.10.2025 – 23.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–5
Externe Relationen Forschungsdaten/Software
Schlagwörter Heat Pump, Reinforcement Learning, Model, Predictive Control, Fuzzy control, Energy Management
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page