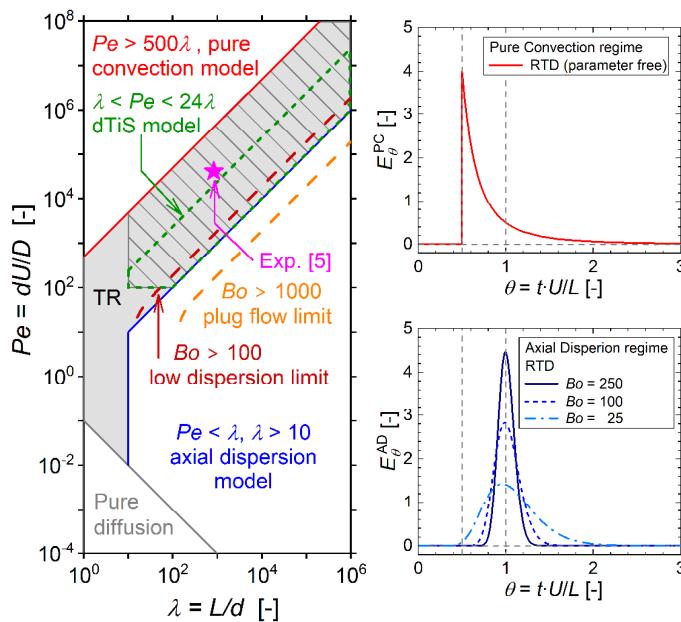
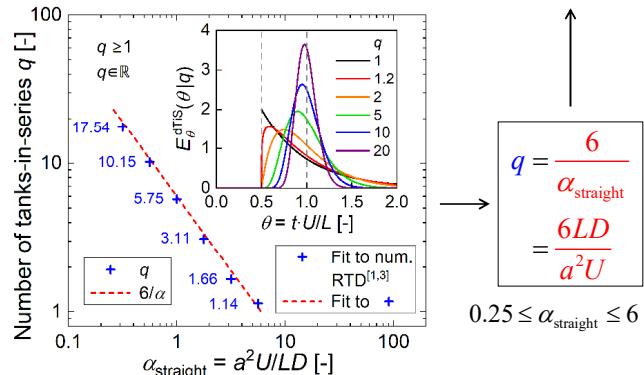
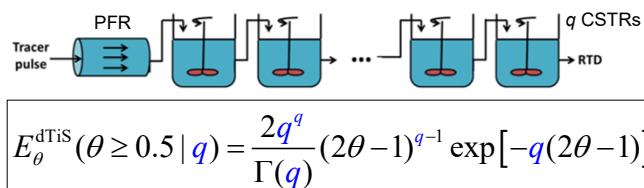


A-priori estimation of axial dispersion and residence time distribution in laminar flow through helically coiled tubes


Dr. Martin Wörner, Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Engesserstr. 20, 76131 Karlsruhe, martin.woerner@kit.edu

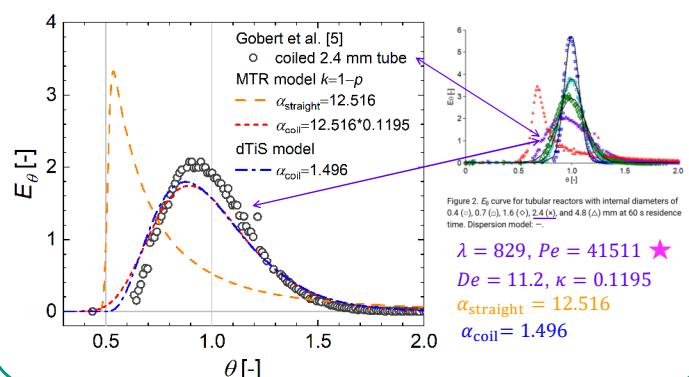
Motivation

- Flow chemistry and continuous processes offer the advantage of controlled residence times
- Often a helically coiled capillary serves as residence time providing unit (see event logo in poster header)
- Here, a predictive model for the residence time distribution (RTD) of solutes in laminar solvent flow through helically coiled tubes is proposed



Dispersion map straight tubes

- Circular pipe (diameter $d = 2a$, length L), laminar solvent flow (mean velocity U), passive solute (molecular diffusivity D), $Bo = LU/D_{ax} \approx 192\lambda/Pe$
- Dispersion regime map^[1] adapted from Levenspiel^[2]

- Mechanistic model for hatched part of transition regime (TR) and delayed-Tank-in-Series model for dashed region as function of $\alpha = Pe/4\lambda = a^2 U/LD$ (see ref^[1])


RTD model for straight tubes

RTD model for coiled tubes

- CFD based correlation for dispersion reduction factor^[4]

$$\kappa = \frac{D_{ax,coil}}{D_{ax,straight}} = \left\{ 1 + 0.9415 \left[\log_{10}(520De^2) - 2 \right]^{1.983} \right\}^{-1} \leq 1$$

$$De = Re \sqrt{d/2R_{coil}} \quad \alpha_{coil} = \kappa \cdot \alpha_{\text{straight}}, \quad E_\theta^{\text{coil}} = E_\theta^{\text{dTIS}}(\theta | \alpha_{coil})$$

Since α_{straight} and the dispersion reduction factor κ depend on prior known parameters, the dTiS model can be used to estimate or predict the solute RTD in a solvent flowing laminar through a helically coiled tube. The model is particularly suited for the transition regime often encountered in continuous flow chemistry where the axial dispersion model fails.

- [1] M. Wörner, Dispersion and residence time distribution of laminar tubular flow in the transition regime – models for flow chemistry and beyond, *Chem. Eng. Sci.* **318** (2025) 122116
- [2] O. Levenspiel, *Chemical Reaction Engineering*, 3rd ed. 1999, John Wiley & Sons, Hoboken, NJ, Fig. 15.2
- [3] J. A. T. A. Dantas, P.R. Pegoraro, J.A.W. Gut, Determination of the effective radial mass diffusivity in tubular reactors ... , *Int. J. Heat Mass Transfer* **71** (2014) 18-25
- [4] F. Florit, R. Rota, R., K.F. Jensen, Dispersion in coiled tubular reactors: a CFD and experimental analysis on the effect of pitch, *Chem. Eng. Sci.* **233** (2021) 116393
- [5] S.R.L. Gobert, S. Kuhn et al., Characterization of milli and microflow reactors: mixing efficiency and residence time distribution, *Org. Process Res. Dev.* **21** (2017) 531-542