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Abstract

With small fleets of autonomous vehicles of SAE level 4, i.e., such without a
safety driver, publicly available, the adoption of autonomous vehicles will only
continue to increase. Embedded within shared mobility solutions, this technical
advancement can lead to a more sustainable, safe, and comfortable future. Scaling
autonomous vehicles more broadly, however, requires handling a wide variety
of challenging scenarios, especially those with often rare anomalies. With rising
fleet sizes, such scenarios appear with increasing frequency. As many Machine
Learning systems follow a closed-world assumption based on a set of known
classes, such unknowns remain challenging.

This dissertation addresses anomaly detection for autonomous driving from a
holistic perspective, contributing to the generation of scenarios with anomalies,
the detection of anomalies, and the handling of anomalies. The first part ad-
dresses external anomalies, i.e., such that occur in the environment. Generating
scenarios involves providing normal data to train models and creating scenarios
with anomalies to evaluate anomaly detection methods. Based on a theoretical
systematization of anomalies from the literature, scenarios from all anomaly lay-
ers can be created. As generating such external anomalies is often dangerous or
infeasible, data is provided through a simulation engine. Based on these scenarios,
an anomaly detection method is presented, which is trained on unlabeled sensor
data alone. It leverages a world model as a representation of normality, utiliz-
ing both camera and LIDAR data. Once detected, anomalies can be integrated
into the training process of Neural Networks, removing their status as anomalies.
The presented approach handles previously detected anomalies where controlled
traffic rule exceptions are required. To achieve this, a situation-aware reward for
Reinforcement Learning is introduced.

Next to challenges induced by external anomalies, the driving task can be equally
impacted by internal anomalies, such as model failures. This dissertation con-
tributes to the field of internal anomaly detection by detecting model failures
without the need for labeled evaluation sets. This is achieved by analyzing the
disagreements between two models trained on the same task, but with different
learning paradigms. Based on real-world data, the method successfully reveals
categorical model failures, most often in seemingly normal situations.

Summarizing, this dissertation presents a holistic set of contributions to the field of
anomaly detection for autonomous driving, addressing the generation, detection,
and handling of anomalies. This is emphasized by examining both internal and
external anomalies.
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It’s harder than putting a man on the
moon.

Doug Field, 2022 [314]

1. Introduction

Autonomous vehicles hold the promise of safer transportation. Alongside im-
provements in comfort and efficiency, they can increase accessibility and inclusion.
If deployed correctly, they might also lead to a more sustainable future [BOG
10, 19][STU 3]. Autonomous Driving (AD) has come a long way since the early
days of the Defense Advanced Research Projects Agency (DARPA) Grand Chal-
lenges between 2004 and 2007 [267]. These events were significant milestones, as
decades of prior research culminated in impressive demonstrations in the real
world [107, 407, 423]. In 2012, the rise of deep learning was accompanied by the rise
of public data in autonomous driving, as both the AlexNet architecture [239] and
the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
dataset [146] were introduced to the world. In 2016, Cityscapes [101] was released
as the first diverse dataset with driving scenes from a variety of cities. These events
were followed by the introduction of the Transformer architecture [426] and the
release of Car Learning to Act (CARLA), the first open-source simulation engine
dedicated to autonomous driving [117], in 2017. The release of BDD100K [491],
the first large-scale driving dataset, followed shortly after in 2018. Arguably, the
rise of autonomous driving would not have been possible without such advances
in deep learning and the availability of more and more data. Fueled by enormous
investments [298, 448], these advancements have led to small deployed fleets
of autonomous vehicles without a safety driver as of 2025 [446, 405]. The most
advanced fleets operate at Society of Automotive Engineers (SAE) level 4 auton-
omy [332] in the USA and China, each with a geographically small Operational
Design Domain (ODD).

1.1. Motivation

Despite the impressive progress made, scaling up autonomous vehicles remains a
challenging problem. The root cause for this is the long tail distribution of rare
events, i.e., the existence of many events with a low probability of occurrence,
which are often challenging to detect and handle. Such events can come in many
forms, such as a zoo breakout [39], a trailer with a tree on it [183], a stop sign on a
billboard [450], an overturned truck on a highway [134], a red light runner [231, 12],
a delivery robot [35], or simply a vehicle being towed [447] — the list goes on [51,
52,57]. It is important to keep in mind that for such an event to be challenging for
an autonomous vehicle, it does not necessarily need to be odd or challenging from
a human perspective.
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While events from the long tail are rare from the perspective of a single human
driver, they become more frequent and thus increasingly problematic for a fleet of
autonomous vehicles all running the same software. This challenge of the long tail
of rare events is a long-standing and well-established research problem in both
academia and industry:

It’s all about the long tail - 99.9999...%
— A. Karpathy, Sr. Director of Al at Tesla, 2019 [215]

The remaining problem we have is [...] the long tail of crazy things
— J. Schneider, Professor at Carnegie Mellon University, 2019 [376]

There is a lot of rare situations, and all of them need to be handled well
— D. Anguelov, Principal Scientist at Waymo, 2019 [11] (sic)

[...] solve the long tail of all the things that might happen in the world
— R. Urtasun, CEO at Waabi, 2021 [424]

Distribution of rare scenarios has a very long tail
— D. Dolgov, Co-CEO at Waymo, 2024 [114]

[...] you can’t ever identify all the edge cases
— P. Koopman, Professor at Carnegie Mellon University, 2024 [232]

I have witnessed firsthand the difficulties of addressing the “long tail”
— E. Dagan, President at Wayve, 2024 [104]

Detecting and handling rare events from this long tail is necessary to scale au-
tonomous vehicles beyond a tightly constrained ODD. An initial approach to
detect anomalies with Neural Networks (NNs) in the context of autonomous driv-
ing without relying on classical methods using stereo vision was presented in 2015
by Creusot and Munawar [103]. As they did not disclose their evaluation data, no
comparison of different approaches was possible. This already changed in 2016,
when Pinggera et al. generated the first public anomaly detection benchmark
Lost and Found (LaF) [347] with labeled obstacles on the road. Such generated
anomalies are necessary for the development and evaluation of anomaly detection
methods. Subsequently, detected anomalies can be leveraged to improve the han-
dling of such. As the field of anomaly detection continued to gain attention [BOG
13, 22], as discussed in more detail in Chapter 3, Shalev-Shwartz et al. touched
upon the handling of anomalies in their 2017 Responsibility-Sensitive Safety (RSS)
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framework [386], where they present a set of rules as a proposal for a “mathe-
matical model for safety assurance”. Here, they also take into account atypical
obstacles on the road.

For a long time, anomalies in the context of autonomous driving were loosely
and inconsistently defined. This started to change in 2020, when Breitenstein et
al. introduced an expert-defined taxonomy of different anomalies [51], focusing
on affected sensors or occurrences in the environment surrounding the vehicle.
Subsequently, Heidecker et al. introduced a data-defined taxonomy of anomalies
in 2021 [178], focusing on internal errors introduced through data processing meth-
ods, such as false negatives during object detection. Such data-based perspectives
also put a larger emphasis on the definition of anomalies in relation to the training
data, representing normality, available to models. Section 2.5 further elaborates on
the definitions of anomalies as used in this dissertation.

While there has been tremendous progress in all three areas — anomaly generation,
anomaly detection, and anomaly handling — the long tail of rare events remains
challenging to this day. This dissertation highlights research problems, identifies
research questions, and presents multiple contributions to the field.

1.2. Scope and Contributions

This dissertation contributes to the generation of scenarios with anomalies, the
detection of anomalies, and the handling of anomalies. In this section, research
problems, identified research questions, and the contributions of this thesis are
presented. As this is a broad field, the scope of this thesis is defined as follows:

¢ For the generation of scenarios, all anomalies in the environment are created
in simulation, as many anomalies cannot be recorded in the real world in a
safe and feasible manner.

e For the detection of external anomalies!, this dissertation focuses on local-
izable? anomalies in raw sensor data. Non-localizable anomalies on the
domain level [51] in the form of domain shifts [371, 400] are not addressed.
Non-localizable anomalies on the sensor layer [178], such as camera fail-
ures [381], are not addressed. Different data sources, such as time-series [345]
or trajectory [453] data, are not addressed.

¢ For the handling of external anomalies, this dissertation focuses on a learn-
able approach by integrating previously detected anomalies into the training
dataset, eliminating their status as anomalies during inference. Different
approaches, such as remote assistance [BOG 26] during deployment, are
touched upon but not explicitly addressed.

!Definitions of both external and internal anomalies are introduced in Section 2.5.
2A localizable anomaly can be identified within a specific region of a frame, rather than classifying
a whole frame as anomalous.
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¢ For the detection of internal anomalies, this dissertation focuses on a com-
plementary learning approach where disagreements between two models,
trained for the same task but with different learning paradigms, are used to
detect internal anomalies.

¢ This dissertation considers Red Green Blue (RGB) cameras and Light De-
tection and Ranging (LIDAR) as typical sensor modalities. Radio Detection
and Ranging (RADAR) is not considered, as the utilized CARLA simulation
environment only provides a low-fidelity RADAR sensor model based on
raycasting [289], and the majority of the used datasets [146, 261, 253, 58, 294]
do not contain RADAR data.

¢ This dissertation focuses on both external and internal anomalies. However,
specific sensor-related anomalies from the sensor layer are not considered.

Anomaly Anomaly Anomaly
Generation Detection Handling

Self-Supervised Label-Free Situation-Aware
UGELE World Model Anomaly Detection | Reinforcement Learning

@

External
Anomalies

Complementary Model Data Labeling and
Train Motion Labels Contradictions Model Retraining

Internal
Anomalies

@)

Figure 1.1.: Dissertation Overview: Anomalies can be separated into external
ones, i.e., occurrences in the environment, and internal ones, i.e., fail-
ures introduced by the system itself. Chapter 4 introduces a challeng-
ing multimodal dataset including anomalies. Chapter 5 uses that data
to demonstrate anomaly detection without the need for labeled data
or outlier exposure. Subsequently, Chapter 6 presents situation-aware
Reinforcement Learning (RL), handling previously detected anomalies
through controlled traffic rule exceptions. Finally, Chapter 7 addresses
internal anomalies and introduces model failure detection for the task
of point cloud segmentation. Contributions are shown in green.

The remainder of this section first introduces the structure of this dissertation, as
shown in Figure 1.1, and presents identified research questions and contributions
based on it subsequently. After this introduction, Chapters 2 and 3 provide a
technical background and an overview of anomaly detection approaches and
related datasets from the literature. Chapters 4 — 7 present contributions in the
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Chapter / Anomaly Level Domain Object Scene Scenario Input Model Deployment

State of the Art (Ch. 3) v v v — — —
Anomaly Generation (Ch. 4) v v V4 — _ _
Anomaly Detection (Ch. 5) — — — — — —
Anomaly Handling (Ch. 6) —

Anomaly Detection (Ch. 7) —

SNISSSS

— — v 4 4

Table 1.1.: Anomaly levels addressed in this dissertation: Overview of anomaly
levels [51, 178, 177] considered per chapter. Chapters 3 - 6 focus on ex-
ternal anomalies, while Chapter 7 addresses internal ones. The different
anomaly levels are introduced in more detail in Section 2.5.

fields of anomaly generation, anomaly detection, and anomaly handling. Dur-
ing this section, the content of these chapters will be introduced in more detail,
motivated by individual research questions. All chapters are aligned with a the-
oretical systematization of anomalies developed primarily by Breitenstein and
Heidecker [51, 178, 177], as shown in Table 1.1.

To better understand research gaps with respect to anomaly detection methods and
utilized datasets, Breitenstein et al. have provided a structured overview focusing
on camera-based approaches and related datasets [52]. While this work remains
highly relevant, it does not discuss other sensor modalities or combinations. This
motivates the first Research Question (RQ):

RQ1: What are the patterns of anomaly detection methods and related
datasets for typical autonomous vehicle sensor modalities?

Chapter 3 presents an extensive survey and characterization of anomaly detection
methods in autonomous driving, also examining the datasets and benchmarks
utilized. A major identified pattern is the focus on methods that work with camera
data only. Shortcomings include, amongst other things, varying definitions of
anomalies and the need for outlier exposure, i.e., the inclusion of exemplary
anomalies, during training for well-performing methods.

Building on these findings, this dissertation focuses on datasets next, as these are
the basis for all Machine Learning (ML) approaches. While there exist over 200
datasets in autonomous driving [BOG 21][269], only a fraction is concerned with
anomaly detection. However, none of these include anomalies from all considered
external anomaly levels [51]. This leads to the second research question:

RQ2: How can theoretical anomaly definitions from the literature be
converted into datasets containing anomalies?

Chapter 4 first presents a methodology to generate expert-defined scenarios with
anomalies from all levels. The scenario descriptions are based on an ontology,
meaning that all scenarios are structured in a comparable way, allowing for later
coverage analysis. This approach allows for the generation of a large-scale, struc-
tured scenario catalog. While such a catalog is useful to test an autonomous
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driving function, generating expert-defined scenarios requires a great deal of
manual effort. This results in a set of very specific scenarios. In an open world,
however, a wide variety of situations can occur.

In the remainder of Chapter 4, a more scalable methodology for the generation
of object-level and scenario-level anomalies is introduced. For a well-defined
benchmark, it provides both training and evaluation data to ensure that anomalies
are absent during training. For multimodality, a sensor setup is employed with
ground truth provided based on camera and LIDAR data. To allow for a com-
parison between anomaly detection methods using different sensors, the ground
truth is additionally provided in a voxelized form. All data is generated in the
CARLA [117] simulation environment. By using CARLA, the largest open-source
simulation ecosystem in AD is supported [259].

Next, this dissertation focuses on object-level anomaly detection methods, as
prevalent in the literature. In the current State-of-the-Art (SotA), the predominant
paradigm is to utilize strong semantic segmentation networks, combined with
outlier exposure to provide examples of true positives [316, 108, 473]. Such known
outliers are often synthetically generated by augmenting scenes with extracted
patches or objects from Out-of-Distribution (OOD) data [411, 152, 316, 473] or by
creating anomalies with generative models [150, 108]. These anomaly detection
approaches require large amounts of labeled data and introduce biases towards
exemplary anomalies. Methods defining normality based on raw training data
are rare. In addition, most methods leverage only a single sensor modality. These
limitations lead to the following research question:

RQ3: How can unlabeled sensor data from multiple modalities be
leveraged for the detection of object-level anomalies?

To learn a representation of normality without the need for labels, Chapter 5 first
introduces a multimodal world model. For self-supervised training, a dataset rep-
resenting normality, as introduced in Chapter 4, is utilized. A world model allows
for the reconstruction of input data as well as for the prediction of future frames.
Based on this learned normality through the world model, a reconstruction-based
approach for anomaly detection is introduced. The performance of this approach is
turther improved by a self-supervised mask refinement. Based on the benchmark
introduced in Chapter 4, the presented anomaly detection method outperforms
the most relevant label-free SotA method and sets a new baseline.

Once anomalies are detected, they can be used to improve the handling of such for
the task of driving. While some works consider anomalies that occur at inference
time during the planning of trajectories [386, 323], it has not been extensively
studied how to integrate previously detected anomalies into the training process
and learn how to handle them accordingly. This is crucial to enable learned End-
to-End (E2E) autonomous driving systems [449, 432, 202], which show potential
to improve situation-aware driving behavior dramatically. The following research
question is identified:
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RQ4: How can identified object-level anomalies benefit the training
process of learned trajectory planning?

Chapter 6 addresses this research question by introducing situation-aware RL.
Here, known anomalies are integrated into the training process. One way to handle
object-level anomalies blocking a lane is to perform a controlled rule exception,
utilizing an oncoming lane for progress. Classically, such behavior is punished
through a static reward function. The presented approach introduces a dynamic
and situation-aware reward, showing strong performance improvements in the
handling of anomalies.

As framed by Heidecker et al. [178], anomalies do not only exist in the external
environment surrounding the ego vehicle® but can also be induced by internal
models and methods used. Even seemingly normal situations can be challenging
for models, e.g., if the training data distribution does not match the one during
deployment. Detecting both external and internal anomalies is crucial, as both
can affect the downstream task of driving equally. For a holistic perspective, the
following research question is identified and addressed:

RQ5: How can model failures be detected in an open world without
access to ground truth labels?

Chapter 7 investigates the detection of internal anomalies in a deployment-like
setting. As limited validation and test sets cannot represent the open world, new
failures are to be expected during deployment. Here, a self-supervised model is
trained on the same task as an existing supervised legacy model. Disagreements
between the models are leveraged to detect model failures for further inspection
through an oracle. The approach is demonstrated for the segmentation of LIDAR
point clouds in real-world environments, focusing on the differentiation between
static and dynamic objects. The evaluation highlights the detection of a multitude
of model failures in scenarios where the model repeatedly fails. In addition, the
sensitivity of the approach towards external object-level anomalies is examined.
The evaluation shows a particular emphasis on atypical objects, which are hard to
classify by the legacy model.

Finally, Chapter 8 summarizes the contributions of this dissertation and provides
an outlook for future work. It outlines the general development of the field of
anomaly detection for autonomous driving and provides future research directions
with respect to the contributions presented in this dissertation.

Summarizing, this dissertation contributes to the generation of scenarios with
anomalies, the detection of anomalies, and the handling of previously detected
anomalies. This holistic perspective is emphasized by addressing both internal
and external anomalies. None of the approaches presented in this dissertation
require labeled data during training. Next, the following Chapter 2 provides the
technical background necessary for a better comprehension of the remainder of
this dissertation.

3An ego vehicle is a vehicle in consideration, which perceives the environment through sensors






Personally, I am always ready to
learn, although I do not always like
being taught [...]

Winston Churchill, 1952 [421]

2. Background

This chapter provides context for central technical aspects touched upon in this dis-
sertation. This background information is intended to facilitate a deeper compre-
hension of the following chapters. Specifically, this chapter provides background
for different learning paradigms in ML in Section 2.1 and an overview of AD in
Section 2.2. In addition, it provides introductions to closed and open world views
and uncertainties in Sections 2.3 and 2.4. Finally, it introduces relevant definitions
of anomalies in Section 2.5.

2.1. Learning Paradigms

Machine Learning can be categorized into different training paradigms. The most
important ones in the context of this dissertation will be introduced in this section.
Let X = {z,29,...,2,} represent a training dataset, where x; denotes the i-th
sample.

Supervised Learning: In supervised classification learning, the goal is to learn
from labels associated with the samples in the training dataset [308]. Each sample
z; € X has an associated label y; € Y, where Y is the set of possible labels. The
objective is to learn a mapping function g : X — Y to predict the label for novel
samples. The learning process aims to minimize the error between predicted labels

Ui = g(x;) and the true labels y;. In regression settings, the target labels y; € R are
continuous.

Active Learning: In Active Learning, supervised learning is designed in iterations.
In each iteration, samples from an unlabeled subset X;; C X are queried, i.e.,
selected, for labeling. An oracle, such as a human annotator or a slow but more
accurate model, provides labels for the selected samples. The labeled training set is
subsequently used for training. A main focus in active learning is on query strate-
gies to select which samples to label in order to improve model performance [384],
as this is more efficient than labeling all available training data.

Curriculum Learning: Curriculum Learning is a training strategy that increases
the difficulty during training to improve generalization capabilities [36]. The
difficulty is assigned by a predefined, designed, or learned difficulty measure d(x;)
associated with each sample x; € X. As the focus is on the ordering of samples,
Curriculum Learning can be applied to many training paradigms [36, 313].
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Unsupervised Learning: In unsupervised learning, the goal is to discover patterns
inherent in the training data X [308, 466, 187]. The objective is to learn a function
h : X — Z, where Z is a learned representation of the data, without relying on
explicit labels. Typical applications are clustering or dimensionality reduction.

In anomaly detection specifically, unsupervised often refers to a setting where only
normal data is used during training [175]. This is different from using any methods
trained in a supervised setting, such as semantic segmentation, for the detection
of anomalies. To avoid a conflict with the introduced definition of unsupervised
learning, the term label-free is used to represent methods that do not use labeled
data, which includes labeled anomalies.

Self-Supervised Learning: In self-supervised learning, the training objective
follows the same setting as supervised learning [210]. However, similar to unsu-
pervised learning, there are no associated labels to the training dataset X. Labels
are first derived from the data itself by a function k£ : X — X’ x Y where for each
r € X, 2’ € X' either equals z or is a partial or transformed version, and y € Y is
the target output. While there is no consensus [26, 25], self-supervised learning is
often seen as a type of unsupervised learning due to the absence of explicit labels
in the training data [272, 210, 503, 6, 325].

Reinforcement Learning: Reinforcement learning focuses on training an agent
that can perform actions a; € A in an environment by interacting with it [401].
Unlike previous paradigms, this is different from using a static set of training data
X. The agent learns through trial and error by receiving rewards or penalties for
its actions. The goal is to learn a policy 7 : S — A that maps states S to actions A
in order to maximize the cumulative reward over time.

2.2. Autonomous Driving

The SAE standard J3016 — Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles [332] — defines a set of six levels to
categorize driving automation, as shown in Figure 2.1. As represented by the blue
boxes, levels 0 - 3 still require a human driver. While many of the contributions of
this dissertation might be used to improve features on those levels, they are not
emphasized. Only levels 4 and 5 can operate without a human driver on board.
However, it should be noted that support from a human operator is still possible
through remote assistance [332] [BOG 15]. While there is no consensus on whether
to use the term automated or autonomous for driverless vehicles [297, 416, 332], SAE
levels 4 and 5 are referred to as autonomous driving in this dissertation.

As of 2025, there are popular industrial offers for advanced level 2, 3, and 4 systems.
The Tesla Full Self-Driving (Supervised) [406] feature is a level 2 system, as the
driver still has to pay attention. Due to its advanced state compared to other level 2
features, it is sometimes referred to as a level 2+ feature [233]. The Mercedes-Benz
Drive Pilot [303] is a level 3 feature focusing on motorways. Finally, the Waymo
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What does the
human in the
driver’s seat
have to do?

What do these
features do?

SAE
LEVEL O"

SAE
LEVEL 1"

SAE
LEVEL 2"

You are driving whenever these driver support features
are engaged - even if your feet are off the pedals and
you are not steering

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to
maintain safety

These are driver support features

These features
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AND brake/
acceleration
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the driver
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to providing

warnings and
momentary
assistance

2.3. Closed and Open World

SAE
LEVEL 3"

SAE
LEVEL 4"

SAE
LEVEL 5"

You are not driving when these automated driving
features are engaged - even if you are seated in
“the driver’s seat”

When the feature
requests,

These automated driving features
will not require you to take

you must drive over driving

These are automated driving features

This feature
can drive the
vehicle under
all conditions

These features can drive the vehicle
under limited conditions and will
not operate unless all required
conditions are met

Figure 2.1.: SAE J3016 standard: The standard defines six levels of driving au-
tomation. Blue boxes represent functions that require a driver. Green
boxes represent automated driving features. Adapted from [370].

One service is a level 4 offer [446] similar to a taxi service, with no driver present.
Due to the broad definition of SAE level 5, it is currently not considered by the
industry.

2.3. Closed and Open World

The world can be viewed from a closed or open perspective, sometimes also
called closed-set or open-set scenarios. A closed view assumes that a given set of
categories is complete. Such categories are often introduced through the semantic
classes of labeled datasets [101], such as “road”, “person”, or “sky”. This setting is
typically used in classical object detection or semantic segmentation tasks, where
such a set of known classes is given [262] and used for training and inference. For
formal logical systems operating under a Closed World Assumption (CWA), the
absence of knowledge regarding a queried statement implies its falsity [358].

On the other hand, an Open World Assumption (OWA) is much closer to the
real world, where the existence of unknowns is acknowledged [418]. Figure 2.2
shows how a long-tailed distribution is only well-defined for known events —
typical head and rare tail events — in the closed-world setting, as those have been
observed and define the distribution. A core challenge is that the individually
rare events of the tail make up a significant portion of all occurrences. However,
yet unknown events in the open world are often assumed to be rare, but their
frequency is truly unknown. Under a large domain shift, they can also appear
frequently. Open-world [277, 420, 419], open-vocabulary [462], or zero-shot [471]
tasks are among the approaches trying to identify the unknown. For formal logical
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Figure 2.2.: Long tail of rare events: Long-tailed distribution in a closed world
setting, with further unknown events in the open world. Adapted
from [277].

systems operating under an OWA, the absence of knowledge regarding a queried
statement does not imply its falsity, allowing for non-definite answers [358].

2.4. Uncertainty

The real world is full of uncertainty, and the same applies to complex systems.
However, there are different sources of uncertainty, namely aleatoric and epistemic,
which have been widely studied [161, 180]. More recently, these types of uncer-
tainty have gained more attention in the context of ML [219, 199], as models tend
to assign high probability values to erroneous predictions, even though those do
not always reflect modeled model confidence [139].

Aleatoric uncertainty refers to “the notion of randomness” [199] which is inherent
to the system and is irreducible, i.e., impossible to decrease. An example in
the context of autonomous driving is the prediction of the movements of traffic
participants such as pedestrians. It is impossible to be certain about where a
pedestrian will be several seconds into the future. Similarly, partial observability
contributes to aleatoric uncertainty [33].

Epistemic uncertainty refers to a “lack of knowledge” [199] and is reducable, e.g.,
by acquiring knowledge. An example in the context of autonomous driving is
an underrepresented class in a training dataset, such that a model struggles to
generalize during inference. Including a larger variety of examples in the training
dataset can lead to reduced epistemic uncertainty.

One way to model uncertainty is Bayesian Deep Learning (BDL). Rather than
learning fixed weights, BDL aims to find a distribution over the model parame-
ters. As the computation of the predictive distribution remains challenging [456],
approximations such as Monte Carlo Dropout [140] or Deep Ensembles [242] are
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commonly employed. BDL has shown positive effects for both accuracy and cali-
bration given OOD samples [382]. While specialized ML methods to predict either
epistemic or aleatoric uncertainty exist, differentiating between the two types
remains challenging [310]. As many methods require more than a single forward
pass, they are slow and difficult to employ in a real-world setting. Progress on
deterministic methods is being made, but distributional methods currently show
better performance [350, 310].

2.5. Definition of Anomaly

The term anomaly is widely used but often utilized interchangeably with other
related terms or as an umbrella term, as shown by multiple surveys [178, 372,
483,77,51, 69, 331]. For example, Chandola et al. describe an anomaly vaguely
as a "pattern that does not conform to expected normal behavior" [77] in their
widely established survey on anomaly detection. Foorthuis defines anomalies
as “occurences [...] that are in some way unusual” [135]. This is complicated by
the fact that perception-based anomaly detection is also present in other domains
such as medicine [29], industrial processes [37], or surveillance [463], often with a
domain-specific definition of what constitutes an anomaly [77].

Related terms, such as corner case, outlier, or Out-of-Distribution, which are often
used interchangeably, do not follow clear definitions either [427, 483]. In the
following, examples of how these terms are used are provided, followed by the
introduction of the taxonomy used in this dissertation. Chou et al. [96] define
corner cases as situations in which ensuring safety is difficult but possible. Bolte
et al. define a corner case as a relevant and unpredictable object in a relevant
location [45]. Zhou and Beyerer differentiate between internal corner cases as
“interpretation problems of neural networks” and external influences such as
sensor failures or unexpected behaviors [511]. Breitenstein, Heidecker et al. pro-
pose a multi-layer corner case taxonomy ranging from sensor issues to atypical
behaviors of other traffic participants [51, 52, 178]. Ouyang et al. define samples
as corner cases if their perturbation leads to model failures [334]. Pfeil et al. [345]
propose a corner case taxonomy based on three different causes, comprising exter-
nal environment anomalies, internal functional constraints, and system-internal
conditions. Heidecker et al. focus on ML corner case samples that generate a
model-specific “high predictive uncertainty” [176]. The DIN-SAE specification
91381 [516] — Terms and Definitions Related to Testing of Automated Vehicle Technologies
— defines a corner case as a “scenario in which two or more parameter values are
each within the capabilities of the system, but together constitute a rare condition
that challenges its capabilities”. Similarly, Koopman et al. define corner cases as
rare “combinations of normal operational parameters”, i.e., situations that can be
anticipated [234].

An edge case is defined by Koopman et al. as a rare and novel situation that was not
considered during the design process and that requires addressing it [234]. The
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DIN-SAE specification 91381 [516] defines an edge case as a “scenario in which the
extreme values or even the very presence of one or more parameters results in a
condition that challenges the capabilities of the system”. Karunakaran et al. define
an edge case as a scenario that is difficult to predict, unknown, and unsafe [217].
Eliot defines both corner cases and edge cases as rare or unusual [123].

Boult et al. [49, 48, 47] touch upon the term novelty and formalize it for the spaces
world, observation, and agent. Both the world and the observed space are external
to an agent, but it has only access to the observed space. The agent space is internal
and influences its actions. In their view, a novelty “depends on dissimilarity be-
tween a [...] novel world and the experience of some non-novel world”, where such
dissimilarities are task-dependent [49]. Greer and Trivedi characterize novelties as
“unexpected scenarios that autonomous vehicles struggle to navigate” [154].
Chen et al. [87] define novelties both as an Out-of-Distribution case, where the
data is dissimilar to the training dataset, and an adversarial case, where the data
is similar but perturbed, resulting in a prediction change of the model. Yang et
al. [483] define OOD data as coming from a “distribution that is different from the
training distribution”, focusing on OOD samples with known labels not present in
the In-Distribution (ID) data. Differently, Mao et al. define OOD data as samples
not aligning with user expectations, provided in natural language [295].

Shafaei et al. [385] describe OOD samples as outliers. Grubbs defines an outlier
as an observation “that appears to deviate markedly from other members of the
sample in which it occurs” [155].

Focusing on a safety perspective, Liu and Feng coined the term curse of rarity
based on “rare safety-critical events” which are hard to define and identify [268].
Differently, Heidecker et al. see rare samples as known but hard to obtain [176].

While these works use different definitions of terms, two perspectives emerge:
An internal one, focusing on the sys’cem1 itself [178, 176, 511, 49, 345], and an
external one, focusing on occurrences in the environment [51, 52, 49, 45, 345].
For autonomous driving, both perspectives are equally relevant as they directly
influence the downstream task of driving. The multi-layer taxonomy developed
primarily by Chandola, Breitenstein, and Heidecker [77, 51, 52, 178, 176] is the
most systematic anomaly categorization describing both internal and external
anomalies for autonomous driving. The taxonomy, as shown in Table 2.1, is used
as a theoretical foundation in this dissertation and is presented in the following.
This dissertation employs the term anomaly over alternatives to emphasize the
broad spectrum of anomalous occurrences. One exception is the use of the term
outlier exposure to describe the inclusion of known and exemplary anomalies into
the training process, as it is a well-established term in the field.

2.5.1. Internal Anomalies

The anomaly systematization in autonomous driving by Breitenstein et al. [51]
focuses primarily on external anomalies but also includes a hardware level on the

!The system of an autonomous vehicle consists of its software and hardware components.
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2.5. Deftinition of Anomaly

Type Internal External

Layer Method Sensor Content Temporal
Level Input Model Deployment Hardware Physical Domain Object Scene Scenario

Table 2.1.: Anomaly systematization: The systematization shows all anomaly
levels from the literature and how they are categorized into anomaly
layers and anomaly types. Adapted from [51, 178, 177].

sensor layer, which addresses hardware degradations, such as pixel defects. As
the hardware is not part of the surrounding environment, this level is considered
internal. In addition, Heidecker et al. conceptualized a taxonomy for internal,
system-induced anomalies [178, 177].

Definition 1 (Internal Anomaly). An internal anomaly is an occurrence originating
within the system that leads to erroneous outputs, regardless of whether it is
triggered by the current environmental context.

As shown in Table 2.1, the method layer addresses internal ML model-related
anomalies on three levels. As described by Heidecker et al. [176], the input level
addresses issues based on the utilized training data, such as faulty labels or
underrepresented classes. This can lead to erroneous model predictions during
inference. Such data-related anomalies are also strongly emphasized by Zhou
and Beyerer [511]. The model level is concerned with issues introduced through
calibration problems and high epistemic uncertainties for predictions, indicating
that the deployed model is not well-suited for handling such cases. Finally, the
deployment level addresses organizational issues, focusing on concept shifts
between the training data and the ODD where a vehicle is deployed.

2.5.2. External Anomalies

The systematization of external anomalies in autonomous driving was originally
developed by Breitenstein et al. [51], focusing on camera data. Here, experts
divided anomalies into different levels, in increasing order of detection complexity.
This taxonomy was refined by Heidecker et al. and generalized for all typical
sensor modalities, as depicted in Table 2.1. This dissertation addresses external
anomalies from an ML-based perception perspective.

Definition 2 (External Anomaly). An external anomaly is an occurrence in the
environment surrounding the ego vehicle whose representation has low likelihood
under the distribution induced by the training dataset D.

The sensor layer addresses both internal anomalies on the hardware level and
external anomalies on the physical level. Anomalies on the physical level are
hardware-related but have their origin in the environment, such as overexposure,
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and are thus external. The content layer consists of three levels. The domain level
includes domain shifts, whereas the object level represents unknown artifacts
such as lost cargo on the road. The scene? level focuses on contextual anomalies,
such as people on a billboard. Finally, the temporal layer consists of scenarios®
that cannot be detected in a single frame, such as someone performing a sudden
braking maneuver.

In their original work, Breitenstein et al. [51] provide descriptive subcategories
for each anomaly level. In the sensor layer, global outliers describe scenarios where
“all or many pixels fall outside of the expected range”, while local outliers describe
a similar scenario for “one or few pixels”. In the domain level, a Domain Shift (DS)
describes a “shift in appearance, but not in semantics”. In the context of a trained
model, the concept of normality is fixed. A DS then corresponds to a covariate
shift, while other shifts that alter task semantics, such as concept shift, are not
considered. The object level includes single-point anomalies in the form of unknown
objects. In the scene level, a contextual anomaly describes a “known object, but in
an unusual location”, and a collective anomaly describes “known objects, but in
an unseen quantity”. Finally, three categories exist for the scenario level. A risky
scenario describes a temporal pattern that was seen during training but still has
the potential for collision. Differently, a novel scenario is defined as an unknown
pattern that does not have the potential for collision. Finally, an anomalous scenario
is both unknown and has “high potential for collision”. These subcategories were
partially adopted for the refined taxonomy by Heidecker et al. [178] as shown
in Table 2.1. Most of these expert-defined categories are compatible with the
data-based definition of external anomalies as provided in Definition 2. For a risky
scenario to comply with the definition, its description is adapted. As the potential
for collision still differs from an anomalous scenario, the need for it to be a known
pattern can be neglected.

It is important to note that internal and external anomalies are not mutually exclu-
sive. To illustrate this point, consider a model struggling to classify a pedestrian
as static or dynamic, but pedestrians are generally included in the training dataset.
This does not classify as an external, but only as an internal anomaly. However, if
a model struggles to detect a pedestrian in a costume, which was absent from the
training dataset, this is classified as both an internal and external anomaly.

2A scene describes a “snapshot of the environment [...]” [422].
3A scenario describes a “temporal development between several scenes [...]” [422].
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If I have seen further, it is by
standing on the shoulders of giants.

Isaac Newton, 1675 [321] (proverb with
origins in the 12" century [304])

3. State of the Art

Parts of this chapter have previously appeared in the following publication:

e D. Bogdoll et al. Anomaly Detection in Autonomous Driving: A Survey. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshop, 2022 [BOG 13]

3.1. Introduction

To better understand research gaps with respect to anomaly detection methods and
utilized datasets in the context of autonomous driving, Breitenstein et al. provided
an overview focusing on camera-based approaches and related datasets [52].
While extensive, their work does not address other typical sensor modalities
and combinations. Addressing RQ1, this chapter derives patterns of anomaly
detection methods and related datasets. It presents methods in four categories.
First, methods using a typical sensor modality, either camera or LIDAR, are
presented. Subsequently, methods using multimodal data sources are presented.
Finally, methods based on abstracted sensor data are described. Based on this
comprehensive examination of the SotA, patterns and weaknesses of anomaly
detection methods are uncovered, which motivate large parts of this dissertation
and are addressed in later chapters.

In the upcoming sections, this chapter provides an overview of anomaly detection
methods in the domain of AD for different sensor modalities. Tables 3.1 - 3.4 pro-
vide overviews of the examined anomaly detection methods based on the utilized
modality. Detection approaches are classified following Breitenstein et al. in five
concepts: “reconstruction, prediction, generative, confidence scores, and feature
extraction” [52]. Confidence score techniques can be subdivided into Bayesian
approaches, learned scores, and scores obtained by post-processing. Reconstruc-
tive approaches try to reconstruct normality and consider any kind of deviation
from it as anomalous. Generative approaches are closely related to the former
reconstructive approaches, but also take into account the discriminator’s decision
or the distance to the training data. Feature extraction can be based on handcrafted
or learned features to determine a class label or compare modalities on various
feature levels. Prediction-based techniques predict the next frame(s) expected
under normality. More details on the five detection concepts can be found in the
work of Breitenstein et al. [52]. Figure 3.1 shows the distribution of anomaly detec-
tion methods covered in this chapter with respect to the five detection concepts,
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Figure 3.1.: Overview of anomaly detection methods: Distribution of anomaly
detection approaches. There are 24 methods using camera data, 4
using LIDAR data, 3 using multimodal data, and 8 using abstracted
data. Adapted from [BOG 13].

categorized by the underlying sensor modality. It shows that the vast majority
of methods are based on camera data. Such camera-based approaches utilize a
wide variety of detection approaches; only predictive approaches have not been
addressed with raw camera data yet. A novel method using camera data for
predictive anomaly detection is briefly introduced in Section 4.3. While LIDAR-
based approaches show a focus on confidence score-based and reconstructive
approaches, multimodal methods focus strongly on feature extraction. Finally,
methods using abstracted data, which focus on scenario-level anomalies, use a
wide variety of detection approaches.

3.2. Camera Data

Autonomous vehicles are often equipped with different camera systems, like
stereo, mono, and fisheye cameras, to ensure a rich perception of the environment.
Thus, anomaly detection in camera data holds great potential for more robust
visual perception. For this section, two more criteria are introduced following the
Fishyscapes (FS) benchmark [133]: outlier exposure and retraining. The former in-
dicates whether an approach requires anomalous data during training. Retraining,
however, specifies whether methods cannot use pre-trained models but require
a special loss or retraining, which might decrease the performance [133]. All
camera-based methods can be found in Table 3.1.

Confidence score: Approaches on the basis of confidence scores constitute a base-
line for the detection of anomalies based on the estimation of uncertainty in NNs.
As one of the earlier works, Kendall et al.’s Bayesian SegNet [218] derives the un-
certainty of the semantic segmentation network SegNet by Monte Carlo dropout
sampling, where higher variance of the classes indicates higher uncertainty. The
uncertainty can be interpreted as a pixel-wise anomaly score to detect obstacles
on roads [429, 330]. A similar approach to detect unknown obstacles on the road
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Outlier Anomaly

Author(s) Ref.  Approach Exposure Retrain Level Data
Du et al. [120] Confidence X v Object PASCAL-VOC [127], BDD100K [492]
Jung et al. [213] Confidence X X Scene FS, LaF[43], RA [264]
Heidecker et al. [179] Confidence X X Object A2D2 [147]
Chan et al. [76] Confidence v v Object LaF [347], CS [101], FS [43]
Bevandi¢ et al. [41] Confidence v v Object Vistas [320], CS [101], ImageNet [109], WD [40]
Malinin and Gales [292] Confidence v v Object FS, LaF [43]
Huang et al. [198] Confidence X X Object CamVid [53]
Kendall et al. [218] Confidence X X Object CamVid [53]
Vojir et al. [429] Reconstruction X X Scene LaF [347], RA [264], RO [263], FS, LaF [43]
Ohgushi et al. [330] Reconstruction X X Scene LaF [347], Highway dataset
Lis et al. [263] Reconstruction X v Scene FS, LaF [43], RO [263]
Di Biase et al. [112] Reconstruction 4 X Object FS, LaF [43]
Blum et al. [44] Reconstruction v X Object FS, LaF [43], FS [43]
Creusot and Munawar [103] Reconstruction X v Scene Recordings, YouTube
Nitsch et al. [324] Generative X v Object KITTI [145], nuScenes [58], ImageNet [109]
Grcic et al. [149] Generative X v Object ~ WD-Pascal [40], LaF [347], SMIYC [75], SH [181]
Xia et al. [469] Generative X X Object CS[101],SH [181]
Lohdefink et al. [278] Generative X v Domain CS[101], BDD100K [492], KITTI [145]
Lis et al. [264] Generative X X Object LaF [347], RA [264]
Haldimann et al. [167] Generative X X Scene CS [101], Vistas [320] [320]
Xue et al. [476] Feature Extraction v v Scene LaF[347]
Bolte et al. [46] Feature Extraction X v Domain KITTI[145], CS [101], BDD100K [492]
Zhang et al. [504] Feature Extraction X X Domain Udacity [417]
Bai et al. [22] Feature Extraction v X Scene Urban dataset

Table 3.1.: Camera-based anomaly detection: The overview shows the used ap-
proach and anomaly level. In addition, it highlights whether outlier
exposure or retraining is necessary. Finally, the used data is listed.
Adapted from [BOG 13].

is proposed by Jung et al. [213]. They obtain class-conditioned “standardized
max logits” of a segmentation network. This procedure is motivated by the find-
ing that max logits have their own ranges for different predicted classes. The
mean and standard deviations are thereby determined from the training samples.
Thus, the standardization can be categorized as a learned confidence score ap-
proach. In addition to the standardization, they suppress class boundaries and
apply dilated smoothing to consider local semantics in broad receptive fields.
Heidecker et al. [179] model the epistemic uncertainty of Mask R-CNN [173] and
quantify the class and positional uncertainty of instances. They outline a criterion
to detect anomalies based on position and class uncertainty. Anomalies due to
positional uncertainty are defined by the standard deviation of scaled bounding
boxes exceeding a predefined threshold. In addition, instances are considered
anomalous due to class uncertainty whenever the standard deviation of any class
is above the predefined threshold. But Bayesian segmentation networks are slow
in inference due to their multiple forward passes through the network with Monte
Carlo dropout for each frame. Therefore, Huang et al. [198] simulate the sampling
procedure via region-based temporal aggregation in frame sequences. To ensure
the correct uncertainty estimation of moving objects, the previous segmentation is
warped via optical flow. Bevandic et al. [41] present a multi-task network to simul-
taneously segment the input frame into semantics as well as output an anomaly
probability map. The latter overrides the semantic segmentation whenever a
probability exceeds a threshold to calibrate the confidence score when the model
faces outliers. Du et al. [120] present the general learning framework Virtual
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Outlier Synthesis (VOS), which contrastively shapes the decision boundary of
NN by synthesizing virtual outliers. At first, they estimate a class-conditioned
multivariate Gaussian distribution in the penultimate latent space. Afterwards,
outliers are sampled from a sufficiently small e-likelihood region of this learned
distribution. These virtual outliers near the class boundary encourage the model
to form a compact decision boundary between ID and OOD data. Furthermore,
they propose a novel training objective with free energy as an uncertainty measure-
ment, where ID data has negative, and the virtual outliers have positive energy.
During inference, OOD objects are detected with a logistic regressor based on the
uncertainty score.

Reconstructive: Reconstructive and generative approaches are predominantly
used for anomaly detection on the object level, since the models learn to reproduce
the normality of the training data without any outlier exposure with anomalous
objects. For instance, a work by Vojir et al. [429] proposes the reconstruction mod-
ule JSR-Net to detect road anomalies based on a pixel-wise score. They enhance
trained semantic segmentation networks by incorporating their information from
known classes into the anomaly score. The network architecture consists of a
reconstruction and a semantic coupling module. The former is connected to the
backbone of the semantic segmentation network and reconstructs the road in a
discriminative way, meaning it reduces the reconstruction loss of the road while
increasing the loss for the remaining environment. In the subsequent module,
the resulting pixel-error map is coupled with the output logits of the semantic
segmentation to end up with a pixel-wise anomaly score. The extension mod-
ule is trained on augmented road images, where patches of noise or a part of
the input image are randomly positioned on the road and labeled as anomalous.
The evaluation on various datasets shows the superiority of JSR-Net in compar-
ison to others [264, 263, 40, 103] while preserving the closed-set segmentation
performance.

A similar approach is evaluated by Ohgushi et al. [330] against the LaF benchmark
on a highway dataset with real and synthetic road obstacles. In contrast to Vo-
jir et al., they combine the entropy loss of the semantic segmentation network with
the perceptual loss between the real and reconstructed image to form an anomaly
map. They outline a set of post-processing steps where the final obstacle score
map depends on the semantic information, the aforementioned anomaly map, and
a superpixel division to refine local regions.

Di Biase et al. [112] leverage image re-synthesis [264] by combining the reconstruc-
tion error with two uncertainty maps of the segmentation network. The network
outputs the softmax entropy and the distance between the two largest softmax
values in addition to the segmentation output. Similar to [330], the perceptual
difference is used as the reconstruction loss between the input and synthesized
image. All predicted maps and the input image are fused in a spatial-aware dis-
similarity module with three parts: encoder, fusion module, and decoder. In the
fusion module, the encoded and re-synthesized inputs and the semantic image are
concatenated and fused. The resulting feature map is evaluated against the jointly
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encoded uncertainty and perceptual difference via point-wise correlation. The
tinal pixel-wise anomaly segmentation is provided by decoding the fused features
and spatial-aware normalization with the semantic information.

Generative: According to the FS, LaF, and Segment Me If You Can (SMIYC)
obstacle track benchmarks, the dense anomaly detection with NFlow]S of Grci¢
et al. [149] outperforms all contemporary techniques and represents the SotA of
camera-based anomaly detection'. NFlow]S simultaneously trains a Normalizing
Flows (NF) to generate synthetic negative patches over regular images and a
dense-prediction network on the resulting mixed-content images. The generated
negative patches are thereby defined as the anomaly mask. During training, the
discriminative model is encouraged to yield a uniform predictive distribution for
the generated patch. This induces the generative distribution of the NF to move
away from the inliers. At the same time, it is trained to maximize the likelihood
of inliers. These opposing objectives support the generation of images at the
boundary of the training data distribution while sensitizing the discriminative
model for anomalies. In contrast to former generative models, the NFlow]S relies
only on anomaly synthesis during training. Blum et al. [44] also evaluate an
NF-based approach with logistic regression on their FS benchmark. However, the
results are incomparable with NFlow]S.

Nitsch et al. [324] adopt and enhance a generative approach of Lee et al. [247]
for the detection of object anomalies. Lee et al. propose an auxiliary Generative
Adversarial Network (GAN) which encourages an object classifier to provide low
confidence for samples outside the training distribution. Nitsch et al. extend the
approach by a post hoc network statistic, which estimates a class-conditioned
Gaussian distribution over the network’s weights of the bottleneck layer. A cosine
similarity metric determines the distribution distance and classifies a given sample
based on an empirical threshold. Since they only perform classification, the
localization of objects has to be done in advance.

Similarly, Lis et al. [264] adopt GANSs to re-synthesize the input image and de-
tect anomalies on the object level by the difference in appearance. Unlike prior
works [429, 330], however, their image generation is based on the final semantic
segmentation map rather than on intermediate feature representations. As the
semantic segmentation preserves the scene layout but loses the precise scene’s
appearance, regular reconstruction errors, like the perceptual loss, would output a
high overall difference without informative results. To overcome this, they pro-
pose a discrepancy network using the input image, a resynthesized image, and the
semantic segmentation. Encodings from the input and the re-synthesized image
are generated with two Visual Geometry Group (VGG)16 [394] networks with
shared weights. A Convolutional Neural Network (CNN) processes the one-hot
encodings of the semantic labels. At each encoding stage, the features of all three
networks are fused and used as input for a decoding CNN on multiple stages,
which up-scales the feature maps to the original image size to overlay the input

!As of the date of the original publication [BOG 13].
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image with a pixel-wise anomaly mask. The semantic-to-image synthesis is also
adopted and evaluated by [469, 167] in the form of a conditional GAN with a
subsequent dissimilarity scoring.

Addressing domain-level anomalies, as introduced in Section 2.5, Lohdefink? et
al. [278] present an approach for the detection of domain shifts. An autoencoder
learns the domain of a given dataset in a self-supervised manner. The approach
characterizes the training data domain via the distribution of the autoencoder’s
Peak Signal-to-Noise Ratio (PSNR). During inference, the Domain Mismatch (DM)
is estimated by comparing the learned and incoming PSNR distribution of the data
via the Earth-Mover’s Distance (EMD). The evaluation shows a strong rank order
correlation between the autoencoder’s DM metric and the decrease of semantic
segmentation performance when faced with target domains different than the
source domain.

Feature Extraction: Another domain shift detection is proposed by Bolte et al. [46],
where the Mean Squared Error (MSE) of feature maps is compared. The MSE is
evaluated over entire datasets or batches. Similarly, Zhang et al. [504] propose the
DeepRoad framework to validate single input images based on the distance to the
training embedding of VGG network features [394]. Bai et al. [22] detect anomalies
in urban road scenes and classify entire input scenes as anomalous. They identify
a set of representatives for normal urban scenes via the k-means clustering of scale-
invariant feature transform features. Finally, images are classified by a one-class
Support Vector Machine (SVM).

Overall, many of the previously outlined techniques work without external data
but require a retraining of the proposed extension module or entire detection
architecture. However, the well-performing NFlow]S [149] technique utilizes
outlier exposure, which has become a standard technique among SotA methods.
The anomaly detection method presented in Chapter 5 does not require anomaly
exposure during training, avoiding a bias towards known anomalies.

3.3. LIDAR Data

Most often, autonomous vehicles do not solely rely on camera data. Although
RGB camera data has a high resolution and rich semantic information, it lacks
an accurate depth measurement. Therefore, LIDAR sensors, which provide a
three-dimensional depth map of the environment, are often found in sensor setups.
While there is much research about local denoising of LIDAR point clouds [357,
27], this section focuses on anomalies on the object and domain level, where an
entire cluster of points or a large and constant shift in appearance is considered
as anomalous. Especially weather conditions like rain, snow, and fog heavily
influence the data. All covered LIDAR-based methods can be found in Table 3.2.

2After first meeting Jonas at CVPR in 2022, he tragically passed away just a few days later.
Reading his name here still fills me with sadness. I wish his family all the strength they need.

22



3.3. LIDAR Data

Author(s) Ref. Approach Anomaly Level Data
Zhang et al. [499] Confidence Domain Urban dataset
Cen et al. [70] Confidence Object UDI [70], KITTI [145]
Wong et al. [459] Confidence Object TORA4D [459], Rare4D
Masuda et al. [296] Reconstruction Object ShapeNet [78]

Table 3.2.: LIDAR-based anomaly detection: The overview shows the used ap-
proach and anomaly level. In addition, the used data is listed. Adapted
from [BOG 13].

Confidence score: Research by Zhang et al. [499] shows that rain, in the context
of a domain shift, affects the LIDAR measurement quality, as resulting point
clouds are sparser, noisier, and the average intensity is lower. Therefore, they
aim to quantify the LIDAR degradation with the Deep Semi-Supervised Anomaly
Detection (DeepSAD) approach [367]. They first project 3D LIDAR data into a
2D intensity image. DeepSAD then transforms the images into a latent space,
where all normal images, i.e., the scans without rain, fall into a hypersphere and
all abnormal, i.e., rain-affected, images are mapped away from the hypersphere’s
center. Finally, the distance of a transformed test image to the learned center of the
hypersphere is interpreted as the anomaly score. As the model architecture defines
anomalies as those that fall out of the hypersphere, the proposed methodology
is classified as a learned confidence detection approach. The trained DeepSAD
reaches a Spearman’s correlation of up to 0.82 between the rainfall intensity and
degradation score on dynamic, simulated test data. This indicates a considerably
accurate quantification of anomaly detection due to weather conditions.

In the past, several architectures have been proposed to detect objects in point
clouds, like VoxelNet [514], PointRCNN [390], and PointNet++ [352]. However,
these are based on a closed-set setting, thus being only capable of detecting classes
that were included in the training set. In contrast, open-set detection methods
are able to explicitly classify objects outside the closed set as unknown upon
the regular detection of the predefined classes. The open-set setting, therefore,
loosens the constraint to classify all detections as one of the predefined classes.
Consequently, one expects the false positive rate to improve and the model to
acknowledge the novelty of objects upon never-before-seen instances.

The idea of an open-set detector for 3D point clouds was first implemented by
Wong et al. [459]. They propose an Open-Set Instance Segmentation (OSIS) net-
work, which learns a category-agnostic embedding to cluster points into instances
regardless of their semantics. The inference is based on a Bird’s-Eye-View (BEV)
LIDAR frame and consists of two stages: the closed-set and open-set perception.
In the first stage, a backbone of 2D convolutions extracts multi-scale features,
which are then fed into a detection and an embedding head. The latter is the core
of OSIS and learns the category-agnostic embedding space. Moreover, the em-
bedding head yields the prototypes of possible closed-set classes. Points are then
associated with prototypes of known categories by the learned embedding space.
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In the second stage, the remaining unassociated points are considered unknown.
Those are clustered into instances of unknown objects via Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [126]. The outlined approach
falls into the category of learned confidence scores, as the prototypes are learned
during training, and unknown objects are identified by their uncertainty of class
association. OSIS is evaluated on two large-scale, non-public datasets. Here, the
technique outperforms other adapted deep learning-based instance segmentation
algorithms for the detection of single-point anomalies on the object level.

The OSIS network is later used as a baseline for comparison of the Metric Learning
with Unsupervised Clustering (MLUC) network developed by Cen et al. [70]. They
focus on two primary tasks: identifying regions of unknown objects with high
probability and enclosing these regions’ points with proper bounding boxes. In
the context of the first problem, the paper shows that the Euclidean Distance Sum
(EDS), based on metric learning, is more suitable than a naive softmax probability
metric to differentiate between regions of known and unknown objects. They
replace the classifier of closed-set detections with the Euclidean distance represen-
tation to all prototypes of the embedding space. The Euclidean distance-based
probability is incorporated into the loss function, such that the embedding vector
of known classes is close to the corresponding prototypes of the respective class.
However, unknown objects are mapped close to the center of the embedding,
having a smaller EDS. The EDS measures the uncertainty of closed-set detections.
Therefore, boxes with an EDS lower than a threshold A\gps are considered as
regions of unknown objects. Similarly to OSIS, these bounding boxes of low contfi-
dence are then refined by unsupervised depth clustering. The MLUC considerably
outperforms OSIS.

Reconstructive: Masuda et al. [296] show an approach to detect whether an
object point cloud is anomalous or not. In contrast to the preceding methods,
this technique is based on point clouds of single encapsulated objects. Since
automotive LIDARs provide full environment scans, single objects or regions of
interest would need to be extracted by detection or clustering approaches first. The
proposed Variational Autoencoder (VAE) is based on the FoldingNet decoder [484]
and learns to reconstruct the set of known objects which are considered normal.
The point cloud is then classified as anomalous based on the reconstruction and
the Chamfer distance as an anomaly score. The approach is evaluated on the
ShapeNet [78] dataset, which also includes a variety of objects outside the AD
domain. The results are promising, as the model achieves an average Area under
the Receiver Operating Curve (AUROC) of 76.3%, where known classes were
defined as anomalies.

Overall, anomaly detection on the object level in LIDAR data is gaining momen-
tum, after research has already led to various closed-set detection architectures.
The anomaly detection method presented in Chapter 5 leverages both camera and
LIDAR data.
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3.4. Multimodal Data

Autonomous vehicles are typically equipped with multiple modalities. In the fol-
lowing, an overview of techniques that identify anomalies based on irregularities
between the individual sensors or by fusing information is provided. All covered
multimodal methods can be found in Table 3.3.

Author(s) Ref. Approach Anomaly Level Data
Sun et al. [398] Feature Extraction Scene CS[101]
Jietal. [207] Feature Extraction Scene Field environment
Gupta et al. [158] Feature Extraction Scene LaF [347]

Table 3.3.: Multimodal anomaly detection: The overview shows the used ap-
proach and anomaly level. In addition, the used data is listed. Adapted
from [BOG 13].

Feature Extraction: Sun et al. [398] present a real-time fusion network for semantic
segmentation based on Red Green Blue-Depth (RGB-D) data. The primary goal of
the multimodal architecture is to improve image segmentation by incorporating
depth information. Furthermore, they argue that the multi-source segmentation
framework is also capable of detecting unexpected road obstacles, providing a uni-
fied pixel-wise scene understanding. However, the evaluation on the Cityscapes
(CS) dataset [101] does not provide detection performance measures for the un-
expected obstacles, as the approach concentrates on the semantic segmentation
of closed-set classes. Another RGB-D based detection of road obstacles is imple-
mented by Gupta et al. [158] in the form of MergeNet. As the architecture’s name
suggests, the model merges two networks, the Stripe-net and Context-net, via a
third meta Refiner-net. The Stripe-net extracts low-level features of the RGB and
depth data in parallel, based on images split in stripes. This forces the network
to learn discriminative features within narrow bands of information and a small
subset of parameters. Moreover, this allows for a more reliable detection of small
road obstacles. In contrast, the Context-net is trained on the entire RGB image and
is determined to learn high-level features. The Refiner-net acts as a meta network
to combine the complementary features and end up with a form of curriculum
learning. As a result, MergeNet is trained to discriminate between road, off-road,
and small obstacles, where the latter is considered abnormal.

Ji et al. [207] propose a supervised VAE to merge multiple sensor modalities of
different dimensionality. They show experiments with high-dimensional LIDAR
data and low-dimensional data from wheel encoders. They abandon the decoder
after training and use the learned encoder as a feature extractor. The modalities’
latent representation is then, along with other encoded modalities, fed into a fully
connected layer to identify an anomalous operation mode of the vehicle.

In summary, as shown in Figure 3.1, all of the multimodal anomaly detection
techniques are based on the comparison of the individual modalities” extracted
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features. As multimodal detection broadens the search space for potential anoma-
lies while reducing the risk of false positives, the anomaly detection method
presented in Chapter 5 leverages both camera and LIDAR data. Contrary to the
feature-based approaches presented in this section, the method combines both
reconstruction and prediction in order to provide pixel-based anomaly masks
rather than classifications.

3.5. Abstracted Data

The previous sections present an overview of anomaly detection techniques suit-
able for specific sensor modalities. The following approaches focus on a more
abstract level of pattern analysis, i.e., the detection of anomalous behavior in sce-
narios that are not necessarily bound to a sensor modality. Thus, the approaches
are designed to detect anomalies on the scenario level [51] and deal with risky and
abnormal driving behavior of non-ego vehicles. All covered abstraction-based
methods can be found in Table 3.4.

Author(s) Ref. Approach Anomaly Level Data
Yangetal.  [480] Prediction Scenario CARLA [117]
Bolte et al. [45] Prediction Scenario CS[101]
Liu et al. [271] Prediction Scenario CUHK [280], UCSD [290], ST [283]
Prediction . . .
Yuanetal. [504] Confidence Scenario Driving videos
Zhang etal. [504] Feature Extraction Scenario Udacity [417]
Reconstructive . .
Stoccoetal. [397] Confidence Scenario Udacity [417]

Table 3.4.: Abstraction-based anomaly detection: The overview shows the used

approach and anomaly level. In addition, the used data is listed.
Adapted from [BOG 13].

Prediction: Yang et al. [480] assess the behavior of driving vehicles based on
Hidden Markov Models (HMMSs) to detect anomalous scenarios. The observation
states of the Markov model are provided by the Conditional Monte Carlo Dense
Occupancy Tracker (CMCDOT) framework [368] and comprise real-time velocity
as well as vehicle position through probabilistic occupancy grids. The framework
derives these observations based on point cloud and odometry data. As a result,
the pipeline can infer risky and abnormal driving behaviors in simulated multi-
lane highway scenarios with two non-ego vehicles.

Bolte et al. [45] propose an anomaly detection on the scenario level, where patterns
are observed over a sequence of sensor data, i.e., camera images. They quantify the
anomalous behavior of moving objects, such as pedestrians or cars, by computing
the error between the real and a predicted frame. The predicted frame is generated
by an adversarial autoencoder and is based on the past sequence of input frames.
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Hence, the anomaly score can also be interpreted as the non-predictability of
the model. The model is evaluated with MSE, PSNR, and Structural Similarity
Index Measure (SSIM) [443] metrics, and anomalous scenarios are determined
by a threshold. They localize anomalous behaving objects by dividing the input
image into grid cells of user-specific size and weight closer objects higher, as those
pose a higher risk of collision.

A similar but more comprehensive approach is outlined in the paper of Liu et
al. [271]. They adopt U-Net [365] as an image-to-image translation model to
predict the next frame based on the past sequence of frames. In contrast to the
former approach [45], their framework considers also temporal information of
scenarios. They extend their objective function by an optical flow constraint to
retain the motion information of moving objects. The optical flow is calculated
via Flownet [116]. They leverage adversarial training to discriminate between
real and fake images to further boost the performance of future frame prediction.
Anomalous scenarios are again identified by the PSNR of the real and predicted
frame exceeding a predefined threshold.

Reconstructive: Stocco et al. propose SelfOracle [397] for the detection of safety-
critical misbehavior, like collisions and out-of-bound episodes. The architecture
uses a VAE to reconstruct a set of preceding input images of a current scene and
calculates the corresponding reconstruction errors. During the training on normal
data, the model fits a probability distribution to the observed reconstruction errors
via maximum likelihood estimation. The estimated distribution can then be used
to determine a threshold value to distinguish between anomalous and normal
behavior. In addition, SelfOracle implements a time-aware anomaly scoring by
applying a simple autoregressive filter on the sequence of reconstruction errors, as
the current error might be susceptible to single-frame outliers. While they evaluate
SelfOracle only in a simulation environment, the approach seems promising and
even outperforms the author’s implementation of the DeepRoad framework.

Anomaly detection using abstracted data heavily depends on human driving
behavior, as most methods leverage predictions. Therefore, with the rise of au-
tonomous vehicles on the road, AD will experience a large concept drift in behavior
prediction. Such an evolving normality is an expected phenomenon of data-based
approaches. Similarly, the anomaly detection method presented in Chapter 5 is
based on a data-defined representation of normality and leverages both recon-
struction and prediction for the detection of anomalies. Abstract object data is
used to refine detected anomalies with object-level masks.

3.6. Conclusion

This chapter provides an extensive overview of anomaly detection techniques for
autonomous driving. Answering RQ1, it examines methods based on camera and
LIDAR as typical sensors for autonomous vehicles. This way, trends and patterns
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in the field of anomaly detection for autonomous driving are identified. Most
of the recent advancements are concerned with image-based anomaly detection,
while other modalities are still struggling to gain momentum. One reason for this
is the absence of benchmarks, which are so far only established for camera-based
methods. In addition, many well-performing approaches require outlier exposure,
which poses the risk of missing unknown anomalies in the open world.

Addressing these identified patterns, Chapter 4 introduces a challenging and
multimodal anomaly detection benchmark supporting both camera and LIDAR
sensors. It includes both object-level and scenario-level anomalies. Subsequently,
Chapter 5 introduces a self-supervised and multimodal anomaly detection method,
not requiring labeled data or outlier exposure.

3.6.1. Recent Advances

The field has continued to evolve since the development and publication of the
work underlying this chapter [BOG 13]. Recently, multiple surveys have con-
tirmed the relevance and timeliness of the identified patterns of anomaly detection
methods. Similarly to the structure of this chapter, as adapted from Breitenstein et
al. [52], Rahmani et al. [355] classify anomaly detection methods into reconstructive
and generative, confidence-based, feature extraction-based, and other, often predictive,
methods. Shoeb et al. [391] categorize approaches into Mask2Former [92]-based,
uncertainty-based, generative, and other approaches. This underscores the value
of the structured analysis in this chapter and shows an intensified trend toward
methods based on semantic segmentation models.

Addressing the complexity of existing benchmarks, Shoeb et al. [391] find that
current benchmarks are saturated, and they agree to findings in [BOG 22], where
anomaly detection benchmarks are examined in more detail, that “OOD detection
suffers from under-complex street scenes” [391]. Existing anomaly detection
benchmarks are discussed in more detail in Section 4.3.1. In addition, a focus
on 2D image data remains a limiting factor [355, 396]. Furthermore, anomaly
detection methods continue to rely on labeled datasets and outlier exposure during
training [355, 396, 391]. Shoeb et al. are especially concerned about using outlier
exposure, stating a “risk of overfitting to seen examples” [391].

These recent works underline the timeliness of the identified research problems
presented in this chapter and show the continued relevance of the foundational
research problems addressed in this dissertation. Looking forward, Shoeb et al.
conclude that anomaly detection benchmarks require “[...] complexities incorpo-
rating temporal dynamics, multimodal sensor inputs” [391] and Rahmani et al.
find a “growing interest in developing [...] methods to work more effectively with
multi-modal sensor data” [355]. In line with these conclusions, Chapter 4 presents
a challenging, multimodal benchmark with both object-level and scenario-level
anomalies. Subsequently, Chapter 5 utilizes this benchmark for the evaluation of a
multimodal anomaly detection method.
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“Data! data! data!” he cried
impatiently. “I can’t make bricks
without clay.”

Sherlock Holmes by A. C. Doyle,
1892 [118]

4. Anomaly Generation

Multiple supervised student theses have contributed to this chapter [STU 2, 7].
Parts of this chapter have previously appeared in the following publications:

* D. Bogdoll et al. One Ontology to Rule Them All: Corner Case Scenarios for
Autonomous Driving. In European Conference on Computer Vision (ECCV)
Workshop, 2023 [BOG 5]

¢ D. Bogdoll et al. AnoVox: A Benchmark for Multimodal Anomaly Detection in
Autonomous Driving. In European Conference on Computer Vision (ECCV)
Workshop, 2025 [BOG 6]

¢ D. Bogdoll et al. Hybrid Video Anomaly Detection for Autonomous Driving. In
British Machine Vision Conference (BMVC) Workshop, 2024 [BOG 8]

4.1. Introduction

As shown in Chapter 3, anomaly detection benchmarks currently focus on camera
data and include overly simplified scenes. In addition, a previous survey [BOG
22] found that anomalies are often ill-defined based on no clear definition of
normality. Generally, no framework exists to generate scenarios with external
anomalies based on the theoretical levels from the anomaly taxonomy introduced
in Section 2.5.2 and shown in Table 2.1 [BOG 3]. Addressing RQ2, this chapter
presents two methodologies to convert theoretical anomaly definitions from the
literature into datasets containing anomalies. The first method offers comprehen-
sive coverage for all considered anomaly levels, but focuses on the generation of
individual scenarios. The second method focuses on specific types of anomalies,
but allows for the scalable generation of numerous scenarios. All data is generated
in the CARLA [117] simulation environment.

In general, there are two types of scenario generation approaches: knowledge-
driven and data-driven [172]. While both require expert knowledge at some
stage, knowledge-driven approaches “require substantial expertise” [59] on topics
such as traffic dynamics or long-tail cases to create relevant scenarios, whereas
data-driven approaches exploit “information contained in source data” [59]. Data-
driven approaches are common when typical behaviors of traffic participants are
extracted from real-world driving recordings, e.g., to achieve more realistic simu-
lation environments. As the focus of this dissertation is on atypical scenarios, both
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approaches presented in this chapter leverage knowledge about the theoretical
anomaly levels introduced in Section 2.5 and are thus knowledge-driven.

Section 4.2 presents a methodology to generate expert-defined scenarios with
anomalies from all levels. The scenario descriptions are based on an ontology’,
meaning that all scenarios are structured in a comparable way, allowing for later
coverage analysis. This approach allows for the generation of a large-scale, struc-
tured scenario catalog. While such a catalog is useful to test an autonomous
driving function, expert-defined scenarios require a great deal of manual effort, as
each individual scenario is explicitly designed by a human. This results in a set of
very specific scenarios. In an open world, however, a wide variety of situations
can occur. Thus, the subsequent Section 4.3 focuses on the variability of scenarios
with anomalies as a challenging benchmark for anomaly detection methods.

Section 4.3 presents a scalable methodology for the generation of object-level and
scenario-level anomalies. Here, experts only define the ODD, such as location,
time of day, and weather, and set some parameter limits. The scenarios are
then generated programmatically. As a well-defined benchmark, it provides
both training and evaluation data. This enables a fair comparison of anomaly
detection methods, as they are trained based on the same definition of normality.
For multimodality, a sensor setup of a typical recording vehicle is employed
with ground truth labels provided for camera and LIDAR data. To allow for a
comparison between anomaly detection methods using different sensors, ground
truth is additionally provided in a voxelized form.

4.2. Individual Scenario Generation

This section presents a scenario generation method that is capable of generating
data from all anomaly levels described by Breitenstein et al. [51], which was not
possible previously. Based on the popular OpenSCENARIO [17] framework?,
human scenario designers can generate a wide variety of scenarios with anomalies.
Using the resulting scenario-describing ontologies, synthetic data of scenarios
with anomalies is generated automatically in simulation. The presented methodol-
ogy is demonstrated by a scenario catalog comprising nine scenarios, including
combinations of such containing different anomaly levels.

While there are other methods of generating scenarios [BOG 3], most are based
on purely scripted descriptions [444]. This makes it challenging to understand
the scenario coverage of a large-scale scenario catalogue. Differently, ontologies
as used here support strong reasoning capabilities to infer scenario types purely
based on generated ontologies [2]. While such an inference is not carried out in

!An ontology is a “formal explicit description of concepts in a domain” [327] that “includes
machine-interpretable definitions of basic concepts [...] and relations among them” [327].

2OpenSCENARIO uses elements like Storyboard, Story, Act, ManeuverGroup, Maneuver, Event,
and Action to describe scenarios. Details can be found in the OpenSCENARIO User Guide [17].
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this dissertation due to the small, exemplary scenario catalog, the design choice of
ontologies supports the systematic structuring and analysis of large-scale scenario
catalogs.

4.2.1. Related Work

Ontologies are being widely used for the description of scenarios and have proven
to be able to describe scenarios in great detail [184]. In the following, multiple
scenario generation approaches are introduced and compared with respect to their
ability to generate scenarios containing anomalies, as shown in Table 4.1. For
this purpose, the requirements for an ontology to be able to describe all levels of
anomalies, as introduced in Section 2.5, are derived first.

To describe all levels of anomalies, an ontology generally needs to be able to
describe both static scenes and temporal scenarios. Furthermore, it needs to be
able to describe arbitrary environments and arbitrary objects. Following an open-
world assumption, arbitrary is defined with respect to environments and objects
as the possibility to include such without changing any classes or properties of
the ontology. This means, e.g., referencing external sources, such as OpenDRIVE
files for environments or Computer-Aided Design (CAD) files for objects. An
ontology needs to be designed in a way that the described scenarios can also be
simulated. Finally, information about the anomaly levels needs to be included
for details and knowledge extraction. To be useful, an ontology should also be
available beyond its description in a scientific work. While some authors, such
as [137,201], released their ontologies previously, the provided links do not contain
them anymore, which is why outdated sources are excluded.

Author(s) Temporal Scenario Arbitrary Arbitrary  Scenario Anomaly Ontology
Description Environments  Objects Simulation Categorization Availability

Fuchs et al. [137] - - v -

Hummel [201] - v - - - -
Hiilsen et al. [200] v v - - - -
Armand et al. [15] - - - - - -
Zhao et al. [509] - v - - v
Bagschik et al. [21] v - - - - -
Chen and Kloul [88] v - - - -
Huang et al. [197] v - - -
Menzel et al. [302] v v - v

Li et al. [257] v v v - -
Tahir and Alexander [402] v - - v

Hermann et al. [184] - v v v - -
ASAM [16] - - - - - -
Presented Method v v v v v v

Table 4.1.: Overview of ontology-based scenario descriptions: Analysis of ontolo-
gies with respect to their suitability to describe and generate scenarios
that include all levels of anomalies. Adapted from [BOG 5].

Based on these necessary attributes of ontologies to describe and generate anoma-
lies on all considered levels, several related works are analyzed and compared
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in Table 4.1. In the work of Bagschik et al. [21], an ontology is presented which
describes simple highway scenarios based on a set of pre-defined keywords. In a
later work, Menzel et al. [302] extend the concept to generate OpenSCENARIO [19]
and OpenDRIVE [18] scenarios, while many of the relevant details were not mod-
eled in the ontology itself, but in post-processing steps. For the description of
the surrounding environment of a vehicle, Fuchs et al. [137] especially focus on
lanes and occupying traffic participants, while neglecting their actions. Li et
al. [257] also create scenarios which are executed in a simulation environment,
covering primarily situations, where sudden braking maneuvers are necessary.
Thus, their ontology is very domain-specific. They build upon their previous
works [404, 460, 227]. Tahir and Alexander [402] propose an ontology that focuses
on intersections due to their high collision rates. They show that their scenarios
can be executed in simulation, focusing on changing weather conditions. While
they claim to have developed an ontology, the released code [495] only contains
scripted scenarios, which might be derived from an ontology structurally. Her-
mann et al. [184] propose an ontology for dataset creation, with a demonstrated
focus on pedestrian detection, including pedestrian occlusions. Their ontology is
structurally inspired by the Pegasus model [377] and consists of 22 sub-ontologies.
It is capable of describing a wide variety of scenarios and translating them into
simulation. However, since the ontology itself is neither described in detail nor
publicly available, it does not become clear whether each frame requires a separate
ontology or whether the ontology itself is able to describe temporal scenarios.
In the OpenXOntology project by ASAM [16], an ontology is being developed
with the purpose of unifying their different products, such as OpenSCENARIO
or OpenDRIVE. Based on the large body of previous work in the field of scenario
descriptions, this ontology is promising for further development. However, at the
moment’, it serves the purpose of a taxonomy. Finally, Gelder et al. [106] propose
an extensive framework for the development of a “full ontology of scenarios”.
However, they have not developed the ontology itself, which is why their work
cannot be compared to existing ontologies.

Next to ontologies which are explicitly designed to describe scenarios, more exist
which also focus on decision-making aspects. In this category, Hummel [201]
developed an ontology capable of describing intersections to a degree, where
the ontology can also be used to infer knowledge about the scenes. While this
is a general attribute of ontologies, she provides a set of rules for the analysis.
Hiilsen et al. [200] also describe intersections based on an ontology, focusing on
the road layout, while interactions between entities cannot be modeled in detail.
Armand et al. [15] address this issue and focus on such interactions. They also
propose rules to infer knowledge from their ontology. These rules are partly
attributed to the decision-making of an ego vehicle, e.g., whether it should stop
or continue. Due to their strong focus on actions and interactions, they struggle
to describe complex scenarios in a more general way. Zhao et al. [509] present
a set of three ontologies, namely “Map”, “Car”, and “Control”. Based on these,
they are capable of describing complex scenes for vehicles only. While the scenes

3As of the date of the original publication [BOG 5].
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do contain temporal information, such as paths for vehicles, these are only broad
descriptions and not detailed enough to model complex scenarios. Huang et
al. [197] present a similar work that is able to describe a wide variety of scenarios
based on classes for road networks for highway and urban scenarios, the ego
vehicle and its behavior, static and dynamic objects, as well as scenario types.
However, it is designed to derive driving decisions from the descriptions instead
of simulating these scenarios. Chen and Kloul [88], on the other hand, propose an
ontology that is primarily designed to describe highway scenarios, with a special
focus on weather circumstances.

Table 4.1 provides an overview of the related works and highlights the research
gap addressed by the approach presented here. A trend can be observed where
recent approaches focus more on the aspect of scenario simulation. However, no
ontology has been able to describe and simulate long-tail anomaly events on all
anomaly levels. The approach presented in this section fills this gap, being able to
generate ontology scenarios for all considered anomaly levels and execute them in
simulation.

4.2.2. Method

In order to generate anomaly scenarios, a developed master ontology* is the
foundation for the creation of specific scenarios and provides the structure for
all elements of a scenario. Based on this, all considered external anomaly lev-
els, as introduced in Section 2.5, can be addressed. An overview of this process
can be found in Figure 4.1. For the creation of scenarios, an ontology generator
module is the interface to human scenario designers, who do not need any ex-
pertise in the field of ontologies in order to design scenarios. For each designed
scenario, a scenario ontology is created. This is a major advantage over purely
coded scenarios, as the complete scenario description is available in a human- and
machine-readable form, which directly enables knowledge extraction, analysis,
and further processing, such as exports into other formats or combinations of sce-
narios, for all created scenarios on any level of detail. Finally, the OpenSCENARIO
conversion module converts this ontology into an OpenSCENARIO file, which
can be directly simulated in the CARLA simulator.

Master Ontology

First, the master ontology is described, which is the skeleton of every concrete
scenario. With its help, different scenarios can be described by instantiating the
different classes, using individuals, and setting property assertions between them.
The master ontology is closely aligned to the OpenSCENARIO documentation [17]
since the ontology is used for the automatic generation of scenarios. Within the
ontology, it is also possible to describe concrete anomalies based on the anomaly
levels introduced in Section 2.5.

“The ontology and processing code are available on GitHub:

33


https://github.com/fzi-forschungszentrum-informatik/corner_case_ontology
https://github.com/fzi-forschungszentrum-informatik/corner_case_ontology

4. Anomaly Generation

OpEnSCENARIO Scenario Ontology

anguage Designer Generator
Anomaly Master Scenario OpenSCENARIO Execution in
Taxonomy Ontology 1:n Ontology Conversion Simulation

Figure 4.1.: Generation of scenarios with anomalies: Based on an anomaly taxon-
omy and the OpenSCENARIO language, a master ontology contains
all necessary attributes to describe complex scenarios. Ina 1 : n re-
lation, ontologies describing individual scenarios can be derived. In
an automated fashion, these scenarios are then converted into the
OpenSCENARIO format, enabling the direct execution in simulation
environments. Adapted from [BOG 5].

The master ontology, as shown conceptually in Figure 4.2 and in full detail in
Section A.1 of the appendix, consists of 100 classes, 53 object properties, 44 data
properties, 67 individuals, and 683 axioms. The 100 classes are either classes for the
description of the anomaly category or derived from the OpenSCENARIO docu-
mentation [17], which means that the definitions of the different OpenSCENARIO
elements can also be found there. They are used as parents for the individuals
created within the ontology. The 53 object properties and the 44 data properties
are used to connect the different parts of a scenario, in order to embed individuals
into concrete scenarios. For a better understanding and more structured explana-
tion, the master ontology can be divided into seven main groups: Scenario and
Environment, Entities, Main Scenario Elements, Actions, Conditions, Weather and
Time, and Anomaly Level. These will be described in more detail in the following,
with each section highlighted in Figure A.1.

Ontology
Root

%\

. Mai
Conditions Entities Scenario and Scer?:rlio Actions Weather and Anomaly
Environment Time of Day Level
Elements

==

Figure 4.2.: Master Ontology: Main component groups of the master ontology and
their relations. The complete ontology with these groups highlighted
is displayed in full detail in Figure A.1.

Scenario and Environment: In order to be able to describe a scenario, the master
ontology provides the scenario class, which is directly linked to the root of the
ontology. Together with the scenario class, different object and data properties are
provided. Those are used as connections between the different scenario elements,
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such as the entities, towns, or the storyboard. Towns are CARLA-specific envi-
ronments used in the ontology. CARLA allows users to create custom and, thus,
arbitrary environments.

Entities: This group holds the different entities vehicle, pedestrian, bicycle, and
misc. For arbitrary entities, the misc class can be utilized. If specific movement
patterns are required, the classes vehicle, pedestrian, and bicycle are also already
available. The individuals can be then connected to 3D assets from the CARLA
blueprint library [65], which can be extended with external objects. This way, a
scenario designer is able to add arbitrary assets into a scenario.

Main Scenario Elements: The main scenario elements are used to build the core of
any scenario. The highest level is the storyboard, which includes an init and a story.
A story has at least one act, which needs at least a StartTrigger and can optionally
include a StopTrigger. Acts also are a container for different ManeuverGroups, that
logically include maneuvers. The maneuvers then have to have a minimum of
one event, which is also activated by a StartTrigger. Finally, each event needs to
include at least one action. These are the main components of the OpenSCENARIO
scenario description language and necessary parts of each scenario. For each of
them, also a corresponding connecting property exists, i.e. has_event, has_action,
has_init_action.

Actions: To be able to describe the maneuvers of the different entities, different
actions are represented within the ontology, e.g., TeleportAction, which sets the
position of an entity, or RelativeLaneChangeAction, which describes a lane change
of an entity.

Conditions: As part of the StartTrigger and StopTrigger elements, conditions are
used to activate them. Conditions are divided into two subclasses: ByEntityCon-
dition and ByValueCondition. In general, the difference between those two is that
the ByEntityCondition is always related to an entity, i.e., how close a vehicle is to
another vehicle, while the ByValueCondition is always related to a value, i.e., the
passed simulation time. Depending on the type of condition, different values must
be met in order for the StartTrigger or StopTrigger to be activated. As an example,
the SimulationTimeCondition can be used as a trigger with respect to the simulation
time, using arithmetic rules.

Weather and Time of Day: To set the weather, the underlying CARLA town
can be modified individually. This includes the weather conditions, which are
subdivided into fog, precipitation, and the position of the sun. Also, the time of
day can be set.

Anomaly Level: In the long tail of rare scenarios, each can be related to a specific
anomaly level. The master ontology incorporates the top-level anomaly layers,
as introduced in Section 2.5, but focuses on camera-based anomaly levels [51] in
its current form. This makes extending the master ontology to include additional
sensors straightforward, as they fall into the same top-level layers. Occurrences
on the sensor layer, such as dead pixels or overexposure, can be simulated with
subsequent scripts during the simulation phase and are not modeled by the
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ontology alone. Details on those anomalies can be placed in the individual scenario
ontologies by creating specific individuals of the respective anomaly classes of the
master ontology.

Next to those groups, an additional 67 individuals exist, which are divided into
constants and default individuals. There are two types of constants: OpenSCE-
NARIO constants, such as arithmetic or priority rules, and CARLA constants, such
as assets. The default individuals are used to help a scenario designer to create sce-
narios faster and easier. These include common patterns, such as default weather
conditions or a trigger, which activates when the simulation starts running. In
addition, a default ego vehicle is also included in the master ontology, which has a
set of cameras and a bounding box attached to it. As the last part of the ontology,
the 683 axioms represent the connections and rules between the entities and the
properties within the ontology, along with the individuals.

Scenario Ontology Generation: Manual creation of ontologies is a time-consuming
and error-prone process that requires expertise in the general field of ontologies
and related software. To ensure that the OpenSCENARIO conversion module
functions properly, the ontology generator module takes as input a scripted ver-
sion of a scenario and creates a scenario ontology as a result. The concept behind
the ontology generator is to use the master ontology as a base for a scenario
description and automatically create the necessary individuals and property asser-
tions between them, as shown in Figure 4.1. The master ontology is read by the
ontology generator, and it uses, depending on the scenario, all classes, properties,
and default individuals needed. The result is a new scenario ontology, which has
the same structure as the master ontology with respect to classes and properties,
but includes newly created individuals for the designed scenario.

Since the master ontology is built based on the OpenSCENARIO documenta-
tion [19], which is a very powerful and flexible framework, it allows for many
possible combinations. This gives a scenario designer a large flexibility with
respect to the design of new scenarios. This way, no prior experience with the
OpenSCENARIO format is necessary. With the help of the ontology generator, ev-
ery part that was defined within the master ontology can be utilized. Algorithm 1
shows, how a partly abstracted implementation, as done by a scenario designer,
looks like. In Section A.2 of the appendix, an exemplary scenario ontology, which
was generated by the ontology generator, is demonstrated. In this demonstra-
tion, the scenario ontology from Algorithm 1 is related to the visualization in
Figure A.2.

Scenario Simulation: After a scenario is described with the help of individuals
within a scenario ontology, it is read by the OpenSCENARIO conversion module,
as shown in Figure 4.1. From these concrete scenarios, the conversion module
generates OpenSCENARIO files. These can be directly simulated without any
further adjustments. Since the OpenSCENARIO files include simulator-specific
details, the ontology focuses on the CARLA simulation environment [66]. When
the ontology generator module is used to create the scenario ontologies, their
structural integrity is ensured, which is a necessary requirement for the conversion
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Algorithm 1: Creation of a scenario ontology with the ontology generator
including a domain-level anomaly, where the ego vehicle enters a foggy area
(incl. abstract elements)

import OntologyGenerator as OG

import MasterOntology as MO

ego_vehicle <~ MO.ego_vehicle / /Default ego vehicle individual
weather_def < MO.def_weather //Default weather individual

Initialize teleport_action(ego_vehicle), speed_action(ego_vehicle)
init_scenario < OG.newInit(speed_action, teleport_action, weather_def)
//Starting conditions for storyboard

Initialize traveled_distance_condition
Trigger < OG.newStartTrigger(traveled_distance_condition) //Trigger
condition: Ego vehicle traveled defined distance

Initialize weather(sun, fog, precipitation)

Initialize time_of_day, road_condition

env <— OG.newEnv(time_of_day, weather, road_condition)

env_action <— OG.newEnvAction(env) //Foggy environment after
trigger

Initialize Event, Maneuver, ManeuverGroup, Act, Story, Storyboard
//Necessary OpenSCENARIO elements

Export ScenarioOntology

module. This means that each scenario ontology is correctly provided to the
conversion module. Theoretically, scenario ontologies can also be created manually
to be processed by the conversion module. However, human errors are likely
during such manual processes, preventing the correct processing by the conversion
module.

While each scenario ontology is able to cover multiple anomalies, the created on-
tologies are fully modular. This means, given the same environment, the method
is capable of combining multiple, already existing scenario ontologies into a new
single scenario ontology. In such cases, where the number of scenario individuals
isn > 1, a pre-processing stage is triggered, which extends the ontology to com-
bine all n provided scenarios into a single new scenario Sf,sion. For this purpose,
this stage creates a new scenario, storyboard, and init. Subsequently, for every
included scenario, the algorithm goes through its stories, entities, and init actions
and merges them in Sy,;0,. For the final creation of the OpenSCENARIO file, the
conversion module utilizes the property assertions between individuals to create
the according Python objects, which are then used by the pyoscx library [351]
to create the OpenSCENARIO file. These files can then be read by the Scenari-
oRunner [67] and executed in CARLA. In the following Section 4.2.3, a set of nine
simulated scenarios is demonstrated.

37



4. Anomaly Generation
4.2.3. Evaluation

For the evaluation, a diverse scenario catalog containing scenarios from all consid-
ered anomaly levels has been created. These cover different levels of complexity,
starting with simpler content layer cases and ending with highly complex tempo-
ral layer cases. This serves as a qualitative evaluation to demonstrate the feasibility
of the methodology as shown in Figure 4.1. Here, descriptions made by a scenario
designer are converted into scenario ontologies and executed in simulation.

#  Anomaly Level Individuals Scenario Description
(a) Domain Level 94 Domain Shift: Sudden weather change
(b) Object Level 93 Single-Point Anomaly: Unknown object on the road
(c) Scene Level 164 Collective Anomaly: Multiple known objects on the road
(d) Scene Level 111 Contextual Anomaly: Known non-road object on the road
(e) Scenario Level 94 Novel Scenario: Unexpected event in another lane
(f)  Scenario Level 104 Risky Scenario: A risky maneuver
(g) Scenario Level 95 Anomalous Scenario: Unexpected traffic participant behaviour
(h) Combined: (c) and (e) 156 Combined: Collective and Novel Scenario
(i) Combined: (e) and (g) 122 Combined: Novel and Anomalous Scenario

Table 4.2.: Overview of scenarios: The scenario ontologies are derived from the
master ontology and executed in simulation. These exemplary scenarios
cover all considered external anomaly levels. Adapted from [BOG 5].

For the selection of the exemplary anomaly scenarios, three types of sources were
considered. First, examples provided by the literature were used, such as the
ones provided by Breitenstein et al. [52]. Second, various video sources, such as
third-person videos, and dash-cam videos of traffic situations [288] were used for
inspiration. Third, multiple brainstorming sessions took place, where personal
experiences were collected. Afterward, the selection was narrowed down to a set
of seven representative scenarios. Two more were created by combining two of
those seven scenarios. An overview of these scenarios can be found in Table 4.2.
These scenarios demonstrate that all considered anomaly levels, as introduced in
Section 2.5, can be generated with the presented approach.

Visualizations of all scenarios can be found in Figure 4.3. The (a) domain-level
scenario shows a sudden weather change, where the ego vehicle suddenly drives
into dense fog. For the (b) object-level scenario, a falling vending machine on the
road is simulated. The (c) collective scene-level anomaly includes a lot of running
pedestrians in front of the ego vehicle, which could happen during a sports event.
The next scenario, (d) contextual scene level, also has falling objects on the road,
but in this case, the objects are traffic signs. This can be considered, for example, in
a very windy environment. For the (e) novel scenario-level scenario, the scenario
includes a cyclist performing unexpected maneuvers in the opposite lane. The
(f) risky scenario-level scenario shows a close cut-in maneuver in front of the ego
vehicle. The last anomaly category is the (g) anomalous scenario-level, where a
pedestrian suddenly runs in front of the ego vehicle. To demonstrate the scalability
of the approach, scenarios are also combined. In the combined scenario (h), a
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(a) Domain Level
(b) Object Level

(c) Scene Level (Collective)
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(f) Scenario Level (Risky)

(g) Scenario Level (Anomalous)

(h) Combined (c) & (e)

(i) Combined (e) & (g)

Figure 4.3.: Scenarios in simulation: Visualization of the simulated scenarios with

anomalies, as listed in Table 4.2. Adapted from [BOG 5]. 29
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collective and a novel anomaly are included, where a lot of running pedestrians are
in front of the ego vehicle, while a cyclist performs unexpected maneuvers in the
opposite lane, next to the pedestrians. In addition, the novel scenario is combined
with the anomalous scenario, resulting in (i), where a pedestrian walks in front
of the ego vehicle and the cyclist. At the core of each demonstrated scenario
lies a scenario ontology, as shown in Figure 4.1. More details on these scenario
ontologies can be found in Section A.2 of the appendix, where the construction of
the scenario ontology for the (a) domain-level scenario, where a vehicle enters a
foggy area, is presented.

4.2.4. Summary

In the context of autonomous driving, the presented methodology enables the
generation of scenarios with anomalies from all considered external anomaly
levels, as introduced in Section 2.5.2, in simulation. Based on a master ontology
and human-designed scenarios, concrete scenario ontologies are automatically
derived and used for execution in simulation. The approach was demonstrated
with a set of nine concrete scenarios. While these scenarios demonstrate a wide
variety of anomalies, their design is still labor-intensive. This is valuable for the
generation of a specific scenario catalog, but does not allow for larger-scale testing.
In addition, the focus of this section is on the generation of scenarios and not on
the benchmarking of anomaly detection algorithms, which requires additional
effort. In the following, Section 4.3 demonstrates a scalable approach that focuses
on large-scale scenario generation and anomaly detection benchmarking, rather
than the design of individual scenarios.

4.3. Scalable Scenario Generation

As demonstrated in Section 4.2 and as is evident from the literature, expert per-
spectives are commonly used to judge individual long tail data points [51, 52, 178,
345, 366][BOG 5, 3]. To generate a larger number of scenarios with anomalies,
this section introduces a scalable and adaptable method to generate data with
anomalies to benchmark anomaly detection methods in AD. The approach focuses
on anomalies at the object and scenario levels, as introduced in Section 2.5.

Temporal scenarios with a high scene complexity and many frames without anoma-
lies require low false-positive rates for good anomaly detection performance. In
related benchmarks involving reduced scene complexity and anomalies in every
frame, false positives are less likely to occur. The approach presented here gen-
erates sensor data and ground truth in all modalities, as well as a spatial voxel
representation, as shown in Figure 4.4. Classically, anomaly detection methods are
evaluated in their respective sensor space. This prohibits the comparison between
methods using different sensors. Here, the evaluation takes place in a voxelized
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Dataset: RGB and Lidar Benchmark:
Content and Temporal Anomalies Anomaly Detection Voxelization and Evaluation
o e

Figure 4.4.: Multimodal Anomaly Detection Benchmark: The stages of the
anomaly detection benchmark are exemplarily shown with a deer
as an object-level anomaly. Left: Scene and ground truth provided
by the dataset for both camera and LIDAR data. Middle: Results
for anomaly detection methods in camera and LIDAR data. Right:
Anomaly detection results are converted into a common voxelized
space and evaluated based on the voxelized ground truth. Reprinted
from [BOG 6].

3D space, enabling the comparison of methods based on camera and LIDAR data.
Next to providing a benchmark with labeled anomalies, the method is also able to
generate large-scale training data that follows a clear definition of normality and
does not include anomalies. For anomaly detection methods that are only trained
on raw, unlabeled data, this clear definition of normality is of high importance.
This is especially relevant given the surge in foundation models [68, 333], world
models [503, 192], and large-scale pre-training approaches [185, 481], which often
do not need labeled data for training and can be utilized for anomaly detection.
Providing the means to generate large-scale training data that is aligned with the
data included in the benchmark addresses many limitations of current benchmarks.
Both the generated training data and the evaluation benchmark are utilized for
anomaly detection in Chapter 5.

4.3.1. Related Work

While there exists a considerable number of datasets in autonomous driving [269,
251][BOG 21], only a few are designed for anomaly detection [BOG 22, 13]. These
existing datasets, however, have significant limitations. First, the majority are
camera-only, despite autonomous driving relying on multi-modal sensor setups.
Second, temporal information is often overlooked, limiting anomaly detection
to single frames. Additionally, most benchmarks show overly simplified traffic
scenes, for example, an otherwise-empty road with only an object-level anomaly
on it. This allows for the assumption that anything on the road might be an
anomaly [287]. Most anomalies in benchmarks are human-defined, such as dogs
on the street [44]. This can make the detection of such anomalies challenging, as
these classes are typically also included in training datasets but not annotated [101,
119] [STU 9]. As a result, anomaly detection methods can miss anomalies they
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Ano. Ano. #Ano. Ground Temp. Ego Reg. .

Dataset Data #Frames Source Layer Classes truth Data Act. Tasks Normality
Fishyscapes [43, 44]
FS Lost and Found RGB 375 Recording Content 1 Sem. Mask (2D) — — — —
FS Static RGB 1,030 Data Augmentation ~ Content 1 Sem. Mask (2D) — — — Cityscapes®
Crash to Not Crash [221]
YouTubeCrash RGB 2,400 Web Sourcing Temporal 1 Bbox (2D) v - v YouTubeCrash
GTACrash RGB 154,400 Simulation Temporal 1 Bbox (2D) v —_ v GTAV
CAOS [181]
StreetHazards RGB 1,500 Simulation Content 1 Sem. Mask (2D) v — v CARLAT
BDD-Anomaly RGB 810 Class Exclusion Content 3 Sem. Mask (2D) — — v BDD100K*
SegmentMelfYouCan [75]
RoadAnomaly21 RGB 110 Web Sourcing Content 1 Sem. Mask (2D) — — — Cityscapes’
RoadObstacle21 RGB 412 Recording Content 1 Sem. Mask (2D) v - — Cityscapes’
Rare Road Objects [55]
Synthetic Fire Hydrants RGB 30,000 Simulation Content 1 Bbox (2D) — — — CARLA'
Synthetic Crosswalks RGB 20,000 Simulation Content 1 Bbox (2D) — — — CARLAT
CODA [253]
CODA-KITTI RGB, LIDAR 309 Void Classes Content 6 Bbox (2D) — — — KITTI®
CODA-nuScenes RGB, LIDAR 134 Void Classes Content 17 Bbox (2D) — — — nuScenes®
CODA-ONCE RGB, LIDAR 1,057 OOD Detection Content 32 Bbox (2D) — — — ONCE®
CODA2022-ONCE RGB, LIDAR 1,057 OOD Detection Content 29 Bbox (2D) — — v ONCE®
CODA2022-SODA10M RGB 8,711 OOD Detection Content 29 Bbox (2D) — — v SODA10M*
W-OOD Tracking [287]
Street Obstacle Sequences ~ RGB, Depth 1,129 Recording Content 13 Inst. Mask (2D) v — — Cityscapes’
CARLA-WildLife RGB, Depth 1,210 Simulation Content 18 Inst. mask (2D) v — v CARLA
Misc
Lost and Found [347] Stereo RGB 2,104 Recording Content 42 Sem. Mask (2D) v — — —
WD-Pascal [40] RGB 70 Data Augmentation ~ Content 1 Sem. Mask (2D) — — — WildDash®
Vistas-NP [151] RGB 11,167 Class Exclusion Content 4 Sem. Mask (2D) —_ —_ v Mapillary Vistas®
MUAD [136] RGB, Depth 4,641 Sim., Class Exclusion ~ Content 9 Sem. Mask (2D) — — v MUAD
DeepAccident [440] RGB, LIDAR 57,000 Simulation Temporal 9 Bbox (3D) v — v CARLA

RGB, LIDAR . . Content Inst. mask (2D,3D)
Presented Benchmark Depth 245,600 Simulation Temporal 178 Voxel (3D) v v v CARLA

Table 4.3.: Perception-based anomaly detection benchmarks: In the Normality
column, ' denotes a domain shift between normal data and the proposed
dataset, and ® denotes that the data with anomalies is based on a subset
of the normal data. Adapted from [BOG 22].

do not perceive as atypical when benchmarks do not differentiate well enough
between ID and OOD data.

For the analysis of the SotA, works with published open-access perception datasets
from an ego perspective that provide pixel- or point-wise ground truth have been
included. Frameworks or methodologies that do not provide explicit, download-
able data [474, 383, 170, 454, 359], such with missing or incomplete data [148, 83,
235], and any that provide only frame-wise annotations [371, 497, 413, 8] are ne-
glected. As shown in Table 4.3, it can be observed that most benchmarks are small
and designed for camera-based content anomaly detection, providing ground
truth in the form of semantic masks. Mostly, included anomalies on the content
layer fall into the object or scene level, as introduced in Section 2.5. While some
datasets provide only a single anomaly class, it has become more common to pro-
vide more granular labels for included anomalies. Among the datasets including
content anomalies, just the Corner Case Dataset (CODA) [253] family includes
LIDAR data but only provides ground truth in the form of 2D bounding boxes in
the camera space. The DeepAccident [440] benchmark is the only one to provide
temporal 3D labels for LIDAR point clouds.

There are different categories of how anomalies are integrated [BOG 22]. Record-
ing and Simulation are similar in the way that selected anomalies are directly
introduced into the data. This way, the anomalies are truly part of the envi-
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ronment [347, 55, 287]. The definition of what counts as an anomaly can vary
between benchmarks, though. Data Augmentation synthetically manipulates a
given scene [BOG 27, 16], typically following a copy-and-paste pattern, where im-
ages of anomalies are pasted onto an already existing scene from another dataset.
This way, a distribution shift between the anomaly and the underlying data is in-
troduced [44, 40]. Web Sourcing describes the process of manually curating images
from the web that are deemed anomalous [75, 221]. Class Exclusion is based on
existing datasets and removes selected classes from the training data, thus treating
them as anomalous, while the classes themselves remain rather normal from a
human point of view [150, 181]. While this definition of anomalies aligns with
the one presented in Section 2.5, it prevents simultaneously detecting anomalies
and regular objects from the classes now removed from the training data. Void
Classes utilizes void or misc classes from existing datasets and labels them as
anomalous. This can be done with additional labeling guidelines to only relabel
selected ones [253]. Finally, OOD Detection uses an anomaly detection method to
derive anomaly proposals from a dataset which can then be labeled, typically after
a human quality inspection [253]. Table 4.3 provides further information about
dataset characteristics. While some datasets include temporal data in the form of
sequences and provide labels for regular tasks, such as object detection or semantic
segmentation, none include state information about the ego vehicle. However,
during the deployment of an autonomous vehicle, state information is generally
available and can be leveraged for the detection of anomalies. Most benchmarks
do not provide a definition of normality [44, 75, 181]. Sometimes, even unlabeled
anomalies occur in evaluation data [440]. This makes it particularly hard for un-
and self-supervised methods to precisely detect anomalies if the semantic training
distribution is not fully known or not defined at all. Especially desirable is a
well-defined normality that allows for the generation of compliant training data.
This is only feasible in simulation, where full control over both the training and
evaluation data is available.

4.3.2. Method

This section presents the generation of both data that represents normality and
data including content and temporal anomalies. The presented methodology
can be used with arbitrary vehicle setups and a wide selection of parameters to
create data. This does not only allow for the detection of anomalies in known
environments but also for the detection of anomalies under domain shifts. First,
a formalized definition of normality is provided. It is demonstrated how the
generated training data follows this definition of normality. Next, the possible
types of scenarios are presented. Finally, an overview of a generated exemplary
dataset is provided.
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4. Anomaly Generation
Definition of Normality

In the literature, the definition of normality was often not extensively discussed
when anomaly detection benchmarks were presented. A typical solution is to
define normality as all semantic classes from the Cityscapes dataset [44, 75]. How-
ever, such a conceptual definition is not necessarily related to the content of the
data used for training. To link it to the training data requires fully labeling the
dataset in order to be aware of all semantic classes representing normality.

The presented method provides full control of both normality and anomalies in
synthetic environments. This ensures that anomalies included in the benchmark
are true anomalies and are not included in an unlabeled training dataset. For
a fair benchmark of anomaly detection methods, it is important that they share
the same definition of normality as defined by the training data, rather than by
expert-defined concepts. Otherwise, different anomaly detection methods might
use different training data, and thus different representations of normality. This
can lead to a misalignment of what constitutes an anomaly, which can harm the
performance on benchmarks, where anomalies are sometimes arbitrarily defined
and are not always known to benchmark participants. Defining normality through
training data requires the possibility of generating large amounts of data follow-
ing a formal definition of normality, which is challenging in the real world, as
anomalies would certainly occur in fleet-sized, unlabeled datasets.

In addition, in the field of autonomous driving as a subfield of embodied Artificial
Intelligence (Al), there is more to the training data than just frames: There is a
recording entity that performs actions, and there is temporal context, all of which
contribute to a definition of normality. A formal definition of normality based on
three categories is provided in the following. Subsequently, a concrete definition
of normality for the CARLA simulation engine is provided in Table 4.4 that allows
for the generation of compliant datasets. The definition has an ego, domain, and
physical entities component:

Ego: Domain shifts in data can be induced not only by novel environmental
conditions but also by different capturing methods. In autonomous driving, this
especially refers to sensor types and configurations. In addition, temporal changes
in the environment are heavily influenced by an agent’s own actions. Thus, the
behavior of the ego vehicle also counts towards normality.

Domain: With the domain, the static environment around the vehicle is described.
This includes the geographical areas the vehicle has traversed, but also seen
weather types and time of day specifications.

Physical Entities: These are the dynamic actors in the scene, most typically other
vehicles, cyclists, and pedestrians. However, also categories such as animals or
potentially moving objects can be included here.

Such a formal definition of normality allows for a clear understanding of what
constitutes an anomaly. As training data can be generated based on the formal
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Category Description Presented Methodology

Ego

Ego vehicle Recording vehicle Lincoln MKZ 2020

Sensor configuration Sensor types, placements Configurations Mono, Stereo, Multi, Surround
Ego behavior Driving characteristics Behavior Agent (actions)

Domain

Area Geographical area Towns 01,02,03,04,05,06,07,10HD
Environment Weather, time of day ClearNoon, CloudyNoon, WetNoon,

WetCloudyNoon, HardRainNoon,
SoftRainNoon, ClearSunset, CloudySunset,
WetSunset, WetCloudySunset, MidRainSunset,
HardRainSunset, SoftRainSunset

Physical entities

Traffic participants ~ Vehicles, VRUs Vehicles, Walkers € Blueprint library
Vehicle behavior Driving characteristics Traffic Manager Autopilot
Pedestrian behavior ~Movement characteristics Al Walker

Table 4.4.: Definition of normality: The first two columns list categories and their
descriptions of attributes formally defining normality. The third column
shows how these attributes can be implemented to define normality
with the CARLA simulation engine to generate training data that aligns
with the formal definition. Adapted from [BOG 6].

definition of normality, as shown in Table 4.4, it is guaranteed that all anomalies
that are introduced in the remainder of this chapter are exclusive to the evaluation
dataset and thus true anomalies.

Scenario Generation

The presented method is designed for configurable, large-scale datasets and sup-
ports generating training data representing normality that contains only normal
samples as well as evaluation data that includes anomalies®. As shown in Fig-
ure 4.5, first, the vehicle sensor configuration needs to be set. An arbitrary number
of camera, LIDAR, and depth sensors can be positioned freely on the ego vehicle
of choice. This allows for the replication of existing sensor setups, the alignment
with other datasets, or the testing of new configurations. Four such vehicle sensor
configurations come pre-defined. As shown in Figure 4.6, the mono configura-
tion consists of a LIDAR and a camera, which are centered on top of the vehicle,
centered forward. The stereo setup consists of two cameras at the front edge and
both a camera and LIDAR on top. The multi setup adds rear-facing cameras and
additional LIDAR sensors at the front and rear, positioned at a lower level com-
pared to the roof-mounted LIDARs. Finally, the surround setup provides a full 360°
camera view next to a top-mounted LIDAR. Every RGB camera is automatically
configured with an accompanying depth camera.

°The data generation code is available on GitHub:
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Figure 4.5.: Data Generation: Highly configurable scenario creation for both data
representing normality or including content or temporal anomalies.
Generated datasets include rich labels and ground truth in 2D, 3D, and
a spatial voxel space. Adapted from [BOG 6].

Second, the environment and actors need to be set. Eight different regions and 14
weather and time of day presets are supported. Pedestrians, cyclists, as well as
multiple types of vehicles, can be spawned. Third, the type of anomaly needs to be
defined. The approach supports the creation of normality without anomalies, the
placement of object-level anomalies, and the activation of scenario-level anomalies.
By removing domains from the training dataset, it also supports the detection of
anomalies under domain shifts. Given these configurations, scenario flows are
pre-computed and stored as scenario descriptions. Thus, metadata describing all
scenarios is available and allows for effortless dataset analysis.

Mono Stereo Multi Surround
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Figure 4.6.: Preconfigured sensor configurations: Blue wedges visualize RGB
cameras, red circles visualize LIDAR sensors. Reprinted from [BOG 6].

Next, the method executes the driving scenarios in simulation. A custom-built
CARLA simulation engine [117] includes all content anomalies that were manually
collected and processed. Each scenario has a length of 20 seconds and is recorded
at 10 Hz, resulting in 200 frames. When a scenario starts, the ego vehicle is
spawned in the world and follows a given route to its target. At some point along
the way, a content or temporal anomaly appears. To guarantee that the anomaly is
reached in time, a green wave is activated along the route of the ego vehicle. Since
physics computations remain active in the simulation, the ego vehicle will make
contact with the anomalies, which leads to realistic collisions.
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Actor Routing: Anomalies on the road do the same thing in simulation as they
would in real life - they cause traffic jams. This makes it often unfeasible to reach
the anomaly for the ego vehicle. Thus, a filter and rerouting algorithm for all other
vehicles in a scenario is deployed. First, all actors close to the anomaly spawn
point and on the direct path toward the anomaly are filtered out. Then, all planned
paths are continuously monitored, and vehicles are rerouted whenever they would
enter a lane with an anomaly on it. This rerouting technically changes their driving
behavior. As shown in Table 4.4, in the training data, only vehicles are present,
which show an autopilot driving behavior. Rerouting makes them switch into a
behavior agent. This is addressed by providing novel labels, as further explained
later on. This way, false positives, which might occur due to a violation of the
alignment with normality, can be filtered out for evaluation.

Figure 4.7.: Content anomalies: Examples from the six categories: An ape as an
animal anomaly, an old tv as a home anomaly, a statue as a special
anomaly, a tree as a nature anomaly, a pillar as a falling anomaly, and
a hot air balloon as an airplane anomaly. Reprinted from [BOG 6].

Content Anomalies: A total of 178 different content anomalies are provided
in five different size classes: tiny, small, medium, big, and huge. Semantically,
they hierarchically belong to six different super-classes. Every anomaly has an
individual label next to its super-class and size label. The class animal includes
33 animals of different sizes. The category home includes 53 typical household
items such as furniture, tables, backpacks, or cardboard boxes. The category special
includes 67 objects of rather atypical types and such that fall into a misc category,
some of which could appear in the real world in the form of costumes or cuddly
toys. The class nature includes 12 outdoor objects, such as rocks or wood. In
the category falling, 9 large objects are provided, such as novel trees, that were
spawned in an unstable position, which made them fall over. Finally, the airplane
class consists of four types of large flying objects.

As especially large anomalies sometimes require manual positioning, the classes
home, special, and animal are used for automated scenario generation. Here, all
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anomalies are placed in critical positions along the way distributed around lane
centers. For the classes nature, falling, and airplane, a manually curated dataset is
generated with anomalies in geographic areas with large free-space areas.

Temporal Anomalies: As both Section 4.2 and prior work have shown that the
generation of knowledge-driven temporal anomalies requires high manual engi-
neering efforts [BOG 5, 12][8], only a single type of temporal anomalies is consid-
ered. Here, sudden braking scenarios of a lead vehicle are implemented, which are
both safety-critical and typical scenarios in everyday traffic [221]. While a planned
route for the ego vehicle is set in the scenarios containing object-level anomalies,
here, the same route is used for a lead vehicle. Then, the ego vehicle follows the
lead vehicle. Along the route, the lead vehicle will perform a sudden brake with
negative acceleration values much higher than those seen during training. While
braking, the lead vehicle is labeled as an anomaly directly in the sensor and voxel
data in the same way as labeled content anomalies.

Figure 4.8.: Temporal anomalies: This scenario shows the implemented type of
temporal anomalies. The first two images show the regular vehicle fol-
lowing mode. The last two images show the active braking maneuver
with overlayed ground truth in red. Reprinted from [BOG 6].

Data Generation: As shown in Figure 4.5, sensor data for all positioned RGB
cameras, depth cameras, and LIDAR sensors is provided. For regular perception
tasks, panoptic masks for both camera and LIDAR are provided. For each frame,
also information about the state of the ego vehicle is collected, such as its actions
throttle, street, and brake. In addition, a standard-format BEV representation
of the planned route is provided to support approaches that might be used for
the detection of anomalies and require additional information about the planned
route [507, 28, 191][BOG 23]. This data is also leveraged by the anomaly detection
method presented in Chapter 5.

For the anomalous instances, metadata, such as their positions and their size, is
provided. Ground truth is embedded into the semantic masks for both camera
and LIDAR. As the benchmark is designed for the comparison of methods that
use different modalities for the detection of anomalies, all anomalies are also
represented in a 3D voxel grid with a customizable grid size. This voxel grid is
used in Section 4.3.3 for the evaluation of anomaly detection methods irrespective
of the sensor modality used. Based on depth maps and LIDAR point clouds, all
visible points from all sensors are fused in 3D and quantized into the voxel grid.
More precisely, depth maps are used to map pixels from camera data into 3D. The
voxel grid is of a fixed size, only considering 3D points within this defined range.
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Figure 4.9.: Number of pixels per class: Light green represents standard classes,
dark green vehicles in agent behavior mode, orange the ego vehicle,
and red anomalies. Reprinted from [BOG 6].

Semantic classes are assigned to individual voxels based on the closest point to
the voxel center.

The utilized CARLA simulation engine has inherent flaws, such as imperfect
behavior agents [222]. Addressing these, minor data cleaning is performed to
remove scenarios that contain collisions with pedestrians in the evaluation data
and scenarios that show high deceleration values for other vehicles in the training
data. This ensures that unlabeled anomalies are avoided in the evaluation data and
that temporal anomalies are distinct from all behaviors seen during training.

Labels: The generated data provides 40 classes in the semantic masks, as shown
in Figure 4.9. Labels are provided for standard tasks as used by Cityscapes and
CARLA [101, 117]. Additionally, the ego vehicle is labeled if visible. Some vehicles
in the scene might switch from autopilot to a behavior agent. As this driving
behavior is not present in training data, additional labels are provided for all
vehicle classes while controlled by a behavior agent. Finally, labels for the included
content and temporal anomalies are provided. Labels for the super-classes can
be found in the semantic masks, while fine-granular, individual anomaly labels
are provided in metadata. Voxels are assigned an anomaly label when the closest
point to their center is anomalous.
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Dataset and Statistics

The presented methodology was used to generate a large-scale dataset®. A total
of 1,117 scenarios are provided based on the mono sensor configuration, 76 for
the stereo configuration, and 35 for the multi configuration. Data is provided for
eight different areas, and for each, normality training data as well as evaluation
data with content and temporal anomalies is provided, resulting in 24 different
types of scenarios. For each of those 24, varying settings such as the weather, time
of day, or spawned anomaly are employed. For content anomalies, 14.8% of all
frames contain visible anomalies in camera data and 74.8% in LIDAR data. For
temporal anomalies, 15.5% of all frames include anomalies equally visible in both
sensor modalities. As shown in Figure 4.10, anomalies are well distributed over
the visible space but with a focus on critical areas in front of the ego vehicle.

Figure 4.10.: Spatial distribution of anomalies: The distributions show con-
tent anomalies (left) and temporal anomalies (right). Reprinted
from [BOG 6].

4.3.3. Evaluation

In addition to the generation of data, a full evaluation suite for camera and LIDAR-
based anomaly detection methods for content anomalies is provided. Based on
pixel- or pointwise anomaly scores, results are voxelized and compared against
the voxelized anomaly ground truth. The evaluation takes place on a voxel grid of
size 100 x 100 x 64 m, where each voxel has a length of 0.5 m. Ablation studies on
smaller voxel sizes have been performed, but no significant impact on the results
could be found.

Anomaly Detection on the Content Layer

To get first insights into how current anomaly detection methods for content
anomalies perform on the benchmark, two SotA methods have been evaluated,

6The dataset is hosted on Zenodo:

50


https://zenodo.org/communities/anovox/

4.3. Scalable Scenario Generation

one based on camera data and one based on LIDAR data. For the selection, existing
surveys and benchmark results were analyzed [BOG 13, 22][44, 75], resulting in
14 candidate methods [329, 252, 142, 153, 111, 348, 356, 4, 76, 312, 38, 316, 71,
112]. To emphasize the definition of normality based on training data alone,
methods were neglected that require outlier exposure with anomalies during
training. Finally, the best-performing methods with open-source implementations,
based on existing benchmarks, were selected for evaluation. For camera data,
the Rejected By All (RbA) method from Nayal et al. [316], and for LIDAR data,
the Redundancy Classifier (REAL) framework by Cen et al. [71] were selected.
While both methods allow for the usage of outlier exposure during training,
no fine-tuning on anomalies was performed here. For RbA this means that the
“Outlier Data Exposure” [316] was not used, and for REAL this means that only
the “predictive distribution calibration” without “unknown object synthesis” [71]
was used.

The Rejected By All (RbA) model proposed by Nayal et al. [316] uses camera data
and is based on the Mask2Former model [92]. The authors proposed that object
queries are specialized on single classes, such that anomalies can be detected
when the input is rejected by all queries. RbA was trained on Cityscapes and
evaluated on Segment Me If You Can anomaly and obstacle tracks, as well as on
the Fishyscapes LaF track. The Redundancy Classifier (REAL) approach from Cen
et al. [71] uses LIDAR data and is based on the Cylinder3D [515] framework. To
assign high anomaly scores to novel classes, the authors utilize a calibration loss,
where the second-highest prediction per point is assigned to the unknown class.
This class is used for uncertainty prediction during inference while also performing
closed-set semantic segmentation. In their experiments, without this calibration
loss, anomalies are falsely classified as known classes with high probability. REAL
was trained and evaluated on both SemanticKITTI [34] and nuScenes [58].

Training: For a fair comparison, both methods were trained on the same training
dataset. For this, a small normality instantiation was created in the size of the
CS dataset that consists of 2,975 frames with temporal scenarios. Contrary to
the setting of REAL, where unknown objects are included in the training set
but ignored for the loss computation, this training dataset does not include any
anomalies. The standard training procedures and parameters as provided by the
original authors [316, 71] were applied.

Evaluation: For the evaluation, a small instantiation with content anomalies was
created. To evaluate both methods, their anomaly scores need to be mapped to
the voxel space first. This is necessary, as point- and pixel-wise anomaly scores of
LIDAR and camera data cannot be compared directly. While this is straightforward
for LIDAR data, the anomaly scores from RbA are lifted into 3D using ground
truth depth data. Due to this evaluation in voxel space, it must be noted that the
class imbalance between normal data and anomalies is much larger than in the
sensor space due to quantization effects. Thus, results cannot be compared to
reported values from the SotA. However, evaluations on the sensor data were also
performed directly, confirming higher scores.
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Model AUPRC 1 AUROC? F11 PPV FPRy;/
REAL 0.14 43.30 0.0 0.0 100
REAL {0m 0.04 43.53 0.0 0.0 100
REALy, 0.17 447 0.0 0.0 100
REALcium 0.11 42.8 0.0 0.0 100
REAL,,.0u 0.21 55.1 0.0 0.0 100
RbA 0.7 57.3 2.6 1.4 100
RbA {1orm 0.2 57.6 2.6 0.4 100
RbA,;, 2.3 54.9 3.7 2.7 100
RbA edium 0.6 60.5 0.0 0.0 100
RbA a1 0.01 53.2 0.0 0.0 100

Table 4.5.: Evaluation of SotA anomaly detection methods: Evaluation of the
anomaly detection methods REAL (LIDAR-based) and RbA (RGB-
based), with best and second-best results highlighted. Each model is
evaluated in five settings. First, only the frames that consider anomalies
are considered. In the +norm setting, all frames, also those displaying
normality, are considered. Finally, size-based subsets of the included
anomalies are considered, evaluating the model performance for big,
medium, and small anomalies. Adapted from [BOG 6].

As shown in Table 4.5, both methods perform poorly across every metric and thus
have significant issues detecting anomalies in the presented challenging setting.
While stable training performance can be observed, and improved performance
was shown when trained on larger datasets, the poor results are rather surprising.
RbA is able to detect some anomalies successfully, as shown in Figure 4.4, where it
masks the deer as anomalous, but struggles with most. REAL on the other hand,
while generating well-performing closed-set predictions, is unable to generate any
meaningful uncertainties in the absence of unknown objects in the training data,
as exemplarily shown in Figure 4.11.

Figure 4.11.: Exemplary SotA anomaly detection: Scene with a cow as an object-
level anomaly (left). The RbA (middle) anomaly detection method
is only able to detect some border parts of the cow as anomalous,
highlighted in yellow. Similarly, REAL (right) assigns the same low
uncertainty to the cow as it does to the ground, as shown in violet. In
the accompanying closed-set detection (top right), the cow is mostly
classified as a car. Reprinted from [BOG 6].
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4.3. Scalable Scenario Generation

This shows that the task of anomaly detection becomes much harder on a challeng-
ing benchmark, where lots of frames without visible anomalies and particularly
small anomalies raise the bar additionally. This setting, combined with the in-
duced class imbalance due to the quantization loss during voxelization, makes
it more challenging to perform well on this benchmark compared to existing
benchmarks.

Anomaly Detection on the Temporal Layer

In addition to the evaluation of detection methods for anomalies on the content
layer, this benchmark also enables the evaluation of scenario-level anomalies. In
this context, the Video Anomaly Detection (VAD) method HF?*-VAD 4 [BOG 8] is
evaluated with the introduced sudden brake maneuvers. This subsection briefly
introduces the HF?>-VAD 4, methodology and results. More details can be found
in [BOG 8].

Frame-wise
Bounding Boxes T \ Scores
ML-MemAE-SC

A =YY r "
= KL Divergence
A n- W . i L . Pixel-wise
Ti+1 .
Yi / ‘ Scores
S R
Ll
N /

Flow

Figure 4.12.: Anomaly detection method HF?-VAD 4 Optical flows y;.; and
bounding box patches z;., for relevant objects are generated for each
frame. Multi-Level Memory modules in an Autoencoder with Skip
Connections (ML-MemAE-SC) reconstruct the optical flows ¢;.; with
memory modules M. A Conditional VAE predicts a future patch 2, .
Finally, image-wise and pixel-wise anomaly scores are generated.
Reprinted from [BOG 8].

HF?-VAD,p is an adaptation and extension of the hybrid framework for VAD
method HF?-VAD [275], which was developed and evaluated in the setting of
surveillance videos from static cameras. The method was designed to classify
entire frames as anomalous when atypical activity was detected. As shown in
Figure 4.12, HF?-VAD 4 is adapted to autonomous driving by generating dense,
pixel-wise anomaly scores for the whole frame. Bounding boxes are generated
with an off-the-shelf object detection model [305]. Flow reconstructions and flow-
guided frame predictions are learned from the perspective of an ego-vehicle rather
than from the perspective of a static surveillance camera.

For the evaluation of HF?-VAD,p, anomalous scenarios with the introduced
sudden braking maneuvers by lead vehicles are utilized, as shown in Figure 4.8.
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Such scenarios are not present in the training data. As shown in Table 4.6, various
experiments with varying conditions are performed. Here, the False Positive Rate
at 95% True Positive Rate (FPRy5) metric provides insights into the false-positive
rates if nearly all anomalies are correctly detected. Since detected bounding boxes
do not fully match the existing ground truth, the FPRy; is evaluated based on the
overlapping area. The Intersection over Union (IoU) metric shows the quality
of generated bounding boxes. Comparing city and highway scenarios, a strong
sensitivity of the model with respect to these environments is observed, but no
clear trend emerges. For highway settings with bad weather, the model performs
poorly. As the pixel-wise anomaly scores are only calculated within bounding
boxes and all other pixels are set to 0, there is generally a low false positive rate. It
can be observed that bounding boxes are best detected in highway settings with
good weather. The IoU performance suffers especially from poor detections of
distant objects. Since mostly irrelevant vehicles are missing in the detections, this
can even lead to improved FPRy; values.

Domain Weather FPRys5 | IoU 1
All All 2.58 48.10
City Sunshine 248 48.09
City Rain 2.68 51.30
Highway Sunshine 3.15 60.71
Highway Rain 1.34 41.09

Table 4.6.: Evaluation of HF?>-VAD ,: Evaluation under different scenarios, with
best and second-best results highlighted. Adapted from [BOG 8].

Based on the presented benchmark results with HF?-VAD 4, it is demonstrated
that HF?-VAD, a framework originally developed for detecting anomalies in
surveillance systems, can be effectively transferred to autonomous driving. This
shows the utility of the presented benchmark for the evaluation of scenario-level
anomalies.

4.4. Conclusion

This chapter presents two approaches to generate scenarios with anomalies, ad-
dressing all considered external anomaly levels as shown in Table 1.1. Answer-
ing RQ2, both methods convert existing theoretical anomaly levels from the
literature, as introduced in Section 2.5, into datasets containing anomalies. First, a
methodology to generate expert-defined scenarios is presented in Section 4.2. Here,
human scenario designers are enabled to generate scenarios from all anomaly
levels, including combinations of multiple levels. Next, a more scalable approach
is presented in Section 4.3. Focusing on anomalies on the content and temporal
layer, an automated data generation framework provides data from both RGB
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camera LIDAR sensors. In addition, a benchmark suite based on a 3D voxel repre-
sentation enables the comparison between anomaly detection methods that use
different sensor modalities. This is demonstrated by evaluating and comparing a
camera-based and a LIDAR-based SotA anomaly detection method.

The following Chapter 5 builds upon the data generated in this chapter. It presents
a multimodal anomaly detection approach for anomalies on the content layer,
which is trained based on a concept of normality, such as shown in Table 4.4.
Subsequently, the presented benchmark suite from Section 4.3 is utilized for the
evaluation of the approach.

4.4.1. Recent Advances

The field has continued to evolve since the development and publication of the
works underlying this chapter [BOG 5, 6, 8]. Recently, multiple works have
built upon the results presented here, confirming the relevance of improving
benchmarks for anomaly detection methods in the context of autonomous driving.
Extending upon to the presented generation concept for individual scenarios in
Section 4.2, BridgeGen by Hao et al. [171] combines a knowledge-driven scenario
description with data-driven optimization methods to compute concrete scenario
parameters in order to generate critical scenarios with a focus on trajectories while
also ensuring coverage of a broader ODD. Their 5-layer ODD includes road layout,
traffic infrastructure, temporary manipulations, objects, and the environment.
Due to introduced inter-layer constraints, traffic participants have to follow the
provided road layout, e.g., pedestrians can only cross on crosswalks. Similar to the
work presented in Section 4.2, their ontology allows for the inclusion of misc traffic
participants and is designed for direct simulation in the CARLA environment.
However, they demonstrate their approach only with a single intersection and two
vehicles. CornerSim [105] by Daoud et al. generates synthetic data in CARLA [117]
in a more scalable fashion, similar to the results presented in Section 4.3. They
claim support for multiple anomaly levels as introduced by Breitenstein [51] but
only provide a static dataset with 2,000 images and object-level anomalies [204].

Providing real-world anomaly data, multiple works draw inspiration from the
simulated data presented in this chapter. The OpenAD Benchmark for 3D Ob-
ject Detection [470] allows for both 2D and 3D anomaly detection. The authors
acknowledge the benchmark presented in Section 4.3 as the only simulated
benchmark that supports both 2D and 3D anomaly detection. Similar to LIDAR-
CODA [BOG 20][253], a dataset used for the evaluation in Chapter 7, OpenAD
includes labeled anomalies in both RGB and LIDAR data. The authors leverage
an anomaly detection approach to annotate anomalous objects in five existing
datasets [457, 146, 58, 294, 399]. The dataset includes over 200 classes of both
uncommon objects and common ones in atypical variations, e.g., cars with open
doors. They provide labels that loosely indicate whether an object class is in-
cluded in the training dataset. Also addressing 3D anomaly detection, Nekrasov
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et al. released the real-world Spotting the Unexpected (STU) dataset with labeled
anomalies in LIDAR data [317] and synchronized raw camera data. Similar to
the work presented here, the authors put an emphasis on clearly separating ID
training data from OOD evaluation data with anomalies. This is achieved through
an extra class unlabeled which includes classes that are often included in training
data but without labels, such as parking meters. The authors provide both instance
and semantic labels for temporal scenarios. Their evaluation confirms the results
presented here, with all evaluated anomaly detection approaches struggling due to
the much harder task compared to saturated benchmarks such as FS or SMIYC.

Further works also aim to explicitly address the saturation of anomaly benchmarks
on RGB data, but do not introduce additional sensor modalities. Nekrasov et al.
released the Out-of-Distribution Instance Segmentation (OoDIS) benchmark [319]
as an extension of the Fishyscapes and Segment Me If You Can benchmarks [44,
75], providing labeled anomaly instances. This changes the task from semantic
anomaly segmentation to a more challenging instance anomaly segmentation.
Laskar et al. presented the Semantic Segmentation in the Presence of Unknowns
(ISSU) benchmark [244], which is a real-world benchmark following several ideas
presented in Section 4.3, such as providing labels of both known and unknown
classes and generating temporal evaluation data. The Challenge Of Out-Of-Label
(COOOL) benchmark [9] consists of labeled dashcam videos with objects and
roadway hazards. It does not provide training data, but only labeled sequences
for evaluation. The focus is on the prediction of hazards by known or unknown
object classes.

Similar to the benchmarks in autonomous driving, current benchmarks in indus-
trial settings are saturated as well [175]. In line with the design choices of the
benchmark presented in this chapter, new large-scale benchmarks [175, 237] with
high-resolution images and a higher variance of normal data have increased the
benchmark difficulty significantly.

For the evaluation of Vision Language Models (VLMs) for anomaly detection,
Chen et al. presented CODA-LM [83], an extension of the CODA dataset [253].
They annotated 9,768 driving scenarios with question-answer pairs. This way,
VLMs can be tested on the tasks general perception, regional perception, and
driving suggestions, where they are tasked to describe the influence of other road
entities on driving behavior and suggest next steps for the ego vehicle. These
recent advances highlight the relevance and impact of the data generation methods
presented in this chapter.
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The revolution will not be
supervised.

Alyosha Efros, 2019 [121]

5. External Anomaly Detection

Multiple supervised student theses have contributed to this chapter [STU 11, 10, 5].
Parts of this chapter have previously appeared in the following publications:

* D. Bogdoll et al. MUV O: A Multimodal Generative World Model for Autonomous
Driving with Geometric Representations. In IEEE Intelligent Vehicles Sympo-
sium (IV), 2025 [BOG 23]

* D. Bogdoll et al. UMAD: Unsupervised Mask-Level Anomaly Detection for Au-
tonomous Driving. In British Machine Vision Conference (BMVC) Workshop,
2024 [BOG 14]

5.1. Introduction

As shown in Chapter 3, existing anomaly detection methods often neglect mul-
timodal sensor setups, which are typical in autonomous driving, and focus on
RGB data alone. In addition, they often require underlying semantic segmentation
models [92] and outlier exposure during training. This makes it challenging to
utilize large amounts of unlabeled data. Addressing RQ3, this chapter presents a
label-free anomaly detection approach, leveraging unlabeled data from multiple
sensor modalities for the detection of object-level anomalies. Section 5.2 presents a
world model representing a defined notion of normality, as shown in Chapter 4.
The model is trained in a self-supervised fashion, requiring no labeled data at all.
This model is subsequently utilized in Section 5.3 to detect object-level anomalies.
In both cases, both RGB and LIDAR data are leveraged. To further improve the
detections, a self-supervised segmentation model is used to refine instance-wise
masks. Finally, the presented anomaly detection approach is evaluated on the
benchmark previously introduced in Section 4.3. The method outperforms the
most relevant label-free SotA anomaly detection method and sets a new baseline.

5.2. Self-Supervised Normality Learning

World models are generative models that embed observations into latent states,
predict future states conditioned on actions, and decode these latent predictions
into the observation space [245][BOG 2]. They can be trained in a self-supervised
way and are well-suited to represent normality, as shown in Table 4.4, due to their
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temporal nature and the inclusion of planned actions. In Machine Learning, recent
world models like Cosmos [5] or Genie [54, 340] have demonstrated the capability
to take sequences of high-resolution input images, conditioned on instructions or
actions, and generate future images, predicting possible future scenarios.

In Autonomous Driving, the majority of world models focus on camera-based
inputs [513, 285, 349, 143, 482, 442, 192, 124], only a few work with LIDAR
data [503, 85, 517]. These works neglect typical sensor setups of autonomous
vehicles, as they only consider a single sensor modality. Only two recent works
leverage both camera and LIDAR data [506, 468]. However, they rely on BEV
features as part of their sensor fusion strategy, which is an acknowledged bottle-
neck due to missing height information [506]. Finally, world models that predict
future 3D occupancies have been proposed, which are highly actionable but rely
on visual inputs only [485] or operate in the occupancy space alone [436]. While
the progress made in world models is immense, it is still unclear how much they
can benefit from multimodal sensor setups, such as those typically used in au-
tonomous driving. The general benefit of leveraging both RGB and LIDAR data is
well-established [505, 276, 94], but previous works did not evaluate the impact on
future predictions by a world model.

This chapter presents the first multimodal world model leveraging both camera
and LIDAR data without requiring limiting BEV representations. For the design
of the final architecture, an extensive set of experiments is performed to determine
the influence of design choices with respect to sensor fusion strategies, latent
space dimensionality, and additional 3D occupancy prediction. A simple world
model architecture is chosen to perform the set of experiments, also comparing
against multiple BEV-based sensor fusion baselines. The chapter introduces the
model architecture in Section 5.2.2, describing the encoder, fusion, transition, and
decoder components of the world model in detail. Next, it provides an extensive
overview of experiments in Section 5.2.3, highlighting the impact of different
fusion strategies, latent space dimensionality, and additionally predicting 3D
occupancy. The best-performing model, determined by the extensive evaluation,
is subsequently used in Section 5.3 for the detection of object-level anomalies.

5.2.1. Related Work

The method presented in this chapter is at the intersection of world modeling,
sensor fusion, and 3D occupancy prediction. Leveraging advances from all three
fields, an extensive set of experiments evaluates the impact of different sensor
fusion strategies and the inclusion of 3D occupancy prediction on the quality of
future predictions by a world model. This overview of related works facilitates a
better understanding of the subsequently presented method.

58



5.2. Self-Supervised Normality Learning

World Models

World models are generative models that embed observations into latent states,
predict future states conditioned on actions, and decode these latent predictions
into the observation space [245][BOG 2]. Many such world models rely on labels,
privileged information!, or expert-designed state spaces, limiting their ability
to scale. A typical use case is the prediction of BEV semantic labels based on
supervised training [191, 434, 144]. DriveDreamer [441] conditions real-world
RGB images on High Definition (HD) maps and labeled 3D bounding boxes.
Based on a diffusion model [364], future frames and actions are jointly predicted.
The style of predictions is guided by Contrastive Language-Image Pre-Training
(CLIP) [354] embeddings, using annotated scenes during training. Contrary to
these approaches, the method presented in this section does not require labeled
training data.

There also exist self-supervised world models. DreamerV3 is capable of predict-
ing future observations in Minecraft [165, 166]. DriveGAN [223] was trained
on real-world data and acts as an action-conditioned neural simulator. Day-
Dreamer [464, 164] learns robotic tasks from real-world visual inputs. A world
model from Tesla [124], trained on proprietary multi-camera RGB data, demon-
strated the prediction of future observations and semantic or spatial data based
on supervised fine-tuning. Classically, world models use Recurrent Neural Net-
works (RNNs) for the prediction of future states [163, 162, 164, 165], which shows
poor scaling properties. Inspired by the progress of Large Language Models
(LLMs), more recent methods approach the task through Transformer-based se-
quence modeling [265, 465, 99, 192, 143], which shows better scaling properties
but is computationally demanding. Among those, Generative Al for Autonomy
(GAIA)-1 [192] uses vector quantization [425] to tokenize the data and perform
autoregressive prediction. It was trained on proprietary real-world camera data
and can be conditioned with both actions and textual inputs. Based on a video
diffusion decoder, it achieves temporally consistent, high-resolution predictions.
Similarly, Vista [143] further increases the image resolution used by previous
models. Compared to such recent self-supervised world models, the methodol-
ogy presented in this section is computationally efficient and does not require
hundreds of Graphics Processing Units (GPUs) for training.

In spatial domains, several world models exist based on LIDAR data [503, 85, 517]
or 3D occupancy grids [485, 436]. The presented method differs from those ap-
proaches by leveraging multimodal data. Most similar to the presented experiment
setup, BEVWorld [506] and HoloDrive [468] leverage both camera and LIDAR
data. The authors of BEVWorld propose a multi-model encoder that generates a
unified BEV representation. Upsampled voxel features are used to predict cam-
era and LIDAR data. Differently, HoloDrive has separate models for image and
LIDAR generation and introduces 2D-to-3D and 3D-to-2D structures to improve
a joint generation leveraging BEV representations. In both cases, BEV features

!Privileged information is additional data that is only available during the training phase.
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lack height information and are thus a bottleneck. The approach presented in this
chapter does not require BEV features.

Sensor Fusion

In autonomous driving, sensor fusion approaches typically use camera and LIDAR
sensors. Recently, a shift towards Transformer-based [426, 196] architectures can
be observed. Many works [260, 208, 293, 276, 498] perform BEV camera-LIDAR
fusion [346]. Others improve upon this by utilizing 3D voxel features [256, 508].
Sparse representations [472, 61, 255], modality interactions, and intermediate fu-
sions are becoming more common [266, 94, 487, 478]. While many works deal
with robustness against LIDAR failures, dealing with inferior image conditions
is underrepresented [23]. Other works focus on interpretability [387], real-time
performance [337], event streams [433], modality agnosticity [90], or auxiliary
supervision [353]. This chapter presents an extensive set of sensor fusion experi-
ments to better understand the influence of sensor fusion strategies on the quality
of future predictions of a world model.

3D Occupancy Forecasting

Forecasting is a task similar to future predictions produced by a world model,
but purely based on past data without conditioning future frames, i.e., without
planned actions of an ego vehicle. In the context of predicting 3D voxels, the
OpenOcc benchmark [393] was the first benchmark to include voxel-wise flow
information, similar to OpenScene [100]. An occupancy network by Tesla predicts
motion flow vectors for voxels [125]. Khurana et al. combine LIDAR data with
motion sensors to predict future 3D occupancy [220]. Liu et al. introduced the
task of occupancy completion and forecasting [273], whereas others utilize input
images to forecast 3D occupancy [84, 501, 505, 486]. The approach presented in
this chapter evaluates the impact of also predicting 3D occupancy as an additional
head of the world model.

5.2.2. Method

A world model is able to represent normality purely based on training data. How-
ever, in the context of autonomous driving, no world model exists that fuses the
common sensor modalities RGB camera and LIDAR without relying on limiting
BEV representations. Here, a variety of sensor fusion strategies are evaluated in
order to determine the influence of different strategies on the prediction quality of
a world model. In addition, the influence of further predicting 3D occupancy is
examined. For this evaluation, the experiment setup? follows the fundamental ar-

’The code is available on GitHub:
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chitecture of Model-based Imitation Learning (MILE) [191], which is much reduced
in complexity compared to other approaches, such as GAIA-1 or Vista [193, 143].

As shown in Figure 5.1, changes to the architecture of MILE are introduced to allow
for sensor fusion of a typical sensor setup of autonomous vehicles, comprising
stereo cameras and LIDAR [145, 445], and predict raw sensor data rather than
low-resolution BEV masks based on camera data. An additional head to predict
3D occupancy is introduced to analyze the effects of a spatial loss in a sensor-
independent space. First, RGB camera data and LIDAR point clouds are processed,
encoded, and fused. Second, the latent representations of the sensor data are fed
to a transition model to derive a probabilistic model of the current state, followed
by sampling, while concurrently predicting the probabilistic model of future states
and sampling from it. Lastly, both current and future states are decoded from the
probabilistic models, predicting raw RGB images, point clouds, and 3D occupancy
grids. Qualitative predictions of the world model can be found in Figure 5.2. In
the following, the different components of the world model and the experiment
setup are introduced in more detail.

Actions World Model 3D Occupancy
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Figure 5.1.: Self-supervised world model representing normality: Raw camera
images and LIDAR point clouds are processed and fused. The resulting
latent representations are fed into a transition model. Conditioned on
actions, future states are predicted. Finally, future states are decoded
into 3D occupancy grids, raw point clouds, and raw images. Reprinted
from [BOG 23].

Observation Encoder

As shown in Chapter 4, RGB images from a front camera and point clouds from
a top-mounted LIDAR are used as input data, based on the CARLA simulation
engine. The 3D point cloud, comprising up to 60, 000 points, is projected into a 2D
cylindrical range view projection for a pixel-based representation [249, 128, 230].
For images 7 € R¥*#*W: the approach follows Hu et al. [191] and uses an input
size of 600 x 960 pixels. For images Z and point clouds R € R¥> W in range
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view representation, a pre-trained backbone is utilized for feature extraction.
Feature maps are derived from different model layers similar to Hu et al. [191]
and fused, culminating in image features F, € R“*#<*We and point cloud features
E e RCXHZXWZ.

Figure 5.2.: Exemplary world model predictions: Qualitative output of a sensor
fusion experiment with occupancy prediction activated. The predic-
tions shown for camera and LIDAR sensors and 3D occupancy are
based on past camera and LIDAR inputs. Reprinted from [BOG 23].

Multimodal Fusion

As shown by previous works [115, 94, 387], the self-attention mechanism of a
Transformer [426] is employed to fuse features of different sensors. It takes a
sequence of tokens as input, where each token is a D;-dimensional feature vector,
so the input sequence is t;, € RP**M with N, representing the number of tokens
in the sequence. The flattened H and W dimensions of the features F obtained
from the encoder described in the subsection of the observation encoder result in
tokens f € RP*#W_ Subsequently, 2D sinusoidal positional embeddings [426, 94]
e € RP*HW are incorporated into each token to introduce spatial inductive biases.
The learnable sensor embeddings s € R”*"+ are added, introducing a sensor
category, where N, is the number of sensors. The resulting tokens t € RP*#W
are obtained, with each token t,;(x,y) = fi(z,vy) + e;(x,y) + s;, where 7 indicates
the i-th sensor, and (z,y) denotes the coordinate index of that token within the
sensor feature. These tokens from all sensors are concatenated and fed into a
Transformer encoder comprising £ layers, each consisting of multi-head self-
attention, Multilayer Perceptrons (MLPs), and layer normalizations, resulting in
new tokens t,,.,, € RP*(2; HiWi)
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Transition Model

The input consists of fused observation features o(.; and encoded actions ay,; €
RT*Pa based on a simple MLP, assuming access to a policy or motion planner. The
output includes stochastic hidden states sp,; € R?*Ps and deterministic historical
states hy, € RT*Pr, predictions for future states s;.;.,, and hy,,, T represents
the number of frames, also referred to as the sequence length, and D,, D,, D), are
the dimensions of each vector respectively. The deterministic historical variable
hy ;1 = fp(hy,s;) is modeled by a Gated Recurrent Unit (GRU) [95] fy, enabling the
model to remember past states. The posterior hidden state probability distribution
is given by ¢(s; | 0<;, a;) ~ Ny(os, hy, a;), while the prior hidden state probability
distribution, without the input of observed feature oy, is given by p(s; | hy,a;_1) ~
Ny(hy, a;—1). Here, N, and N are probability models modeled by a MLP. Given
observations, s; is sampled from the posterior distribution ¢. In the absence of
observations, i.e., during prediction, §; is sampled from the prior distribution p.

The output tokens t,,.,, from the sensor fusion stage come in the form of a two-
dimensional latent state and are utilized as the encoded observations o; for the
transition model. Compared to 1D states, the stochastic hidden states s;, and
deterministic historical states h, are set to shape Cj, x (3, T;), where Tj is the
number of tokens of each output modality. For fy, all fully connected layers
are replaced with convolutional layers to utilize two-dimensional states. The
probability models NV, and NV, are modeled by a Transformer decoder. Learnable
embeddings, which have the same shape as the stochastic hidden states s;, are
used as queries, where hy, a;, (0;) are concatenated as key-value pairs. Then, the
state information in these is queried through the attention mechanism to obtain
stochastic hidden state tokens.

Multimodal Decoder

The world model decodes latent representations into camera and LIDAR data and
introduces an optional head for 3D occupancy. The input is a latent dynamic state
(s¢, hy) with shape C' x 3°; T; which is provided by the transition model, where T}
is the number of tokens of each output modality. Those tokens are divided based
on modalities, and each modality’s tokens C' x T are reshaped to fit the output
shape. The occupancy decoder is of shape C' x X x Y x Z. For camera and LIDAR
data, first, the input is reshaped to C' x Hy x W, where H, and W, are determined
by the final output resolution H x W. Subsequently, upscaling with convolutional
networks is performed similarly to prior world models [162, 160] to produce
a feature map of size C;,, x H x W. For camera and LIDAR, two-dimensional
convolutions are utilized, while three-dimensional convolutions are employed for
voxels.
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5.2.3. Evaluation

For the evaluation, the utilized training setup is presented first, followed by the
evaluation of sensor fusion strategies. First, the influence of differently sized
latent spaces is examined and shown in Figure 5.3. Next, the impact of different
fusion strategies is evaluated, as shown in Figure 5.4. Finally, the effects of the
optional 3D occupancy prediction are examined. Figure 5.5 shows the relation
between camera-LIDAR-based pre-training and 3D occupancy prediction, and
Figure 5.6 shows the reverse impact of predicting occupancy on the quality of
sensor predictions.

Training Setup

Training Losses: For each modality, downsampling is performed multiple times
with ratios of 1, 2, and 4. With this multi-scale approach, losses are computed at
different resolutions. For images, the output RGB data aligns with the size of the
input, and the common L1 loss £™8 is utilized for the minimization of the absolute
discrepancies between target and prediction. For point clouds, range view images
of dimensions 4 x H, x W, are generated, which can be converted into N x 3 point
cloud data. The target is the range view image transformed from the ground truth,
where an L2 loss £P¥* is applied to minimize the Euler distance and an L1 loss
LP " is based on range 7. For 3D occupancy, voxel grids of size 192 x 192 x 64 with
0.5 m voxels contain the binary occupancy. The target is obtained by voxelizing
tused depth maps from depth cameras and point clouds from LIDAR. The loss for
voxel grids uses a Scene-Class Affinity Loss (SCAL) [62] £Y*L. The total loss is
given by Equation 5.1:

£=3 M Nimgli™ + Apea (LFY" 4 LI 4+ L5) 4 v L)) (5.1)

Datasets: The training dataset Dy, was collected in the CARLA simulation
environment [117]. The data collection encompasses four towns (Town01, Town03,
Town04, Town06) and four weather conditions (Clear Noon, Wet Noon, Hard
Rain Noon, Clear Sunset), gathered at a frequency of 10 Frames Per Second (FPS).
For each town, 25 runs were executed, each lasting 300 seconds, with randomly
selected weather conditions, amounting to 300,000 frames of data. The following
sensor data were collected: RGB image Z € R3**600%960 depth map Z, € R*600x960,
e.g., derived from stereo cameras, point cloud P € R=0%00%3 gbtained from a
LIDAR with 64 vertical channels, route map route € R'*4%%4 ag the planned route
in BEV space, speed v € R, and actions a € R? in the form of acceleration and
steering angle.

The same setup is adapted for two distinct validation sets. For each town, five
300-second-long driving sessions were executed with the following settings:
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5.2. Self-Supervised Normality Learning

DIL: This set uses the same cities and weather conditions as the training set. How-

ever, the driving routes are randomized. The goal is to evaluate the effectiveness
of the model in Representation Learning in familiar environments.

DD3: The same cities as in the training set are maintained, but different weather

conditions are introduced. The driving routes are also randomized to evaluate the
model’s performance under Domain Shifts.

Training Parameters: Data was sampled at intervals of 0.2 seconds, creating
sequences of length twelve to serve as training inputs. All twelve frames were
treated as known data. In the experiments containing voxel reconstructions, the
length of sequences was reduced to six to speed up the training. It was trained
with a batch size of 16 and the AdamW optimizer [279] with a learning rate
of 10~* and a weight decay of 0.01. For validation, six resp. four frames were
used as given observations, while six resp. two served as ground truth. For all
experiments, a pre-trained Residual Network (ResNet)18 [174] was used as the
baseline backbone.

Sensor Fusion Strategies

Several prior multimodal world models rely on naive fusion approaches [464, 392,
144]. Here, such approaches are compared to a Transformer-based architecture. To
evaluate the effect of different sensor fusion strategies, several metrics are used
based on the sensor modality: For assessing the quality of image predictions,
the PSNR is used to assess average differences. The Chamfer Distance is used
to evaluate the accuracy of point cloud predictions. For the predictions of 3D
occupancy grids, the metrics IoU, Precision, and Recall are used. Here, IoU*
represents occupied voxels and IoU™ empty ones.

Decoders and fusion methods examined in this chapter are presented first. Subse-
quently, an overview and a comparison of all analyzed combinations are provided,
as shown in Figure 5.4. The following naming scheme A-B-C is applied: A repre-
sents the method of processing point clouds: PP stands for the use of PointPillars
as the encoder; RV indicates the conversion of point clouds into range view. B
denotes the approach of image processing: BEV implies mapping to BEV followed
by feature extraction with a backbone; WOB denotes that no BEV mapping is
performed. C describes the method of sensor fusion: AVG stands for the averaging
of 1D features; FC means that concatenation followed by a fully connected layer
is performed; TR denotes that the Transformer-based multi-head self-attention
mechanism was used, as described in Section 5.2.2.

Encoders: For image features F,, the standard encoder introduced in the encoder
subsection is compared to approaches that map features to BEV space [346, 506,
191, 260]. Here, features are first elevated into a 3D space. Then, these 3D feature
voxels are aggregated into the BEV space, leading to image features 7, € RO HsxWs,
Multiple representations are evaluated for point clouds. A range view-based
representation is compared with PointPillars [243] as an encoder, where point
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clouds are segmented into discrete pillars along the X and Y axes, followed by
data processing and feature extraction, resulting in a 2D BEV pseudo-image.

Latent Space: In prior works, such as MILE, the latent space is commonly modeled
through one-dimensional vectors [191, 162], which may limit the model perfor-
mance by introducing a representational bottleneck. Experiments with both a
1D and a 2D latent space are performed. In addition, an additional perceptual
loss [211] and a Vision Transformer (ViT) backbone [301] are examined.
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Figure 5.3.: Two-dimensional latent space: Comparison of a 1D baseline (red)
with a set of 2D latent spaces, where the influence of a Vision Trans-
former backbone and an additional perceptual loss term (PL) are also
examined. For the backbone, ResNet18 (RN) and MobileViT-V2 (VIT)
are evaluated. Reprinted from [BOG 23].

Figure 5.3 shows four evaluation graphs depicting the prediction performance for
camera, LIDAR, and 3D occupancy on DUD(;? . The 2D latent state significantly bene-
tits predictions for camera images and spatial voxel occupancies, while LIDAR
predictions do not see any benefit. This might be since camera data is much more
complex with respect to semantic information than LIDAR data. Compared to the
baseline 2D model (dark blue), there is no strong effect of utilizing a perceptual
loss, as it produces visually poorer reconstructions and does not show any signif-
icant advantages. Using the ViT as an encoder does provide advantages for the
prediction of camera images, but shows no effect on other metrics. This shows
that the 2D latent space itself provides the largest boost in performance, while

other changes have little effect.

Fusion Methods: A Transformer-based sensor fusion approach, as described in the
subsection on fusion strategies, is compared to naive combinations of encoded 1D
teatures from each sensor modality. Experiments are performed for both averaging
features and concatenating them, followed by a fully connected layer. To generate
such latent states, the output tokens are reshaped into their original shape after
the encoding, namely Fr<v € RO*HexWe gnd Frew ¢ ROXHr*We | Each feature is
then downsampled by convolutional layers, followed by pooling layers to get
one-dimensional features f; € R”, which are subsequently concatenated and then
passed through fully connected layers to reduce its dimensionality, producing the
vector o; € RP.
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5.2. Self-Supervised Normality Learning

The prediction performance of eight encoder-fusion combinations is evaluated,
as visible in Figure 5.4. In the following, the effects on image predictions are
discussed first, followed by the effects on point cloud predictions.
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Figure 5.4.: Sensor Fusion: With D% representation learning is evaluated, while

val
DP? examines robustness. Feature averaging (AVG) [81], feature con-
catenation (FC) [464], and a Transformer-based architecture (TR) [94]
are examined. For LIDAR encodings, PointPillars (PP) [243] and a
range view (RR) [249] representation followed by a ResNet [174] are
evaluated. For camera data, direct encoding without BEV (WOB) and

a BEV mapping are evaluated [346]. Reprinted from [BOG 23].

Image Prediction: The impact of the different experiments on the quality of
camera predictions is shown in the first two graphs of Figure 5.4. It shows a
drop in performance for all networks in the D25 dataset compared to DZ%, but
the relative performance of different networks remains consistent across both
datasets. Generally, the Transformer-based architecture RV-WOB-TR performs
on par or better compared to the other combinations, and range view-based
LIDAR encodings show clear advantages over PointPillars. Methods with an
additional BEV mapping of image features perform worse, and combinations with
PointPillars suffer especially. It can be seen that the effectiveness of introducing a
Transformer-based architecture depends on the encoder used. It outperforms other
approaches when combined with a ResNet-18 for feature extraction. In contrast,
when combined with PP and BEV, its performance is lower than concatenating

but higher than averaging.

Point Cloud Prediction. The impact of the different experiments on the quality
of camera predictions is shown in the last two graphs of Figure 5.4. Examining
the Chamfer Distance plots, where lower values mean better performance, reveals
no significant disparity in performance between the two validation datasets. For
DEL the Transformer-based architecture RV-WOB-TR performs on par or better
compared to the other combinations. However, on D27, its performance drops.
As before, range view-based methods demonstrate superiority over PointPillars.
Utilizing BEV features shows no clear disadvantage for this task. Transformer-

based architectures generally outperform other fusion techniques.

The experiments determine the Transformer-based architectures with a 2D latent
space and range-view representations for point clouds as an optimal fusion strat-
egy, while performance benefits are more pronounced for camera predictions.
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3D Occupancy Prediction

In addition to analyzing fusion strategies, the effects of additionally predicting
more actionable 3D occupancies are examined. The experiments shown in Fig-
ure 5.5 analyze whether occupancy predictions can benefit from a pre-trained
model that was trained by only predicting camera and LIDAR data. Subsequently,
it is analyzed whether occupancy prediction improves the prediction of camera
and LIDAR data, as shown in Figure 5.6.
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Figure 5.5.: Pre-Training: Influence of camera-LIDAR pre-training for 50,000 steps
on 3D occupancy prediction. Evaluation on both D2} and DZ7. The
green lines show a benchmark without pre-training. Violet lines show
frozen weights of the pre-trained model, and weights remained open

for the blue lines. Reprinted from [BOG 23].

3D Occupancy Prediction: Experiments in three scenarios are performed, as
shown in Figure 5.5. As the effect of encoded knowledge of predicting camera
and LIDAR data on 3D occupancy is examined, first, a model is trained as a pre-
trained starting point that predicts camera and LIDAR data alone for 50,000 steps.
For the first scenario, a pre-trained model is employed, but all of its weights are
frozen (F) so that only the weights of the voxel decoder are trained. This approach
allows for assessing the impact of fine-tuning only the voxel-specific aspects
of the model while keeping the rest of the network, in particular all encoders,
constant to evaluate if any information about a discrete geometry of the world
is already encoded based on camera and LIDAR data. For the second scenario,
the pre-trained weights were used as a starting point, but the entire network was
open (O) for weight updates during training. Here, it is analyzed how the pre-
trained weights influence the learning process when the whole network adapts
and evolves during training. For the third scenario, no pre-training is utilized, and
the network is trained from scratch.

In Figure 5.5, it can be observed that the model trained from scratch, without
pre-training, exhibits a similar performance on both validation datasets across
all four metrics, while the other two models using pre-trained weights generally
performed better on D2 than on D25 across three metrics, excluding IoU~. In-

terestingly, for IoU~, an opposite behavior can be observed, where the models
perform better on DL7. This is attributed to voxel occupancy grid predictions

val *
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focusing more on occupied grids. Since voxel grids are mostly empty, models on
DP7 tend to predict more noise, leading to lower IoU~ scores.

Comparing the setting with open weights to not performing pre-training, the open
model shows advantages early on, supporting the idea that pre-trained weights
contribute valuable spatial knowledge. However, in the later stages of training,
the model trained from scratch overtakes the open model in precision, while the
model with open weights remains superior for [oU™ and recall. This indicates that
the non-pre-trained model adopts a more conservative strategy for 3D occupancy
prediction. When the scenario with frozen weights is examined, although the
model underperforms compared to the other two, its performance improves over
time by only training the voxel decoder. This improvement underscores that the
pre-trained weights already contain some, however limited, spatial information,
indicating that the model partially integrates image and point cloud features to
form spatial voxel features even when trained only on these two modalities.

As learning 3D occupancy is computationally intensive, it can be concluded that
pre-training strategies on only camera and LIDAR data are generally recommend-
able, as they both speed up training and show overall superior performance.

Sensor Data Predictions: Experiments are performed to determine whether knowl-
edge encoded through occupancy can be leveraged by LIDAR and camera predic-
tions, as shown in Figure 5.6. Based on the Chamfer Distance for point clouds and
the PSNR metric for images, only slightly increased performance gains for both
modalities can be observed when occupancy prediction is included, with a more

pronounced benefit for camera predictions under the DZ% setting.
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Figure 5.6.: Occupancy: Impact of predicting 3D occupancy on the quality of
camera and LIDAR predictions, evaluated on both DZ; and DZ5.
Reprinted from [BOG 23].
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5.2.4. Summary

The presented world model, as shown in Figure 5.1, is the first to leverage mul-
timodal sensor data in the form of camera and LIDAR data without relying on
limiting BEV representations. An extensive set of experiments is performed, exam-
ining different sensor fusion strategies and the effect of additionally predicting 3D
occupancy. The experiments demonstrate that range view-based LIDAR represen-
tations with a standard Transformer-based fusion and an increased 2D latent space
are beneficial in the case of camera-LIDAR fusion, confirming that the introduction
of a BEV feature representation, as typical in the literature [506, 468], acts as a
bottleneck, as it misses height information. This world model now represents a
data-defined definition of normality and can be leveraged for anomaly detection.
The following Section 5.3 utilizes the presented world model to detect object-level
anomalies that are absent from the training data.

5.3. Label-Free Anomaly Detection

As shown in Chapter 3, anomaly detection is often based on highly specialized
methods, focusing on the content layer [316, 108, 318]. However, as shown in
Section 5.2, the perpendicular line of work of world models focuses on a more
general understanding of the world. Such generative world models have shown
promising results in autonomous driving [190, 192, 503, 143] [BOG 23]. They
embed sensory data into latent states, reconstruct observations based on those,
and predict action-conditioned future states. For anomaly detection, however,
they have not been utilized yet [BOG 2]. In this section, the world model intro-
duced in Section 5.2 is used for multimodal anomaly detection, employing both
the reconstructive and predictive capabilities of the world model. By leveraging
advances from the field of image segmentation, the detections are further refined
in a self-supervised fashion to better identify anomalous instances. The presented
approach outperforms the most relevant SotA method in label-free anomaly de-
tection on the benchmark introduced in Section 4.3, setting a new baseline in
label-free anomaly detection for autonomous driving.

5.3.1. Related Work

Recent trends in anomaly detection have shown that utilizing semantic segmenta-
tion models and including exemplary anomalies for outlier exposure data during
training achieves close-to-perfect benchmark results [44, 75, 108], as described
in Chapter 3. In addition, most works focus on camera data, with only few that
leverage multimodal data but require models trained in a supervised fashion [BOG
4][253]. However, normality should be learned from raw sensory data and thus
in a label-free setting, as introduced in Section 2.1. Including anomalies dur-
ing training poses the risk of missing anomalies in a never-ending open-world
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setting, and utilizing supervised semantic segmentation [316, 4, 112], bounding
boxes [275, 129], or language [409] limits the definition of normality to labeled
training data, which does not scale well. This section revisits the field of label-
free anomaly detection and also explores mask-level approaches for enhancing
detections.

Label-Free Anomaly Detection: As introduced in Section 2.1, the term label-free
refers to methods that do not use labeled data during training. While modeling
uncertainty of models on computer vision tasks in an unsupervised way has
already been addressed [219, 140, 141, 159], these models were not evaluated
on anomaly detection benchmarks. Instead, they have been evaluated on their
ability to model uncertainty in general computer vision tasks. Since anomaly
detection is not only relevant in autonomous driving, there are also unsupervised
anomaly detection methods in other domains. For example, Zhou et al. [512] have
developed an anomaly detection model on retinal images, e.g., for detecting retinal
diseases or lesions, and many works [438, 250, 203] have evaluated their anomaly
detection models on the MVTec Anomaly Detection (MVTec AD) dataset [37]
for industrial inspection. Similarly, self-supervised detection methods exist in
label-free settings [380, 209, 496]. Others use the Modified National Institute
of Standards and Technology (MNIST) [246, 10, 182] or Canadian Institute For
Advanced Research (CIFAR) [238, 182, 431] datasets, which contain images of only
small sizes for their evaluation. Tu et al. address self-supervised anomaly detection
in autonomous driving by synthesizing anomalies [415], effectively introducing
outlier exposure.

In anomaly detection in the surveillance setting, there is also a trend towards su-
pervision requiring labeled training data [275, 129]. However, there are two recent
label-free methods. Abati et al. [1] have developed a novelty detection model
that uses a deep autoencoder in combination with an autoregressive parametric
density estimator, using real-world data with the University of California, San
Diego (UCSD) Ped2 [74] and the ShanghaiTech [284] datasets. Similar to Abati et
al. [1], Park et al. [339] trained Memory-guided Normality for Anomaly Detection
(MNAD) on datasets with images from the real world [74, 284, 280], which partly
contain semantic classes that can also be found in autonomous driving, e.g., pedes-
trians, bicycles, and cars. They compare the reconstruction of an autoencoder to
the initial input image by using the L2 distance and the PSNR in order to calculate
anomaly scores.

Mask-Level Anomaly Detection: A general trend to improve anomaly detection
methods, which typically predict anomaly scores for independent pixels, is to
use learned masks to generate instance-level detections. For detecting masks
of anomalous instances in an image, the zero-shot Segment Anything Model
(SAM) [224] was quickly used for the localization of anomalies in images. In
the following, an overview of recent methods using segmentations during post-
processing is given, as shown in Table 5.1.

Segment Any Anomaly (SAA)+ [63] utilizes pre-trained foundation models for
mask-level anomaly detection without further training. The authors first em-
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Method Supervision Temporal Multimodal Outlier Exposure Extra Networks
SAA+ [63] v — v — v [270, 224]
UGainS [318] v — — v v [316, 224]
S2M [510] v — — v v [360, 274, 224]
ClipSAM [254] v — v — v [354, 224]
Presented method — v v — v [BOG 23][325]

Table 5.1.: Overview of mask-level anomaly detection methods: The table shows
methods that use segmentation masks for post-processing. Supervi-
sion refers to the necessity of labeled data. Temporality denotes the
incorporation of temporal context. Multimodal models utilize further
modalities besides RGB data, such as text or LIDAR, for anomaly detec-
tion. Outlier exposure shows whether exemplary anomalies are needed

during training. Finally, all extra needed networks are shown. Adapted
from [BOG 14].

ploy Grounding Detection Transformer with Improved Denoising Anchor Boxes
(DINO) [270], which provides bounding boxes for regions defined by a prompt.
To refine those box regions into masks, they utilize SAM [224]. Similarly, Score To
Segmentation Mask (S2M) [510] generates bounding boxes that include anomalies,
followed by SAM. Comparable to many other anomaly detection models, they
use outlier exposure during training. Uncertainty Guided Anomaly Instance Seg-
mentation (UGainS) [318] uses the existing anomaly detection model RbA [316]
in combination with SAM for localizing anomalous instances in the observation.
Finally, ClipSAM [254] utilizes CLIP text and image encoders [354] to generate an
initial anomaly mask and refines it with SAM.

Recent trends have moved away from label-free anomaly detection, and bench-
marks are saturated with near-perfect results, as described in Chapter 3. While
label-free anomaly detection methods from other domains are available, no label-
free anomaly detection model for autonomous driving has been proposed so far.
Here, the core difference lies in the scene complexity. Anomaly detection in in-
dustrial or medical settings focuses on static scenes with mostly single objects,
while traffic scenes are highly complex. In addition, the recent trend of mask-
level anomaly detection methods works in a supervised manner. Thus, there is
a clear need to revisit the field of label-free anomaly detection in order to use
vast amounts of unlabeled data for training, as typically available in autonomous
driving.

5.3.2. Method

As shown in Section 5.3.1 and Table 5.1, the presented work is the first label-free
mask-level anomaly detection method. In the context of autonomous driving,
this means it can be trained purely based on unlabeled sensor recordings without
the need to record abnormal driving situations. An overview of the approach is
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shown in Figure 5.7. First, multimodal sensor data from several different sensors
is used as input for the world model presented in Section 5.2 to reconstruct and
predict future frames. Furthermore, semantic masks are derived from camera data.
For visual differences, a reconstruction of the current observation is compared
to the accompanying sensor data frame based on multiple methodologies. For
temporal differences, only multiple future predictions from the world model are
compared. After a weighted fusion of the pixel-wise scores, the resulting anomaly
map is refined based on the generated masks.

Sensor Data Visual Difference
Absolute Error Squared Error

Weighted
Fusion

Mask-level
Refinement

Figure 5.7.: Label-free anomaly detection: Multimodal sensor data is fed into a
world model to reconstruct and predict frames, and semantic masks
are derived from camera data. For visual differences, a reconstruction of
the current observation is compared to the accompanying sensor data
frame based on multiple methodologies. For temporal differences, only
multiple future predictions from the world model are compared. After
a weighted fusion of the pixel-wise scores, the resulting anomaly map
is refined based on the generated masks. Reprinted from [BOG 14].

The approach first uses the world model to generate a reconstruction of the current
frame. This reconstruction is then compared to the ground truth sensory data
from the camera sensor of the autonomous vehicle. While the approach only uses
camera data, the world model is grounded and conditioned by further sensor
modalities, planned actions, and the provided route. To compute visual differences,
several image comparison methods are employed in order to evaluate their influ-
ence on the anomaly detection performance. The Absolute Error (ABS) A 455 and
MSE A, sg are calculated for each pixel individually and measure the differences
in the r, g, b color channels of the reconstruction # and the sensory image «.
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Contrary to this, SSIM [443] compares images based on their structure by utilizing
batches of multiple proximate pixels, rather than focusing on individual pixels
alone, using sliding window patches. In Equation 5.4, ;1 denotes means and o
(co)variances, with constants x; and x5, for numerical stability [429, 443].

(2ppiz + K1) (2045 + K2)
(12 4 p3 + £1)(02 + 03 + ko)

Agsiv = ( (5.4)

Finally, perceptual difference App [112] is an image comparison method that
leverages a pre-trained deep CNN to extract features and compare two images
pixel-wise based on their content. Similar to Di Biase et al. [112], weights that are
pre-trained on the ImageNet [109] dataset are utilized. In Equation 5.5, F* denotes
the i-th layer of a VGG network [394], and M and N refer to elements and layers,
respectively.

N
App =3 2 IF() — F@)lh 65

i=1 i

For temporal differences Arp, multiple predictions of the world model are compared
to each other. The temporal difference is calculated by comparing prior predictions
for the current time step to each other. For this, the mean of the absolute errors
between n past predictions Z;_; for time ¢ and the current reconstruction z; is
computed, as shown in Equation 5.6.

Arp = rlz <§": Aaps (ft—uft)) (5.6)

=1

All K difference maps are then normalized and can thus be fused by assigning
weights w; € [0,1] with % w; = 1 to compute the final mask, as shown in
Equation 5.7.

K
Aot = Z szz (57)

=1

While the resulting anomaly map assigns anomaly scores to each pixel in the
image, it does not classify instances in an observation as anomalous. For this, the
scores are refined with instance masks to generate mask-level anomaly scores.
By utilizing an image segmentation approach for mask generation, the presented
method iterates through each observed mask in the observation and calculates
average instance-wise anomaly scores.
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5.3.3. Experiments

As shown in Chapter 3, common anomaly benchmarks, such as Fishyscapes [44]
or Segment Me If You Can [75], are limited to camera data and do not contain data
on actions, e.g., steering wheel angle, or additional sensory data. Among existing
anomaly detection benchmarks [BOG 22], the framework introduced in Section 4.3
is the only one providing multimodal sensory data and action data of the ego-
vehicle. Based on the presented data generation pipeline as shown in Figure 4.5,
the evaluation in this section is performed with object-level anomalies. For this
purpose, 16 abnormal driving scenarios with 200 frames each were generated
to create a small-sized benchmark with anomalies that is comparable to current
benchmarks. The scenarios take place in different towns under different weather
conditions and contain static anomalies, e.g., an object or an animal standing on
the street, as depicted in Figure 5.8. The dataloader for the world model samples
each 10" frame, i.e., every second.

Experimental Setup: The presented method requires both a self-supervised world
model and a self-supervised segmentation model. The training dataset of the
world model introduced in Section 5.2 does not contain anomalies and thus estab-
lishes the baseline for typical behavior in the context of anomaly detection.

For image segmentation, all prior works shown in Table 5.1 utilize the Segment
Anything Model [224]. However, SAM was trained in a supervised manner, limit-
ing the use of large-scale, unlabeled datasets as typically available in autonomous
driving. Differently, Unsupervised Universal Segmentation (U2Seg) is an image
segmentation model that is capable of generating panoptic segmentation masks
by using self-supervised learning and clustering. This conceptually enables the
learning of both the world model and the segmentation model on the same large-
scale, unlabeled dataset. It would have been beneficial to train U2Seg on the
target domain, but as it was trained on the entirety of ImageNet [109], the neces-
sary resources for training were unavailable, and a provided checkpoint is used.
Experiments with both SAM and U2Seg are performed.

Baseline: As described in Section 5.3.1, there are only two relevant SotA label-free
anomaly detection models. While both models demonstrate similar performances,
Abati et al. [1] only provide inference, but no training code for their approach.
Thus, the approach presented in this chapter is evaluated against MNAD by Park
et al. [339]. The authors provide code for both prediction and reconstruction tasks,
but focus on frame-wise evaluations. To verify their evaluation, the experimental
results of Park et al. [339] could be reproduced in a first step.

For the evaluation, MNAD was trained on a reduced version of the dataset that
was used to train the world model introduced in Section 5.2. Each 100" frame
was sampled from it, resulting in 2,725 frames. This ensures that MNAD was
trained on images from the same towns, with the same driving conditions, and
thus with the same semantic structure as the world model. The sampling was
necessary to prevent overfitting, as UCSD Ped2, which was originally used by
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Ground truth Reconstruction  Difference Map  Mask-level Map
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Figure 5.8.: Exemplary Detections: The first columns show the input image and
the corresponding ground truth. World model reconstructions are
utilized to generate difference maps, which are finally refined to mask-
level maps. Masks are generated by the label-free segmentation model
U2Seg. The first two rows show positive cases, while the third row
shows a failure case. Adapted from [BOG 14].

Park et al. [339], only contains 2,550 images. The data sampling thus allows a
dataset size which is comparable to the one used to train MNAD in the original
experimental setup. [339]. Following Park et al. [339], the model was trained
for 60 epochs. Contrary to the approach presented in this chapter, MNAD only
localizes anomalies as an intermediate step and uses additional metrics for the
final frame-wise score. While frame-wise scores can also be used in the context of
autonomous driving [BOG 17][STU 4] to detect frames including anomalies, they
do not allow for the localization of anomalies. Thus, based on these intermediate
reconstructions, the L2 distance is used to compute pixel-wise anomaly scores.

5.3.4. Evaluation

For the evaluation of the presented method, a wide variety of combinations of
the five introduced visual and temporal difference components are examined.
The Average Precision (AP), FPRgs, and the AUROC metrics are used, as they are
common metrics in anomaly detection benchmarks for autonomous driving [44,
75]. All combinations, as shown by the used weights w;, and the results can be
found in Table 5.2.

Experimental Results: Here, the findings on the performance of the presented
approach compared to the MNAD baseline are presented. Since the visual dif-
ferences and the temporal differences are normalized, they can be individually
weighted and combined in order to form an anomaly map. This process is done
in the weighted fusion component. In the following, the impact of the single
difference metrics and their combinations is also evaluated.

Since MNAD does not use masks, first, the pixel-wise L2 distance of MNAD
is compared to the similarly calculated MSE of the presented method on the
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¢ ¢
SRS SEPTSRRNS
oF «Wéo @‘*@ RN <§$ @5 v <§$ @5
Ground truth SAM
1 0 0 0 0 |1768 3556 6523 13.72 5058  65.16
0 1 0 0 0 |1905 3892 6361 13.77 5222 64.93
0 0 1 0 0 |[1977 2126 79.03 1143 4679 6826
0 0 0 1 0 |299 1693 83.18 18.93 4232  71.88
0 0 0 0 1 |1141 5270 49.15 711 6926  47.72
0 1 % % 0 |2750 17.81 8247 1711 4401  70.83
3 0 3 3 0 |2621 1816 8207 16.02 4455  70.88
3 % 0 % 0 |2552 2067 7973 1711 4383  71.74
3 3 10 0 |1885 2288 7773 12.85 4644  70.20
0 % % 11 2528 1853 8183 1430 4518  69.85
1 0 T3 3 | 2434 1939 8127 1474 4487  69.95
3 1 0 1 1 |2228 2143 79.05 16.15 4528  70.88
1 : 10 5 |1725 2415 7692 1260 4812 6842
1 : T2 0 |2347 1904 8134 1555 4435 7112
: : o1 112238 1971 80.74 1452 45.02 7021
U2Seg Max. Value
1 0 0 0 0 |1404 6020 5955 19.00 59.68  40.68
0 1 0 0 0 |1454 6098 59.93 18.86 59.52  40.76
0 0 1 0 0 |1217 5844 62.88 10.87 67.03  33.30
0 0 0 1 0 |1888 5674 6477 1726 57.68  42.55
0 0 0 0 1 9.02 68.89 54.44 11.01 7423 2597
0 : i %2 0 |1770 5676 65.09 2097 5201  48.57
1 0 3 0 |1713 5673 6550 1871 5263  47.85
2 1 0 z 0 |1799 57.07 6547 2191 51.83 4849
3 % 10 0 |1364 5831 6397 1851 6024 4052
0 1 : + 1 11708 5654 6513 16.69 56.77  43.76
: 0 T 1 1 1635 5692 6518 1544 57.88  42.90
1 1 0 L 1 1715 57.09 6497 1844 5667  43.68
3 : 10 1 |1217 5844 6288 16.05 6327 3725
3 : T+ 0 |1716 5684 62.88 19.86 5336  47.22
: : 2 L 11638 5706 65.04 20.01 5684  43.82
No Mask Single Mask
1 0 0 0 0 |68 7819 60.19 5.04 9357  50.54
0 1 0 0 0 |703 7849 60.68 504 9357  50.53
0 0 1 0 0 |472 5087 73.02 583 9283  51.12
0 0 0 1 0 |10.86 3291 79.51 1040 8849  53.26
0 0 0 0 1 409 7337 53.05 506 9357  50.59
0 : 1 i 0 | 951 3737 53.05 12.66 86.31  54.48
3 0 § 2 0 | 929 3899 7870 8.88 89.93 5259
3 % 0 2 0 |942 4234 7624 8.83 8994 5254
3 3 10 0 | 693 5240 7232 505 9356  50.64
0 1 T+ 1 |82 3937 7751 8.88 89.93 5257
1 0 T3 3 | 814 4026 7717 1037 8848  53.35
3 : 0 i : 850 44.02 75.05 730 9139 5179
o : 10 3 |616 5328 7114 430 9429 5026
1 : T 1 0 | 883 4007 77.62 8.83 8993 5257
: : ool 11811 4112 76.69 8.07 90.66  52.18
MNAD [339] | 637 8961 6196 | — — —

Table 5.2.:

Evaluation Results: The six experiments shown use the following set-
tings: Ground truth segmentation; segmentation from SAM and U2Seg;
instance-wise maximum anomaly value selection; no mask segmenta-
tion; selection of a single mask instance with the highest anomaly score.
Best and second-best results are highlighted. Adapted from [BOG 14].
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raw pixel-wise output without masks. With the presented method in the setting
of using the MSE as visual difference, the AP is 7.03, the FPRy; 78.49, and the
AUROC 60.68. Compared to MNAD, AP is 10.36% higher and FPRg5 12.41% lower.
Compared to these improvements, AUROC is 2.11% higher for MNAD. Even
better results are achieved when using the perceptual difference for visual difference.
Here, the presented method achieves by far the highest AP, lowest FPRy;, and
highest AUROC in the pixel-wise setup without masks. AP is 70.49% higher, FPRys
63.27% lower, and AUROC 28.32% higher compared to the experimental results
for MNAD.

When improving the results with masks, the improvements become even more
pronounced. Using masks in a label-free setting that are generated with the image
segmentation model U2Seg and the perceptual difference as visual difference, the
method presented in this chapter achieves an AP that is 196.39% higher than the
AP in the evaluation of MNAD.

Ablation Studies: In order to better understand the presented method, a set
of ablation studies is performed. First, next to utilizing U2Seg, the possible
performance gains of using SAM [224] or ground truth masks are of interest.
SAM is a zero-shot image segmentation model that is also used by SotA anomaly
detection models. While SAM was trained with labeled data, it performs well in
the context of zero-shot inference. The effects of not refining the anomaly map
with masks at all are examined as well. Second, rather than averaging all anomaly
scores per mask, it is of interest whether picking the maximum value, inspired
by Liu et al. [275], impacts the performance. Table 5.2 shows these results in the
section “Max. Value”. As shown in the section “Single Mask”, picking only the
mask with the highest anomaly score, neglecting the rest, is also examined.

When using the zero-shot image segmentation approach SAM, which is also
used as an image segmentation approach in prior anomaly detection models,
it is possible to further improve the experimental results. With the perceptual
difference as visual difference in the setup, AP in this setup is 18.93%, FPRgs
is 52.77% lower, and AUROC 16.01% higher than in the respective results for
MNAD. To evaluate the full potential of utilizing masks for anomaly detection,
the presented approach is also evaluated with masks from a ground truth instance
segmentation map. This setup achieves by far the best experimental results, again
showing the huge potential of leveraging masks in anomaly detection. The best
AP score with this experimental setup is 29.90, the best FPRy; is 16.93, and the
best AUROC is 83.18. In the prior experimental setups, the average anomaly score
of the masks is used for evaluation. Interestingly, it shows that the perceptual
difference is not suitable for anomaly detection when assigning the maximum
anomaly score to masks rather than their average score. Generally, substituting
the average anomaly score per instance with the maximum score does not achieve
better results. Worst results are achieved when only considering the instance with
the highest anomaly score. In this setting, often not the anomalous object, but a
different object in the observation has the highest anomaly score. This then results
in completely ignoring the abnormal object.
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5.4. Conclusion

This chapter presents an approach to first learn a representation of normality and
then leverage it to detect external object-level anomalies, as introduced in Table 2.1.
Addressing RQ3, both methods presented in this chapter — training the world
model and using it for anomaly detection with mask-based refinements — leverage
unlabeled sensor data from multiple modalities. The world model introduced in
Section 5.2 is the first to leverage both camera and LIDAR data without a BEV
bottleneck representation. Based on a concept of normality as shown in Table 4.4,
carefully selected data from the CARLA simulation environment was used for
training. Here, no anomalies are present, allowing the world model to learn a
data-based representation of normality. The world model is used subsequently in
Section 5.3 for anomaly detection. It is evaluated with the benchmark introduced
in Section 4.3, focusing on object-level anomalies. It outperforms the most relevant
label-free SotA anomaly detection method, and is further improved by mask-based
refinements, as shown in Table 5.2.

The following Chapter 6 presents an anomaly handling approach for the task of
driving. Here, previously detected object-level anomalies are integrated into the
training dataset to improve situations in which the lane ahead is blocked by an
obstacle, requiring controlled traffic rule exceptions.

5.4.1. Recent Advances

The field has continued to evolve since the development and publication of the
works underlying this chapter [BOG 23, 14]. Recently, multiple works [132, 286,
414, 80] have examined the field of world models for autonomous driving. Among
the approaches analyzed by those works [481, 479, 486, 506, 168, 91, 410, 144,
502, 281, 468, 84], only BEVWorld [506] and HoloDrive [468] are included as
multimodal world models comparable to the approach presented in this chapter,
not requiring labeled data during training. The reliance of both on a bottleneck BEV
representation as the key difference has already been addressed in Section 5.2.1,
showing that the presented approach is still the only multimodal world model not
limited by a BEV bottleneck.

In label-free anomaly detection, i.e., the detection of anomalies without the need
for labeled data, many works remain in the low-complexity setting of anomalies in
industrial and medical settings [455, 488,461, 315]. For autonomous driving, recent
advances in the general field of anomaly detection have already been discussed
in Section 3.6.1. Shining a light on a rare label-free approach, Cai et al. present
an unsupervised anomaly detection approach for LIDAR data [60]. Their work
is inspired by MNAD [339] and focuses on the detection of adversarial attacks at
the scene level without atypical objects. While the approach cannot be compared
directly to the presented method in Section 5.3, no architectural novelty compared
to MNAD can be observed. MNAD was clearly outperformed by the anomaly
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detection method presented in this chapter, as shown in Table 5.2. These advances
underline the continued relevance of the methods presented in this chapter, as
label-free anomaly detection remains underexplored in the field of autonomous
driving.
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But obstacles don’t have to stop you.

Michael Jordan, 1994 [212]

6. Anomaly Handling

A supervised student thesis has contributed to this chapter [STU 6]. Parts of this
chapter have previously appeared in the following publication:

e D. Bogdoll et al. Informed Reinforcement Learning for Situation-Aware Traffic
Rule Exceptions. In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2024 [BOG 18]

6.1. Introduction

External anomalies detected by anomaly detection methods, such as the method
presented in Chapter 5, can be subsequently addressed in either an online set-
ting, i.e., when encountered by an autonomous vehicle during operation, or an
offline setting, i.e., when collected and used for the general improvement of the
system. In online settings, anomalies can either be addressed while driving, e.g.,
by maintaining a higher safety distance to detections considered unknown to
address potentially unknown behavior [391] or via human support. In the lat-
ter case, an autonomous vehicle comes to a stop and remote assistance [BOG
15,11, 9, 26, 29, 30] is activated.

This chapter discusses the handling of object-level anomalies in an offline setting.
Previously detected anomalies are integrated into the training data for future
model training, effectively removing their status as anomalies [234]. This is espe-
cially useful for whole categories of detected anomalies, which can be handled
appropriately. Addressing RQ4, this chapter improves learned trajectory planning
by enabling an autonomous vehicle to perform controlled traffic rule exceptions
through prior knowledge of hierarchical traffic rules. Based on a RL setting with
curriculum learning, a situation-aware reward design is introduced to provide a
dynamic reward signal for situations that allow for controlled rule exceptions.

6.2. Situation-Aware Reinforcement Learning

Navigating complex traffic scenarios with object-level anomalies requires a high
level of flexibility. Especially in the field of Reinforcement Learning for Au-
tonomous Driving, often very simple and conflicting reward functions are being
used, which do not have the potential to solve such scenarios [229]. Especially
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hierarchical traffic rules, which sometimes override others in specific situations,
are typically neglected in reward functions but are necessary in everyday traf-
fic [72, 13]. Additionally, even though RL has made strides in behavior planning
and control instructions for autonomous driving, the potential of RL in direct
trajectory generation is not extensively researched [307].

The method presented in this chapter leverages the capabilities of informed
RL! [BOG 32] to enhance the decision-making and adaptability of autonomous
vehicles, especially in scenarios requiring traffic rule exceptions. Hierarchical
traffic rules can be used as a source of knowledge for an informed and dynamic
reward in order to handle situations that include anomalies. This means that rule
violations, which are situationally permitted by a hierarchical traffic rule, are not
statically penalized in the reward function.

6.2.1. Related Work

This section reviews related work on the application of Reinforcement Learning
in motion planning for autonomous vehicles, typical traffic scenarios for training,
and traffic rule formalization. It facilitates a better understanding of the presented
work and introduces methods that are adapted for later experiments.

Reinforcement Learning for Motion Planning

Motion planning in the context of autonomous driving can be split into behav-
ioral planning, trajectory planning, and control instructions [13]. In the context
of behavioral planning, Fayjie et al. [130] proposed an RL-based autonomous
driving strategy for urban traffic scenarios, where the discrete action space con-
sists of “left”, “right”, and “keep going” to symbolize lane changing behaviors.
Ye et al. [489] proposed a strategy for automatic lane changing with RL based
on Proximal Policy Optimization (PPO). This strategy enables a trained agent to
make efficient lane-changing decisions even in dense traffic scenarios. Further-
more, numerous studies have been conducted exploring RL-based behavioral
planning for autonomous vehicles, with findings demonstrating reliable perfor-

mance [194, 50, 64, 189, 157].

In the context of trajectory planning, Feher et al. [131] learn waypoints that an
agent should follow. For that, they use the Deep Deterministic Policy Gradient
(DDPG) algorithm. A limitation of this methodology lies in its sole focus on
lateral planning. Moghadam et al. [307] propose an RL agent that learns input
parameters for a trajectory planner on the Frenet Space for highway scenarios.
They use a continuous action space with processed time-series data as observation
space instead of raw sensory observations. Coad et al. [97] present an RL agent
with a continuous action space in a static occupancy grid. The agent’s action

Informed ML is concerned with the integration of “prior knowledge into learning systems” [430]
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space is a sequence of changes in curvilinear coordinates, lateral displacement,
and velocity with a fixed longitudinal step. Lu et al. [282] propose a hierarchical
Reinforcement Learning framework for trajectory planning given a state space
composed of BEV images and LIDAR data. The framework consists of a high-level
action responsible for choosing the direction of motion and a medium-level action
sampling the vehicle’s next waypoint from a fixed-size semi-circle, which can also
sample off-road waypoints.

In the context of control instructions, with a focus on end-to-end learning, many
methods leverage raw sensor inputs as the input space and directly output control
commands for autonomous vehicle control, which include steering angle and
acceleration [14, 206, 311, 374, 493]. However, these approaches are challenging to
interpret, as no planned trajectory is available.

The method presented in this chapter is most related to RL works in the context
of trajectory planning. Neither behavior plans nor control instructions can be
precisely analyzed with respect to their degree of compliance given a traffic rule.
The method is most related to the work presented by Moghadam et al. [307], as it
also learns trajectories in Frenet space. However, a core difference is the utilized
observation space. While their work relies on processed time-series data, the
method presented in this chapter utilizes RGB observations.

Traffic Scenarios

Most RL-based autonomous driving studies set up a specific autonomous driving
environment for the vehicle. Given the relatively straightforward nature of high-
way traffic conditions, these environments present comparatively less complex
scenarios for autonomous driving. Consequently, a substantial number of studies
utilize highway scenarios as the benchmark for evaluating RL-based autonomous
driving strategies [475, 14, 24, 189, 311, 458]. However, further approaches focus
on urban area traffic, encompassing elementary urban traffic, intersections, as
well as dense urban traffic situations [50, 130, 489, 500]. Nonetheless, there is a
lack of literature considering scenarios that require controlled traffic rule excep-
tions [13][BOG 5]. Talamini et al. [403] utilize RL to train a driving strategy when
controlled traffic rule exceptions become necessary. Their approach considers
behavior planning with lateral motion only and does not provide a structured
approach regarding the integration of hierarchical rules into the reward.

The method presented in this chapter is not confined to any category of traffic
scenarios. Different from Talamini et al. [403], where regular traffic scenarios
are examined, the method presented in this chapter addresses rule exceptions in
atypical traffic scenarios involving previously detected anomalies.
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Formalism of Traffic Rules

Many studies have explored formalizing traffic rules into a machine-readable
format. A number of methods have been used, e.g., temporal logic [291], Linear
Temporal Logic (LTL) [226], Signal Temporal Logic (STL) [7], Isabelle theorem
proving [361], and fuzzy logic [309]. However, these studies primarily concen-
trate on translating individual rules without considering the prioritization among
different rules. Censi et al. [72] introduced a theoretical rulebook to structure dif-
ferent rules, establish a hierarchy between rules, and analyze traffic rule exception
scenarios, but did not provide a framework or implementation to utilize it.

The work presented in this chapter directly builds upon the rulebook developed
by Censi et al. [72], but integrates it into a reward function rather than applying it
during inference. Overall, there is a noticeable research gap in the development
of RL algorithms for autonomous vehicles that not only address the trajectory
generation in scenarios that require traffic rule exceptions, but also efficiently
incorporate a structured set of traffic rules into the reward function.

6.2.2. Method

This section presents the methodology as visualized in Figure 6.1. First, the
problem statement is introduced, which outlines present challenges. Next, the
generation of vehicle trajectories using the Frenet Space [362] is detailed. Subse-
quently, the process of structuring traffic rules for computational interpretation is
discussed, including using the rulebook and its integration into a reward function.
The methodology can be utilized with arbitrary RL frameworks.

0 Hierarchical Tt Trajectory
Rulebook Generation

t
t

e
Normal
Scenarios

TRBt Qs Ty

e
Anomaly
Scenarios

(0]

RL Agent Controller

Figure 6.1.: Architecture: In a curriculum learning setting, normal scenarios are
used first to learn basic driving behavior. Then, anomalies are provided
to learn controlled rule exceptions. Given an observation o;, the RL
agent chooses an action a; as the parametric input for generating a
trajectory 7. The rulebook then evaluates the trajectory in the context
of an abstracted environment 6, and provides the partial reward g ;.
Finally, a controller follows the trajectory. During evaluation, only the
path in green is executed. Adapted from [BOG 18].
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Situations requiring controlled traffic rule exceptions contain apparent conflicts
of traffic rules, where one rule can override another. For an agent to solve the
tasks, situation-awareness is necessary to apply the correct set of rules at any given
time. As the system dynamics are unknown, the problem is modeled as a Partially
Observable Markov Decision Process (POMDP), with the state space comprising
high-dimensional sensory RGB data from a BEV camera and the action space
consisting of input parameters for the generation of a trajectory in Frenet Space.

Trajectory Generation

To evaluate the compliance of actions with respect to given traffic rules, it is
necessary to generate planned future trajectories. As shown in Figure 6.1, actions
a; are used as the input for a trajectory generation module. Following the approach
presented by Werling et al. [451], trajectories are generated in Frenet Space. The
goal state of a trajectory in Frenet space is fully defined by a target state {v, d, ¢},
which means that each set of parameters corresponds to a trajectory. This set is
used as the input for the trajectory generation module. Here, v represents the
desired velocity at the termination of the trajectory, d the lateral offset relative to
the reference trajectory, and ¢ the time needed to reach the desired target state. As
shown in Figure 6.1, a controller is then utilized to follow the trajectory.

Situation-Aware Reward Design

Classic reward functions in RL are static and reward or punish a behavior irrespec-
tive of the context of a given situation. In the case of scenarios requiring traffic rule
exceptions, some rules can override others. To adapt to this, the method presented
in this chapter introduces a dynamic situation-aware reward. For this, a formal
rulebook is used as part of the reward function to represent situation-specific
hierarchies between different rules. Assuming no rule conflicts as the default state,
the agent first needs to assess the current situation to activate dynamic rewards.

Situation Awareness: In order to assess traffic situations, an agent needs to have
an understanding of traffic rules and capabilities to monitor them [BOG 12]. As
shown in Figure 6.1, the abstracted environment 6, provides information for
this purpose, such as map data or knowledge about relevant entities or objects
in the environment. This information can be obtained either from processing
sensory observations, a dedicated data source, or via ground truth in simulation.
Information from the abstracted environment o, is used, for example, to trigger
hierarchical traffic rules and measure rule compliance. Similar to the definition
of rules by Censi et al. [72], rule realizations are introduced. Let 7, be a sequence
of states, i.e., a trajectory. A rule realization ¢ : 7, — R assigns a real number
Y(m) € [0,1] to 7. This is an expression of the degree of compliance of 7; with
respect to an underlying traffic rule, where a value of 1 indicates full compliance.
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Based on this knowledge of existing traffic rules, an agent can then set rule coeffi-
cients p; depending on the current situation, e.g., diminishing the relevance of a
rule if it is overwritten by another one.

Hierarchical Rulebook: Inspired by the conceptual hierarchical rulebook by Censi
etal. [72], an implementation of a rulebook is presented within the reward function
of an RL agent. Following the definition of Censi et al. [72], a rulebook is defined
as a tuple (U, <), where VU represents a finite set of rule realizations ; and <
denotes a preorder on V.

Linear Temporal Logic syntax is utilized for rule descriptions and their integration
into the reward function. The rulebook is only activated when the situation
awareness module detects a situation where a controlled rule exception becomes
possible. The hierarchical structure of the rulebook is instrumental in determining
which rules take precedence over others. Its hierarchical structure can be visualized
as a graph, with each rule realization as a node and edges indicating priority
relationships. Nodes of equal priority can be merged.

P1 P2 P3 P4
¢1 ¢2, ¢3 ¢4 1/}5

Figure 6.2.: Hierarchical rulebook: Graph representation of a rulebook R with
rule realizations v; and hierarchy coefficients p;, where j indicates the
hierarchy index. Adapted from [BOG 18].

For instance, in Figure 6.2, ¢); holds the highest hierarchy, 1» and 15 share the
same, followed by 14, and 5 with the lowest. Such a representation assures the
rulebook’s scalability.

Linear Temporal Logic: LTL is a powerful logic language utilized in defining se-
quences of events or states. Its syntax contains various logical operators: negation
(—), conjunction (A), disjunction (V), and implication (—), along with temporal
operators: Next (X), Globally (G), Finally (F), and Until (U). To evaluate a trajectory
7, which can be defined as a sequence of vehicle states, the LTL is applied for each
rule realization ;. This reward calculation can be described by a function f (v, 71).
More details on the utilization of LTL can be found in Section 6.2.3.

Reward Design: The rulebook’s hierarchical structure is incorporated into the
reward function based on hierarchy coefficients p; € [0, 1] for each hierarchy, as
shown in Figure 6.2. The coefficient scales the reward or penalty associated with
a given level’s rules so that higher-hierarchy rules have a higher weight in the
reward. This way, the reward is dynamically adapted to the current situation.
By default, the hierarchy coefficients are set to unity, such that p; = 1Vj. The
realization is shown in Equation 6.1.
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W
TrRBt = Z ( H Pj) S (Wi, i) ey (6.1)

P €Y \j=1;

Here, ¥ are all the rules involved in the rule exception, 7’ is the rule with the
highest priority in the rulebook, and p; is the hierarchy coefficient of v;. f(v;, 1)
is the reward value. cy; is a scaling factor for each rule that allows fine-tuning.

6.2.3. Experiments

This section presents the experimental setup for the training and evaluation of the
Reinforcement Learning agents. It first provides details on the traffic scenarios
and rules examined. Next, the state and action spaces and the reward function are
presented. Finally, it describes the training process and the parameters used.

Traffic Scenarios: For the experiments, a typical scenario in everyday urban traffic
is chosen. Based on the German road traffic regulations, it is generally forbidden
to cross a solid line. However, in certain situations, e.g., when the lane of the ego
vehicle is blocked, there exists a rule exception [138], as shown in Figure 6.3.

Figure 6.3.: Scenario with controlled rule exception: Traffic scenario that shows
an atypical scenario with an object-level anomaly. In this scenario, the
ego vehicle’s lane is blocked. To deviate from continuing following
its lane (brown), a controlled rule exception can be performed (blue).
Reprinted from [BOG 18].

A benchmark? is provided with 1,000 such scenarios in the CARLA simulation
environment [117] and also the codebase to generate more if needed. Each scenario
is defined by a reference trajectory with a length of 80 meters and an object-level
anomaly from the CARLA blueprint library [65] that blocks the lane at some point
along the trajectory, as shown exemplarily in Figure 6.4. Focusing on object-level
anomalies, the benchmark consists of low-complexity scenarios collected in the
static CARLA Town 1 environment.

2The benchmark is available on GitHub:
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Figure 6.4.: Benchmark: Exemplary scenarios with different object-level anomalies
blocking the lane. The dotted lines in front of the ego vehicle represent
the reference trajectories towards the goal. Reprinted from [STU 6].

Agent Selection: For the experiments, two established Reinforcement Learning
Models are selected. First, the current SotA model-based algorithm DreamerV3
is utilized, which demonstrates superior performance in a wide variety of do-
mains [165]. Second, the model-free Rainbow algorithm [186] is utilized, an
improved version of the well-known Deep Q-Network (DQN). In both cases,
CNN s are used to encode the observations.

State Space: The state space comprises BEV RGB images with a resolution of
128 x 128 pixels, as shown in Figure 6.7. This state space inherently captures
essential aspects like road geometry, the ego vehicle’s position, obstacles, and the
planned path.

Action Space: In order to generate trajectories in Frenet Space, the target state
{v, d, t} is utilized, as introduced earlier in Section 6.2.2. To focus on the agent’s
ability to avoid obstacles, the discrete action space is simplified. v and ¢ are set
to constants and d to specific values in dependence on the vehicle’s position, as
illustrated in Figure 6.5. As shown in Figure 6.1, a Proportional-Integral-Derivative
(PID) controller is implemented to follow the generated trajectory subsequently.

(a) Action space for d = 0 (b) Action space for d # 0

Figure 6.5.: Dynamic action space in Frenet space: Visualization of trajectories 7,
based on selected actions a;. The left side shows a scenario where the
ego vehicle is in its intended lane, while it is in the opposite lane on
the right side. Reprinted from [BOG 18].

Situation-Aware Reward: For the total reward r,, two aspects are combined, as
shown in Equation 6.2. The first component utilizes the current state of the ego
vehicle, and the second one is based on the situation-aware rulebook.
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Tt = Tegoyt + TRB¢ (62)

The first component r.y, is shown in Equation 6.3. It consists of 7;,;sn = 10
if the vehicle reaches the target distance but not the target lane, 60 if both are
reached, and 0 otherwise. Additionally, 7,pc.q is set to —1 if the speed is not within
10 — 50 km/h, otherwise, it is 0. The trajectory length traveled in the past step is
denoted by /. All values were determined by a small set of experiments.

Tego = T finish + Tspeedl (63)

For the second reward component, rzp, a set of simplified traffic rules necessary
for the designed scenarios is utilized. As shown in Table 6.1, the agent monitors
three traffic rules, focusing on collision avoidance and adherence to road layout.
By default, the agent should adhere to all rules.

Rule Realization LTL Formula J Pj
Avoid collisions Uy G(no_collision) 1 1
Stay in lane (% G(in_lane) 2 0.1
Stay on road U3 G(no_out_road) 2 0.1

Table 6.1.: Rule overview: The table shows rule realizations v;, LTL formulas,
hierarchy levels j, and coefficients p,. Reprinted from [BOG 18].

All rules can be monitored based on the temporal operator G from LTL, as intro-
duced in Section 6.2.2. As shown in Equation 6.4, states breaking the rule receive
a penalty of —1 per rule realization, otherwise 0. The expression 7; [~ G refers
to whether the states in the generated trajectory satisfy a rule. The trajectory is
considered to violate a rule if any state does not satisfy it.

—1, ifr [~ Gy

i (6.4)
0, Otherwise

f(GY,m) = {

Given the concrete set of rules and rule realizations from Table 6.1 and the rulebook
reward as defined in Equation 6.1, rgp, is expressed as follows:

TRB,t = P17 collisionCcol + p1p2rin_lanelclane + plpZTno_out_roadl (65)

When the scenarios demand it, controlled rule exceptions become necessary to
proceed. Based on ground truth through 6,, the situation awareness module of
the agent activates the rulebook when it approaches an obstacle. This becomes
evident in Equation 6.5, where all coefficients p; are then set to their values as
defined in Table 6.1 instead of their default value 1. Thus, when necessary, the
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agent can leave the road with only a minor negative influence on the reward in
order to perform a controlled rule exception.

Curriculum Learning: The training strategy is divided into two steps. First, the
agent shall learn regular driving behavior. After that, situations are introduced
that require controlled traffic rule exceptions, as shown in Figure 6.1. Thus, for the
tirst 3,000 steps, the agent is trained in a simple urban environment. Subsequently,
the training is continued with scenarios that require the previously introduced
traffic rule exceptions.

6.2.4. Evaluation

This section compares and analyzes the results of the presented experiments from
Section 6.2.3. Two RL agents are compared, and a variety of ablation studies are
performed in order to attribute the performance of the approach to the individual
components. Both quantitative results for the whole training process, as well as
qualitative demonstrations of how the most successful agent performs in scenarios
that require controlled traffic rule exceptions, are shown.

Quantitative Evaluation

For the evaluation, two key metrics based on the vehicle’s performance in avoiding
obstacles are used, focusing on returning to the original lane and adhering to traffic
rules: The metric arrived distance represents the distance the vehicle was able to
travel along the s-axis in the Frenet coordinate at the end of each episode, reflecting
the distance traveled along the lane. The metric finished score is the value ranging
from 0 to 1 that quantifies the success in completing the scenario navigation task.
A value of 1 denotes full success, 0.5 indicates returning to the correct longitudinal
but not lateral position, and 0 is assigned otherwise. These metrics collectively
assess the agent’s ability to manage scenarios that require controlled traffic rule
exceptions.

As existing RL models are extended with a trajectory generation component and
the situation-aware reward design, four types of ablation studies are performed.
Setting a baseline, the RL agents are implemented in an E2E setting with a dis-
crete control-based action space, consisting of three possible acceleration values
{—1,0,1} and three possible angular velocity values {—1,0,1}. Evaluating the
impact of trajectories, only the trajectory generation is implemented without the
situation-aware reward. This means that all coefficients p; are set to 1 constantly.
Examining the isolated rulebook, only the situation-aware reward function is im-
plemented, but trajectory generation is not utilized. In this case, Equation 6.4 only
checks the state of the vehicle at each timestep. Finally, examining the combined
effect of the approaches, both the trajectory generation and the situation-aware
reward function are implemented.
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Figure 6.6.: Evaluation: The figures show the arrived distance and finished score
metrics during training, visualizing the running average, standard
deviation, and 5th and 95th percentiles over 40,000 steps. Agents
were compared that worked with direct controls as their output or
a trajectory and utilized either a conservative reward or the rulebook.
Reprinted from [BOG 18].

A total of six different models were trained in accordance with the ablation study
design, as shown in Figure 6.6. Independent of the underlying RL model, the
scenarios in combination with the presented reward are too challenging for both
baseline models. Including only the rulebook has no clear influence. At this point,
the focus is put on the generally more capable DreamerV3 agent. In combination
with the trajectory planning module, DreamerV3 consistently outperforms other
methods on both metrics arrived distance and finished score. This approach exhib-
ited a steeper learning curve, suggesting rapid adaptation to guide the vehicle
efficiently. When the situation-aware reward function is additionally activated,
the performance of the DreamerV3 model improves further. This shows that the
reward function is beneficial for the agent’s learning process, as the total perfor-
mance stays consistently above the approach without the situation-awareness,
while not achieving a 100% success rate in either of the metrics. In order to better
understand failure cases, a qualitative evaluation is presented in the following.

Qualitative Evaluation

For a better understanding of individual scenarios, both the agent’s driving perfor-
mance and its adherence to the defined traffic rules are visualized in Figure 6.7 and
Figure 6.8. Figure 6.7 shows observations o, from the BEV camera, including the
planned trajectory during an episode. This visualization illustrates the vehicle’s
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L

% ﬂﬂl

(c) Success case 3 (d) Failure case 1

Figure 6.7.: Qualitative results: The RL agent detects situations in which con-
trolled rule exceptions are necessary. Trajectories that avoid obstacles
are learned, changing to the oncoming lane temporarily, and returning
to the default state as soon as possible. Reprinted from [STU 6].
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Figure 6.8.: Compliance with traffic rules: Rule adherence for the scenarios shown
in Figure 6.7. The bottom row depicts the scenario, where « shows the
position of the obstacle and a visualizes the area in which the rulebook
is activated. The top three rows show rule adherence, where 1 means
tull compliance and 0 violation. Adapted from [STU 6].

ability to change lanes to avoid obstacles and then return to the original lane
immediately. The corresponding trajectory and traffic rule compliance graphs,
plotted in Frenet coordinates, are provided in Figure 6.8. As can be seen from
the quantitative results (a) - (c), the agent performs controlled rule exceptions
successfully most of the time. Most failure cases occur due to too early returns to
the original lane of the ego vehicle, as shown in the last scenario (d).
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6.3. Conclusion

This section introduces situation-aware RL to perform controlled traffic rule excep-
tions in autonomous driving under the presence of previously detected object-level
anomalies. Addressing RQ4, it demonstrates that learned trajectory planning ben-
efits from the inclusion of previously detected anomalies into the training process.
By designing a dynamic reward function that reacts to the presence of anomalies
on the road, faster learning convergence and better performance are observed.
This reward is based on a hierarchical rulebook [72] representing real-world traffic
laws. Any given RL algorithm can be improved, as only the reward function is
adapted. The act of integrating previously detected anomalies into the training
process progressively diminishes their status as anomalies based on Definition 2.

This section concludes the arc of generating, detecting, and handling external
anomalies in this dissertation, as shown in Figure 1.1 and Table 1.1. Summarizing,
Chapter 3 provides an extensive overview of current anomaly detection methods
for external anomalies and highlights several research gaps, including saturated
benchmarks, a lack of multimodal anomaly detection works, and a strong reliance
on semantic segmentation networks and outlier exposure during training. Sub-
sequently, Chapter 4 presents data generation methods for all anomaly levels as
introduced in Table 2.1. Focusing on object-level anomalies, Chapter 5 presents an
anomaly detection technique that utilizes both camera and LIDAR data and does
not require any labels during training. Based on an evaluation with the benchmark
introduced in Chapter 4, it outperforms the most relevant SotA model. Finally, this
Chapter 6 presents handling previously detected anomalies in an offline setting.
Integrating anomalies into the training process of RL agents — eliminating their
status as anomalies —, the handling of complex scenarios that require knowledge
about hierarchical traffic rules is drastically improved. The data used in these
chapters is based on the CARLA simulation environment, as the generation of
anomalies as shown in Chapter 4 is not feasible in the real world.

The following Chapter 7 presents anomaly detection from a different perspective.
After examining external anomalies in Chapters 3 through 5, it presents an anomaly
detection approach for internal anomalies, providing a holistic perspective on the
tield of anomaly detection for autonomous driving. Different from the experiments
performed in simulation, the detection of internal anomalies is evaluated on real-
world datasets, closer to an open-world deployment setting.

6.3.1. Recent Advances

The field has continued to evolve since the development and publication of the
work underlying this chapter [BOG 18]. Recently, multiple works have continued
to address the presented topics. Salem et al. [373] focus on integrating assumptions
into behavior specifications — like the rulebook utilized in this chapter — to treat
insufficient specifications. These insufficiencies can occur, as specifications are
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created at an early stage, where many assumptions are necessary. The authors ad-
dress this through a scenario-based evaluation process. They provide a formalized
method for the specification of target behaviors and model facts and relations in
an ontology to infer maneuver options. The authors do not consider anomalies
and only present an exemplary case study without integrating their work into an
actual maneuver planner, which makes the utility and scalability of their approach
difficult to judge. However, the authors suggest integrating their concept into
learned approaches [341], similar to the approach presented in this chapter.

Grundt et al. [156] address the relevance of infused knowledge — as done here
through the situation-aware reward function — and perform experiments in an
RL setting. Similar to the method presented here, they consider scenarios where
a model initially struggles. Formulating the requirement that a vehicle should
always stop “in a distance of 2-15 meters to a static obstacle”, the original model
fails to do so under reduced road friction. Their solution is to include rainy
scenarios with reduced road friction in the training data to eliminate domain-level
anomalies for such scenarios. Different from the method presented in this chapter,
their observation space changes based on the integrated knowledge. First, their
observation space is limited to the distance between the vehicle and the object and
the ego velocity, limiting the scalability of the approach. The authors then extend
the observation space with the friction coefficient. Their experiments show that
this additional input is sufficient for the agent to successfully perform the task.
Similarly, Abouelazm et al. [3] further evaluate the impact of hierarchical rewards
in RL, also in the presence of static obstacles. More similar to the method presented
in this chapter, their approach utilizes a constant observation space based on
sensory data and performs planning in Frenet coordinates. Their hierarchical
reward consists of four components for “safety, progress, comfort, and traffic rule
conformance”. By integrating all four components into the reward function, their
evaluation shows a reduction in collisions of 21 % in comparison to a more naive
baseline reward. These results confirm the approach presented here, as both new
works arrive at similar results compared to those presented in this chapter.

Patrikar et al. [341] present an approach combining a learned Imitation Learning
(IL) planner with a hierarchical rule-based planner [428], where traffic rules are
modeled through STL. They do not insert rules into the learning stage but use
the rule-based planner during inference: A classifier estimates whether a given
scenario matches the training data distribution and applies the rule-based planner
as a fallback solution only in OOD scenarios. Their OOD scenarios consist of
domain-level anomalies in the form of new geographic areas, where the IL planner
sometimes struggles to follow the general road layout.

Following a different approach, Sinha et al. [395] use LLMs and VLMs to de-
tect anomalies and react to them. They utilize a two-stage approach. First, an
embedding-based method compares current observations to a cache of embed-
ding vectors collected from a dataset representing normality, similar to the setting
presented in Section 4.3.2. If the generated anomaly score crosses a threshold,
the second stage is activated. Here, a VLM generates a textual description of the
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scenes and queries an LLM, providing several trajectories as options to follow.
They perform experiments with scene-level anomalies [122] and evaluate their
approach on two scenarios: Stop signs on a billboard and traffic lights in the back
of a pickup truck.

Summarizing, most works focus on scenarios with anomalies as described in
Section 2.5, which underlines the timeliness of the topic. Leveraging VLMs and
LLMs represents an especially exciting research direction, as the world knowledge
embedded in these models can support the handling of atypical situations that
require context that can only rarely be extracted from driving data alone. However,
real-time performance on the edge and hallucinations will remain challenges in
the near future. As object-level anomalies were not addressed by these works, the
approach presented in this chapter remains an important cornerstone in the field
of anomaly handling.
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Do I contradict myself? Very well
then ... I contradict myself [...]

Walt Whitman, 1855 [452]

7. Internal Anomaly Detection

Multiple supervised student theses have contributed to this chapter [STU 8, 1].
Parts of this chapter have previously appeared in the following publication:

¢ D. Bogdoll et al. Label-Free Model Failure Detection for Lidar-based Point Cloud
Segmentation. In IEEE Intelligent Vehicles Symposium (IV), 2025 [BOG 20]

7.1. Introduction

As shown in Section 2.5, anomaly detection can be viewed from both an internal
and an external perspective. So far, this dissertation has extensively addressed
external anomalies, i.e., occurrences in the environment surrounding the ego
vehicle, in Chapters 3 - 6. This chapter changes the perspective and focuses on
the detection of internal anomalies, i.e., those that have their origin within the
system. Examining both internal and external anomalies leads to a more holistic
understanding of root causes for model failures and is crucial, as the downstream
task of driving can be equally impacted by both. Addressing the final RQ5, this
chapter presents a method for the detection of model failures under the assumption
of an open-world setting without access to ground truth labels.

As shown in Table 2.1, there are three levels of internal anomalies on the method
layer. Anomalies on the input level originate from the training data itself, e.g.,
in the form of an imbalanced class distribution or label errors. Anomalies on
the model level are introduced through design choices of selected ML model
architectures which introduce “inductive model bias” [177]. Anomalies on the
deployment level stem from misspecifications between the used training data
and the environment where an autonomous vehicle is deployed, and can come in
the form of domain shifts. As the approach presented in this chapter compares
a supervised model trained on a labeled dataset with a self-supervised model
that only uses the raw data, the method is able to detect input-level anomalies.
As two different model architectures are used, anomalies on the model level can
also be detected. Finally, the evaluation examines both data that is similar to
the training data, but also datasets that represent different domains. This way,
deployment-level anomalies are considered. Due to the complex nature of the
levels, detected anomalies are not assigned to their respective type.

In the following, this chapter examines how internal anomalies on all levels can
be detected based on real-world data closer to a deployment setting. Additionally,
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it evaluates how external anomalies in the environment impact the detection ap-
proach. It does so by comparing a legacy supervised model with a self-supervised
model, both trained for the same task. In the context of LIDAR point cloud seg-
mentation, disagreements between the models are analyzed, and identified model
failures are categorized.

7.2. Self-Supervised Model Failure Detection

Given a labeled dataset in autonomous driving, 70 - 85 % of the data is usually
reserved for training, leaving only 15 - 30 % for both validation and testing [58,
399, 492]. These small evaluation datasets stand in stark contrast to the millions
of kilometers driven on public roads during deployment [42]. As a result, many
failure modes of ML models, be it in seemingly normal situations or due to external
anomalies, are not captured in the evaluation sets. As large-scale unlabeled fleet
data is generally available [294, 169, 258], there is an untapped potential to use
this data for the detection of failure modes of ML models.

There are many active research areas dealing with the detection of failure modes.
Active learning [240] is concerned with continuously enriching training data by
querying samples from a set of unlabeled data points for a more efficient training
process. Discrepancies between different sensor systems can also be used to query
samples [216]. In error estimation, many approaches try to utilize unlabeled test
sets to evaluate models [110]. Label refinement compares given labels, e.g., by
an auto-labeling process, with new proposals [379]. All of these methods have in
common that they utilize or compare two or more different results for the same
task. However, there are no known approaches that take advantage of different
training paradigms to detect internal anomalies in the form of model failures. In
this chapter, the concept of complementary learning is introduced to leverage
different data characteristics of the training dataset, as shown in Figure 7.3. Two
models, one supervised and the other self-supervised, are trained on the task of
point cloud segmentation to detect model failures based on disagreements. This
approach resembles a typical deployment setting, where an existing supervised
legacy model is assumed as the model under test. Beyond the labels necessary for
the training of the supervised legacy model, the method presented in this chapter
does not require any labels to detect internal anomalies and can thus be used with
large-scale, unlabeled data recordings.

7.2.1. Related Work

The concept of comparing the outputs of two or more neural networks was al-
ready introduced in 1994 by Cohn et al., where they queried samples for active
learning based on the disagreement between neural networks [98]. Since then,
the variability in model predictions has been widely used to detect anomalies or
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errors. Ensemble diversity is especially well studied, as it was shown to lead to
better performance [113], robustness [338], uncertainty quantification [242], and
detection of outliers or distribution shifts [300, 335, 437]. While no uniform metric
for ensemble diversity exists, measures like disagreement of models, double fault
measure, or output correlation are widely used [241]. Ensemble diversity can be
implicitly enhanced via random initialization [242], noise injection or dropout, or
explicitly via bagging, boosting, or stacking. Compared to ensembles, mixtures
of experts [205] enforce higher model specialization and thus more component
diversity, leading to better detection of OOD data [343, 342].

These approaches involve a combination of several neural networks with similar
or identical architectures. Active learning is another research field interested in the
detection of model failures. Here, uncertainty derived from ensembles is resource-
intensive and thus only rarely used as part of a querying strategy [378, 363, 477].
Similar to ensembles, disagreements in a query-by-committee setting can be used
to select samples [188]. In autonomous driving, also contradicting detections from
sensors can be used as triggers, e.g., when RADAR and camera detections do
not match [216]. Discrepancies between teacher and student models, typically
known from knowledge distillation, can also be utilized [79]. As test sets are often
small and not representative, directly estimating the accuracy of a model with only
unlabeled data is of high interest [110, 344, 20, 82]. Here, simple classification tasks
or approaches that estimate an overall error that cannot be applied to individual
samples are typical. In some cases, generated pseudo-labels are utilized for further
training steps [435, 494].

Disagreements can also be used for detecting erroneous labels. Ground truth labels
in large vision datasets are often error-prone when auto-labeling processes based
on large models are employed [73]. Detecting label errors with disagreements can
be done by predicting a novel or refined label, and uncertainties can be generated
by predicting multiple such labels [195, 379, 30]. This way, also noisy labels
introduced by human errors can be detected [326].

Robustness during deployment is often achieved with sensor fusion, which, quite
differently, purposefully aims to complement the weaknesses of one sensor with
the strengths of another. Thus, disagreements are both typical and expected, with
the aim of resolving them [236]. However, also data from a single sensor can be
split into multiple streams to increase robustness. For example, object detection
can be improved by combining appearance and geometry [389] or temporality
and geometry [32, 248]. In performance monitoring [388, 56], but also in anomaly
detection [108], typically, a primary model performing a regular task is accompa-
nied by a learned or model-based module that provides some sort of uncertainty
for the results of the regular task.

Many of the analyzed works utilizing disagreements deal with toy problems and
only analyze classification tasks, which are not sufficient to truly understand the
shortcomings of a model that is designed for the complex task of autonomous
driving. Many works analyze model outputs of the same architecture, leveraging
differences during training. However, this way, the same data characteristics
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are being used during training. Existing disagreement-based approaches for the
design of triggers for active learning [216] and for increased robustness during
deployment [389] are most similar to the approach presented in this chapter.
However, these industry demonstrations are not accompanied by scientific works
and are thus hard to evaluate. Finally, no known work exists that utilizes different
training paradigms to detect model failures through disagreements.

7.2.2. Method

To detect model failures without labeled validation or test sets, complementary
learning for the same task is performed in order to detect model failures and clas-
sify challenging scenarios. The term complementary learning is introduced for the
complementary use of different training paradigms, as introduced in Section 2.1,
for a given purpose. For example, they can be used to detect model errors based
on model predictions. The approach is demonstrated with the segmentation of
LIDAR point clouds for autonomous driving into dynamic and static points, which
are referred to as motion labels.

> Semantic Motion Label Discrepancy

# | Segmentation Segmentation Fusion Detection
Ground a Scene Flow Odometry Two-Stage Model Failure
Segmentation n Prediction Estimation Clustering Classification

Figure 7.1.: Overview: Given point clouds, semantic motion labels are derived
in a supervised fashion based on legacy models (blue). In addition,
ground segmentation is performed and predictive motion labels are
derived in a self-supervised fashion (green). Subsequently, point-wise
discrepancy detection is performed, and potential model failures are
classified. Reprinted from [BOG 20].

The ability to detect model failures is based on the concept that different training
paradigms leverage different data characteristics from the same training dataset.
As shown in Figure 7.1, first, motion labels are derived in a supervised and self-
supervised fashion. Here, the first paradigm leverages human knowledge through
labels, given only context from static scenes. On the other hand, the second
paradigm leverages temporal information inherent in the data. Typically, these
paradigms are combined either in a pre-training context [86] or with a combined
loss during learning [93]. Based on a point-wise comparison, discrepancies are
detected and clustered for better interpretation. Finally, an oracle examines and
classifies the model failures to better understand challenging situations.
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Supervised Semantic Motion Labels

Semantic motion labels are derived with a supervised semantic segmentation
model [102] to determine whether a point belongs to a static or dynamic class.
Some classes do not provide clear information about the motion state of the points,
e.g., points assigned to the class cyclist at a traffic light may be static in the case of
ared light and dynamic in the case of a green light. By also performing supervised
motion segmentation [89], classes are further subdivided into semantic motion
labels, as shown in Figure 7.2. The existence of such legacy models is expected in
a typical deployment setting.

Figure 7.2.: Supervised Semantic Motion Labels: The left semantic segmenta-
tion [102] allows no distinction between the parked car at the bottom
left and the moving car at the top right. The middle image shows
a supervised motion segmentation [89], where the parked car was
classified as static, and the moving car as dynamic. Finally, the right
image shows the fused semantic motion labels to distinguish between
static and dynamic instances of a class. Reprinted from [BOG 20].

Self-Supervised Predictive Motion Labels

To identify model failures of a supervised legacy data processing stream, a self-
supervised processing stream is introduced. Based on these two streams, dis-
crepancies can be detected. In order to predict motion labels for a given point
cloud, first, the ground is filtered out [336] to focus on objects in the scene, a
common pre-processing step of scene flow models [467, 306, 412, 225, 31]. Based
on self-supervised flow prediction [225] of the remaining points, motion labels are
derived, indicating whether a point is static or dynamic.
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Figure 7.3.: Model Failure Detection: The top left point cloud shows a legacy
supervised and the top right a self-supervised motion segmentation. The
supervised model falsely classifies the pedestrian in the front left as
static. The approach exposes this model failure, as highlighted in red in
the bottom image. The color scheme is introduced in the subsection on
discrepancy detection. Scene from the KITTI dataset [146]. Reprinted
from [BOG 20].

As visible in the top right image in Figure 7.3, the model only performs predictions
for points that are closer than 25 m and visible in the front RGB camera. The model
takes consecutive point clouds as input and predicts the future motion for each
LIDAR point in the form of a 3D displacement vector. The scene flow model does
not distinguish between the point’s own motion and the observer’s ego-motion
and represents the overall motion of a point between two consecutive frames.
In order to derive relative displacements, it needs to be corrected for the ego-
motion. This can be done by leveraging or learning odometry information [328].
For the approach to be more generalizable, here, odometry information is learned.
After predicting the future point cloud X, ; = X, + f,, the learned rigid body
transformation 7} ,_,; of an odometry model is applied, transforming the predicted
point cloud back into the coordinate system of X;. This results in the future point
cloud X,,,, which contains only the predicted relative motion without the ego
motion. As a result, static objects line up closely with the original data of X, and
only dynamic objects show a predicted displacement, as shown in Figure 7.5a. An
analysis of the velocity values of the flow predictions shows that separating static
from dynamic classes is infeasible in a point-wise fashion, as a strong overlap
exists. However, a significant difference is found when considering instance-
wise normalized standard deviations, as shown in Figure 7.4. As this analysis is
performed with ground-truth labels, the necessity arises to form instance clusters
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during inference, where labels are not present. This is achieved through a two-
stage clustering process.
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Figure 7.4.: Self-Supervised Label Generation: The left graph shows that the
magnitude of point-wise flow vectors is insufficient to distinguish
between dynamic and static points. Analyzing object instances rather
than individual LIDAR points, the boxplot on the right shows that the
normalized standard deviation per instance is significantly lower for
dynamic instances. This allows for the distinction between dynamic
and static instances. Reprinted from [STU 8].

Two-Stage Clustering during Inference: Figure 7.5a shows a scene where static
objects in )~(t+1, like parked cars, line up closely with the original data of X, and
only dynamic objects, such as the two bicyclists, show a predicted displacement.
The aim is to cluster dynamic objects in the environment based on this data, where
the scene flow predictions have been compensated for ego motion. In the first
stage, the DBSCAN [126] algorithm is used to spatially cluster the point cloud,
as shown in Figure 7.5b. A cluster is classified as potentially dynamic if the
normalized standard deviation of the cluster’s velocity is below 0.12, a threshold
identified through a grid search. This classification alone is insufficient, however,
as static clusters are still sometimes classified as potentially dynamic due to noise
and erroneous scene flow predictions. This becomes clear in Figure 7.5¢c, where all
points shown are considered potentially dynamic after the first clustering stage.

To further reduce false positives, the potentially dynamic points are clustered in
a second stage based on their flow vectors, with the same aim of distinguishing
between static and dynamic clusters. Points with a similar flow are clustered
irrespective of their spatial position. This changes the distribution of flow vectors
per cluster, causing fewer static clusters to be incorrectly classified as dynamic. As
shown in Figure 7.5¢, the blue points on the left and right edges belonging to static
objects now form a cluster. Black points are ignored by the DBSCAN algorithm as
outliers and are considered static. Finally, the newly found clusters are classified
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as dynamic if the median speed of the cluster is above 1.1 m/s. This threshold was
chosen as it is a typical velocity profile of pedestrians, who are the slowest group
of dynamic traffic participants, setting a lower limit. Slower movement is difficult
to distinguish from noise, so such clusters are treated as static. This way, other
moving entities, such as cars, can also be categorized as dynamic. As visible in
Figure 7.5d, this second stage leads to only classifying the two moving bicyclists
present in the scene as dynamic.
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Figure 7.5.: Self-Supervised Predictive Motion Labels: The first image shows the
original point cloud in green and the point cloud transformed by the
scene flow model and compensated by the ego-motion in red. The
second and third images show the result of the spatial and flow-based
clustering, respectively. The fourth image shows the final predictive
motion labels, with dynamic points in red and static points in green.
Scenes are shown from a BEV perspective. Reprinted from [BOG 20].

Discrepancy Detection and Failure Classification

After obtaining motion labels from both the supervised and the self-supervised
stream, contradictions between the labels are detected, see Figure 7.1. Only the
LIDAR points per frame for which both streams predicted a label are considered.
Given a semantic and a predictive motion label for each LIDAR point, there exist
four categories: Points which both models deem static (green ¢); points which both
models deem dynamic (blue o); points where the supervised stream predicts a static
point and the self-supervised a dynamic one (red o), and points where the supervised
stream predicts a dynamic point and the self-supervised a static one (yellow ).
Examples of these categories can be found in Figures 7.7 and 7.8. Finally, instances
with contradicting labels are clustered so that an oracle, such as a human expert,
can classify model failures for single instances and complete scenes.

Implementation Details

For all models shown in Figure 7.1, publicly available models and model architec-
tures are utilized to demonstrate the modularity of the approach. The supervised
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semantic segmentation model SalsaNext [102] and the supervised motion segmen-
tation model of Chen et al. [89] are trained on the KITTI-360 dataset [261, 375],
as it is a large dataset that contains semantic labels, motion labels, and odome-
try data. Hyperparameters are taken from the original papers [102, 89]. For the
remaining models, available pre-trained model weights are used. For ground seg-
mentation, GndNet [336] is employed. For self-supervised scene flow estimation,
FlowStep3D [225] is used. For the self-supervised odometry model, Deep LIDAR
Odometry for Robotic Applications (DeLORA) [328] is utilized.

7.2.3. Evaluation

Model failures can occur in seemingly normal situations [178, 345, 511, 176], and
models are also prone to failure in the presence of external anomalies [51, 52,
178,427, 268] [BOG 13, 3]. For a comprehensive understanding of the presented
approach, both settings are examined. In Section 7.2.3, the approach is first
analyzed given regular data from the KITTI odometry dataset without labeled
external anomalies. As it is unknown which scenarios might be challenging for
a given model, i.e., no ground truth exists, a qualitative evaluation is performed
by manually analyzing the method on over 20,000 frames. The goal is to evaluate
whether the approach is able to detect model failures, such as false positives or
negatives, given seemingly regular scenarios.

In Section 7.2.3, the focus is on the influence of external anomalies. Here, ground
truth of external anomalies is available in the utilized CODA dataset [253], which
provides anomaly labels for the KITTI [146], One Million Scenes (ONCE) [294],
and nuScenes [58] datasets. A quantitative evaluation is performed to better
understand the sensitivity of the method towards external anomalies. This is
done by treating the output of the discrepancy detection module as a binary
semantic segmentation for anomaly detection, where predictions either represent
model agreements or disagreements. Disagreements are treated as indications
of external anomalies, with the ground truth from CODA representing whether
a point belongs to an external anomaly. The goal is to quantitatively evaluate
whether model disagreements detected by the approach indicate the presence of
external anomalies.

Figure 7.6 provides an overview of the distribution of the discrepancy detection
results. The figure shows how often model agreements for static points (green),
model agreements for dynamic points (blue), model disagreements with the super-
vised model classifying points as static (red), and model disagreements with the
supervised model classifying points as dynamic (yellow) occurred. Here, each first
solid bar represents the distribution on the KITTI dataset, while striped bars rep-
resent the different CODA subsets. For regular scenarios from the KITTI dataset,
the majority of points are predicted as static by both models, and only around 5 %
of the points show model disagreements. For scenarios from the CODA datasets
with external anomalies, many more disagreements take place, as visible in the
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Figure 7.6.: Discrepancy Detection: The charts show the distribution of the four
possible outcomes of discrepancy detection for four different datasets.
Green and blue categories represent model agreements, and red and
yellow categories represent model disagreements. Solid bars represent
regular scenarios from the KITTI dataset, and striped bars represent
data with external anomalies from the CODA subsets. Reprinted
from [BOG 20].

last two categories. However, a large variety among the subsets of CODA can be
observed. In the following, first, scenarios are examined qualitatively in which the
models disagree. Subsequently, the relation between disagreements and external
anomalies in the environment is quantitatively examined.

Regular Scenarios

Regular scenarios represent the majority of kilometers driven during deployment,
and it is important to understand situations in which models fail. However, the
evaluation under regular scenarios is challenging, as no ground truth is avail-
able. Thus, the approach was manually examined on over 20,000 frames. This
includes manually inspecting projected LIDAR point clouds on the front RGB
image and assessing whether the classifications of the approach are contradictory,
as explained in Section 7.2.2 and shown, for example, in Figure 7.7. By human
assessment, it is determined if an object that is deemed static or dynamic by the
models is actually static or dynamic, which is possible as multiple frames forming
a temporal scenario are available for each frame. This way, it can be determined
which model is wrong in cases of disagreement, and also cases can be spotted
where both models are wrong but agree.

Evaluation Data: For training, KITTI-360 and several sequences of the KITTI
Odometry dataset were used. To minimize perceptual failures due to a domain
shift, the qualitative evaluation is performed on the remaining 20,350 frames of
the KITTI Odometry sequences 11-21. For both datasets, the provided motion-
corrected LIDAR data is used, where distortions arising from the sensor’s rotation
during vehicle movement have already been compensated for. The datasets are
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closely related, as both were captured in Karlsruhe, Germany, with a Velodyne
HDL-64E LIDAR.

Evaluation: As shown in Figure 7.1, the final stage of the approach is the classifica-
tion of model failure modes. The qualitative evaluation is performed by a human
oracle. For visual inspection, LIDAR points mapped onto the corresponding RGB
image are utilized for an improved scene understanding, as shown in Figure 7.7
with the color scheme introduced in Section 7.2.2. In most cases, both streams
are correctly consistent. In the following, representative examples of detected
model failures are qualitatively presented, and those that occurred frequently are
highlighted, suggesting general model flaws.

Figure 7.7.: Supervised Model Failures: These exemplary images show model
failures of the supervised stream, which can be detected due to contra-
dicting outputs of the self-supervised model. Scenes from the KITTI
dataset [146]. Reprinted from [BOG 20].

First, model failures of the supervised stream, based on the legacy models under
test, are discussed. Model failures are detected through the disagreement between
the two streams. Representative examples are shown in Figure 7.7. Scene 1 shows
a turning car and two moving bicyclists, where one bicyclist is wrongly labeled
as static by the supervised stream. Scene 2 contains two walking pedestrians
that are wrongly classified as static by the supervised stream. Scene 3 shows a
parked car misclassified as dynamic by the supervised stream. Scenes 4 and 5
show a car moving slowly and a car moving backward, respectively. These cases
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demonstrate effectively that the approach enables the detection of regular but
challenging scenarios that lead to model failures. Such model failures remain
undetected in small evaluation datasets. Various weak points in each stream are
found, characterized by repeated occurrence. Specifically, the supervised model
under test has weaknesses in distinguishing between dynamic and static objects
in specific situations, e.g., at red lights or when a car is parked directly in front
of the ego vehicle. Examples of such situations are given in scenes 6 and 7 of
Figure 7.7.

Figure 7.8.: Self-Supervised Model Failures: These exemplary images show fail-
ures of the self-supervised model, which can be detected due to con-
tradicting outputs of the supervised stream. Scenes from the KITTI
dataset [146]. Reprinted from [BOG 20].

While the focus of the approach presented in this chapter is on the detection
of model failures induced by the supervised legacy stream, the introduced self-
supervised stream can also introduce model failures. Next, scenarios where
self-supervised model failures occur are analyzed, detected by correct predictions
of the supervised stream. Figure 7.8 shows representative scenes. Scene 1 contains
two distant pedestrians walking, wrongly classified as static by the self-supervised
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stream. In scene 2, a parked car is misclassified as dynamic. Scenes 3, 4, and 5
show walking pedestrians or moving cars incorrectly classified as static. These
cases demonstrate that the approach enables the detection of challenging temporal
scenarios. The self-supervised stream classifies an above-average number of
objects as dynamic when the ego-vehicle turns or goes over speed bumps. An
example is shown in scene 6, where the vehicle turns, and in scene 8, where it
drives over a speed bump. Another weak point is fast oncoming vehicles on
highways, often classified as static, as seen in scene 7. Finally, a common weakness
is small clusters on the side, which are incorrectly classified as dynamic, as in
scene 9, where a window is classified as dynamic.

In rare cases, both models are incorrectly consistent, i.e., both streams agree, but
the label is incorrect in both cases. Examples are shown in Figure 7.9. Here, the
left scene shows two walking pedestrians that are incorrectly classified as static,
and the right scene shows a parked car that is classified as dynamic.

Figure 7.9.: Simultaneous Model Failures: Examples where both streams produce
model failures. Scenes from the KITTI dataset [146]. Both cases are
misclassified and are, therefore, consistent. Reprinted from [STU 8].

Scenarios with external anomalies

Scenarios with external anomalies are known to lead to model failures, as first
shown in Chapter 3. Based on SotA datasets, evaluating LIDAR-based anomaly
detection models has been challenging. Evaluation datasets are either unavail-
able [459, 329] or utilize known classes but exclude them from training data [70].
Thus, first, an extension of the CODA dataset is introduced to convert existing
labels in the camera data into LIDAR space. Subsequently, it is quantitatively
evaluated whether model disagreements can indicate the presence of external
anomalies in the environment. This is done to better understand the sensitivity of
the approach in the presence of external anomalies.

Evaluation Data: For the evaluation, data from the CODA dataset [253] is utilized.
The CODA dataset provides anomaly labels for objects based on three existing
datasets: KITTI [146], ONCE [294], and nuScenes [58]. CODA defines an anomaly
as an object that “blocks or is about to block a potential path of the self-driving ve-
hicle” [253] and/or “does not belong to any of the common classes of autonomous
driving benchmarks” [253]. While the first risk-aware definition is not always
in line with the methodology of the approach presented here, where objects that
block the path in front of the ego vehicle are not necessarily hard to segment, the
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second one is well-suited. Novel classes are often more challenging for supervised
methods compared to self-supervised approaches.

For the CODA-KITTI split, the authors of CODA manually reviewed all misc labels
available in the ground truth and relabeled some as external anomalies according
to their labeling policy. This split allows for a quantitative examination of the
presented approach with only a small domain gap. For CODA-nuScenes, the
authors similarly adopted available annotations in a manual process. Finally, for
CODA-ONCE, they deployed an automated anomaly detection approach, making
this subset the most relevant. CODA includes 1,500 scenes with a total of 5,937
external anomaly instances. Of those, 4,746 belong to the superclass traffic_facility,
followed by 929 vehicle and 197 obstruction instances. Most vehicle instances, 396,
can be found in CODA-KITTIL.

The CODA dataset provides anomaly labels only in the form of 2D bounding boxes
in image space. However, point-wise labels in 3D LIDAR space are necessary
to utilize CODA for the evaluation of the approach presented in this chapter.
Therefore, based on a frustum-based filter, subsequent clustering, and manual
inspection, the original 2D labels from image space are transferred into refined,
point-wise 3D labels that go beyond the coarse characteristic of the provided
bounding boxes, as shown in Figure 7.10. Here, the different LIDAR systems
utilized also become clearly visible. Due to the sparse point cloud of nuScenes,
many small or distant labeled anomalies in the image space are only covered by a
few or no LIDAR points.

Figure 7.10.: CODA with labeled LIDAR data: Annotated LIDAR scenes from the
three data splits ONCE [294], KITTI [146], and nuScenes [58], from
left to right. Anomalies are shown in red. Reprinted from [STU 1].

Evaluation: To quantitatively evaluate the influence of external anomalies present
in the environment on the model disagreement between the streams, the standard
metrics mean Intersection over Union (mloU), AP, Average Recall (AR), and F1
score in the context of binary semantic segmentation for anomaly detection are
used, as shown in Tables 7.1 and 7.2. Due to the binary nature of the approach, the
FPRys; metric cannot be computed. For a fair evaluation, all points of the LIDAR
point cloud are considered, even if the approach does not label individual points,
e.g., because they were filtered out during pre-processing. Such cases are counted
as false negatives if an external anomaly is missed.

To better understand the suitability of CODA under introduced domain shifts,
either due to new environments or due to new sensor setups, experiments are
performed on the individual subsets, as shown in Table 7.1. The results clearly
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Dataset #Frames mloU ¢ AP AR 1T F11
CODA 1,412 8.9 13.2 26.2 17.5
CODA-ONCE 1,034 8.9 14.0 27.1 18.4
CODA-KITTI 307 10.9 13.3 29.0 18.3
CODA-nuScenes 71 0.4 0.7 1.0 0.8

Table 7.1.: Evaluation on CODA subsets: Evaluation of the approach on CODA
and its three subsets. Best results bold and second-best underlined.
Reprinted from [BOG 20].

show that the approach struggles with the nuScenes subset, which is primarily due
to the large domain shift with respect to the sensor setup. The approach is more
sensitive towards anomalies for the subsets ONCE and KITTI. This is reflected
in Figure 7.6, where the CODA subsets also show much higher detection rates of
model failures compared to the analysis with regular scenarios. This aligns with
the much higher number of external anomalies, even though the subsets reveal
strongly varying behavior patterns.

Next, the sensitivity of the approach presented in this chapter towards the super-
classes provided in CODA is investigated. CODA provides 43 fine-grained label
categories split into the seven superclasses shown in Table 7.2. This evaluation ex-
amines whether model disagreements, when treated as anomaly detections, show
different results for different types of external anomalies. As visible in Table 7.2,
the method shows different levels of sensitivity given different types of external
anomalies, being most sensitive to cyclists and objects of the misc class. The model
performs worst on the class animal, which is difficult to interpret given the small
number of only five instances. The misc class contains objects that are “unrecog-
nizable or difficult to categorize” [253]. These results align well with the approach,
where cyclist instances, which are hard to predict by the self-supervised stream,
and misc instances, which are rare and thus hard to classify by the supervised
stream, lead to model disagreements.

Superclass #Instances mloU T AP T AR 7T F171
Pedestrian 16 33.9 441 37.3 40.4
Cyclist 22 41.6 58.3 49.5 53.5
Vehicle 736 33.0 48.3 41.0 444
Animal 5 0.0 0.0 0.0 0.0
Traffic facility 3,360 28.6 39.9 33.9 36.7
Obstruction 125 20.5 34.0 22.9 27.4
Misc 15 36.7 60.7 379 46.7

Table 7.2.: Evaluation on CODA superclasses: Evaluation of the approach on
external anomalies in the form of seven superclasses. Best results bold
and second-best underlined. Reprinted from [BOG 20].
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7.3. Conclusion

This chapter presents an approach for the detection of internal anomalies, i.e.,
model failures, for the segmentation of LIDAR point clouds, focusing on the differ-
entiation between static and dynamic objects. Addressing RQ5, model failures of
supervised legacy models are detected in an open world without access to ground
truth labels. This is achieved by leveraging complementary learning paradigms
to detect contradicting outputs on the same task, consisting of a supervised legacy
stream for semantic motion labels and a self-supervised stream for predictive mo-
tion labels. This way, internal anomalies are detected on a scale far beyond the
limited scope of a small evaluation dataset. For the evaluation, model failures are
inspected in regular scenarios first. By manually analyzing over 20,000 frames
qualitatively, model failures are detected in seemingly normal scenarios and cat-
egorized into frequently occurring cases. In such regular scenarios, the method
categorizes around 95 % of the data as typical, which makes human analysis of
the remaining 5 % feasible even for larger datasets.

In the second part of the evaluation, the sensitivity of the approach towards sce-
narios with external anomalies, as defined through the CODA dataset, is analyzed.
In order to quantitatively examine the approach, a method to convert the coarse
bounding-box labels provided by CODA in image space to finer point-wise labels
in LIDAR space is introduced. The evaluation demonstrates that the approach
presented in this chapter shows an increased sensitivity to hard-to-classify objects
and hard-to-predict bicycles.

The approach effectively unveils internal anomalies in the form of model failures
far beyond those that can be detected with small evaluation datasets. This leads to
an increased understanding of the model performance in large-scale deployments,
leveraging abundantly available unlabeled data. Model failures detected by the
approach can be utilized to collect additional training data representing both static
and temporally challenging scenarios.

As shown in Figure 1.1, after detecting internal anomalies in the form of model
failures, anomaly handling can be performed subsequently with standard prac-
tices. While anomaly handling for internal anomalies is not addressed in this
dissertation, issues can be handled through iterative sample selection with human
inspection [BOG 31], data labeling, and model retraining [BOG 1].

7.3.1. Recent Advances

The field has continued to evolve since the development and publication of the
work underlying this chapter [BOG 20]. Recently, multiple works have examined
the evaluation of ML models without labeled test data for the detection of inter-
nal anomalies. Kaljavesi et al. [214] compare the outputs of a modular driving
stack and an E2E driving stack and leverage disagreements between the differ-
ent architectures for the detection of internal anomalies. While modular driving

112



7.3. Conclusion

stacks require labeled data for intermediate tasks, such as object detection, E2E
approaches only require labels in the form of steering commands, which come for
free. Additional auxiliary losses might require labeled data, but are optional. Simi-
lar to the work presented in this chapter, both systems follow different training
paradigms. The authors define internal anomalies as a large difference between
the two approaches at the planning stage, i.e., when the two modules propose dif-
ferent paths or target velocities. Similarly to the first evaluation presented here, the
authors perform a qualitative evaluation due to the absence of ground truth. On a
real-world test track, challenging scenarios were introduced through other road
users, including overtaking maneuvers and pedestrians under occlusions. Similar
to the results presented here, issues from both methods were detected, while the
modular system was considered the method under test. This work demonstrates
that the proposed architecture of complementary learning can be applied to tasks
beyond environment perception and different types of architectures.

Wang et al. [439] examine root causes for errors in perception systems. Their ap-
proach requires ground truth and is not capable of detecting model discrepancies
during inference, but is of relevance nonetheless. Their interventional root causal
analysis aims to identify the perception module responsible for a failure. The
authors examine both a camera-LIDAR fusion approach and a fusion approach
more similar to the work presented here, where data from one LIDAR sensor is
processed through two streams. One stream uses CenterPoint [490] and the other
is based on Euclidean clustering. Similar to the quantitative evaluation results
presented in this chapter, their experiments show that external anomalies, such as
unknown traffic cones, contribute to model failures. In the context of the presented
method in this chapter, their approach can be used to identify the model at fault
once an oracle has determined a model failure. Summarizing, these approaches
highlight the ongoing relevance of identifying internal anomalies in the form of
model failures without access to labeled evaluation sets and show that internal
and external anomalies are equally relevant.
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I have made this longer than usual,
only because I have not had the time
to make it shorter.

Blaise Pascal, 1657 [228]

8. Conclusion and Outlook

This dissertation contributes to the field of anomaly detection in the context of
autonomous driving. It presents a cohesive approach including data generation
methods, anomaly detection, and a method to handle previously detected anoma-
lies. For a holistic view, it examines both external anomalies, i.e., those occurring
in the environment surrounding the ego vehicle, and internal anomalies, i.e., those
with an origin within the system itself. All chapters align with a theoretical sys-
tematization of anomalies as shown in Table 1.1. All experiments on external
anomalies are conducted within the CARLA simulation engine, and experiments
for the detection of internal anomalies are performed on real-world datasets. None
of the anomaly detection approaches require labeled training data.

8.1. Conclusion

This section revisits all RQs introduced in Section 1.2 and summarizes the contri-
butions presented in this dissertation. After a general introduction in Chapter 1
and technical background in Chapter 2, Chapters 3 through 6 focus on external
anomalies. Chapter 3 introduces an overview of anomaly detection methods,
addressing RQL1:

RQ1: What are the patterns of anomaly detection methods and related
datasets for typical autonomous vehicle sensor modalities?

The chapter identifies patterns in the field of anomaly detection for autonomous
driving for camera and LIDAR data and outlines several open research topics
that are addressed in later chapters, such as saturated benchmarks, a focus on
camera-based methods, and the need for outlier supervision and labeled data for
semantic segmentation networks during training. Based on these insights, the
generation of data with scenarios including anomalies is the focus of Chapter 4,
addressing RQ?2:

RQ2: How can theoretical anomaly definitions from the literature be
converted into datasets containing anomalies?

The chapter is based on the theoretical anomaly systematization, primarily de-
veloped by Breitenstein and Heidecker, shown in Table 2.1. In Section 4.2, it
tirst demonstrates an approach to generate scenarios with external anomalies on

115



8. Conclusion and Outlook

all considered anomaly levels, focusing on the generation of individual, expert-
defined scenarios. Subsequently, the chapter presents a more scalable approach
in Section 4.3, focusing on object-level and scenario-level anomalies. The section
introduces both a well-defined normality for the training of anomaly detection
methods and a challenging benchmark. The method provides data for the typical
sensor modalities camera and LIDAR. The benchmark evaluation is performed in
a 3D voxel space, enabling the comparison of anomaly detection methods using
different sensor modalities. The utility of the benchmark is demonstrated for both
types of anomalies, demonstrating how current SotA models struggle to detect
external anomalies in more challenging settings compared to established bench-
marks. Using this data for model training and evaluation, Chapter 5 introduces
label-free anomaly detection, addressing RQ3:

RQ3: How can unlabeled sensor data from multiple modalities be
leveraged for the detection of object-level anomalies?

The anomaly detection method presented in Chapter 5 does not require semantic
segmentation models or outlier exposure. Based on the data generation framework
introduced in Chapter 4, it is trained on raw camera and LIDAR sensor data alone
in a self-supervised fashion. To further improve the detection of anomalies, the
approach leverages mask-based refinements of generated segmentation masks and
outperforms the most relevant SotA model MNAD, as demonstrated in Table 5.2.
Subsequently, Chapter 6 continues with the handling of such detected anomalies,
addressing RQ4:

RQ4: How can identified object-level anomalies benefit the training
process of learned trajectory planning?

The chapter considers learned trajectory planning in the context of Reinforcement
Learning. By integrating previously detected anomalies into the training process,
they lose their status as anomalies and can be handled. The approach handles a
wide variety of anomalies, categorizing them into a class of anomalies that require
similar handling. As anomalies in the environment surrounding the ego vehicle
can require complex maneuvering, the chapter focuses on the performance of
controlled traffic-rule exceptions. The considered scenarios include a blocked lane
in front of the ego vehicle that requires deviating to the opposite lane, which is
only allowed under certain circumstances. The method achieves this through a
situation-aware reward function, which gets triggered through the presence of
identified obstacles on the road ahead. As shown in Figure 6.6, this leads to signif-
icant performance improvements, successfully demonstrating the effectiveness
of leveraging previously detected anomalies during training. RL-based methods
can be used in the trajectory planning of autonomous vehicles to suggest initial
trajectories or to enable E2E systems. Finally, Chapter 7 changes the focus from
external to internal anomalies, as both can equally influence the downstream task
of driving. It introduces an anomaly detection method for internal anomalies,
addressing RQ5:
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RQ5: How can model failures be detected in an open world without
access to ground truth labels?

The chapter focuses on the detection of internal anomalies in the form of model
failures. As the detection of model failures is challenging on small evaluation
datasets, this chapter introduces a method for the detection of model failures in
an open world during deployment. The analyzed setting deals with LIDAR point
cloud segmentation, focusing on the separation of static and dynamic objects.
The presented method detects model failures based on disagreements between a
legacy model, trained in a supervised fashion, and a second model, trained for the
same task in a self-supervised fashion. Similar to the anomaly detection approach
presented in Chapter 5, this allows for the utilization of raw, unlabeled data. Based
on an extensive qualitative and quantitative analysis, the chapter demonstrates
that the approach successfully detects multiple failure modes, revealing internal
anomalies. Such detected data points can then be integrated into training runs to
eliminate these internal anomalies for future deployments.

Summarizing, this dissertation takes a holistic approach to the field of anomaly
detection for autonomous driving by contributing to the generation, detection, and
handling of anomalies. This is further emphasized by the analysis of internal and
external anomalies, as both can equally impact the downstream task of driving.
None of the anomaly detection methods presented in this dissertation require
labeled data during training. The contributions of this dissertation on the detection
and handling of anomalies might potentially contribute to better scaling properties
of fleets of autonomous vehicles in the future. However, further research is still
needed, as outlined in the following Section 8.2.

8.2. Outlook

This section outlines future trends in the field of anomaly detection for autonomous
driving and provides concrete research directions that can be addressed based
on the contributions presented in this dissertation. This section focuses first on
external anomalies and addresses internal anomalies subsequently.

Anomaly Generation: In the context of external anomalies, many of the common
anomaly detection benchmarks for autonomous driving are saturated [44, 75, 37],
and the field is currently moving towards more challenging benchmarks [175, 319,
317,470][BOG 6]. These benchmarks have shown dramatic performance decreases
of current SotA anomaly detection methods, raising the need for novel approaches.
In line with the presented benchmark in Chapter 4, recent benchmarks [317, 470,
244] address multiple important aspects. They focus more on a concise definition
of normality, include temporal data, include both RGB and LIDAR sensor data,
and provide labeled data for regular classes and anomalies to test both regular
detection tasks and the detection of anomalies. Based on recent advances of VLMs,

117



8. Conclusion and Outlook

semantically labeling detected anomalies in an open-world setting will most likely
become a novel benchmarking task in the field.

A drawback of real-world anomaly detection benchmarks is that they would also
need to provide a large-scale, fully labeled training dataset in order to clearly
define anomalies. Labels are necessary to be fully aware of the semantic content
of the training data in a real-world setting, even if the labels are not used for the
training of anomaly detection methods. As this has not been achieved yet, simula-
tion environments remain superior with respect to a clear definition of anomalies,
enabling a fair comparison of anomaly detection methods. A large benefit of simu-
lation environments is the possibility for large-scale data generation. However, the
simulation-based methods introduced in Chapter 4 also have limitations. As they
are knowledge-driven, the combinatorial scalability and the realism of included
traffic participants are still limited. To address these constraints, automated vari-
ations of the generated scenarios can be introduced [257, 184, 302] to drastically
increase the number of available scenarios. This way, a powerful combination of
knowledge- and data-driven scenario generation can be achieved. In addition,
simulated environments are criticized for their lack of realism with respect to
generated sensor data. This aspect can be addressed with Sim2Real methods [408]
or simulation environments based on generative NNs [BOG 28] to leverage the
best of both worlds.

In a real-world context, the training data used to train NNs deployed in au-
tonomous vehicles is what defines their normality. As this data is often not fully
labeled, the definition of anomalies remains noisy. While this can make it challeng-
ing to detect what an expert might consider an anomaly in some cases, it does not
represent a benchmark setting, where a clear definition is much more relevant for
a fair comparison of anomaly detection methods. In these industrial deployment
settings, advances in many fields are necessary to support the scale-up of fleets
of autonomous vehicles. To better deal with the rare and unknown, advances in
anomaly detection, uncertainty quantification, one- and few-shot learning, as well
as open-world detection are needed.

Anomaly Detection: Advancements through novel and more challenging bench-
marks will most likely launch a second wave of anomaly detection methods in
autonomous driving. Novel methods are expected to leverage both LIDAR and
RGB data, detect individual anomaly instances, and utilize temporal data to track
anomalies. In addition, semantically classifying detected anomalies, similar to
the field of open-world detection, is an expected future research topic that can
be addressed with VLMs and LLMs. Using temporal data from both LIDAR
and camera sensors, the method introduced in Chapter 5 contributes to this new
research direction. In addition, it does not follow the typical assumptions of a
labeled training dataset and known anomalies for outlier exposure during train-
ing. The method is trained in a self-supervised way without the need for labeled
training data or known anomalies. This setting enables the usage of raw sensor
data for a representation of normality. As outlier exposure is more and more
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criticized recently [391, 317] and the use of it is already highlighted in some bench-
marks [319, 75], it is likely that novel methods will focus on reducing the need
for outlier exposure during training. However, it is unlikely that the field will
move away from leveraging semantic segmentation models, as novel benchmarks,
including the one provided in Chapter 4, provide all necessary labels to evaluate
the simultaneous detection of known and unknown classes. This limits the field
of anomaly detection to supervised methods. However, recent advances in ML
move towards self-supervised learning to leverage the abundance of unlabeled
data available.

In this spirit, self-supervised world models — as a representation of normality — are
becoming more and more powerful [193, 369] and might prove useful in novel,
more challenging anomaly detection benchmarks, as they allow for a scalable
approach of representing normality. This is especially relevant for the usage of
anomaly detection methods in real-world settings, where large-scale, unlabeled
data recordings from fleets are readily available. Even though the semantic content
of the training data might not be fully known, this still allows for the detection of
yet unknown anomalies with respect to the used data. While Chapter 5 demon-
strates the value of utilizing world models in the context of anomaly detection,
the detection method is limited by the underlying world model. Situations where
the world model introduced in Section 5.2 struggles to handle dynamic traffic
participants directly affect the anomaly detection method presented in Section 5.3.
While training a world model with an architecture with better scaling properties
would have exceeded the available GPU resources, advances in the field of world
models will lead to more effective models. These advances can be used in the
future to improve the underlying world model.

Anomaly Handling: Generally speaking, the handling of detected anomalies
is an underexplored field. While active learning for offline settings and remote
assistance for online settings are well explored, the fields typically do not address
anomalies explicitly. Active learning is mostly concerned with making the training
process more efficient by labeling as few samples as possible, and remote assistance
focuses on different support modes rather than the cause that started the remote
assistance process. The method presented in Chapter 6 is one of only few works in
an offline setting that explicitly integrates anomalies into the training process and
leverages complex, hierarchical traffic rules in order to handle them. In order to
evaluate the effect of integrating a situation-aware reward into RL, the presented
method focuses primarily on simple scenarios with data from a BEV perspective.
To address the scalability and real-world compatibility of the approach, more
complex scenarios and raw sensor data can be examined. In more complex settings,
it is also relevant to determine the relevance of detected anomalies with respect to
the driving task first [BOG 25], which is also an underexplored field.

In an online setting, handling anomalies in the environment often requires a
situational awareness that goes beyond the context necessary to solve typical
traffic scenarios. Recent works suggest that VLMs and LLMs are well suited for
the task, as such models are trained on data that goes far beyond the traffic domain.
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This way, they might be able to suggest trajectories that take into account both the
present traffic situation and broader knowledge from outside sources.

Internal Anomaly Detection: Finally, detecting internal anomalies in the form
of model failures without labeled evaluation sets is also an underexplored field.
While some works focus on the overall performance on an unlabeled test set,
the detection of frames where a model fails, even on small regions of a frame, is
rarely examined. The method presented in Chapter 7 leverages a self-supervised
model trained on the same task as a legacy supervised model to detect model
failures based on disagreements. The approach successfully detects multiple
model failure modes in the setting of LIDAR point cloud segmentation. When
both streams are wrong, model failures go undetected. This behavior is known and
unavoidable [437, 435] and can be mitigated by deploying multiple approaches
or triggers to detect challenging scenarios [216]. In addition, model failures
introduced by the self-supervised stream can be reduced by training it on more
data, as costly labels are not necessary. While it has been shown in the literature
that the disagreement-based approach also works for the detection of internal
anomalies at a planning stage by comparing a E2E and a modular driving stack, it
is of interest to apply it to even more settings, such as full panoptic segmentation
beyond the utilized static and dynamic classes [325], lane detection [322], or
drivable-area segmentation [299], to further examine its generalizability.

In summary, benchmarks for anomaly detection methods in autonomous driving
have become much more challenging, with future default benchmarks to be
determined. It is expected that novel anomaly detection methods will adapt
to those new benchmarks. Beyond that, the field lacks a holistic perspective, not
taking into account how detected anomalies can be handled to improve the driving
task itself. As it is of little relevance for the driving task whether erroneous model
outputs stem from an external or an internal anomaly, the field should move
toward more comprehensive model analysis to examine both external and internal
anomalies in evaluation schemes. As a first step, this dissertation has made
multiple contributions to the field, providing a more holistic view of anomaly
detection for autonomous driving.
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A. Anomaly Generation

A supervised student thesis has contributed to this chapter [STU 2]. Parts of this
chapter have previously appeared in the following publication:

* D. Bogdoll et al. One Ontology to Rule Them All: Corner Case Scenarios for
Autonomous Driving. In European Conference on Computer Vision (ECCV)
Workshop, 2023 [BOG 5]

A.1. Master Ontology

Figure A.1 shows the full master ontology, as described in Section 4.2.2 and
outlined in Figure 4.2.

A.2. Scenario Ontology

At the core of each demonstrated scenario lies a scenario ontology, as shown
in Figure 4.1. In the following, the construction of the scenario ontology for
the Domain Shift (a) scenario, where a vehicle enters a foggy area, is presented.
The scenario is visualized in Figure 4.3, and the scenario ontology is shown in
Figure A.2. The ontology has 94 individuals, which means that 27 new and
scenario-specific individuals are created, since the master ontology has 67 default
individuals. Each individual which name starts with indiv_ is a newly created part
of the scenario ontology; every other individual is either a default or a constant
that is already present in the master ontology. The graph starts from the top
with the Scenario individual, which is connected to a CARLA town and a newly
created Storyboard. Every Storyboard has an Init and a Story. In this particular
Init, there are only the Actions, which are responsible for the position and the
speed of the EgoVehicle, and connections to the default EnvironmentAction. The
most interesting part of this Scenario, however, can be found deep within the
Story - namely, the second EnvironmentAction, which creates dense fog inside
the scenario. This Action gets triggered by the indiv_DistanceStartTrigger, which
has a TraveledDistanceCondition as a Condition. Since this type of Condition is an
EntityCondition, it requires a connection to an Entity, in this case the ego_vehicle.
This StartTrigger gets activated when the ego_vehicle has traveled a certain distance.
After this Event is executed, the Scenario comes to an end.
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A. Anomaly Generation

Figure A.1.: Master Ontology: Contains scenario and environment (red), entities
(green), main scenario elements (yellow), actions (dark blue), condi-

124 tions (light blue), weather and time of day (orange), and anomaly
level (pink). Reprinted from [BOG 5].



A.2. Scenario Ontology

Figure A.2.: Scenario Ontology: Scenario describing a vehicle entering a foggy
area. Reprinted from [STU 2].
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