KIT | KIT-Bibliothek | Impressum | Datenschutz

Approximate Model Predictive Control for Heating of Arbitrary Buildings Without Thermal Modeling

Langner, Felix ORCID iD icon 1; Riegraf, Sören 2; Matthes, Jörg 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Model Predictive Control (MPC) is a promising method for enabling grid-interactive heating in buildings. However, deriving an accurate building model, which is a prerequisite for a successful implementation of MPC, hinders its widespread adoption. The present paper eliminates the need for buildingspecific modeling by developing an approximate MPC (AMPC) based on a neural network that emulates MPC behavior without requiring a building model. The AMPC is trained on data created by controlling the heating system of 16,000 building models with MPC in response to dynamic pricing. Utilizing data from diverse buildings forces the AMPC to learn building-agnostic decision-making, thereby enabling its application to buildings with unknown dynamics. The AMPC’s control performance is validated on 687 unseen building models for 25 weeks each across different climate zones. Compared to the MPC, 50% of the buildings, the AMPC achieves less than 7% excess cost and less than 2 Kh/d increase in thermal discomfort, while simultaneously reducing the computation time by 95%. For very well-insulated buildings that barely require heating, the AMPC incurs substantial relative cost increases, even though the absolute cost increases are most probably negligible.


Originalveröffentlichung
DOI: 10.1109/ISGTEurope64741.2025.11305313
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 20.10.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2504-0
KITopen-ID: 1000189353
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Erschienen in 2025 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)
Veranstaltung 15th IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT 2025), Valletta, Malta, 20.10.2025 – 23.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–5
Schlagwörter demand response, HVAC control, model predictive control, thermal comfort
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page