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 A B S T R A C T

A new methodology for coupling Smoothed Particle Hydrodynamics (SPH) with a Finite Volume 
(FV) solver for multiphase flow is presented. The approach follows a patched-domain strategy in 
which the two domains are disjointly separated by a discrete coupled boundary. Consequently, 
the coupled SPH–FV method is able to benefit from both methods’ strengths in their respective 
domains. The SPH solver employs a custom scheme, whereas a preexisting FV solver employing 
a Volume-of-Fluid (VoF) multiphase representation is adapted with minor modifications.

Key features of the coupling include the determination of the volume fraction at the coupled 
boundary, the preservation of the fluid interface, and surface tension modeling in the vicinity 
of the coupled boundary. The method is validated against a series of benchmark cases, showing 
very good agreement. To our knowledge, this is the first coupled SPH–FV method that allows 
interface advection across the coupled boundary for multiphase flow with surface tension.

. Introduction

In multiphase flows, particularly those with chaotic interface fragmentation, such as atomization, SPH is commonly used due to its 
nherent interface capturing and associated high performance. Far from the interface, however, the use of grid-based methods such as 
inite-Volume (FV) methods is often preferable over SPH due to their higher maturity, e.g. in terms of variable spatial resolution and 
oundary conditions. Consequently, a coupled approach, in which a SPH domain, confined to the region of interface fragmentation, 
s embedded into a surrounding FV domain, appears desirable, as this would take advantage of both methods’ strengths.
Although in an application such as atomization the interface fragmentation may occur in a specific region, the resulting fragments 

an and will be advected away from the fragmentation region. Therefore, a coupled SPH–FV approach must allow for interface 
dvection over the coupled boundary.
Existing coupling approaches between SPH and Finite-Volume (FV) methods can be classified by their domain decomposition 

trategy [1] as illustrated in Fig.  1: patched, overlapping, and zonal domains. Patched domains feature coinciding boundaries, 
esulting in a discrete coupled boundary. Conversely, if the boundaries of the two domains do not coincide, both solutions coexist 
n the overlap. Finally, in a zonal approach, one domain encompasses the global domain, while the other is limited to a subset.
Marrone et al. [2] developed an overlapping approach based on the previous work by Bouscasse et al. [3], where the SPH domain 

ncompasses the free surface region, while an FV solver is used to simulate the fluid far from the free surface. In the overlap of the 
wo domains, a blending procedure is applied. This approach was extended through the coupling of SPH with a Level-Set method 
o allow interface advection over the coupled boundary [4] and to enable application to three-dimensional cases [5]. Di Mascio 
t al. [5] also included an investigation of a zonal configuration in which the FV domain encompasses the whole domain. In the 
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Fig. 1. Domain decomposition strategies.

SPH domain, that is limited to a subset of the FV domain, the FV solution is forced by the SPH solution. Li et al. [6] adapted the 
approach from Ref. [2] to provide improved boundary conditions for SPH simulations of compressible bubble dynamics.

Xu et al. developed [7] and subsequently improved [8–10] on a zonal coupling approach for multiphase flow, in which one fluid 
is discretized using SPH particles that are used to advect the fluid interface and compute interfacial forces. Another zonal approach 
presented by Myers et al. [11] employs a more finely resolved SPH domain within a more coarsely resolved FV domain to compute 
the flow in the vicinity of a shock.

In contrast to these overlapping and zonal approaches, Napoli et al. [12] proposed a patched configuration in which the SPH 
and FV domains are disjointly separated by a discrete interface. Both domains are extended by an interface region, in which the 
state of the cells/particles are obtained iteratively through interpolation from the other domain. Werdelmann et al. [13] developed 
a new permeable boundary condition and employed it in a patched coupling procedure in which only the SPH domain is extended 
by a ghost particle domain. While the coupled boundary conditions are imposed on the SPH domain using these ghost particles, they 
are directly imposed on the FV domain at the cell faces that coincide with the coupled boundary.

Apart from the zonal coupling configuration tested by Di Mascio et al. [5] who state their motivation as simplicity at a cost of a 
small overhead, other zonal approaches [7,11] combine FV and SPH rather than purely taking advantage of each method’s strengths 
in their respective regions, as we intend to do. Therefore, we deem a zonal approach to be less suitable for our purposes.

However, irrespective of the domain decomposition strategy, the algorithm for the generation/elimination of particle mass is 
crucial to allow for mass flux over the coupled boundary. Chiron et al. [4] employ a modified version of the open boundary 
condition from Kassiotis et al. [14], applied at the outside of the overlap region. To ensure a regular particle distribution in the 
overlap, a shifting velocity adapted from Oger et al. [15] is applied. The drawback of this approach is that the mass fluxes into 
and out of the two domains are not imposed at coinciding locations, and hence, ensuring optimal mass conservation is difficult. 
The approach proposed by Napoli et al. [12] relies on a mirror particle procedure at the interface. Although this approach features a 
distinct coupling interface, the mass flux in and out of the FV domain is not imposed directly at this interface but rather implicitly 
through interpolation of the flow at the interface cell centers. Consequently, matching mass fluxes are not guaranteed. The coupling 
approach by Werdelmann et al. [13] in contrast features a mass generation/elimination algorithm that is designed to match the 
mass flux into and out of both domains over the coupled boundary, thus optimizing mass conservation both locally and globally. 
Additionally, as the coupling conditions are imposed on the FV domain on the boundary faces in a FV-typical fashion, their approach 
can be implemented with only minor modifications to an existing FV solver. In our opinion, these aspects constitute a significant 
conceptual advantage.

The aim of this article is to present a coupled SPH–FV method for multiphase flow in which the global domain can be 
decomposed into SPH and FV regions according to the respective strengths of both methods. For future applications including 
interface fragmentation, such as atomization, the coupled method must permit advection of the fluid interface over the coupled 
boundary. Although such coupled SPH–FV approaches for free surface flow can be found in the literature [4,5], there are, to our 
knowledge, no existing coupling methods for multiphase flow, including surface tension, that satisfy this requirement. Therefore, 
building on the work by Werdelmann et al. [13], we propose a novel coupling methodology in which the Volume-of-Fluid (VoF) 
method serves as a multiphase representation in the FV domain.

The paper is organized as follows: The employed numerical methods are reviewed in Section 2. Section 3 details the coupling 
procedure, with emphasis on multiphase aspects. Section 4 presents the validation of the coupling through test cases addressing 
relevant physical phenomena. Conclusions and prospects for future work are given in the final section.

2. Numerical methods

In this section, the numerical methods employed in the coupled SPH–VoF framework are described. The SPH domain is solved 
using a custom weakly compressible SPH (WCSPH) scheme, while the VoF solver is based on an existing open-source implementation 
with minor modifications.

In both domains, fluids are modeled as weakly-compressible with the barotropic equation of state 

𝑝 =
𝜌0𝑐2

𝛾

[(

𝜌
𝜌0

)𝛾
− 1

]

. (1)

Pressure, barotropic exponent, speed of sound are denoted as 𝑝, 𝛾 and 𝑐 respectively, while 𝜌 and 𝜌0 indicate the fluid and reference 
density.
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2.1. Smoothed particle hydrodynamics

The SPH solver employs a transport-velocity formulation similar to that proposed by Werdelmann et al. [13]. In this scheme, 
the particles are advected with a transport velocity ⃗̂𝑢𝑖 consisting of the fluid velocity 𝑢𝑖 and the shifting velocity 𝛿𝑢𝑖: 

𝑑𝑥⃗𝑖
𝑑𝑡

= ⃗̂𝑢𝑖 = 𝑢𝑖 + 𝛿𝑢𝑖. (2)

Fluid density and velocity are evolved according to 
𝑑𝜌𝑖
𝑑𝑡

= −𝜌𝑖
∑

𝑗
𝑉𝑗 (𝑢𝑗 − 𝑢𝑖) ⋅ ∇⃗𝑊𝑖𝑗 + 𝛿𝑢𝑖 ⋅

∑

𝑗∈𝜒𝑖

𝑉𝑗 (𝜌𝑗 − 𝜌𝑖)∇⃗𝑊𝑖𝑗 + 𝛿ℎ𝜎𝐷
𝜌
𝑖 , (3)

𝑑𝑢𝑖
𝑑𝑡

= 𝛿𝑢𝑖 ⋅
∑

𝑗
𝑉𝑗 (𝑢𝑗 − 𝑢𝑖)⊗ ∇⃗𝑊𝑖𝑗 + 𝑎𝑝𝑖 + 𝑎𝜏𝑖 + 𝑎𝜎𝑖 + 𝑓𝑖. (4)

The mass of a particle 𝑚𝑖 is kept constant within the domain and the particle volume is evaluated as 𝑉𝑖 = 𝑚𝑖∕𝜌𝑖. Of particular 
note are the second term on the RHS of (3) and the first in (4), which represent the correction terms of fluid density and velocity 
due to the shifting velocity. The last term in (3) is the density diffusion term as proposed by Ferrari et al. [16], scaled not with the 
‘geometrical’ smoothing length ℎ, but rather based on the kernel’s standard deviation 𝜎 with ℎ𝜎 = 2𝜎 [17], as well as the numerical 
parameter 𝛿 = 0.1. The density correction term as well as the density diffusion term is only computed over the neighbors 𝑗 belonging 
to the same fluid 𝜒 as particle 𝑖.

The acceleration due to the pressure gradient, 𝑎𝑝𝑖 , is computed using the tensile instability control switch by Sun et al. [18], 
modified to include all particles within a distance of the kernel radius 𝐻 of the coupled boundary 𝜕𝛺: 

𝑎𝑝𝑖 =

⎧

⎪

⎨

⎪

⎩

− 1
𝜌𝑖

∑

𝑗 𝑉𝑗 (𝑝𝑖 + 𝑝𝑗 )∇⃗𝑊𝑖𝑗 , 𝑝𝑖 ≥ 0 ∧ ‖𝑥 − 𝜕𝛺‖ > 𝐻

− 1
𝜌𝑖

∑

𝑗 𝑉𝑗 (𝑝𝑗 − 𝑝𝑖)∇⃗𝑊𝑖𝑗 , 𝑝𝑖 < 0 ∨ ‖𝑥 − 𝜕𝛺‖ ≤ 𝐻
(5)

The acceleration due to viscous forces, 𝑎𝜏𝑖 , is computed using the formulation of Szewc et al. [19] as 

𝑎𝜏𝑖 =
∑

𝑗
2𝑚𝑗 (𝑑 + 2)

𝜈𝑖 + 𝜈𝑗
𝜌𝑖 + 𝜌𝑗

(

𝑢𝑖 − 𝑢𝑗
)

⋅ 𝑥⃗𝑖𝑗
𝑥2𝑖𝑗 + 𝜂2

∇⃗𝑊𝑖𝑗 . (6)

Here, 𝜈 denotes the kinematic viscosity, 𝑑 the number of dimensions which in this work is limited to 2, and 𝑛 = 0.01∕ℎ is a numerical 
parameter to avoid instabilities for very small distances 𝑥𝑖𝑗 = ‖𝑥⃗𝑖𝑗‖ = ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖ between particles. The acceleration due to surface 
tension, 𝑎𝜎𝑖 , is calculated using a modified version of the Continuum Surface Force (CSF) [20] formulation by Adami et al. [21]:

𝑎𝜎𝑖 = −1
𝜌
𝜎𝜅𝑖 ⃗̂𝑛𝑖‖∇⃗𝛼𝑖‖ , (7)

∇⃗𝛼𝑖 =
1
𝑉𝑖

∑

𝑗
𝑓𝜎
𝑖𝑗∇⃗𝑊𝑖𝑗 , (8)

⃗̂𝑛𝑖 =
∇⃗𝛼𝑖

‖∇⃗𝛼𝑖‖
, (9)

𝜅𝑖 = −𝑑

∑

𝑗 𝑉𝑗
(

⃗̂𝑛𝑖 − ⃗̂𝑛𝑗
)

⋅ ∇⃗𝑊𝑖𝑗
∑

𝑥𝑖𝑗𝑉𝑗∇⃗𝑊𝑖𝑗

. (10)

The interface normal vector ⃗̂𝑛 and the curvature 𝜅 are computed analogously to the work of Adami et al. while the factor 𝑓𝜎
𝑖𝑗 in the 

gradient approximation of the volume fraction ∇⃗𝛼 differs from Ref. [21], as will be explained in Section 3.4. It should be noted, that 
although Adami et al. follow the terminology of Brackbill et al. [20] of a color function instead of a volume fraction, both terms 
can be used interchangeably in this context.

Finally, 𝑓𝑖 represents the acceleration due to a body force such as gravity.
The shifting velocity is derived from the particle shifting technique presented by Lind et al. [22], augmented by an additional 

repulsive interface force (RIF) [23], as 

𝛿𝑢 = −𝐷𝛿
𝑖
ℎ2𝜎
𝛥𝑡

(

∑

𝑗
𝑉𝑗∇⃗𝑊𝑖𝑗 + 𝜀RIF

∑

𝑗∉𝜒
𝑉𝑗∇⃗𝑊𝑖𝑗

)

. (11)

Grenier et al. [23] introduce the RIF term in the momentum equation to prevent numerical dispersion of the fluid interface in the 
absence of surface tension. In the present scheme, the term is added to the shifting velocity to prevent perturbation of the fluid 
interface through shifting. As addressed in Bürkle et al. [24], the RIF term aims to counterbalance the interface-normal component 
of the first term in Eq. (11) implicitly. This differs from the common strategy of explicitly detecting the interface and eliminating 
the normal component (e.g. [22,25]). Grenier et al. [23] propose a parameter range of 0.01 ≤ 𝜀RIF ≤ 0.1, although for all cases 
presented in this work as well as those by Bürkle et al. [24], 𝜀  is set to 0.01, yielding good results. Nevertheless, the particle 
RIF
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shifting scheme and its impact on the fluid interface merit further investigation; however, this is beyond the scope of this current 
work. The variable 𝐷𝛿

𝑖  can be described as the shifting diffusion coefficient and is set following Xenakis et al. [26] as 

𝐷𝛿
𝑖 = max

(

𝜀
ℎ2𝜎
𝛥𝑡

, 𝐴ℎ𝜎‖𝑢𝑖‖

)

(12)

The parameter 𝐴 is set to 2 throughout this work and 𝜀 is set case-dependent in the range 0.05 ≤ 𝜀 ≤ 0.5.
Time integration of Eqs. (2), (3) and (4) is performed using an explicit mid-point scheme: 

𝜙𝑛+ 1
2 = 𝜙𝑛 + 𝛥𝑡

2

(

𝑑𝜙
𝑑𝑡

)𝑛
,

𝜙𝑛+1 = 𝜙𝑛 + 𝛥𝑡
(

𝑑𝜙
𝑑𝑡

)𝑛+ 1
2

(13)

Here, 𝜙 represents position 𝑥⃗, density 𝜌 and velocity 𝑢.
The time step size 𝛥𝑡 is chosen to satisfy the criteria

𝛥𝑡 ≤ 𝐶𝜏 min
(

ℎ2𝜎𝜌𝑖
𝜇𝑖

)

, (14)

𝛥𝑡 ≤ 𝐶𝑎min
(√

ℎ𝜎
‖𝑎𝑖‖

)

, (15)

𝛥𝑡 ≤ 𝐶𝑐 min
(

ℎ𝜎
𝑐𝑖

)

, (16)

𝛥𝑡 ≤ 𝐶𝜎 min
⎛

⎜

⎜

⎝

√

ℎ3𝜎𝜌𝑖
2𝜋𝜎

⎞

⎟

⎟

⎠

, (17)

with the constants 𝐶𝜏 = 0.125 and 𝐶𝑎 = 𝐶𝑐 = 𝐶𝜎 = 0.25.
Throughout this work, a Wendland C2 kernel is employed with a radius of 𝐻 = 4𝑑𝑥.

2.2. Volume-of-fluid

The VoF solver is based on compressibleInterFlow from the TwoPhaseFlow package [27], an open-source extension to OpenFOAM. 
The solver is modified to employ the barotropic equation of state (1) and to omit the energy equation.

The interface is advected using the geometric isoAdvector approach [28] with a interface reconstruction based on a reconstructed 
distance function (RDF) 𝛷 [29]. Surface tension forces are computed through a CSF approach analogous to Eq. (7) with the curvature 
computation based on Cummins et al. [30]. In this implementation, the interface normal vector ⃗̂𝑛 is approximated as the gradient 
of the RDF: 

⃗̂𝑛𝛷 = ∇⃗𝛷
‖∇⃗𝛷‖

(18)

This interface normal vector is then interpolated from cell centers to face centers and from this the curvature 𝜅 is computed as 
𝜅 = ∇⃗ ⋅ ⃗̂𝑛𝛷 . (19)

Time integration is performed through an implicit Euler scheme.

3. Coupling of SPH and VoF domain

As explained in Section 1, the proposed coupling approach follows the patched-domain strategy as illustrated in Fig.  2. The 
desired domain decomposition in an applied setting is highlighted through the example of a prefilming atomizer, a case to which 
SPH has been successfully applied [31]. In a hypothetical coupled SPH–VoF simulation, a cohesive film would be transported from 
the VoF domain 𝛺VoF to the SPH domain 𝛺SPH. Here, the film would be disintegrated into a disperse spray that is subsequently 
advected back into the VoF domain. Such a setup would be able to maintain the inherent advantages of SPH regarding interface 
fragmentation, while simultaneously benefiting from advanced features of FV methods such as more mature boundary conditions 
and variable spatial resolution.

The foundation of the coupled SPH–VoF method is the discrete coupling interface 𝜕𝛺 that separates the domains. This coupled 
boundary is decomposed into individual segments 𝑠 with the area 𝐴𝑠 = 𝑑𝑥𝑑−1, where 𝑑𝑥 denotes the mean particle spacing and 𝑑
the number of dimensions, which in this work is limited to 2. The SPH domain is additionally extended by Eulerian ghost particles 
located in the VoF domain, establishing full kernel support of the boundary. Flows with truncated kernel support, such as free-surface 
flows, are out of scope of the present work.

The coupling of the two domains is realized in a three-step procedure. First, the flow variables pressure 𝑝, velocity ⃗𝑢, and volume 
fraction 𝛼 of the ghost particles  are determined by linear interpolation from the VoF solution. Afterwards the state of the individual 
segments of the boundary are determined from the information of both the regular SPH particles and the ghost particles. Finally, 
this state is communicated to the VoF solver as Dirichlet boundary conditions.
100 
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Fig. 2. Schematic representation of the coupled SPH–VoF approach illustrate through the case of a prefilming atomizer.

One advantage of the proposed coupling method is that it can be implemented with only minor alterations to the VoF solver. 
Consequently, the following description of the coupling methodology constitutes modifications of the SPH solver unless otherwise 
stated.

3.1. Mass flux algorithm

Realizing a mass flux over the coupled boundary is trivial for FV methods but not for SPH. Werdelmann et al. [13] have developed 
a novel permeable boundary approach that does not rely on a buffer region but instead features an algorithm for the continuous 
mass flux across the boundary. Recently, Bürkle et al. [24] have employed this algorithm in a multi-resolution SPH framework 
for multiphase flow. In the following, we review the algorithm including some minor modifications, particularly in regards to a 
VoF-type representation of the boundary.

The total mass advected into the SPH domain over a boundary segment 𝑠 in a time step 𝑡 → 𝑡 + 𝛥𝑡 is given by 

𝛥𝑚𝑠 = −𝜌𝑠𝐴𝑠
(

𝑢𝑠 ⋅ 𝑛𝑠
)

𝛥𝑡 , (20)

with 𝑛𝑠 as the normal vector on 𝑠 pointing from SPH into VoF domain. In a VoF-type approach, the advected mass belonging to 
fluid 𝜒 can be expressed using the volume fraction 𝛼𝑠,𝜒  of the segment as 

𝛥𝑚𝑠,𝜒 = −𝛼𝑠,𝜒𝜌𝑠,𝜒𝐴𝑠
(

𝑢𝑠 ⋅ 𝑛𝑠
)

𝛥𝑡 . (21)

Together with the equation of state (1), the relation between density, pressure and volume fraction is determined by 

𝜌𝑠 = 𝛼𝑠𝜌𝑠,1 + (1 − 𝛼𝑠)𝜌𝑠,2 . (22)

This mass flux is realized through an incremental increase or decrease of the mass of boundary particles  based on some 
simple geometric considerations as illustrated in Fig.  3: Particles are considered to be 𝑑-dimensional cuboids, characterized by a 
cross-sectional area 𝐴𝑖 = 𝐴𝑠

(

𝜌𝑖,𝜒∕𝜌0,𝜒
)
1−𝑑
𝑑  parallel, and an extent of 𝑙𝑖 = 𝑉𝑖∕𝐴𝑖 perpendicular to the coupled boundary. If a cuboid 

is either in contact with the boundary at time 𝑡, or if it comes into contact during the time step 𝑡 → 𝑡+𝛥𝑡 due to advection with the 
transport velocity ⃗̂𝑢, the particle is considered to be in the set of boundary particle  eligible for mass change. The particle mass 
advected over the boundary can then be predicted from the positions 𝑥⃗ of particle 𝑖 and the closest boundary segment 𝑠 as 

𝛿𝑚∗
𝑖 = −𝜌𝑖𝐴𝑖

[

(

⃗̂𝑢𝑖 ⋅ 𝑛𝑠
)

𝛥𝑡 −
(

𝑥⃗𝑠𝑖 ⋅ 𝑛𝑠 −
𝑙𝑖
2

)+]

. (23)

The second term in the brackets is modified by the superscript (⋅)+ = max(0, ⋅) as it is only relevant when the particle is not in contact 
with the boundary prior to advection. Note, that once a particle is in contact with the boundary, the shifting velocity component 
normal the boundary is set to zero and therefore ⃗̂𝑢𝑖 ⋅ 𝑛𝑠 = 𝑢𝑖 ⋅ 𝑛𝑠. As a particle cannot possess a negative mass and should not have 
more than the nominal mass 𝑚0, the mass change is limited to 

0 ≤ 𝑚𝑖 + 𝛿𝑚𝑖 ≤ 𝑚0 = 𝜌0𝑑𝑥
𝑑 . (24)

The predicted mass 𝛿𝑚∗ can be associated with a boundary segment based on their geometric overlap 𝜔𝑖𝑠 =
𝐴𝑖∩𝐴𝑠
𝐴𝑠

. As a result, 
the imbalance of the prescribed mass 𝛥𝑚 and predicted mass 𝛿𝑚∗ can be evaluated for each boundary segment and each fluid as 

𝑠,𝜒 = 𝛥𝑚𝑠,𝜒 −
∑

𝜔𝑖𝑠𝛿𝑚
∗
𝑖 . (25)
𝑖∈𝜒
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Fig. 3. Schematic representation of the mass flux algorithm, illustrating the steps for imposing an incremental mass change of a boundary 
particle.

In order to optimize local and global mass conservation, this imbalance 𝑠,𝜒  is compensated by imposing corrective mass increments 
𝛿𝑚∗∗

𝑖𝑠  so that 

𝑠,𝜒 =
∑

𝑖∈𝜒
𝛿𝑚∗∗

𝑖𝑠 (26)

is satisfied.
In case of a negative imbalance 𝑠,𝜒 < 0, additional particle mass has to be removed. For this, the closest boundary particle 

𝑖 ∈  with 𝜔𝑖𝑠 > 0 is selected. If, due to the limits in Eq. (24), the imbalance cannot be compensated, we iteratively continue with 
the other boundary particles with 𝜔𝑖𝑠 > 0.

For a positive imbalance 𝑠,𝜒 > 0 our approach differs slightly from Werdelmann et al. [13], as we first try to impose a corrective 
mass on the furthest particle with 𝜔𝑖𝑠 > 0.5. Only if the imbalance cannot be compensated through corrective mass increments on 
particles with 𝜔𝑖𝑠 > 0.5, we subsequently try the closest particle with 0.5 ≥ 𝜔𝑖𝑠 > 0. If after this there is still a mass imbalance over 
a segment, a new particle of that mass is created, or if the imbalance is negative, it is stored for the next time iteration.

The new mass of a particle after the timestep 𝑡 → 𝑡 + 𝛥𝑡 is then given by 

𝑚𝑡+𝛥𝑡
𝑖 = 𝑚𝑡

𝑖 +

(

𝛿𝑚∗
𝑖 +

∑

𝑠
𝛿𝑚∗∗

𝑖𝑠

)𝑡→𝑡+𝛥𝑡

. (27)

Finally, the particle position is moved to the new barycenter of the associated cuboid through 

𝛿𝑥𝑖 =
𝑛𝑠

2𝜌𝑖𝐴𝑖

(

𝛿𝑚∗
𝑖 −

∑

𝑠
𝛿𝑚∗∗

𝑖𝑠

)

. (28)

This position shift ensures that a particle stays in contact with the coupled boundary until its mass reaches either zero and the 
particle is deleted, or the nominal particle mass and the particle is released into the domain as it is no longer eligible for mass 
change.

3.2. Determination of the boundary state

The coupling conditions of the two domains are defined through the state of two separate entities: ghost particles and boundary 
segments. As there is no overlap, the SPH domain is extended by static ghost particles to provide full kernel support of the boundary. 
It should be noted that this extension does not constitute an overlap, as the governing equations are not solved for these ghost 
particles. Instead, their state is interpolated from the VoF solution at the beginning of every SPH time iteration. Presently, we 
employ the interpolationCellPoint functionality in OpenFOAM, which linearly interpolates the flow fields at the position of every 
ghost particle from the vertices of the encompassing FV cell.

After interpolating the state of the ghost particles from the VoF domain, information about the flow on both sides of the coupled 
boundary is available in the SPH solver. Consequently, the state of the individual boundary segments can be determined exclusively 
within the SPH solver. Far from the fluid interface 𝜕𝜒 , or in case of a continuous field 𝜙, the value at the boundary segments can 
be approximated through Shepard-interpolation as 

𝜙𝑠 =
∑

𝑗 𝜙𝑗𝑉𝑗𝑊𝑠𝑗
∑

𝑗 𝑉𝑗𝑊𝑠𝑗
. (29)

For fields that are discontinuous across the fluid interface, the interpolation is additionally weighted with the volume fraction 
of the boundary segment: 

𝜙𝑠 =
∑

𝑗∈𝜒 𝛼𝑠,𝜒𝜙𝑗𝑉𝑗𝑊𝑠𝑗 +
∑

𝑗∉𝜒
(

1 − 𝛼𝑠,𝜒
)

𝜙𝑗𝑉𝑗𝑊𝑠𝑗
∑ ∑

( ) . (30)

𝑗∈𝜒 𝛼𝑠,𝜒𝑉𝑗𝑊𝑠𝑗 + 𝑗∉𝜒 1 − 𝛼𝑠,𝜒 𝑉𝑗𝑊𝑠𝑗
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Note that the ghost particles in the interface region possess a volume fraction 0 < 𝛼𝑔,𝜒 < 1 and are not exclusively associated with 
either fluid. For the sake of simplicity, we assume that a ghost particle belongs to fluid 𝜒 if 𝛼𝑔,𝜒 > 0.5.

In the present work, the formulation in Eq. (30) is only used for the pressure field in cases with surface tension to account for 
the pressure jump, otherwise Eq. (29) is used for both pressure and velocity fields. However, in a case where different fluids exhibit 
significantly differing velocity fields, the use of Eq. (30) might also be advantageous for interpolating the velocity field, for example, 
if a slow moving liquid is surrounded by a fast moving gas.

In addition to the pressure and velocity fields, the coupling conditions are completed by the volume fraction. Far from the 
fluid interface every discretization element, particle, cell, or boundary segment, is discretely associated with a single fluid and 
consequently the volume fraction 𝛼𝑠,𝜒  is trivially either 0 or 1. However, in the vicinity of the interface additional considerations 
are necessary. Here, the volume fraction in the VoF domain is non-discrete whereas SPH particles are of course associated only 
with a single fluid. In order to determine the volume fraction of a boundary segment, it is therefore advantageous to differentiate 
between the direction of flow given by the sign of the boundary normal velocity 𝑢𝑠,⟂ = 𝑢𝑠 ⋅ 𝑛𝑠.

If the flow is directed from SPH to VoF domain, i.e. 𝑢𝑠,⟂ > 0, the volume fraction of a boundary segment can be approximated 
as the ratio of the weights of the associated boundary particles: 

𝛼∗𝑠,𝜒 =
∑

𝑗∈𝜒 𝜔𝑗𝑠
∑

𝑗 𝜔𝑗𝑠
, for all 𝑠 ∈ 𝜕𝛺 with 𝑢𝑠,⟂ > 0. (31)

Conversely, if the flow is directed from VoF to SPH domain, i.e. 𝑢𝑠,⟂ < 0, the volume fraction of the boundary segment can be 
approximated through constant extrapolation to match that of the neighboring upwind ghost particle 𝑔 ∈ : 

𝛼∗𝑠,𝜒 = 𝛼𝑔,𝜒 , for all 𝑠 ∈ 𝜕𝛺 with 𝑢𝑠,⟂ < 0. (32)

This differentiation between in- and outflow regions is very convenient when they are clearly delineated. However, if the 
boundary normal velocity oscillates around zero in the vicinity of the fluid interface, switching between Eqs. (31) and (32) 
indiscriminately is ill-advised. Moreover, two edge cases have to be addressed, with the first being flow parallel to the coupled 
boundary, i.e. 𝑢𝑠,⟂ = 0. The second edge cases occurs when the flow is directed from SPH to VoF domain and the predicted mass 
based on particle advection is much smaller than the nominal mass flux over the boundary, i.e. 𝑢𝑠,⟂ > 0 with ∑𝑗 𝜔𝑗𝑠𝛿𝑚∗

𝑗 ≪ 𝛥𝑚𝑠. 
This condition can persist for a few time iterations for instance if a boundary segment 𝑠 is not in contact with a boundary particle 
or only associated with boundary particles 𝑗 with a weight 𝜔𝑗𝑠 ≪ 1. In this case, the prediction of the volume fraction according 
to Eq. (31) is based on insufficient information and hence not reliable. Therefore, we propose to evolve the volume fraction in an 
under-relaxed formulation as 

𝛼𝑡+𝛥𝑡𝑠,𝜒 =
(

1 − 𝜔𝛼,𝑠
)

𝛼𝑡𝑠,𝜒 + 𝜔𝛼,𝑠𝛼
∗
𝑠,𝜒 . (33)

The relaxation factor 𝜔𝛼,𝑠 is calculated depending on the direction of flow as 

𝜔𝛼,𝑠 = 0 ≤
⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

∑

𝑗 𝜔𝑗𝑠𝛿𝑚∗
𝑗 ∕𝜌𝑗

𝛥𝑚𝑠∕𝜌𝑠
if 𝑢𝑠,⟂ ≥ 0

|𝑢𝑠,⟂|
𝜂𝜔𝑈char

if 𝑢𝑠,⟂ < 0

⎤

⎥

⎥

⎥

⎦

≤ 1 . (34)

This determination of 𝜔𝛼,𝑠 is based on heuristic considerations: For 𝑢𝑠,⟂ ≥ 0, the information contained in the weights 𝜔𝑖𝑠 is less 
reliable if the particle mass advected over a boundary segment is much smaller than the nominal mass 𝛥𝑚𝑠, compared to a larger 
ratio. Conversely, for 𝑢𝑠,⟂ < 0, the upwind extrapolation from the VoF domain is more justified if the magnitude |𝑢𝑠,⟂| is large 
compared to some characteristic velocity, which is this work we set to 𝑈char = 𝑑𝑥

2𝛥𝑡  with the additional parameter 𝜂𝜔 = 0.1. However, 
this choice is not universal and may need to be adapted depending on the observed problem, e.g. for turbulent flow.

3.3. Preserving the discrete fluid interface

The procedure described in the previous section is sufficient to facilitate interface advection from SPH to VoF domain as the 
fluid interface transitions from a discrete to a continuous representation. However, if the flow is reversed, the fluid interface has 
to transition from a continuous representation to a discrete one. In practice, this means that particle mass of different fluids must 
be created on either side of the discrete fluid interface. Therefore, a simple application of the mass flow algorithm is not sufficient 
as it would cause particles of both fluids to be interspersed within the transition band 0 < 𝛼𝑠 < 1. This problem is schematically 
illustrated in Fig.  4(a). A similar issue motivated the interface reconstruction scheme in the multi-resolution coupling of Ref. [24]. 
Unlike that work, our coupling approach does not include an overlap region, necessitating a related but distinct strategy to alleviate 
the problem.

As a first measure, we add a simple interface reconstruction procedure to the mass flux algorithm, illustrated in Fig.  4(b). The 
core idea is to redistribute the mass imbalance  between segments, so that particle mass is created on the correct side of the 
discrete fluid interface whenever possible. As this is only relevant if additional mass is created, the reconstruction is only applied 
to segments with a mass imbalance 𝑠 > 0. We know that the discrete fluid interface, represented by 𝛼𝜒 = 0.5, must intersect the 
boundary between two segments 𝑘 and 𝑙 for which 𝛼 > 0.5 and 𝛼 < 0.5. Consequently, we try to redistribute the imbalance 
𝑘,𝜒 𝑙,𝜒
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Fig. 4. Transition from a continuous to a discrete fluid interface. 

𝑠,𝜒  of a segment 𝑠 with 𝛼𝑠,𝜒 < 0.5 to the closest segment 𝑘 with 𝛼𝑘,𝜒 > 0.5. For the identification of this segment 𝑘 we require a 
smoothed gradient of the volume fraction ⃗̃∇𝛼𝑠,𝜒 , approximated as 

⃗̃∇𝛼𝑠,𝜒 =
∑

𝑘 ∇⃗𝛼𝑘,𝜒𝑑𝑥𝑑𝑊𝑠𝑘
∑

𝑘 𝑑𝑥𝑑𝑊𝑠𝑘
, (35)

∇⃗𝛼𝑠,𝜒 =
∑

𝑗

(

𝛼𝑗,𝜒 − 𝛼𝑠,𝜒
)

𝑉𝑗∇⃗𝑊𝑠𝑗 . (36)

The additional smoothing is necessary to ensure that the approximated gradient is directed towards fluid 𝜒 , avoiding the issue 
of erroneous interface normal vectors in the periphery of the interface region [32]. The segment 𝑘 is then identified as 𝑘 =
argmin𝑘 ‖𝑥⃗𝑠 − 𝑥⃗𝑘‖ for which

⃗̃∇𝛼𝑠,𝜒 ⋅ ⃗̃∇𝛼𝑘,𝜒

‖

⃗̃∇𝛼𝑠,𝜒‖‖
⃗̃∇𝛼𝑘,𝜒‖

≥ 𝜂𝛼 , (37)

⃗̃∇𝛼𝑠,𝜒 ⋅ 𝑥⃗𝑘𝑠

‖

⃗̃∇𝛼𝑠,𝜒‖𝑥𝑘𝑠
≥ 𝜂𝑥 . (38)

Preliminary tests have revealed that 𝜂𝛼 = 𝜂𝑥 = 0.1 are suitable thresholds.
Despite this interface reconstruction, a boundary particle may be ‘trapped’ within the other fluid, if the reconstruction fails and a 

particle is created within the other fluid. Moreover, even a boundary particle that has been created in the correct fluid may become 
‘trapped’ if the interface is advected approximately perpendicular to the coupled boundary. In that case, it can occur that the fluid 
interface crosses the coupled boundary before the boundary particle reaches the nominal particle mass. As boundary particles are 
only released from the coupled boundary by the mass flux algorithm once they reach the nominal particle mass, this may result 
in a particle encapsulated by the other fluid. To avoid adverse effects, these ‘trapped’ particles are identified and ‘deactivated’ as 
depicted in Fig.  4(b). When a particle is deactivated, it is no longer considered in the quadratures and subsequently only advected 
parallel to the coupled boundary (denoted with the subscript ∥) with the transport velocity ⃗̂𝑢 = 𝛿𝑢

′
∥. The shifting velocity 𝛿𝑢

′
∥ is 

computed unilaterally, i.e. regular particles cause a shifting of the deactivated boundary particles, but not vice versa.
It should be noted, that the described mechanisms are solely intended to avoid dispersion of the fluid interface at the coupled 

boundary as it transitions from VoF to SPH domain. Additional effects on the shape of the fluid interface are both unwanted and, 
as demonstrated in Appendix, minimal.

3.4. Modeling of surface tension in vicinity of the coupled boundary

Both SPH and VoF employ a CSF model [20] for computing the surface tension forces in which the computation of the curvature 
𝜅 is well known to be crucial [33]. In order to ensure an accurate approximation of 𝜅 close to the coupled boundary, the interface 
normal vector ⃗̂𝑛 is needed as an additional coupling condition, both for the ghost particles as well as the boundary segments. The 
normal vector of the ghost particles ⃗̂𝑛𝑔 can be interpolated using the same linear interpolation method as for the other coupling 
conditions. The normal vector of the boundary segments ⃗̂𝑛𝑠 can then be approximated according to Eqs. (9) and (36). However, 
this in itself is not sufficient and some modifications to the computation of surface tension forces are necessary on both sides of the 
coupled boundary.
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3.4.1. Volume-of-fluid
Regarding the VoF domain, the interface normal vector ⃗̂𝑛𝑠 is set as a boundary condition exclusively for the approximation of 

the curvature based on the RDF as described in Section 2.2. Intuitively, one might replace the value of ⃗̂𝑛𝛷 with ⃗̂𝑛𝑠 on the coupled 
cell faces before computing the curvature according to Eq. (19), however this can lead to very large curvature values in the cells 
adjacent to the coupled boundary, compromising both stability and accuracy of the coupled simulation. A more robust approach is 
to set ⃗̂𝑛𝛷 = ⃗̂𝑛 at the cell centers before interpolating to the face centers and computing the curvature.

3.4.2. SPH
While the modifications to the VoF surface tension model are minor, the necessary changes in the SPH methodology are more 

pronounced. Adami et al. [21] propose to compute the volume fraction gradient according to Eq. (8) with 

𝑓𝜎
𝑖𝑗 =

(

𝑉 2
𝑖 + 𝑉 2

𝑗

)

𝑐𝑖𝑗 . (39)

In their approach, 𝑐𝑖𝑗 is a density-weighted factor, distributing the force so that particles of both fluids experience equal acceleration 
instead of equal forces. Through this, the stability of the model is increased, allowing for a larger timestep size. However, as a 
negative side effect, the location of the pressure jump is shifted towards the heavier fluid [21]. Consequently, if coupled to a VoF 
solution where this shift does not occur, an inconsistent pressure field across the boundary might lead to inadmissible instabilities. 
Moreover, due to mass flux algorithm, boundary particles  may possess a volume much smaller than the nominal volume 𝑉0 = 𝑑𝑥𝑑 . 
The interaction of particles of greatly different volumes put some additional restrictions on 𝑓𝜎

𝑖𝑗 . First, the surface tension force on 
a particle 𝑖 ∈  and consequently 𝑓𝜎

𝑖𝑗 should go to zero if 𝑉𝑖 → 0. Second, the impact on the surface tension force on neighboring 
particles should also go to zero if 𝑉𝑖 → 0. A formulation for the factor 𝑓𝜎

𝑖𝑗 satisfying these restrictions can be found as 

𝑓𝜎
𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(

𝑉 2
𝑖 + 𝑉 2

𝑗

)

𝑐𝑖𝑗 if 𝑖, 𝑗 ∉ ,

2𝑉 2
𝑖 𝑐𝑖𝑗 if 𝑖 ∈  ∧ 𝑗 ∉ ,

2𝑉 2
𝑖 𝑉𝑗𝑉

−1
0 𝑐𝑖𝑗 if 𝑗 ∈ .

(40)

Crucially, all three cases in Eq. (40) give identical results for 𝑉𝑖 = 𝑉𝑗 = 𝑉0.
The factor 𝑐𝑖𝑗 serves to evenly distribute the forces between particles belonging to different fluids. Considering that only ghost 

particles can exhibit a volume fraction 0 < 𝛼 < 1, a formulation for 𝑐𝑖𝑗 can be found as 

𝑐𝑖𝑗 =
[

𝛼𝑖,𝜒
(

1 − 𝛼𝑗,𝜒 ) + (1 − 𝛼𝑖,𝜒
)

𝛼𝑗,𝜒
] 𝜌𝑖
𝜌𝑖 + 𝜌𝑗

. (41)

It should be noted that with the equal forces, the time step criterion (17) has to be strictly adhered to. Compared to the original 
formulation by Adami et al. [21], in which the criterion can be relaxed for non-unity density ratios between fluids, this can result 
in smaller time steps and hence higher computational cost.

Eqs. (40) and (41) are sufficient to close the surface tension model (7)–(10), but preliminary tests have shown that additional 
smoothing of both ⃗̂𝑛 and 𝜅 is advisable near the boundary, as it reduces destabilizing perturbations due to errors in the surface 
tension computation. Therefore, 𝜅𝑖 and ⃗̂𝑛𝑖 are replaced for particles with ‖𝑥⃗𝑖 − 𝜕𝛺‖ ≤ 𝐻 by 

⃗̃𝑛𝑖 =
∑

𝑗
⃗̂𝑛𝑗𝑉𝑗𝑊𝑖𝑗

∑

𝑗 𝑉𝑗𝑊𝑖𝑗
 for all 𝑗 with ‖∇⃗𝛼𝑗‖ > 0 , (42)

𝜅̃𝑖 =
∑

𝑗 𝜅𝑗𝑉𝑗𝑊𝑖𝑗
∑

𝑗 𝑉𝑗𝑊𝑖𝑗
 for all 𝑗 with ‖∇⃗𝛼𝑗‖ > 0 . (43)

Despite these modifications, some local deviations in the curvature approximation of neighboring particles due to particle disorder 
remain unavoidable. These deviations result in pressure fluctuations and, consequently, locally high pressure gradients. As the level 
of particle disorder is generally higher in the vicinity of the coupled boundary, the shifting velocity is also elevated in that region. 
When these phenomena concur, the shifting correction term in the continuity Eq. (3) may induce instabilities. To mitigate this risk, 
we omit the term for particles located within a distance of ‖𝑥⃗𝑖 − 𝜕𝛺‖ ≤ 𝐻 from the coupled boundary.

3.5. Temporal coupling

In general, the two solvers use different time integration schemes with different stability regimes. While the SPH solver performs 
explicit time integration, the VoF solver uses an implicit scheme. Consequently, while the state of the ghost particles 𝑋⃗𝑡

𝑔 is simply 
interpolated at the beginning of each SPH time iteration, the state of the boundary segments 𝑋⃗𝑡+𝛥𝑡

𝑠  must be known prior to the VoF 
step 𝑡 → 𝑡 + 𝛥𝑡. Presently, this is handled through a consecutive solution of SPH and VoF equations with identical time steps, as 
illustrated in Fig.  5. The development of a simultaneous solution algorithm with different time step sizes is left for future work.
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Fig. 5. Temporal coupling scheme.

4. Validation

The proposed coupling approach is validated against a series of benchmark cases, comparing it with both uncoupled SPH and 
FV simulations, as well as analytical solutions if available. From case to case, additional phenomena are included, starting with the 
single-phase Taylor–Green vortex in Section 4.1. Interfacial flows are first considered in the Kelvin–Helmholtz instability test case 
in Section 4.2 and extended to fluids of moderately different densities with the Rayleigh–Taylor instability in Section 4.3. Finally, 
the handling of surface tension effects as well as large density ratios are investigated through the advection of an oscillating droplet 
in Section 4.4. It should be noted that the domain decomposition, i.e. the location of the coupled boundaries, is selected to evaluate 
the coupling method in challenging configurations and not representative of a realistic application.

4.1. Taylor–Green vortex

Following Oger et al. [15], the Taylor–Green vortex is initialized in a square domain with 𝑥 ∈ [0, 𝐿] and 𝑦 ∈ [0, 𝐿]. The analytical 
solution for incompressible flow is given by

𝑢∗𝑥 = sin(2𝜋𝑥∗) cos(2𝜋𝑦∗) exp
(

−8𝜋2𝑡∗∕𝑅𝑒
)

, (44)

𝑢∗𝑦 = −cos(2𝜋𝑥∗) sin(2𝜋𝑦∗) exp
(

−8𝜋2𝑡∗∕𝑅𝑒
)

, (45)

𝑝∗ = 1
2
[

cos(4𝜋𝑥∗) + cos(4𝜋𝑦∗)
]

exp
(

−16𝜋2𝑡∗∕𝑅𝑒
)

. (46)

The kinematic viscosity 𝜈 is chosen to result in the Reynolds number of 𝑅𝑒 = 𝐿𝑈∕𝜈 = 100, with the characteristic velocity 
𝑈 = max(‖𝑢(𝑡 = 0)‖). The initial Mach number and barotropic exponent are 𝑀𝑎 = 𝑈∕𝑐 = 0.1 and 𝛾 = 7 and the shifting parameter 
is set to 𝜀 = 0.5. The coupled boundaries are placed horizontally at 𝑦1 = 1

4𝐿 and 𝑦2 = 3
4𝐿 with the FV domain 𝛺FV encompassing 

𝑦 ∈ [𝑦1, 𝑦2].
The resulting vortex decay is visualized in Fig.  6 through the distribution of the velocity magnitude ‖𝑢‖∕𝑈 of two coupled 

simulations at three different non-dimensional times 𝑡𝑈∕𝐿. In both simulations, the FV domain 𝛺FV is discretized with a cell size 
of 𝛥𝑥 = 𝐿∕100, whereas the SPH domain is discretized with a mean particle spacing of 𝑑𝑥 = 𝐿∕100 in Fig.  6(a) and 𝑑𝑥 = 𝐿∕400 in 
Fig.  6(b). Qualitatively, both simulations exhibit the expected behavior, with the stable vortices decaying at a very similar rate.

This observation holds true for the relative pressure distribution displayed in Fig.  7. Note, that in order to circumvent the pressure 
drift due to errors in the total volume (see e.g. Sun et al. [34]) we display the relative pressure 𝑝−𝑝 instead of the absolute pressure 
𝑝.

Quantitatively, the results can be analyzed more closely through the distribution of the velocity error 2 = ‖𝑢− 𝑢∗‖∕𝑈 in Fig.  8 
Again, both simulations show very similar results with the largest error at 𝑡𝑈∕𝐿 = 0.1 which then gradually decreases. The higher 
resolution of the SPH domain in Fig.  8(b) leads to a comparable decrease of the 2 error. Crucially, the largest errors occur in 
regions of higher particle anisotropy in the SPH domain and not at the coupled boundary. It can therefore be concluded that the 
accuracy is not limited by the coupling between the domains.

Additional insight can be gained through the divergence of the velocity field depicted in Fig.  9. Here, small disturbances near 
the coupled boundary are evident for all time instances. However, as the disturbances are both reduced through an increase in 
resolution as well as localized without apparent impact far from the coupled boundary, these disturbances are not deemed to be 
critical.

The total, kinetic and elastic energy in the system, 𝐸tot, 𝐸kin and 𝐸elast, evaluated as 
𝐸tot = 𝐸kin + 𝐸elast, (47)

𝐸kin = 1 ∑

𝑚𝑖
(

𝑢𝑖 ⋅ 𝑢𝑖
)

, (48)

2 𝑖∈𝛺
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Fig. 6. Distribution of the velocity magnitude ∥ ⃗𝑢 ∥∕𝑈 in the coupled simulations at different non-dimensional times 𝑡𝑈∕𝐿 and for different cell 
sizes 𝛥𝑥 and mean particle distances 𝑑𝑥 with the white dashed lines indicating the coupled boundaries.

𝐸elast − 𝐸elast,0 =
∑

𝑖∈𝛺
𝑚𝑖

𝑐2𝑖
𝛾𝑖

(

1
𝛾𝑖 − 1

[

(

𝜌𝑖
𝜌0,𝑖

)𝛾𝑖−1
− 1

]

+
𝜌0,𝑖
𝜌𝑖

− 1

)

, (49)

are displayed in Fig.  10. We define 𝐸elast,0 = 𝐸elast(𝑡 = 0) = 0 and evaluate the change in elastic energy according to [35]. 
Consequently, the initial total energy is given by 𝐸0 = 𝐸tot,0 = 𝐸kin,0. As evident from Fig.  10(a), the coupled simulations are in 
very good agreement with the analytical solution, while the SPH-only reference solution underpredicts the decay in kinetic energy, 
likely due to the non-momentum-conserving formulation for the pressure gradient (see Eq. (5)). The elastic energy depicted in Fig. 
10(b), initially decays rapidly an then converges. After the initial decay, the SPH result exhibits an increase due to the errors in total 
volume conservation and associated pressure drift. The coupled results reveal a similar trend, however, they appear to converge 
towards the FV solution with increasing resolution. As a result, the total energy predicted by the coupled simulations is between 
that of the FV- and SPH-only simulations.

Additionally, the total mass 𝑀 =
∑

𝛺 𝑚 within the system can be analyzed to assess whether the coupling approach causes 
undue errors in the conservation of mass. As evident from Fig.  11(a), the relative error 𝜀𝑚 =

(

𝑀 −𝑀0
)

∕𝑀0 displays an oscillating 
behavior with a marginal overall increase, both of which decrease with increasing resolution in the SPH domain. This convergence 
is confirmed by Fig.  11(b), which shows the maximum relative error depending on the mean particle spacing 𝑑𝑥 for two different 
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Fig. 7. Distribution of the relative pressure 𝑝 − 𝑝 in the coupled simulations at different non-dimensional times 𝑡𝑈∕𝐿 and for a cell size of 
𝛥𝑥 = 𝐿∕100 and different mean particle distances 𝑑𝑥 with the white dashed lines indicating the coupled boundaries.

cell sizes 𝛥𝑥. For the lowest resolution of 𝑑𝑥 = 𝛥𝑥 = 𝐿∕100 the maximum error is 𝜀𝑚 ≈ 0.015% and it is further reduced by increasing 
resolution in either domain. In fact, for a cell size of 𝛥𝑥 = 𝐿∕200, the error in coupled simulation appears to converge towards the 
error of a VoF-only reference solution of the same resolution, once the mean particle spacing reaches 𝑑𝑥 = 𝐿∕400. It should be noted 
that while the cell size and particle spacing can in principle be varied independently, we restrict their ratio to 1 ≤ 𝛥𝑥

𝑑𝑥 ≤ 𝐻
𝑑𝑥 .

4.2. Kelvin–Helmholtz instability

The setup of the Kelvin–Helmholtz benchmark, as illustrated in Fig.  12, is derived from Lecoanet et al. [36] with a Reynolds 
number of 𝑅𝑒 = 104 and a Mach number of 𝑀𝑎 = 0.1. The benchmark employs a periodic domain with 𝑥 ∈ [0, 𝐿] and 𝑦 ∈ [−𝐿,𝐿]. 
Initially, fluid 2 occupies the region 𝑦 ∈ [− 1

2𝐿,
1
2𝐿], while the rest of the domain is filled with fluid 1. The initial velocity components 

are given by

𝑢𝑥 = 𝑈
⎡

⎢

⎢

⎣

tanh
⎛

⎜

⎜

⎝

𝑦 + 1
2𝐿

𝑎

⎞

⎟

⎟

⎠

− tanh
⎛

⎜

⎜

⎝

𝑦 − 1
2𝐿

𝑎

⎞

⎟

⎟

⎠

− 1
⎤

⎥

⎥

⎦

, (50)

𝑢𝑦 = 𝐴 sin(2𝜋𝑥)
⎡

⎢

⎢

exp
⎛

⎜

⎜

−
(𝑦 + 1

2𝐿)
2

𝑏2

⎞

⎟

⎟

+ exp
⎛

⎜

⎜

−
(𝑦 − 1

2𝐿)
2

𝑏2

⎞

⎟

⎟

⎤

⎥

⎥

, (51)

⎣ ⎝ ⎠ ⎝ ⎠⎦
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Fig. 8. Distribution of the 2 velocity error in the coupled simulations at different non-dimensional times 𝑡𝑈∕𝐿 and for different cell sizes 𝛥𝑥
and mean particle distances 𝑑𝑥 with the white dashed lines indicating the coupled boundaries.

with the bulk flow velocity 𝑈 = 1, and the parameters 𝑎 = 0.05 and 𝑏 = 0.2. The instability is seeded by the initial velocity 
perturbation 𝑢𝑦 with an amplitude 𝐴 = 0.05. The barotropic exponent and shifting parameter are set to 𝛾 = 7 and 𝜀 = 0.05.

Two different domain decompositions are investigated: a horizontal configuration C1 and a vertical configuration C2. In the 
horizontal configuration C1 the coupled boundaries are located parallel to the fluid interface at 𝑦1 = 1

4𝐿 and 𝑦2 = 3
4𝐿, resulting in 

the intersection of fluid interface and coupled boundary only in the later stages of the instability growth. In the vertical configurations
C2 the coupled boundaries are situated perpendicular to the initial fluid interface at 𝑥1 = 1

4𝐿 and 𝑥2 = 3
4𝐿. Consequently, the fluid 

interface intersects the coupled boundaries during the entire simulation.
The development of the Kelvin–Helmholtz instability is visualized in Fig.  13 through snapshots of the fluid distribution of the 

upper half of the domain from the two coupled configurations as well as VoF- and SPH-only simulations. All displayed results are 
obtained with a resolution of 𝑑𝑥 = 𝐿∕400 and 𝛥𝑥 = 𝐿∕200 in SPH and VoF domain, respectively. As is evident from these snapshots, 
the results from the coupled simulations are in very good agreement with their uncoupled counterparts. Even though the finest 
interfacial structures at the end of the simulation at 𝑡𝑈∕𝐿 = 4 are not perfectly resolved at the present resolution, there does not 
appear to be a significant impact of the coupled boundaries on the growth of the instability and the interface is advected over the 
domain boundary without visual disturbances.
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Fig. 9. Divergence of the velocity field ∇⃗⋅ ∥ ⃗𝑢 ∥∕(𝑈∕𝐿) in the coupled simulations at different non-dimensional times 𝑡𝑈∕𝐿 and for different cell 
sizes 𝛥𝑥 and mean particle distances 𝑑𝑥.

Further insight can be gained through the plots of the fluid interface in the upper vortex core at 𝑡𝑈∕𝐿 = 2.5 in Fig.  14, 
comparing coupled simulations of varying resolution with the finest uncoupled SPH and VoF solution. For configuration C1, 
significant deviations from the finest SPH and VoF solutions can only be observed for coarsest resolution of 𝛥𝑥 = 𝑑𝑥 = 𝐿∕200. 
The vertical configuration C2 in which the fluid interface intersects the coupled boundary during the entire simulation is evidently 
more challenging, as the reference results can only be matched for a cell size of 𝛥𝑥 = 𝐿∕400. As, however, the results of both 
configurations are very close to the reference results at matching resolutions, we conclude that the accuracy of the coupled approach 
is not significantly impeded.

In addition to the fluid interface, the vertical velocity component 𝑢𝑦 is presented in Fig.  15 for the coarsest and finest coupled 
simulations and compared to the reference solutions. There is already a good agreement at the coarsest resolutions in Figs.  15(a) and
15(c), and at the finest resolutions, deviations from the reference results are comparable to the minor differences between SPH-only 
and VoF-only solutions.

Although the velocity field is well resolved in the coarser simulations, the divergence of the velocity field, depicted in Fig.  16, 
reveals disturbances in the flow field. For the horizontal coupling configuration in Fig.  16(a), these are localized to the outer cell 
layers of the VoF domain. In contrast, they are more pronounced on both sides of the coupled boundary in the simulation with the 
vertical coupling configuration in Fig.  16(c). At the higher resolution displayed in Figs.  16(b) and 16(b) however, the disturbances 
are greatly reduced, although they are still visible, particularly for the vertical coupling.
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Fig. 10. Temporal evolution of the energy components in the coupled simulations of the Taylor–Green vortex case with a cell size of 𝛥𝑥 = 𝐿∕100
compared to reference solutions.

Fig. 11. Relative error in the conservation of mass within the domain for different discretization widths.

Analogous to Section 4.1, the relative mass error 𝜀𝑚 is analyzed and visualized in Fig.  17. As evident form the temporal evolution 
in Fig.  17(a), the two coupling configurations exhibit significantly different behavior. For the simulations employing the horizontal 
configuration 𝐶1, the error is initially very small and appears to converge with increasing resolution in the SPH domain. In the later 
stages of the simulations, after the fluid interface comes into contact with the coupled boundary at 𝑡𝑈∕𝐿 ≈ 3.2, an inverse trend can 
be observed. Here, the increased ratio of cell size to mean particle spacing appears to cause increased error in the conservation of 
mass. The same trend can be observed in the results obtained with the coupling configurations 𝐶2. As the fluid interface intersects 
the coupled boundary over the entire simulated time, the increased accumulation of total mass error is evident from the start of the 
simulation.

As a result, the relative error is only reliably reduced by increasing resolution in the VoF domain, as evident from Fig.  17(b). The 
expected error reduction from increased resolution in the SPH domain is counteracted by the apparent negative impact of disparate 
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Fig. 12. Setup of the Kelvin–Helmholtz instability benchmark case.

Fig. 13. Snapshots of the fluid distribution during the development of the Kelvin–Helmholtz instability from the simulations with a cell size of 
𝛥𝑥 = 𝐿∕200 and a mean particle spacing of 𝑑𝑥 = 𝐿∕400 at three non-dimensional times 𝑡𝑈∕𝐿 with dashed lines indicating the coupled boundaries.

resolution of the fluid interface. However, in general, the maximum errors are still quite low, with all but one simulation showing 
errors below 0.1%.

4.3. Rayleigh–Taylor instability

The Rayleigh–Taylor instability is set up, as visualized Fig.  18, according to Shadloo et al. [37] in a rectangular domain with 
𝑥 ∈ [0, 𝐿] and 𝑦 ∈ [0, 4𝐿] with 𝐿 = 1m. The domain is enclosed by walls on which no-slip boundary conditions are enforced. 
Initially, the fluid interface is located at 𝑦 = 2𝐿+0.05𝐿 cos

(

2𝜋 𝑥
)

 above which the domain is filled with the heavier fluid of density 
𝐿
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Fig. 14. Plots of the fluid interface in the upper vortex core of the Kelvin–Helmholtz instability case at 𝑡𝑈∕𝐿 = 2.5 for the configurations C1
(left) and C2 (right). The coupled results are obtained through simulations with a cell sizes of 𝛥𝑥 = 𝐿∕200 (top) and 𝛥𝑥 = 𝐿∕400 (bottom) as 
well as varied particle spacings 𝑑𝑥, indicated by the color, and compared with the finest SPH and VoF simulations.

Fig. 15. Distribution of the vertical velocity component 𝑢𝑦 of coupled simulations of the Kelvin–Helmholtz instability case in the region 
𝑥∕𝐿 ∈ [0.15, 0.85] and 𝑦∕𝐿 ∈ [0.15, 0.85] at 𝑡𝑈∕𝐿 = 2.5 compared with the finest SPH (dashed black lines) and VoF simulations (solid black 
lines), with the red dashed line indicating the coupled boundary.
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Fig. 16. Divergence of the velocity field ∇⃗ ⋅ 𝑢 of coupled simulations of the Kelvin–Helmholtz instability case in the region 𝑥∕𝐿 ∈ [0.15, 0.85] and 
𝑦∕𝐿 ∈ [0.15, 0.85] at 𝑡𝑈∕𝐿 = 2.5 with the red dashed line indicating the coupled boundary.

Fig. 17. Relative error in the conservation of mass within the domain for different discretization widths.

𝜌2 =1000 kg∕m3. The density of the lighter fluid is set to 𝜌1 =500 kg∕m3, resulting in an Atwood number of 𝐴𝑡 = 𝜌2−𝜌1
𝜌2+𝜌1

= 1
3 . The 

kinematic viscosity of both fluids is set to 𝜈1 = 𝜈2 =1 × 10−3 m2∕s. The instability is induced by the gravitational acceleration 
𝑔𝑦 =−0.09m∕s2 and the surface tension is set 𝜎 = 0. Speed of sound and barotropic exponent of each fluid are set to 𝑐1 = 7.071m∕s, 
𝑐2 = 5m∕s, and 𝛾1 = 𝛾2 = 7. The shifting parameter is set to 𝜀 = 0.1. The coupled boundary between the SPH and VoF domain is 
positioned below the initial fluid interface at 𝑦1 = 1.8𝐿 with the VoF domain 𝛺VoF encompassing 𝑦 ∈ [0, 1.8𝐿].

Fig.  19 shows snapshots of the growth of the instability from the coupled and reference simulations with 𝛥𝑥 = 𝐿∕160 and 
𝑑𝑥 = 𝐿∕240. Until the non-dimensional time 𝑡

√

𝑔∕𝐿 = 6, all three simulations produce virtually identical results. In the later stages, 
significant differences between SPH and VoF results can be observed at the present resolution with the SPH results exhibiting more 
chaotic disturbances to the fluid interface in the lower part of the domain. Consequently, the coupled results do not perfectly match 
either uncoupled simulation, although they are qualitatively closer to the VoF-only results. Overall, the coupled simulation is able 
to reproduce the development of the Rayleigh–Taylor of the uncoupled simulations. The remaining differences are likely caused by 
differences between SPH and VoF and not by the proposed coupling approach.

Again, we more closely compare the results of coupled simulations of varying resolutions with the reference solutions from 
the finest VoF- and SPH-only simulations with 𝛥𝑥 = 𝐿∕240 and 𝑑𝑥 = 𝐿∕320, respectively, through the plots of the fluid interface 
in Fig.  20. At 𝑡

√

𝑔∕𝐿 = 3, only the coupled simulations with 𝛥𝑥 = 𝐿∕80 in the leftmost plot show significant differences to the 
reference results. All more finely resolved simulations predict a fluid interface situated between those of pure SPH and VoF. Later, 
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Fig. 18. Setup of the Rayleigh–Taylor instability benchmark case.

at 𝑡
√

𝑔∕𝐿 = 4.5 the coupled results do not converge to a solution between the SPH and VoF, however, the remaining difference is 
comparable to the difference between the two reference results.

In addition to the fluid distribution, the relative pressure distribution of two coupled simulations is compared to the reference 
results in Fig.  21. Both simulations exhibit a smooth pressure distribution over the coupled boundary. The results also show 
excellent agreement with the reference results, although there are some minor deviations for the coarser resolution in Fig.  21(a) at 
𝑡
√

𝑔∕𝐿 = 4.5.
Similarly to Section 4.1, we analyze the energy in the system, with the additional potential energy component 𝐸pot given by 

𝐸pot − 𝐸pot,0 = −𝑔𝑦
∑

𝑖∈𝛺
𝑚𝑖𝑦𝑖 . (52)

Fig.  22 shows the temporal evolution of the energy components of the coupled simulations with a cell size of 𝛥𝑥 = 𝐿∕80 compared 
with the SPH- and FV-only reference solutions. As the instability grows, the potential energy decreases and the kinetic energy 
increases. Except for the lowest resolution, the coupled results match the reference result very well. Similarly to the Taylor–Green 
vortex case, both coupled and SPH-only results exhibit an increase of the elastic energy in the later stages of the simulation, most 
likely associated with the pressure drift due to errors in volume conservation. This error-induced increase is less pronounced with 
increased resolution and the elastic energy appears to converge. Consequently, the total energy predicted by the coupled simulations 
falls in the range given by SPH and VoF reference results for all but the lowest resolution.

4.4. Oscillating droplet

The handling of surface tension in the vicinity of the domain interface is tested through a modified version of a classical oscillating 
droplet benchmark case (e.g. [21]). This modified case, depicted in Fig.  23, employs a rectangular channel with 𝑥 ∈ [−𝐻,𝐻] and 
𝑦 ∈ [− 1

2𝐻, 12𝐻] and the height 𝐻 = 1m. SPH and VoF domain extend for 𝑥SPH ∈ [−𝐻, 0] and 𝑥VoF ∈ [0,𝐻] respectively. A circular 
droplet with the radius 𝑅 = 0.2𝐻 is initially located at 𝑥0 = − 1

2𝐻, 𝑦0 = 0 and oscillation is induced through the prescribed initial 
velocity field

𝑢𝑑,𝑥 = −𝑈0
𝑥 − 𝑥0
𝑟0

(

1 −

(

𝑦 − 𝑦0
)2

𝑟0𝑟

)

exp
(

− 𝑟
𝑟0

)

, (53)

𝑢𝑑,𝑦 = 𝑈0
𝑦 − 𝑦0
𝑟0

(

1 −

(

𝑥 − 𝑥0
)2

𝑟0𝑟

)

exp
(

− 𝑟
𝑟0

)

, (54)

where 𝑈0 = 15m∕s and 𝑟0 = 0.05𝐻 . The velocity field is only prescribed for the droplet, that is for the radial coordinate 
𝑟 =

√

(

𝑥 − 𝑥0
)2 +

(

𝑦 − 𝑦0
)2 ∈ [0, 𝑅). In addition, a frame velocity of 𝑈𝑥 = 3m∕s is imposed on the entire system, causing the 

advection of the droplet over the coupled boundary. The density and viscosity of the droplet and surrounding fluid are set to 
𝜌𝑑 =1 kg∕m3, 𝜌∞ =1 × 10−3 kg∕m3, 𝜈𝑑 =0.02m2∕s and 𝜈∞ =0.2m2∕s. The surface tension is varied between 0.4N∕m ≤ 𝜎 ≤ 1.2N∕m. 
The speed of sound of the droplet fluid 𝑐𝑠 is set to ensure that the density variation due to the Laplace pressure 𝛥𝑝 = 𝜎∕𝑅 does 
not exceed 0.5% and for the surrounding fluid to match 𝑐∞ = 𝑐𝑑

√

𝜌𝑑 𝛾∞
𝜌∞𝛾𝑑

. The barotropic exponents are set 𝛾𝑑 = 7 and 𝛾∞ = 1. The 
shifting parameter is set to 𝜀 = 0.1.
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Fig. 19. Snapshots of the fluid distribution during the development of the Rayleigh–Taylor instability from the simulations with a cell size 
of 𝛥𝑥 = 𝐿∕160 and a mean particle spacing of 𝑑𝑥 = 𝐿∕240 at five non-dimensional times 𝑡√𝑔∕𝐿 with the dashed line indicating the coupled 
boundary.

Analogously to the previous test cases, the results of the coupled simulations with the surface tension 𝜎 = 0.8N∕m and resolution 
𝑑𝑥 = 𝛥𝑥 = 𝐻∕100 are displayed in Fig.  24 through snapshots of the fluid distribution from four time instances 𝑡, before, during and 
shortly after the droplet crosses the coupled boundary. There are no evident disturbances to the droplet advection and the oscillating 
movement continues.
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Fig. 20. Plots of the fluid interface of the Rayleigh–Taylor instability case in the region 𝑥 ∈ [0, 𝐿∕2] and 𝑦 ∈ [1.4𝐿, 2.2𝐿] at two different 
non-dimensional times 𝑡√𝑔∕𝐿 for cell sizes of 𝛥𝑥 = 𝐿∕80 (left), 𝛥𝑥 = 𝐿∕160 (middle) and 𝛥𝑥 = 𝐿∕240 (right) as well as varied particle spacings 
𝑑𝑥, compared with the finest SPH and VoF simulations, with the dashed line indicating the coupled boundary.

Fig. 21. Distribution of the relative pressure in two coupled simulations of the Rayleigh–Taylor instability case in the region 𝑥 ∈ [0, 𝐿∕2] and 
𝑦 ∈ [1.4𝐿, 2.2𝐿] at two different non-dimensional times 𝑡√𝑔∕𝐿 compared with the finest SPH (dashed black lines) and VoF simulations (solid 
black lines), with the red dashed line indicating the coupled boundary.

The oscillation behavior can be analyzed more closely through the vertical displacement of the barycenter of the top half in 
relation to that of the entire droplet 𝛥𝑦 = 𝑦̄𝑑,top − 𝑦̄𝑑 . This displacement is depicted in Fig.  25 for coupled simulations of varying 
resolution, compared to reference results from pure SPH and VoF computations. Before the droplet comes into contact with the 
coupled boundary (indicated by the first dashed line), the coupled results are expectedly virtually identical to the SPH-only result. 
Subsequently, the agreement between the coupled simulations and the SPH reference results continues to be very good, with 
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Fig. 22. Temporal evolution of the energy components in the coupled simulations of the Rayleigh–Taylor instability case with a cell size of 
𝛥𝑥 = 𝐿∕80 compared to reference solutions.

Fig. 23. Setup of the oscillating droplet benchmark case.

significant differences only evident for the coarsest coupled simulation (blue line). In fact, the deviations that do occur are smaller 
than those between SPH and VoF reference results. As the droplet’s oscillation is undisturbed during the advection over the coupled 
boundary, we conclude that the proposed surface tension modeling in the vicinity of the coupled boundary works well.

Using the displacement 𝛥𝑦, we additionally extract the periodic time 𝜏 of the droplet oscillation over the range 0.4N∕m ≤ 𝜎 ≤
1.2N∕m as shown in Fig.  26. Compared to the analytical solution 𝜏ana = 2𝜋

√

𝑅3∕6𝜎, all simulations overestimate the periodic time for 
small surface tension values. SPH and VoF reference results exhibit very similar periodic times, although VoF consistently predicts 
marginally higher values. All coupled SPH–VoF simulations predict values within or close to the range of the reference results, 
converging with increasing spatial resolution.
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Fig. 24. Snapshots from the coupled oscillating droplet advection with 𝛥𝑥 = 𝑑𝑥 = 𝐻∕100 for various times 𝑡.

5. Conclusion

In this work, we have presented a coupled SPH–FV methodology for multiphase flow, designed to exploit the individual strengths 
of both methods within a patched-domain framework. Building on the approach of Werdelmann et al. [13], the proposed scheme 
employs the Volume-of-Fluid (VoF) method as the multiphase representation in the FV domain and is capable of interface advection 
over the coupled boundary. The method has been validated through a series of test cases that confront the coupling approach with 
the relevant physical phenomena, increasing in complexity from single-phase flow to multiphase flow with large density ratios and 
surface tension. To our knowledge, this is the first such method that addresses all these phenomena. It represents a significant step 
towards the improved modeling of complex multiphase flows through coupling of SPH and FV methods. In future work, we intend 
to extend this coupling to three-dimensional cases, develop a simultaneous solution algorithm, and apply the coupled method to 
technically relevant flows such as atomization. Apart from this, a more thorough analysis of the conservation properties of the 
coupled method is warranted, particularly regarding future, more complex applications, for example involving turbulence. Beyond 
the presented coupling method, the particle shifting scheme and specifically the repulsive interface force (RIF) term merit further 
investigation and detailed comparison with other multiphase particle shifting schemes.
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Fig. 25. Displacement of the barycenter of the top half of the droplet in relation to the barycenter of the entire droplet, obtained through coupled 
simulations of varying resolutions and compared to SPH and VoF reference result. The vertical dashed lines indicate the time during which the 
droplet is in contact with the coupled boundary.

Fig. 26. Periodic time of the droplet oscillation, obtained through coupled simulations of varying resolutions and compared to SPH and VoF 
reference result as well as theory.
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Fig. A.27. Setup of the interface advection test.

Fig. A.28. Particle distribution in the SPH domain as result of the interface advection test for three different interface shapes compare with the 
exact solution (dashed line) for different ratios of cell size and particle spacing.

Appendix. Test of the interface advection

In Section 3.3, we describe the mechanisms intended to facilitate the transition from a continuous fluid interface in the VoF 
domain to a discrete fluid interface in the SPH domain. In order to validate these mechanisms, we set up an interface advection test 
as displayed in Fig.  A.27. The setup consists of a rectangular domain with 𝑥 ∈ [−𝐻,𝐻] and 𝑦 ∈ [− 1

2𝐻, 12𝐻] with a coupled boundary 
at 𝑥 = 0 connecting the VoF domain on the left and the SPH domain on the right. The SPH domain is discretized with a mean particle 
spacing of 𝑑𝑥 = 𝐻∕100 and the cell size in the VoF domain is varied in the range 𝑑𝑥 ≤ 𝛥𝑥 ≤ 4𝑑𝑥. Using the setAlphaField utility 
in OpenFOAM, different fluid interfaces are initialized in the VoF domain. A constant velocity of 𝑈𝑥 = 1 is imposed on the system, 
resulting in a translation of the fluid interface from VoF into SPH domain. Fig.  A.28 shows the fluid interface in the SPH domain 
at 𝑡𝑈∕𝐻 represented by the particle distribution. For a ratio of 𝛥𝑥∕𝑑𝑥 = 1, the numerical results match the exact results very well 
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for all tested interface shapes. With an increasing ratio, the numerical results deviate from the exact solution as the fluid interface 
appears to be shifted marginally in positive 𝑥-direction. Nevertheless, the shape of the interface remains well preserved and there 
is no visible interspersion of particles of different fluids.

Data availability

Data will be made available on request.

References

[1] H.S. Tang, R.D. Haynes, G. Houzeaux, A review of domain decomposition methods for simulation of fluid flows: Concepts, algorithms, and applications, 
Arch. Comput. Methods Eng. 28 (3) (2021) 841–873, http://dx.doi.org/10.1007/s11831-019-09394-0.

[2] S. Marrone, A. Di Mascio, D. Le Touzé, Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows, J. Comput. Phys. 
310 (2016) 161–180, http://dx.doi.org/10.1016/j.jcp.2015.11.059.

[3] B. Bouscasse, S. Marrone, A. Colagrossi, A. Di Mascio, Multi-purpose interfaces for coupling SPH with other solvers, in: Proceedings of the 8th International 
SPHERIC Workshop, 2013, pp. 245–252.

[4] L. Chiron, S. Marrone, A. Di Mascio, D. Le Touzé, Coupled SPH–FV method with net vorticity and mass transfer, J. Comput. Phys. 364 (2018) 111–136, 
http://dx.doi.org/10.1016/j.jcp.2018.02.052.

[5] A. Di Mascio, S. Marrone, A. Colagrossi, L. Chiron, D. Le Touzé, SPH–FV coupling algorithm for solving multi-scale three-dimensional free-surface flows, 
Appl. Ocean Res. 115 (2021) 102846, http://dx.doi.org/10.1016/j.apor.2021.102846.

[6] M.-K. Li, A.-M. Zhang, F.-R. Ming, Y.-X. Peng, A coupled smoothed particle hydrodynamics-finite volume method for three-dimensional modeling of bubble 
dynamics, Phys. Fluids 35 (5) (2023) 056117, http://dx.doi.org/10.1063/5.0147750.

[7] Y. Xu, G. Yang, Y. Zhu, D. Hu, A coupled SPH–FVM method for simulating incompressible interfacial flows with large density difference, Eng. Anal. Bound. 
Elem. 128 (2021) 227–243, http://dx.doi.org/10.1016/j.enganabound.2021.04.005.

[8] Y. Xu, G. Yang, S. Liu, D. Hu, Improvement of surface tension discrete model in the ISPH-FVM coupling method, Int. J. Multiph. Flow 160 (2023) 104347, 
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2022.104347.

[9] Y. Xu, G. Yang, D. Hu, A three-dimensional ISPH-FVM coupling method for simulation of bubble rising in viscous stagnant liquid, Ocean Eng. 278 (2023) 
114497, http://dx.doi.org/10.1016/j.oceaneng.2023.114497.

[10] Y. Xu, G. Yang, D. Hu, An enhanced mapping interpolation ISPH–FVM coupling method for simulating two-phase flows with complex interfaces, Int. J. 
Comput. Methods 21 (06) (2024) 2450009, http://dx.doi.org/10.1142/S0219876224500099.

[11] C. Myers, T. Palmer, C. Palmer, A hybrid Finite Volume-Smoothed Particle Hydrodynamics approach for shock capturing applications, Comput. Methods 
Appl. Mech. Engrg. 417 (2023) 116412, http://dx.doi.org/10.1016/j.cma.2023.116412.

[12] E. Napoli, M. De Marchis, C. Gianguzzi, B. Milici, A. Monteleone, A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible 
flows, Comput. Methods Appl. Mech. Engrg. 310 (2016) 674–693, http://dx.doi.org/10.1016/j.cma.2016.07.034.

[13] B. Werdelmann, R. Koch, W. Krebs, H.-J. Bauer, An approach for permeable boundary conditions in SPH, J. Comput. Phys. 444 (2021) 110562, 
http://dx.doi.org/10.1016/j.jcp.2021.110562.

[14] C. Kassiotis, D. Violeau, M. Ferrand, Semi-analytical conditions for open boundaries in smoothed particle hydrodynamics, in: Proceedings of 8th International 
SPHERIC Workshop, Paper, 2013, pp. 1–4.

[15] G. Oger, S. Marrone, D. Le Touzé, M. Leffe, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and 
consistent ALE formalisms, J. Comput. Phys. 313 (2016) 76–98, http://dx.doi.org/10.1016/j.jcp.2016.02.039.

[16] A. Ferrari, M. Dumbser, E.F. Toro, A. Armanini, A new 3D parallel SPH scheme for free surface flows, Comput. & Fluids 38 (6) (2009) 1203–1217, 
http://dx.doi.org/10.1016/j.compfluid.2008.11.012.

[17] W. Dehnen, H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon. Not. R. Astron. Soc. 425 (2) 
(2012) 1068–1082, http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x.

[18] P.N. Sun, A. Colagrossi, S. Marrone, M. Antuono, A.M. Zhang, Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds 
number flows, Comput. Phys. Comm. 224 (2018) 63–80, http://dx.doi.org/10.1016/j.cpc.2017.11.016.

[19] K. Szewc, J. Pozorski, J.-P. Minier, Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method, Internat. J. Numer. 
Methods Engrg. 92 (4) (2012) 343–369, http://dx.doi.org/10.1002/nme.4339.

[20] J. Brackbill, D. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335–354, http://dx.doi.org/10.
1016/0021-9991(92)90240-Y.

[21] S. Adami, X.Y. Hu, N.A. Adams, A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J. Comput. Phys. 
229 (13) (2010) 5011–5021, http://dx.doi.org/10.1016/j.jcp.2010.03.022.

[22] S.J. Lind, R. Xu, P.K. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm 
for stability and validations for impulsive flows and propagating waves, J. Comput. Phys. 231 (4) (2012) 1499–1523, http://dx.doi.org/10.1016/j.jcp.
2011.10.027.

[23] N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, B. Alessandrini, An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. 
Comput. Phys. 228 (22) (2009) 8380–8393, http://dx.doi.org/10.1016/j.jcp.2009.08.009.

[24] N. Bürkle, M. Wicker, M. Okraschevski, R. Koch, H.-J. Bauer, A SPH multi-resolution framework for multi-phase flows, Comput. Methods Appl. Mech. 
Engrg. 449 (2026) 118505, http://dx.doi.org/10.1016/j.cma.2025.118505.

[25] A. Khayyer, H. Gotoh, Y. Shimizu, A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and 
discontinuous density fields, Comput. & Fluids 179 (2019) 356–371, http://dx.doi.org/10.1016/j.compfluid.2018.10.018.

[26] A.M. Xenakis, S.J. Lind, P.K. Stansby, B.D. Rogers, An incompressible smoothed particle hydrodynamics scheme for Newtonian/non-Newtonian multiphase 
flows including semi-analytical solutions for two-phase inelastic Poiseuille flows, Internat. J. Numer. Methods Fluids 92 (7) (2020) 703–726, http:
//dx.doi.org/10.1002/fld.4802.

[27] H. Scheufler, J. Roenby, TwoPhaseFlow: A framework for developing two phase flow solvers in OpenFOAM, OpenFOAM® J. 3 (2023) 200–224, 
http://dx.doi.org/10.51560/ofj.v3.80.

[28] J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R. Soc. Open Sci. 3 (11) (2016) 160405, http://dx.doi.org/10.
1098/rsos.160405, Publisher: Royal Society.

[29] H. Scheufler, J. Roenby, Accurate and efficient surface reconstruction from volume fraction data on general meshes, J. Comput. Phys. 383 (2019) 1–23, 
http://dx.doi.org/10.1016/j.jcp.2019.01.009.
122 

http://dx.doi.org/10.1007/s11831-019-09394-0
http://dx.doi.org/10.1016/j.jcp.2015.11.059
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb3
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb3
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb3
http://dx.doi.org/10.1016/j.jcp.2018.02.052
http://dx.doi.org/10.1016/j.apor.2021.102846
http://dx.doi.org/10.1063/5.0147750
http://dx.doi.org/10.1016/j.enganabound.2021.04.005
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2022.104347
http://dx.doi.org/10.1016/j.oceaneng.2023.114497
http://dx.doi.org/10.1142/S0219876224500099
http://dx.doi.org/10.1016/j.cma.2023.116412
http://dx.doi.org/10.1016/j.cma.2016.07.034
http://dx.doi.org/10.1016/j.jcp.2021.110562
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb14
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb14
http://refhub.elsevier.com/S2196-4386(25)00883-6/sb14
http://dx.doi.org/10.1016/j.jcp.2016.02.039
http://dx.doi.org/10.1016/j.compfluid.2008.11.012
http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x
http://dx.doi.org/10.1016/j.cpc.2017.11.016
http://dx.doi.org/10.1002/nme.4339
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1016/j.jcp.2010.03.022
http://dx.doi.org/10.1016/j.jcp.2011.10.027
http://dx.doi.org/10.1016/j.jcp.2011.10.027
http://dx.doi.org/10.1016/j.jcp.2011.10.027
http://dx.doi.org/10.1016/j.jcp.2009.08.009
http://dx.doi.org/10.1016/j.cma.2025.118505
http://dx.doi.org/10.1016/j.compfluid.2018.10.018
http://dx.doi.org/10.1002/fld.4802
http://dx.doi.org/10.1002/fld.4802
http://dx.doi.org/10.1002/fld.4802
http://dx.doi.org/10.51560/ofj.v3.80
http://dx.doi.org/10.1098/rsos.160405
http://dx.doi.org/10.1098/rsos.160405
http://dx.doi.org/10.1098/rsos.160405
http://dx.doi.org/10.1016/j.jcp.2019.01.009


M. Wicker et al. Computational Particle Mechanics 13 (2026) 97–123 
[30] S.J. Cummins, M.M. Francois, D.B. Kothe, Estimating curvature from volume fractions, Comput. Struct. 83 (6) (2005) 425–434, http://dx.doi.org/10.1016/
j.compstruc.2004.08.017.

[31] S. Braun, L. Wieth, S. Holz, T.F. Dauch, M.C. Keller, G. Chaussonnet, S. Gepperth, R. Koch, H.-J. Bauer, Numerical prediction of air-assisted primary 
atomization using Smoothed Particle Hydrodynamics, Int. J. Multiph. Flow 114 (2019) 303–315, http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.03.008.

[32] J.P. Morris, Simulating surface tension with smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids 33 (3) (2000) 333–353, http:
//dx.doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7.

[33] S. Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech. 50 (2018) 49–75, http://dx.doi.org/10.1146/annurev-fluid-122316-045034.
[34] P.N. Sun, A. Colagrossi, S. Marrone, M. Antuono, A.M. Zhang, A consistent approach to particle shifting in the 𝛿-Plus-SPH model, Comput. Methods Appl. 

Mech. Engrg. 348 (2019) 912–934, http://dx.doi.org/10.1016/j.cma.2019.01.045.
[35] J.J. Monaghan, A. Rafiee, A simple SPH algorithm for multi-fluid flow with high density ratios, Internat. J. Numer. Methods Fluids 71 (5) (2013) 537–561, 

http://dx.doi.org/10.1002/fld.3671, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3671.
[36] D. Lecoanet, M. McCourt, E. Quataert, K.J. Burns, G.M. Vasil, J.S. Oishi, B.P. Brown, J.M. Stone, R.M. O’Leary, A validated non-linear Kelvin–Helmholtz 

benchmark for numerical hydrodynamics, Mon. Not. R. Astron. Soc. 455 (4) (2016) 4274–4288, http://dx.doi.org/10.1093/mnras/stv2564.
[37] M.S. Shadloo, A. Zainali, M. Yildiz, Simulation of single mode Rayleigh–Taylor instability by SPH method, Comput. Mech. 51 (5) (2013) 699–715, 

http://dx.doi.org/10.1007/s00466-012-0746-2.
123 

http://dx.doi.org/10.1016/j.compstruc.2004.08.017
http://dx.doi.org/10.1016/j.compstruc.2004.08.017
http://dx.doi.org/10.1016/j.compstruc.2004.08.017
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.03.008
http://dx.doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
http://dx.doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
http://dx.doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
http://dx.doi.org/10.1146/annurev-fluid-122316-045034
http://dx.doi.org/10.1016/j.cma.2019.01.045
http://dx.doi.org/10.1002/fld.3671
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3671
http://dx.doi.org/10.1093/mnras/stv2564
http://dx.doi.org/10.1007/s00466-012-0746-2

	Coupling of SPH and Volume-of-Fluid for multiphase flow
	Introduction
	Numerical Methods
	Smoothed Particle Hydrodynamics
	Volume-of-Fluid

	Coupling of SPH and VoF domain
	Mass Flux Algorithm
	Determination of the boundary state
	Preserving the Discrete Fluid Interface
	Modeling of Surface Tension in Vicinity of the Coupled Boundary
	Volume-of-Fluid
	SPH

	Temporal Coupling

	Validation
	Taylor–Green vortex
	Kelvin–Helmholtz instability
	Rayleigh–Taylor instability
	Oscillating Droplet

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Test of the Interface Advection
	Data availability
	References


