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ARTICLE INFO ABSTRACT

Keywords: A new methodology for coupling Smoothed Particle Hydrodynamics (SPH) with a Finite Volume
Smoothed Particle Hydrodynamics (SPH) (FV) solver for multiphase flow is presented. The approach follows a patched-domain strategy in
Volume-of-Fluid (VoF) which the two domains are disjointly separated by a discrete coupled boundary. Consequently,
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the coupled SPH-FV method is able to benefit from both methods’ strengths in their respective
domains. The SPH solver employs a custom scheme, whereas a preexisting FV solver employing
a Volume-of-Fluid (VoF) multiphase representation is adapted with minor modifications.

Key features of the coupling include the determination of the volume fraction at the coupled
boundary, the preservation of the fluid interface, and surface tension modeling in the vicinity
of the coupled boundary. The method is validated against a series of benchmark cases, showing
very good agreement. To our knowledge, this is the first coupled SPH-FV method that allows
interface advection across the coupled boundary for multiphase flow with surface tension.

1. Introduction

In multiphase flows, particularly those with chaotic interface fragmentation, such as atomization, SPH is commonly used due to its
inherent interface capturing and associated high performance. Far from the interface, however, the use of grid-based methods such as
Finite-Volume (FV) methods is often preferable over SPH due to their higher maturity, e.g. in terms of variable spatial resolution and
boundary conditions. Consequently, a coupled approach, in which a SPH domain, confined to the region of interface fragmentation,
is embedded into a surrounding FV domain, appears desirable, as this would take advantage of both methods’ strengths.

Although in an application such as atomization the interface fragmentation may occur in a specific region, the resulting fragments
can and will be advected away from the fragmentation region. Therefore, a coupled SPH-FV approach must allow for interface
advection over the coupled boundary.

Existing coupling approaches between SPH and Finite-Volume (FV) methods can be classified by their domain decomposition
strategy [1] as illustrated in Fig. 1: patched, overlapping, and zonal domains. Patched domains feature coinciding boundaries,
resulting in a discrete coupled boundary. Conversely, if the boundaries of the two domains do not coincide, both solutions coexist
in the overlap. Finally, in a zonal approach, one domain encompasses the global domain, while the other is limited to a subset.

Marrone et al. [2] developed an overlapping approach based on the previous work by Bouscasse et al. [3], where the SPH domain
encompasses the free surface region, while an FV solver is used to simulate the fluid far from the free surface. In the overlap of the
two domains, a blending procedure is applied. This approach was extended through the coupling of SPH with a Level-Set method
to allow interface advection over the coupled boundary [4] and to enable application to three-dimensional cases [5]. Di Mascio
et al. [5] also included an investigation of a zonal configuration in which the FV domain encompasses the whole domain. In the

* This article is part of a Special issue entitled: ‘CPMS_SPHERIC’ published in Computational Particle Mechanics.
* Corresponding author.

E-mail address: markus.wicker@kit.edu (M. Wicker).

https://doi.org/10.1016/j.cpms.2025.12.001

Received 21 August 2025; Received in revised form 23 December 2025; Accepted 24 December 2025

Available online 29 December 2025

2196-4386/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://www.sciencedirect.com/journal/computational-particle-mechanics
https://www.sciencedirect.com/journal/computational-particle-mechanics
https://orcid.org/0009-0009-5255-6936
mailto:markus.wicker@kit.edu
https://doi.org/10.1016/j.cpms.2025.12.001
https://doi.org/10.1016/j.cpms.2025.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpms.2025.12.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Wicker et al. Computational Particle Mechanics 13 (2026) 97-123

0825
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Fig. 1. Domain decomposition strategies.

SPH domain, that is limited to a subset of the FV domain, the FV solution is forced by the SPH solution. Li et al. [6] adapted the
approach from Ref. [2] to provide improved boundary conditions for SPH simulations of compressible bubble dynamics.

Xu et al. developed [7] and subsequently improved [8-10] on a zonal coupling approach for multiphase flow, in which one fluid
is discretized using SPH particles that are used to advect the fluid interface and compute interfacial forces. Another zonal approach
presented by Myers et al. [11] employs a more finely resolved SPH domain within a more coarsely resolved FV domain to compute
the flow in the vicinity of a shock.

In contrast to these overlapping and zonal approaches, Napoli et al. [12] proposed a patched configuration in which the SPH
and FV domains are disjointly separated by a discrete interface. Both domains are extended by an interface region, in which the
state of the cells/particles are obtained iteratively through interpolation from the other domain. Werdelmann et al. [13] developed
a new permeable boundary condition and employed it in a patched coupling procedure in which only the SPH domain is extended
by a ghost particle domain. While the coupled boundary conditions are imposed on the SPH domain using these ghost particles, they
are directly imposed on the FV domain at the cell faces that coincide with the coupled boundary.

Apart from the zonal coupling configuration tested by Di Mascio et al. [5] who state their motivation as simplicity at a cost of a
small overhead, other zonal approaches [7,11] combine FV and SPH rather than purely taking advantage of each method’s strengths
in their respective regions, as we intend to do. Therefore, we deem a zonal approach to be less suitable for our purposes.

However, irrespective of the domain decomposition strategy, the algorithm for the generation/elimination of particle mass is
crucial to allow for mass flux over the coupled boundary. Chiron et al. [4] employ a modified version of the open boundary
condition from Kassiotis et al. [14], applied at the outside of the overlap region. To ensure a regular particle distribution in the
overlap, a shifting velocity adapted from Oger et al. [15] is applied. The drawback of this approach is that the mass fluxes into
and out of the two domains are not imposed at coinciding locations, and hence, ensuring optimal mass conservation is difficult.
The approach proposed by Napoli et al. [12] relies on a mirror particle procedure at the interface. Although this approach features a
distinct coupling interface, the mass flux in and out of the FV domain is not imposed directly at this interface but rather implicitly
through interpolation of the flow at the interface cell centers. Consequently, matching mass fluxes are not guaranteed. The coupling
approach by Werdelmann et al. [13] in contrast features a mass generation/elimination algorithm that is designed to match the
mass flux into and out of both domains over the coupled boundary, thus optimizing mass conservation both locally and globally.
Additionally, as the coupling conditions are imposed on the FV domain on the boundary faces in a FV-typical fashion, their approach
can be implemented with only minor modifications to an existing FV solver. In our opinion, these aspects constitute a significant
conceptual advantage.

The aim of this article is to present a coupled SPH-FV method for multiphase flow in which the global domain can be
decomposed into SPH and FV regions according to the respective strengths of both methods. For future applications including
interface fragmentation, such as atomization, the coupled method must permit advection of the fluid interface over the coupled
boundary. Although such coupled SPH-FV approaches for free surface flow can be found in the literature [4,5], there are, to our
knowledge, no existing coupling methods for multiphase flow, including surface tension, that satisfy this requirement. Therefore,
building on the work by Werdelmann et al. [13], we propose a novel coupling methodology in which the Volume-of-Fluid (VoF)
method serves as a multiphase representation in the FV domain.

The paper is organized as follows: The employed numerical methods are reviewed in Section 2. Section 3 details the coupling
procedure, with emphasis on multiphase aspects. Section 4 presents the validation of the coupling through test cases addressing
relevant physical phenomena. Conclusions and prospects for future work are given in the final section.

2. Numerical methods

In this section, the numerical methods employed in the coupled SPH-VoF framework are described. The SPH domain is solved
using a custom weakly compressible SPH (WCSPH) scheme, while the VoF solver is based on an existing open-source implementation
with minor modifications.

In both domains, fluids are modeled as weakly-compressible with the barotropic equation of state

2
-2 [(2) -
0

Pressure, barotropic exponent, speed of sound are denoted as p, y and ¢ respectively, while p and p, indicate the fluid and reference
density.
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2.1. Smoothed particle hydrodynamics

The SPH solver employs a transport-velocity formulation similar to that proposed by Werdelmann et al. [13]. In this scheme,
the particles are advected with a transport velocity #; consisting of the fluid velocity #; and the shifting velocity 6_'14,.:

dx; = -
d_tl :ﬁ’- :Ti,-+5u,-. (2)
Fluid density and velocity are evolved according to

dp; Y L. =2 - .

— = 2V =) - YW+ Gu - Y Vio; = p) VW + 8k, D 3
J JEX:

di; - L L= ~ L =

d—l'=6u,-~ZVj(uj—ui)®VVV,~j+af+t_i,.T+a;’+f,-. @
J

The mass of a particle m; is kept constant within the domain and the particle volume is evaluated as V; = m;/p;. Of particular
note are the second term on the RHS of (3) and the first in (4), which represent the correction terms of fluid density and velocity
due to the shifting velocity. The last term in (3) is the density diffusion term as proposed by Ferrari et al. [16], scaled not with the
‘geometrical’ smoothing length A, but rather based on the kernel’s standard deviation ¢ with h, = 2¢ [17], as well as the numerical
parameter § = 0.1. The density correction term as well as the density diffusion term is only computed over the neighbors j belonging
to the same fluid y as particle i.

The acceleration due to the pressure gradient, @/, is computed using the tensile instability control switch by Sun et al. [18],
modified to include all particles within a distance of the kernel radius H of the coupled boundary 0Q:

1 -
_ _/)_[Zj Vi + p))VWi;, p; 20AIlx—0Q| > H

—p
al = ! R 5)
s Zj Vilp; —p)VW;, p;<O0V|x-0Q| < H
The acceleration due to viscous forces, E,.T, is computed using the formulation of Szewc et al. [19] as
- vitvy; (ﬁi_ﬁj)'}ij*
=y om(d+2)—— —S——VW,; . ©)
7 Pitr X+ n*

Here, v denotes the kinematic viscosity, d the number of dimensions which in this work is limited to 2, and n = 0.01/A is a numerical
parameter to avoid instabilities for very small distances x;; = ||X;;|| = ||X; — X;|| between particles. The acceleration due to surface
tension, Fz,.“, is calculated using a modified version of the Continuum Surface Force (CSF) [20] formulation by Adami et al. [21]:

i~ 1 2
a = —;akin,-HVa,-ll , 7)
- 1 -
Vo, = & Zf;;vw,.j, ®)
J
iy = ——, 9
IVayll
%Y (ﬁf - ﬁ/> VW
K, =—d — . (10)
XX, V,Vw,

The interface normal vector 7 and the curvature x are computed analogously to the work of Adami et al. while the factor [ in the
gradient approximation of the volume fraction Va differs from Ref. [21], as will be explained in Section 3.4. It should be noted, that
although Adami et al. follow the terminology of Brackbill et al. [20] of a color function instead of a volume fraction, both terms
can be used interchangeably in this context.
Finally, f, represents the acceleration due to a body force such as gravity.
The shifting velocity is derived from the particle shifting technique presented by Lind et al. [22], augmented by an additional
repulsive interface force (RIF) [23], as
- h2 - -
5u=—D§A—‘;<ZV/VW,.j+sRIFZVJ.VW,.j>. an
J JEX
Grenier et al. [23] introduce the RIF term in the momentum equation to prevent numerical dispersion of the fluid interface in the
absence of surface tension. In the present scheme, the term is added to the shifting velocity to prevent perturbation of the fluid
interface through shifting. As addressed in Biirkle et al. [24], the RIF term aims to counterbalance the interface-normal component
of the first term in Eq. (11) implicitly. This differs from the common strategy of explicitly detecting the interface and eliminating
the normal component (e.g. [22,25]). Grenier et al. [23] propose a parameter range of 0.01 < epyr < 0.1, although for all cases

presented in this work as well as those by Biirkle et al. [24], &gy is set to 0.01, yielding good results. Nevertheless, the particle
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shifting scheme and its impact on the fluid interface merit further investigation; however, this is beyond the scope of this current

work. The variable Df can be described as the shifting diffusion coefficient and is set following Xenakis et al. [26] as

h2
D? = max (sA—‘; Ahgllu,-”) (2

The parameter A is set to 2 throughout this work and ¢ is set case-dependent in the range 0.05 < e < 0.5.
Time integration of Egs. (2), (3) and (4) is performed using an explicit mid-point scheme:

1 n
my gn g A (48
¢ =g 2 (4)

e a3
1 gy d¢\""2
gt =g+ 4 (42)
Here, ¢ represents position X, density p and velocity u.
The time step size At is chosen to satisfy the criteria
. hipi
At < C, min , 14
Hi
- hy
At < C, min =], (15)
lla;l
. h
At<C,min| — ), ae6)
Ci
n3p;
At < C, min 2o R 17)
2no

with the constants C, =0.125 and C, = C, = C, = 0.25.
Throughout this work, a Wendland C2 kernel is employed with a radius of H = 4dx.

2.2. Volume-of-fluid

The VOoF solver is based on compressibleInterFlow from the TwoPhaseFlow package [27], an open-source extension to OpenFOAM.
The solver is modified to employ the barotropic equation of state (1) and to omit the energy equation.

The interface is advected using the geometric isoAdvector approach [28] with a interface reconstruction based on a reconstructed
distance function (RDF) @ [29]. Surface tension forces are computed through a CSF approach analogous to Eq. (7) with the curvature
computation based on Cummins et al. [30]. In this implementation, the interface normal vector # is approximated as the gradient
of the RDF:

2 Vo
ng = —/—
Ivel|

This interface normal vector is then interpolated from cell centers to face centers and from this the curvature « is computed as

(18)

K=V~5q,. (19)

Time integration is performed through an implicit Euler scheme.
3. Coupling of SPH and VoF domain

As explained in Section 1, the proposed coupling approach follows the patched-domain strategy as illustrated in Fig. 2. The
desired domain decomposition in an applied setting is highlighted through the example of a prefilming atomizer, a case to which
SPH has been successfully applied [31]. In a hypothetical coupled SPH-VoF simulation, a cohesive film would be transported from
the VoF domain @y to the SPH domain Qgpy;. Here, the film would be disintegrated into a disperse spray that is subsequently
advected back into the VoF domain. Such a setup would be able to maintain the inherent advantages of SPH regarding interface
fragmentation, while simultaneously benefiting from advanced features of FV methods such as more mature boundary conditions
and variable spatial resolution.

The foundation of the coupled SPH-VoF method is the discrete coupling interface 02 that separates the domains. This coupled
boundary is decomposed into individual segments s with the area A; = dx?~!, where dx denotes the mean particle spacing and d
the number of dimensions, which in this work is limited to 2. The SPH domain is additionally extended by Eulerian ghost particles
located in the VoF domain, establishing full kernel support of the boundary. Flows with truncated kernel support, such as free-surface
flows, are out of scope of the present work.

The coupling of the two domains is realized in a three-step procedure. First, the flow variables pressure p, velocity i, and volume
fraction « of the ghost particles G are determined by linear interpolation from the VoF solution. Afterwards the state of the individual
segments of the boundary are determined from the information of both the regular SPH particles and the ghost particles. Finally,
this state is communicated to the VoF solver as Dirichlet boundary conditions.
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Fig. 2. Schematic representation of the coupled SPH-VoF approach illustrate through the case of a prefilming atomizer.

One advantage of the proposed coupling method is that it can be implemented with only minor alterations to the VoF solver.
Consequently, the following description of the coupling methodology constitutes modifications of the SPH solver unless otherwise
stated.

3.1. Mass flux algorithm

Realizing a mass flux over the coupled boundary is trivial for FV methods but not for SPH. Werdelmann et al. [13] have developed
a novel permeable boundary approach that does not rely on a buffer region but instead features an algorithm for the continuous
mass flux across the boundary. Recently, Biirkle et al. [24] have employed this algorithm in a multi-resolution SPH framework
for multiphase flow. In the following, we review the algorithm including some minor modifications, particularly in regards to a
VoF-type representation of the boundary.

The total mass advected into the SPH domain over a boundary segment s in a time step ¢ — ¢ + 4r is given by

Ams = _pSAS (‘7( ° ﬁv) At (20)

with 7, as the normal vector on s pointing from SPH into VoF domain. In a VoF-type approach, the advected mass belonging to
fluid y can be expressed using the volume fraction «; , of the segment as

Ay, = —ag ,p; A (ﬂS . ?is) At . 21)
Together with the equation of state (1), the relation between density, pressure and volume fraction is determined by
Ps = asps,l + (1 - as)pS,Z . (22)

This mass flux is realized through an incremental increase or decrease of the mass of boundary particles B based on some
simple geometric considerations as illustrated in Fig. 3: Particles are considered to be d-dimensional cuboids, characterized by a
1-d

cross-sectional area A; = A, (p; +/po, J{) " parallel, and an extent of /;, = V;/ A, perpendicular to the coupled boundary. If a cuboid
is either in contact with the boundary at time 7, or if it comes into contact during the time step ¢ — ¢ + Ar due to advection with the
transport velocity 7, the particle is considered to be in the set of boundary particle B eligible for mass change. The particle mass
advected over the boundary can then be predicted from the positions X of particle i and the closest boundary segment s as

. - A
om; = —p; A, [(ﬁi-ns>At—<xs,-~nS—E'> ] (23)

The second term in the brackets is modified by the superscript (-)* = max(0, -) as it is only relevant when the particle is not in contact
with the boundary prior to advection. Note, that once a particle is in contact with the boundary, the shifting velocity component
normal the boundary is set to zero and therefore 51 - Hg = U; - H,. As a particle cannot possess a negative mass and should not have
more than the nominal mass m,, the mass change is limited to

0<m+om <my= podxd . 249
The predicted mass é6m* can be associated with a boundary segment based on their geometric overlap w;, = A":Al . As a result,
the imbalance of the prescribed mass Am and predicted mass 6m* can be evaluated for each boundary segment and ‘each fluid as
M, = Am, , — Z w; 6m; . (25)
i€y
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Fig. 3. Schematic representation of the mass flux algorithm, illustrating the steps for imposing an incremental mass change of a boundary
particle.

In order to optimize local and global mass conservation, this imbalance M , is compensated by imposing corrective mass increments
om;Y so that

M, =) om (26)
i€y
is satisfied.

In case of a negative imbalance M, , < 0, additional particle mass has to be removed. For this, the closest boundary particle
i € B with w;; > 0 is selected. If, due to the limits in Eq. (24), the imbalance cannot be compensated, we iteratively continue with
the other boundary particles with w;, > 0.

For a positive imbalance M , > 0 our approach differs slightly from Werdelmann et al. [13], as we first try to impose a corrective
mass on the furthest particle with ®,;; > 0.5. Only if the imbalance cannot be compensated through corrective mass increments on
particles with w;, > 0.5, we subsequently try the closest particle with 0.5 > w;, > 0. If after this there is still a mass imbalance over
a segment, a new particle of that mass is created, or if the imbalance is negative, it is stored for the next time iteration.

The new mass of a particle after the timestep ¢ — ¢ + Ar is then given by

t—t+At
m;”’ =ml + (sz;k + Z 5mi*s*> . (27)
s

Finally, the particle position is moved to the new barycenter of the associated cuboid through

- n .
5x; = 2p,~i4,- <5mi - gém;‘:> . (28)

This position shift ensures that a particle stays in contact with the coupled boundary until its mass reaches either zero and the
particle is deleted, or the nominal particle mass and the particle is released into the domain as it is no longer eligible for mass
change.

3.2. Determination of the boundary state

The coupling conditions of the two domains are defined through the state of two separate entities: ghost particles and boundary
segments. As there is no overlap, the SPH domain is extended by static ghost particles to provide full kernel support of the boundary.
It should be noted that this extension does not constitute an overlap, as the governing equations are not solved for these ghost
particles. Instead, their state is interpolated from the VoF solution at the beginning of every SPH time iteration. Presently, we
employ the interpolationCellPoint functionality in OpenFOAM, which linearly interpolates the flow fields at the position of every
ghost particle from the vertices of the encompassing FV cell.

After interpolating the state of the ghost particles from the VoF domain, information about the flow on both sides of the coupled
boundary is available in the SPH solver. Consequently, the state of the individual boundary segments can be determined exclusively
within the SPH solver. Far from the fluid interface dy, or in case of a continuous field ¢, the value at the boundary segments can
be approximated through Shepard-interpolation as

_ Z j ¢j1/erj
AL
For fields that are discontinuous across the fluid interface, the interpolation is additionally weighted with the volume fraction
of the boundary segment:

Zje;( as,1¢jVjVVSj + Ejé){ (1 - as,){) ¢JVJVVSJ
Yjer 6 ViWei + Zjg, (1 -0 ) ViW;

(29)

& = (30)
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Note that the ghost particles in the interface region possess a volume fraction 0 < @, , < 1 and are not exclusively associated with
either fluid. For the sake of simplicity, we assume that a ghost particle belongs to fluid y if a, , > 0.5.

In the present work, the formulation in Eq. (30) is only used for the pressure field in cases with surface tension to account for
the pressure jump, otherwise Eq. (29) is used for both pressure and velocity fields. However, in a case where different fluids exhibit
significantly differing velocity fields, the use of Eq. (30) might also be advantageous for interpolating the velocity field, for example,
if a slow moving liquid is surrounded by a fast moving gas.

In addition to the pressure and velocity fields, the coupling conditions are completed by the volume fraction. Far from the
fluid interface every discretization element, particle, cell, or boundary segment, is discretely associated with a single fluid and
consequently the volume fraction a, , is trivially either 0 or 1. However, in the vicinity of the interface additional considerations
are necessary. Here, the volume fraction in the VoF domain is non-discrete whereas SPH particles are of course associated only
with a single fluid. In order to determine the volume fraction of a boundary segment, it is therefore advantageous to differentiate
between the direction of flow given by the sign of the boundary normal velocity u, = i - i,.

If the flow is directed from SPH to VoF domain, i.e. u; | > 0, the volume fraction of a boundary segment can be approximated
as the ratio of the weights of the associated boundary particles:

o = Zje,y Djs
ey

Conversely, if the flow is directed from VoF to SPH domain, i.e. u;; < 0, the volume fraction of the boundary segment can be
approximated through constant extrapolation to match that of the neighboring upwind ghost particle g € G:

for all s € 02 with ug; > 0. 31D

ay =g, for all s € 092 with u; <0. (32)

This differentiation between in- and outflow regions is very convenient when they are clearly delineated. However, if the
boundary normal velocity oscillates around zero in the vicinity of the fluid interface, switching between Egs. (31) and (32)
indiscriminately is ill-advised. Moreover, two edge cases have to be addressed, with the first being flow parallel to the coupled
boundary, i.e. u;; = 0. The second edge cases occurs when the flow is directed from SPH to VoF domain and the predicted mass
based on particle advection is much smaller than the nominal mass flux over the boundary, i.e. u,, > 0 with }; wjdm; < Amg.
This condition can persist for a few time iterations for instance if a boundary segment s is not in contact with a boundary particle
or only associated with boundary particles j with a weight w;; < 1. In this case, the prediction of the volume fraction according
to Eq. (31) is based on insufficient information and hence not reliable. Therefore, we propose to evolve the volume fraction in an
under-relaxed formulation as

ai}m = (1-w,,) aiy}( +wg 50, (33)

The relaxation factor w, , is calculated depending on the direction of flow as

X @;50m; /p;

ifu,, >0
o  =0< Amg/p, sl < (34)
i Ml ifu,, <0
NewUchar 5L

This determination of w, ; is based on heuristic considerations: For u;; > 0, the information contained in the weights w;, is less

reliable if the particle mass advected over a boundary segment is much smaller than the nominal mass Amg, compared to a larger

ratio. Conversely, for u;; < 0, the upwind extrapolation from the VoF domain is more justified if the magnitude |u, | is large
dx

compared to some characteristic velocity, which is this work we set to Uy, = 5~ with the additional parameter 7, = 0.1. However,

this choice is not universal and may need to be adapted depending on the observed problem, e.g. for turbulent flow.

3.3. Preserving the discrete fluid interface

The procedure described in the previous section is sufficient to facilitate interface advection from SPH to VoF domain as the
fluid interface transitions from a discrete to a continuous representation. However, if the flow is reversed, the fluid interface has
to transition from a continuous representation to a discrete one. In practice, this means that particle mass of different fluids must
be created on either side of the discrete fluid interface. Therefore, a simple application of the mass flow algorithm is not sufficient
as it would cause particles of both fluids to be interspersed within the transition band 0 < a, < 1. This problem is schematically
illustrated in Fig. 4(a). A similar issue motivated the interface reconstruction scheme in the multi-resolution coupling of Ref. [24].
Unlike that work, our coupling approach does not include an overlap region, necessitating a related but distinct strategy to alleviate
the problem.

As a first measure, we add a simple interface reconstruction procedure to the mass flux algorithm, illustrated in Fig. 4(b). The
core idea is to redistribute the mass imbalance M between segments, so that particle mass is created on the correct side of the
discrete fluid interface whenever possible. As this is only relevant if additional mass is created, the reconstruction is only applied
to segments with a mass imbalance M, > 0. We know that the discrete fluid interface, represented by a, = 0.5, must intersect the
boundary between two segments k and / for which «; , > 0.5 and «; , < 0.5. Consequently, we try to redistribute the imbalance
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redistribute M,

(a) Without reconstruction (b) With reconstruction

Fig. 4. Transition from a continuous to a discrete fluid interface.

M, , of a segment s with e, , < 0.5 to the closest segment k with & , > 0.5. For the identification of this segment k we require a

smoothed gradient of the volume fraction Va approximated as

S0
Zu = Yk ﬁak,zdxd Wik a5
R 35
k
60’&1 = 2 (@0 = asy) I/J§W (36)

J
The additional smoothing is necessary to ensure that the approximated gradient is directed towards fluid y, avoiding the issue
of erroneous interface normal vectors in the periphery of the interface region [32]. The segment k is then identified as k =
arg miny, [|X; — X, || for which

Vau, . Vam,

= = 2 (7)
Ve, , Ve, I

Va, , - %,

— S s Z r]x . (38)
Ve, llxg

Preliminary tests have revealed that 5, =5, = 0.1 are suitable thresholds.

Despite this interface reconstruction, a boundary particle may be ‘trapped’ within the other fluid, if the reconstruction fails and a
particle is created within the other fluid. Moreover, even a boundary particle that has been created in the correct fluid may become
‘trapped’ if the interface is advected approximately perpendicular to the coupled boundary. In that case, it can occur that the fluid
interface crosses the coupled boundary before the boundary particle reaches the nominal particle mass. As boundary particles are
only released from the coupled boundary by the mass flux algorithm once they reach the nominal particle mass, this may result
in a particle encapsulated by the other fluid. To avoid adverse effects, these ‘trapped’ particles are identified and ‘deactivated’ as
depicted in Fig. 4(b). When a particle is deactivated, it is no longer considered in the quadratures and subsequently only advected
parallel to the coupled boundary (denoted with the subscript ||) with the transport velocity a4 = 6u” The shifting velocity 5u is
computed unilaterally, i.e. regular particles cause a shifting of the deactivated boundary particles, but not vice versa.

It should be noted, that the described mechanisms are solely intended to avoid dispersion of the fluid interface at the coupled
boundary as it transitions from VoF to SPH domain. Additional effects on the shape of the fluid interface are both unwanted and,
as demonstrated in Appendix, minimal.

3.4. Modeling of surface tension in vicinity of the coupled boundary

Both SPH and VoF employ a CSF model [20] for computing the surface tension forces in which the computation of the curvature
x is well known to be crucial [33]. In order to ensure an accurate approximation of x close to the coupled boundary, the interface
normal vector 74 is needed as an additional coupling condition, both for the ghost particles as well as the boundary segments. The
normal vector of the ghost particles 5g can be interpolated using the same linear interpolation method as for the other coupling
conditions. The normal vector of the boundary segments ﬁy can then be approximated according to Egs. (9) and (36). However,
this in itself is not sufficient and some modifications to the computation of surface tension forces are necessary on both sides of the
coupled boundary.
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3.4.1. Volume-of-fluid

Regarding the VoF domain, the interface normal vector ’i is set as a boundary condition exclusively for the approximation of
the curvature based on the RDF as described in Section 2.2. Intuitively, one might replace the value of /g with 7, on the coupled
cell faces before computing the curvature according to Eq. (19), however this can lead to very large curvature values in the cells
adjacent to the coupled boundary, compromising both stability and accuracy of the coupled simulation. A more robust approach is
to set fig = 7 at the cell centers before interpolating to the face centers and computing the curvature.

3.4.2. SPH
While the modifications to the VoF surface tension model are minor, the necessary changes in the SPH methodology are more
pronounced. Adami et al. [21] propose to compute the volume fraction gradient according to Eq. (8) with

= (vv)e (39)
In their approach, ¢; is a density-weighted factor, distributing the force so that particles of both fluids experience equal acceleration
instead of equal forces. Through this, the stability of the model is increased, allowing for a larger timestep size. However, as a
negative side effect, the location of the pressure jump is shifted towards the heavier fluid [21]. Consequently, if coupled to a VoF
solution where this shift does not occur, an inconsistent pressure field across the boundary might lead to inadmissible instabilities.
Moreover, due to mass flux algorithm, boundary particles 3 may possess a volume much smaller than the nominal volume ¥, = dx.
The interaction of particles of greatly different volumes put some additional restrictions on f7. First, the surface tension force on
a particle i € B and consequently 15 should go to zero if V; — 0. Second, the impact on the surface tension force on neighboring
particles should also go to zero if V; — 0. A formulation for the factor /7 satisfying these restrictions can be found as

(VI.2 + ij) ¢y ifi.j&B,
I =y2vie; ifieBAj¢DB, (40)
WAV Ve, ifjeB.
Crucially, all three cases in Eq. (40) give identical results for V; =V, = I,
The factor c;; serves to evenly distribute the forces between particles belonging to different fluids. Considering that only ghost
particles can exhibit a volume fraction 0 < « < 1, a formulation for ¢;; can be found as

Cij = [ai,x (1- @)+ (1= t)() @j, }(] m (41
It should be noted that with the equal forces, the time step criterion (17) has to be strictly adhered to. Compared to the original
formulation by Adami et al. [21], in which the criterion can be relaxed for non-unity density ratios between fluids, this can result
in smaller time steps and hence higher computational cost.
Egs. (40) and (41) are sufficient to close the surface tension model (7)—(10), but preliminary tests have shown that additional
smoothing of both 7 and « is advisable near the boundary, as it reduces destabilizing perturbations due to errors in the surface
tension computation. Therefore, x; and %,- are replaced for particles with ||X; — 02| < H by

- X VW

i, = for all j with |[Va;|| >0, (42)
7 ’
KV W .
g = 25wy for all j with [|Va;|| > 0. (43)
2z ViWi

Despite these modifications, some local deviations in the curvature approximation of neighboring particles due to particle disorder
remain unavoidable. These deviations result in pressure fluctuations and, consequently, locally high pressure gradients. As the level
of particle disorder is generally higher in the vicinity of the coupled boundary, the shifting velocity is also elevated in that region.
When these phenomena concur, the shifting correction term in the continuity Eq. (3) may induce instabilities. To mitigate this risk,
we omit the term for particles located within a distance of ||X; — d€2|| < H from the coupled boundary.

3.5. Temporal coupling

In general, the two solvers use different time integration schemes with different stability regimes. While the SPH solver performs
explicit time integration, the VoF solver uses an implicit scheme. Consequently, while the state of the ghost particles X !’; is simply
interpolated at the beginning of each SPH time iteration, the state of the boundary segments X +4 must be known prior to the VoF
step t — ¢ + Ar. Presently, this is handled through a consecutive solution of SPH and VoF equations with identical time steps, as
illustrated in Fig. 5. The development of a simultaneous solution algorithm with different time step sizes is left for future work.
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Fig. 5. Temporal coupling scheme.

4. Validation

The proposed coupling approach is validated against a series of benchmark cases, comparing it with both uncoupled SPH and
FV simulations, as well as analytical solutions if available. From case to case, additional phenomena are included, starting with the
single-phase Taylor-Green vortex in Section 4.1. Interfacial flows are first considered in the Kelvin—-Helmholtz instability test case
in Section 4.2 and extended to fluids of moderately different densities with the Rayleigh-Taylor instability in Section 4.3. Finally,
the handling of surface tension effects as well as large density ratios are investigated through the advection of an oscillating droplet
in Section 4.4. It should be noted that the domain decomposition, i.e. the location of the coupled boundaries, is selected to evaluate
the coupling method in challenging configurations and not representative of a realistic application.

4.1. Taylor-Green vortex

Following Oger et al. [15], the Taylor-Green vortex is initialized in a square domain with x € [0, L] and y € [0, L]. The analytical
solution for incompressible flow is given by

uy = sin(2zx*) cos(2zy*) exp (—87r2t*/Re) s (44)
uy = — cos(2zx*) sin(2zy*) exp (—87°t* /Re) , (45)
Pt = % [cos(dzx*) + cos(4my*)] exp (—167%t* /Re) . (46)

The kinematic viscosity v is chosen to result in the Reynolds number of Re = LU/v = 100, with the characteristic velocity
U = max(||i(t = 0)|]). The initial Mach number and barotropic exponent are Ma = U /c = 0.1 and y = 7 and the shifting parameter
is set to € = 0.5. The coupled boundaries are placed horizontally at y, = A—llL and y, = %L with the FV domain £y, encompassing
YEy»l

The resulting vortex decay is visualized in Fig. 6 through the distribution of the velocity magnitude ||u||/U of two coupled
simulations at three different non-dimensional times tU /L. In both simulations, the FV domain Qgy is discretized with a cell size
of Ax = L/100, whereas the SPH domain is discretized with a mean particle spacing of dx = L/100 in Fig. 6(a) and dx = L/400 in
Fig. 6(b). Qualitatively, both simulations exhibit the expected behavior, with the stable vortices decaying at a very similar rate.

This observation holds true for the relative pressure distribution displayed in Fig. 7. Note, that in order to circumvent the pressure
drift due to errors in the total volume (see e.g. Sun et al. [34]) we display the relative pressure p—p instead of the absolute pressure
p-

Quantitatively, the results can be analyzed more closely through the distribution of the velocity error £, = || — u*||/U in Fig. 8
Again, both simulations show very similar results with the largest error at U /L = 0.1 which then gradually decreases. The higher
resolution of the SPH domain in Fig. 8(b) leads to a comparable decrease of the £, error. Crucially, the largest errors occur in
regions of higher particle anisotropy in the SPH domain and not at the coupled boundary. It can therefore be concluded that the
accuracy is not limited by the coupling between the domains.

Additional insight can be gained through the divergence of the velocity field depicted in Fig. 9. Here, small disturbances near
the coupled boundary are evident for all time instances. However, as the disturbances are both reduced through an increase in
resolution as well as localized without apparent impact far from the coupled boundary, these disturbances are not deemed to be
critical.

The total, kinetic and elastic energy in the system, E,, Ey;, and E,, evaluated as

Eyoy = Eyin + Eelast, (47)
1 - o
Eyin = 35 Z m; (id; - ;) , (48)
ieQ
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Fig. 6. Distribution of the velocity magnitude || u ||/U in the coupled simulations at different non-dimensional times U /L and for different cell
sizes Ax and mean particle distances dx with the white dashed lines indicating the coupled boundaries.

ci2 1 Pi rimt Po,i

Eelast Eelast,O iez_(zml 7 <yi 1 |:<p0’i> 1] + P 1> 5 (49)
are displayed in Fig. 10. We define Ega5g = Egast(f = 0) = 0 and evaluate the change in elastic energy according to [35].
Consequently, the initial total energy is given by Ey = Ey = Egino- As evident from Fig. 10(a), the coupled simulations are in
very good agreement with the analytical solution, while the SPH-only reference solution underpredicts the decay in kinetic energy,
likely due to the non-momentum-conserving formulation for the pressure gradient (see Eq. (5)). The elastic energy depicted in Fig.
10(b), initially decays rapidly an then converges. After the initial decay, the SPH result exhibits an increase due to the errors in total
volume conservation and associated pressure drift. The coupled results reveal a similar trend, however, they appear to converge
towards the FV solution with increasing resolution. As a result, the total energy predicted by the coupled simulations is between
that of the FV- and SPH-only simulations.

Additionally, the total mass M = ), m within the system can be analyzed to assess whether the coupling approach causes
undue errors in the conservation of mass. As evident from Fig. 11(a), the relative error ¢,, = (M — M,) /M, displays an oscillating
behavior with a marginal overall increase, both of which decrease with increasing resolution in the SPH domain. This convergence
is confirmed by Fig. 11(b), which shows the maximum relative error depending on the mean particle spacing dx for two different
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Fig. 7. Distribution of the relative pressure p — p in the coupled simulations at different non-dimensional times (U/L and for a cell size of

Ax = L/100 and different mean particle distances dx with the white dashed lines indicating the coupled boundaries.

cell sizes Ax. For the lowest resolution of dx = Ax = L/100 the maximum error is ¢,, ~ 0.015% and it is further reduced by increasing
resolution in either domain. In fact, for a cell size of Ax = L/200, the error in coupled simulation appears to converge towards the
error of a VoF-only reference solution of the same resolution, once the mean particle spacing reaches dx = L/400. It should be noted

that while the cell size and particle spacing can in principle be varied independently, we restrict their ratio to 1 <

4.2. Kelvin-Helmholtz instability

The setup of the Kelvin-Helmholtz benchmark, as illustrated in Fig. 12, is derived from Lecoanet et al. [36] with a Reynolds
number of Re = 10* and a Mach number of Ma = 0.1. The benchmark employs a periodic domain with x € [0, L] and y € [-L, L].
Initially, fluid 2 occupies the region y € [—%L, %L], while the rest of the domain is filled with fluid 1. The initial velocity components

are given by

y+ %L y- %L
u, = U|tanh — tanh -11,
a
. +35L07 - 107
u, = Asin(2zx)|exp - +exp — ||

108

(50)

(51)



M. Wicker et al.

tU/L=0.1
1.0 | E——

0 [
00 02 04 06 08 1.0

x/L

0.8

0.6

y/L

0.4

0.2

0.0 # R
00 02 04 06 08 1.0

x/L

tU/L=0.5
1'0 3 ¥

0.8

0.6

y/L

0.4

0.2

0.0 m—
00 02 04 06 08 1.0

x/L
I
107° 104
Ly

(a) de = Az = L/100

Computational Particle Mechanics 13 (2026) 97-123

tU/L=0.1

y/L
© o o o o g
o N H (=)} es] o

0.0 02 04 06 08 1.0

x/L
tU/L=0.2

y/IL

00 02 04 06 08 1.0
x/L
tU/L=0.5

y/IL

x/L
I

107° 104

Ly

(b) dz = LAz = L/400

Fig. 8. Distribution of the £, velocity error in the coupled simulations at different non-dimensional times U /L and for different cell sizes Ax
and mean particle distances dx with the white dashed lines indicating the coupled boundaries.

with the bulk flow velocity U = 1, and the parameters a = 0.05 and b = 0.2. The instability is seeded by the initial velocity
perturbation u,, with an amplitude A = 0.05. The barotropic exponent and shifting parameter are set to y = 7 and & = 0.05.

Two different domain decompositions are investigated: a horizontal configuration CI1 and a vertical configuration C2. In the
horizontal configuration C1 the coupled boundaries are located parallel to the fluid interface at y;, = iL and y, = %L, resulting in
the intersection of fluid interface and coupled boundary only in the later stages of the instability growth. In the vertical configurations
C2 the coupled boundaries are situated perpendicular to the initial fluid interface at x; = iL and x, = %L. Consequently, the fluid
interface intersects the coupled boundaries during the entire simulation.

The development of the Kelvin—-Helmholtz instability is visualized in Fig. 13 through snapshots of the fluid distribution of the
upper half of the domain from the two coupled configurations as well as VoF- and SPH-only simulations. All displayed results are
obtained with a resolution of dx = L/400 and Ax = L/200 in SPH and VoF domain, respectively. As is evident from these snapshots,
the results from the coupled simulations are in very good agreement with their uncoupled counterparts. Even though the finest
interfacial structures at the end of the simulation at :U/L = 4 are not perfectly resolved at the present resolution, there does not
appear to be a significant impact of the coupled boundaries on the growth of the instability and the interface is advected over the
domain boundary without visual disturbances.
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Fig. 9. Divergence of the velocity field V- || ull /(U/L) in the coupled simulations at different non-dimensional times U /L and for different cell
sizes Ax and mean particle distances dx.

Further insight can be gained through the plots of the fluid interface in the upper vortex core at tU/L = 2.5 in Fig. 14,
comparing coupled simulations of varying resolution with the finest uncoupled SPH and VoF solution. For configuration CI,
significant deviations from the finest SPH and VoF solutions can only be observed for coarsest resolution of Ax = dx = L/200.
The vertical configuration C2 in which the fluid interface intersects the coupled boundary during the entire simulation is evidently
more challenging, as the reference results can only be matched for a cell size of Ax = L/400. As, however, the results of both
configurations are very close to the reference results at matching resolutions, we conclude that the accuracy of the coupled approach
is not significantly impeded.

In addition to the fluid interface, the vertical velocity component u, is presented in Fig. 15 for the coarsest and finest coupled
simulations and compared to the reference solutions. There is already a good agreement at the coarsest resolutions in Figs. 15(a) and
15(c), and at the finest resolutions, deviations from the reference results are comparable to the minor differences between SPH-only
and VoF-only solutions.

Although the velocity field is well resolved in the coarser simulations, the divergence of the velocity field, depicted in Fig. 16,
reveals disturbances in the flow field. For the horizontal coupling configuration in Fig. 16(a), these are localized to the outer cell
layers of the VoF domain. In contrast, they are more pronounced on both sides of the coupled boundary in the simulation with the
vertical coupling configuration in Fig. 16(c). At the higher resolution displayed in Figs. 16(b) and 16(b) however, the disturbances
are greatly reduced, although they are still visible, particularly for the vertical coupling.
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Fig. 11. Relative error in the conservation of mass within the domain for different discretization widths.

Analogous to Section 4.1, the relative mass error ¢,, is analyzed and visualized in Fig. 17. As evident form the temporal evolution
in Fig. 17(a), the two coupling configurations exhibit significantly different behavior. For the simulations employing the horizontal
configuration C1, the error is initially very small and appears to converge with increasing resolution in the SPH domain. In the later
stages of the simulations, after the fluid interface comes into contact with the coupled boundary at tU /L ~ 3.2, an inverse trend can
be observed. Here, the increased ratio of cell size to mean particle spacing appears to cause increased error in the conservation of
mass. The same trend can be observed in the results obtained with the coupling configurations C2. As the fluid interface intersects
the coupled boundary over the entire simulated time, the increased accumulation of total mass error is evident from the start of the
simulation.

As a result, the relative error is only reliably reduced by increasing resolution in the VoF domain, as evident from Fig. 17(b). The
expected error reduction from increased resolution in the SPH domain is counteracted by the apparent negative impact of disparate
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Ax = L /200 and a mean particle spacing of dx = L/400 at three non-dimensional times U /L with dashed lines indicating the coupled boundaries.

resolution of the fluid interface. However, in general, the maximum errors are still quite low, with all but one simulation showing
errors below 0.1%.

4.3. Rayleigh-Taylor instability
The Rayleigh-Taylor instability is set up, as visualized Fig. 18, according to Shadloo et al. [37] in a rectangular domain with
x € [0,L] and y € [0,4L] with L = 1m. The domain is enclosed by walls on which no-slip boundary conditions are enforced.

Initially, the fluid interface is located at y = 2L +0.05L cos (%x) above which the domain is filled with the heavier fluid of density
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Fig. 15. Distribution of the vertical velocity component u, of coupled simulations of the Kelvin-Helmholtz instability case in the region
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Fig. 16. Divergence of the velocity field V - & of coupled simulations of the Kelvin-Helmholtz instability case in the region x/L € [0.15,0.85] and
y/L €[0.15,0.85] at tU /L = 2.5 with the red dashed line indicating the coupled boundary.
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Fig. 17. Relative error in the conservation of mass within the domain for different discretization widths.

py =1000kg/m?. The density of the lighter fluid is set to p; =500kg/m?>, resulting in an Atwood number of At = % = % The
2TP1 E

kinematic viscosity of both fluids is set to v; = v, =1 x 1073 m?/s. The instability is induced by the gravitational acceleration
g, =—0.09 m/s? and the surface tension is set ¢ = 0. Speed of sound and barotropic exponent of each fluid are set to ¢, = 7.071 m/s,
¢, = 5m/s, and y; = y, = 7. The shifting parameter is set to ¢ = 0.1. The coupled boundary between the SPH and VoF domain is
positioned below the initial fluid interface at y; = 1.8 with the VoF domain £,z encompassing y € [0, 1.8L].

Fig. 19 shows snapshots of the growth of the instability from the coupled and reference simulations with Ax = L/160 and
dx = L/240. Until the non-dimensional time 74/g/L = 6, all three simulations produce virtually identical results. In the later stages,
significant differences between SPH and VoF results can be observed at the present resolution with the SPH results exhibiting more
chaotic disturbances to the fluid interface in the lower part of the domain. Consequently, the coupled results do not perfectly match
either uncoupled simulation, although they are qualitatively closer to the VoF-only results. Overall, the coupled simulation is able
to reproduce the development of the Rayleigh-Taylor of the uncoupled simulations. The remaining differences are likely caused by
differences between SPH and VoF and not by the proposed coupling approach.

Again, we more closely compare the results of coupled simulations of varying resolutions with the reference solutions from
the finest VoF- and SPH-only simulations with Ax = L/240 and dx = L/320, respectively, through the plots of the fluid interface
in Fig. 20. At t1/g/L = 3, only the coupled simulations with Ax = L/80 in the leftmost plot show significant differences to the
reference results. All more finely resolved simulations predict a fluid interface situated between those of pure SPH and VoF. Later,
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Fig. 18. Setup of the Rayleigh-Taylor instability benchmark case.

at t\/g/_L = 4.5 the coupled results do not converge to a solution between the SPH and VoF, however, the remaining difference is
comparable to the difference between the two reference results.

In addition to the fluid distribution, the relative pressure distribution of two coupled simulations is compared to the reference
results in Fig. 21. Both simulations exhibit a smooth pressure distribution over the coupled boundary. The results also show
excellent agreement with the reference results, although there are some minor deviations for the coarser resolution in Fig. 21(a) at
t\/g/L =4.5.

Similarly to Section 4.1, we analyze the energy in the system, with the additional potential energy component E given by

Epot = Eporo = —8y Z m;y; . (52)
i€

Fig. 22 shows the temporal evolution of the energy components of the coupled simulations with a cell size of Ax = L/80 compared
with the SPH- and FV-only reference solutions. As the instability grows, the potential energy decreases and the kinetic energy
increases. Except for the lowest resolution, the coupled results match the reference result very well. Similarly to the Taylor-Green
vortex case, both coupled and SPH-only results exhibit an increase of the elastic energy in the later stages of the simulation, most
likely associated with the pressure drift due to errors in volume conservation. This error-induced increase is less pronounced with
increased resolution and the elastic energy appears to converge. Consequently, the total energy predicted by the coupled simulations
falls in the range given by SPH and VoF reference results for all but the lowest resolution.

4.4. Oscillating droplet

The handling of surface tension in the vicinity of the domain interface is tested through a modified version of a classical oscillating
droplet benchmark case (e.g. [21]). This modified case, depicted in Fig. 23, employs a rectangular channel with x € [-H, H] and
yE [—%H , %H ] and the height H = 1 m. SPH and VoF domain extend for xgpy € [-H,0] and xy.r € [0, H] respectively. A circular
droplet with the radius R = 0.2H is initially located at x, = —%H ,¥o = 0 and oscillation is induced through the prescribed initial
velocity field

2
ug _on - Xg (1 _ (v =) )exp <_L> , (53)
ro ror ro
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where U, = 15m/s and r, = 0.05H. The velocity field is only prescribed for the droplet, that is for the radial coordinate

r = \/ (x- x0)2 +(y- J’o)2 € [0, R). In addition, a frame velocity of U, = 3m/s is imposed on the entire system, causing the
advection of the droplet over the coupled boundary. The density and viscosity of the droplet and surrounding fluid are set to
pg =lkg/m?, p, =1x10"3kg/m?, v, =0.02m?/s and v,, =0.2m?/s. The surface tension is varied between 0.4N/m < ¢ < 1.2N/m.
The speed of sound of the droplet fluid ¢, is set to ensure that the density variation due to the Laplace pressure 4p = o/R does
not exceed 0.5% and for the surrounding fluid to match ¢, = ¢, Z d 7;". The barotropic exponents are set y, = 7 and y,, = 1. The
shifting parameter is set to € = 0.1. =
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Fig. 19. Snapshots of the fluid distribution during the development of the Rayleigh-Taylor instability from the simulations with a cell size
of Ax = L/160 and a mean particle spacing of dx = L/240 at five non-dimensional times 74/g/L with the dashed line indicating the coupled
boundary.

Analogously to the previous test cases, the results of the coupled simulations with the surface tension ¢ = 0.8 N/m and resolution
dx = Ax = H/100 are displayed in Fig. 24 through snapshots of the fluid distribution from four time instances ¢, before, during and
shortly after the droplet crosses the coupled boundary. There are no evident disturbances to the droplet advection and the oscillating
movement continues.
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Fig. 20. Plots of the fluid interface of the Rayleigh-Taylor instability case in the region x € [0,L/2] and y € [1.4L,2.2L] at two different

non-dimensional times 74/g/L for cell sizes of Ax = L/80 (left), Ax = L/160 (middle) and Ax = L/240 (right) as well as varied particle spacings
dx, compared with the finest SPH and VoF simulations, with the dashed line indicating the coupled boundary.
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Fig. 21. Distribution of the relative pressure in two coupled simulations of the Rayleigh-Taylor instability case in the region x € [0, L/2] and
y € [14L,2.2L] at two different non-dimensional times 74/g/L compared with the finest SPH (dashed black lines) and VoF simulations (solid
black lines), with the red dashed line indicating the coupled boundary.

The oscillation behavior can be analyzed more closely through the vertical displacement of the barycenter of the top half in
relation to that of the entire droplet 4y = J, o, — 7, This displacement is depicted in Fig. 25 for coupled simulations of varying
resolution, compared to reference results from pure SPH and VoF computations. Before the droplet comes into contact with the
coupled boundary (indicated by the first dashed line), the coupled results are expectedly virtually identical to the SPH-only result.
Subsequently, the agreement between the coupled simulations and the SPH reference results continues to be very good, with
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Fig. 22. Temporal evolution of the energy components in the coupled simulations of the Rayleigh-Taylor instability case with a cell size of
Ax = L/80 compared to reference solutions.

TITITITT]
4
f
(]
_r_f
T

2H

Fig. 23. Setup of the oscillating droplet benchmark case.

significant differences only evident for the coarsest coupled simulation (blue line). In fact, the deviations that do occur are smaller
than those between SPH and VoF reference results. As the droplet’s oscillation is undisturbed during the advection over the coupled
boundary, we conclude that the proposed surface tension modeling in the vicinity of the coupled boundary works well.

Using the displacement Ay, we additionally extract the periodic time 7 of the droplet oscillation over the range 0.4N/m < ¢ <
1.2N/m as shown in Fig. 26. Compared to the analytical solution r,,, = 271/ R3/60, all simulations overestimate the periodic time for
small surface tension values. SPH and VoF reference results exhibit very similar periodic times, although VoF consistently predicts
marginally higher values. All coupled SPH-VoF simulations predict values within or close to the range of the reference results,
converging with increasing spatial resolution.
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Fig. 24. Snapshots from the coupled oscillating droplet advection with Ax = dx = H /100 for various times z.

5. Conclusion

In this work, we have presented a coupled SPH-FV methodology for multiphase flow, designed to exploit the individual strengths
of both methods within a patched-domain framework. Building on the approach of Werdelmann et al. [13], the proposed scheme
employs the Volume-of-Fluid (VoF) method as the multiphase representation in the FV domain and is capable of interface advection
over the coupled boundary. The method has been validated through a series of test cases that confront the coupling approach with
the relevant physical phenomena, increasing in complexity from single-phase flow to multiphase flow with large density ratios and
surface tension. To our knowledge, this is the first such method that addresses all these phenomena. It represents a significant step
towards the improved modeling of complex multiphase flows through coupling of SPH and FV methods. In future work, we intend
to extend this coupling to three-dimensional cases, develop a simultaneous solution algorithm, and apply the coupled method to
technically relevant flows such as atomization. Apart from this, a more thorough analysis of the conservation properties of the
coupled method is warranted, particularly regarding future, more complex applications, for example involving turbulence. Beyond
the presented coupling method, the particle shifting scheme and specifically the repulsive interface force (RIF) term merit further
investigation and detailed comparison with other multiphase particle shifting schemes.
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simulations of varying resolutions and compared to SPH and VOF reference result. The vertical dashed lines indicate the time during which the

droplet is in contact with the coupled boundary.
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reference result as well as theory.
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Fig. A.27. Setup of the interface advection test.
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Fig. A.28. Particle distribution in the SPH domain as result of the interface advection test for three different interface shapes compare with the
exact solution (dashed line) for different ratios of cell size and particle spacing.

Appendix. Test of the interface advection

In Section 3.3, we describe the mechanisms intended to facilitate the transition from a continuous fluid interface in the VoF
domain to a discrete fluid interface in the SPH domain. In order to validate these mechanisms, we set up an interface advection test
as displayed in Fig. A.27. The setup consists of a rectangular domain with x € [-H,H] and y € [—%H s %H 1 with a coupled boundary
at x = 0 connecting the VoF domain on the left and the SPH domain on the right. The SPH domain is discretized with a mean particle
spacing of dx = H /100 and the cell size in the VoF domain is varied in the range dx < Ax < 4dx. Using the setAlphaField utility
in OpenFOAM, different fluid interfaces are initialized in the VoF domain. A constant velocity of U, = 1 is imposed on the system,
resulting in a translation of the fluid interface from VoF into SPH domain. Fig. A.28 shows the fluid interface in the SPH domain
at tU/H represented by the particle distribution. For a ratio of Ax/dx = 1, the numerical results match the exact results very well
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for all tested interface shapes. With an increasing ratio, the numerical results deviate from the exact solution as the fluid interface
appears to be shifted marginally in positive x-direction. Nevertheless, the shape of the interface remains well preserved and there
is no visible interspersion of particles of different fluids.

Data availability

Data will be made available on request.
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