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Abstract

Accurate characterization of hemodynamic flows is essential for diagnosing and treating
cardiovascular pathologies such as mitral regurgitation. While 4D Flow MRI provides
volumetric data with limited resolution, Computational Fluid Dynamics (CFD) offers
high fidelity but incurs significant computational costs. This thesis addresses the gap
between these methods by developing machine learning frameworks to reconstruct transient
volumetric (4D) flow fields from sparse experimental observations obtainable in an in-vitro
setting. The primary goal is to solve the ill-posed problem of inferring full 4D hemodynamics
using limited inputs: time-resolved pressure boundary conditions and planar velocity slices
from two-component 2D Particle Image Velocimetry (2D2C PIV). The study evaluates
two architectural strategies: instance-specific Physics-Informed Neural Networks (PINNs)
and generalized Deep Operator Networks (DeepONets). Synthetic ground truth data
was generated using Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations
of a hemodynamic simulator with various mitral regurgitation orifice phantoms. Two
simplified datasets, representing steady-state and transient 2D channel flows, were used
for hierarchical model development. The study compares purely data-driven models,
physics-augmented models using RANS loss functions, and a hybrid “test-time-adaptation”
strategy where a pre-trained DeepONet is fine-tuned on sparse target observations.

The PINN approach consistently failed to resolve the ill-posed reconstruction problem,
struggling with flow topology and temporal evolution across all complexity levels. In
contrast, the DeepONet framework successfully leveraged training distributions to act as
a robust surrogate. The hybrid training strategy proved critical, significantly reducing
error for out-of-distribution steady-state cases. In transient 3D applications, the hybrid
DeepONet significantly outperformed PINNs, achieving physically plausible reconstructions
and correcting jet trajectories for unseen geometries. However, fine-tuning improvements
remained spatially localized to the supervision window, where they are least needed due to
the availability of measurement data, and led to disjointed volumetric artifacts. Eventually,
the hybrid DeepONet framework has been established as a superior and computationally
efficient method for reconstructing 4D hemodynamics from sparse data. While significant
challenges regarding volumetric coherence remain to be solved, the approach offers a
promising pathway for reduced-cost, high-fidelity flow analysis in cardiovascular geometries.
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Kurzfassung

Die prézise Charakterisierung himodynamischer Stromungen ist fiir die Diagnose und
Behandlung kardiovaskuldrer Pathologien wie der Mitralklappeninsuffizienz unerlésslich.
Wiéhrend 4D-Flow-MRI volumetrische Daten mit begrenzter Auflésung liefert, bietet die
numerische Stromungsmechanik (CFD) eine hohe Genauigkeit, verursacht jedoch erhebliche
Rechenkosten. Diese Arbeit adressiert die Liicke zwischen diesen Methoden durch die
Entwicklung von Frameworks fiir maschinelles Lernen, um transiente volumetrische (4D)
Stromungsfelder aus spérlichen experimentellen Beobachtungen zu rekonstruieren, die in
einer In-vitro-Umgebung gewonnen werden kénnen. Das primére Ziel besteht in der Losung
des schlecht gestellten Problems, die vollstdndige 4D-Hamodynamik unter Verwendung
begrenzter Eingangsdaten abzuleiten: zeitaufgeloste Druckrandbedingungen und planare
Geschwindigkeitsfelder aus der zwei-Komponenten 2D Particle-Image-Velocimetry (2D2C
PIV). Die Arbeit evaluiert zwei Architekturstrategien: instanzspezifische physik-informierte
neuronale Netze (PINNs) und generalisierte Deep Operator Networks (DeepONets). Syn-
thetische Referenzdaten wurden mittels instationdrer Reynolds-gemittelter Navier-Stokes-
Simulationen (URANS) eines himodynamischen Simulators mit verschiedenen Phantomen
fiir Mitralinsuffizienz-Offnungen generiert. Zwei vereinfachte Datensiitze, die stationire
und transiente 2D-Kanalstromungen représentieren, dienten der hierarchischen Modellen-
twicklung. Die Studie vergleicht rein datengetriebene Modelle, physik-erweiterte Modelle
mit RANS-Verlustfunktionen und eine hybride ,, Test-Time-Adaptation“-Strategie, bei der
ein vortrainiertes DeepONet anhand sparlicher Zielbeobachtungen feinjustiert wird.

Der PINN-Ansatz scheiterte konsistent an der Losung des schlecht gestellten Rekonstruk-
tionsproblems und wies Schwierigkeiten bei der Strémungstopologie sowie der zeitlichen
Entwicklung iiber alle Komplexitdtsstufen hinweg auf. Im Gegensatz dazu nutzte das
DeepONet-Framework erfolgreich Trainingsverteilungen, um als robustes Surrogatmodell
zu fungieren. Die hybride Trainingsstrategie erwies sich als entscheidend und reduzierte
den Fehler bei stationdren Féllen auflerhalb der Trainingsverteilung erheblich. In tran-
sienten 3D-Anwendungen iibertraf das hybride DeepONet die PINNs deutlich, erreichte
physikalisch plausible Rekonstruktionen und korrigierte Strahlverldufe bei unbekannten Ge-
ometrien. Die Verbesserungen durch die Feinabstimmung blieben jedoch rédumlich auf das
Uberwachungsfenster begrenzt, in dem sie aufgrund der verfiigbaren Messdaten am wenig-
sten benotigt werden, und fithrten zu unzusammenhéngenden volumetrischen Artefakten.
Letztlich hat sich das hybride DeepONet-Framework als eine {iberlegene und recheneffiziente
Methode zur Rekonstruktion der 4D-Hadmodynamik aus spérlichen Daten etabliert. Ob-
wohl noch erhebliche Herausforderungen hinsichtlich der volumetrischen Kohérenz zu 16sen
sind, bietet der Ansatz einen vielversprechenden Weg fiir eine kosteneffiziente, hochgenaue
Stromungsanalyse in kardiovaskulédren Geometrien.
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1. Introduction

1.1. Motivation

Mitral regurgitation (MR) is a prevalent cardiovascular condition in which the mitral valve
(MV) fails to close adequately during systole, causing retrograde blood flow from the left
ventricle (LV) back into the left atrium (LA). MR generally progresses and causes the heart
to compensate for the increasing regurgitant volume, which results in poor outcomes when
the condition becomes severe. Quantification of MR severity, along with the determination
of its cause and mechanism, is the basis for clinical decision-making for MR treatment [12,
24, 64).

A hemodynamic simulator developed at the University Hospital Heidelberg by Karl et al.
in cooperation with Karlsruhe Institute of Technology (KIT) provides avenues for clinician
training, patient-specific planning, and fundamental research related to the condition [27, 28].
Motivating factors for this effort are the limitations of current diagnostic methods such as
Transesophageal Echocardiography (TEE), resulting in an underestimation of MR severity
and operator variability. Two-component 2D Particle Image Velocimetry (2D2C PIV)
measurements were conducted within the hemodynamic simulator to enhance comprehension
of flow dynamics in MR. PIV was used to quantitatively assess the accuracy of clinical
diagnostic methods and to capture the pulsatile flow patterns with high spatiotemporal
resolution. This enables the discovery of connections between heart pathologies and the
dynamics of the flow, such as the size, shape, and direction of the regurgitation jet that
forms from the retrograde flow across different leaky valves [27, 28, 29, 43].

Since the PIV measurements are limited to fluid velocity components in optically accessible
areas that are recorded one plane at a time, transient computational fluid dynamics (CFD)
simulations of the hemodynamic simulator were conducted to gain insights into other flow
quantities and parts of the domain that cannot be captured via PIV. The simulations use
unsteady Reynolds-averaged Navier-Stokes (URANS) equations for turbulence modeling.
This produced a small CFD dataset encompassing various MV geometries and boundary
conditions (BCs), thereby facilitating the exploration of machine learning (ML) techniques
with CFD ground truth data for validation.

Both Physics-Informed Neural Networks (PINNs) and Deep Operator Networks (Deep-
ONets, DONSs) are appealing approaches as they work with sparse datasets. They can
be combined into Physics-Informed Deep Operator Networks (PI-DeepONets). By incor-
porating the underlying physical equations, physics-informed techniques may generally
achieve improved accuracy compared to purely data-driven training and even avoid data
supervision completely (self-supervised) [1, 18, 37].

1.2. Objective

The goal of this thesis is to explore PINNs and DeepONets to model the pulsatile flow
phenomena related to MR, investigating the ability to overcome the following challenges of
research in the hemodynamic simulator:
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1. The PIV measurements are limited to a confined area or volume visible through
windows in the simulator. The simulator’s design requirements prevent the arbitrary
placement of these optical access points, restricting the possible coverage.

2. Acquiring a high-resolution three-dimensional (3D) velocity distribution proves time-
consuming with the 2D2C PIV method employed in the present recordings, as it
necessitates the sequential recording of multiple two-dimensional (2D) planes to
resolve the third dimension.

3. CFD offers a powerful tool for detailed blood flow simulation but can be compu-
tationally intensive, particularly for patient-specific models or extensive parameter
studies.

Therefore, using the CFD dataset, artificial neural networks (ANNs) are developed to
output the full 3D transient (4D) flow quantities based on observable information of the
simulator known before and measured during experiments, such as the geometry of the
simulator and MV, the pressure values in the LV and LA and the spatially constrained
PIV recordings.

The PINNs are designed as physics-driven surrogates, given the governing equations and
aforementioned BCs during training for a single flow configuration. The DeepONets include
training data of multiple configurations, making them primarily data-driven surrogates
with fast inference. However, the inclusion of those BCs and governing equations for the
unseen validation case is also discussed, creating a hybrid approach. This distinction is
elaborated in the Methodology Section 2.2.

The thesis proceeds in successive stages:

1. Initially, the previously developed 3D URANS CFD simulations of the hemodynamic
simulator are established and validated against available experimental data.

2. The CFD setup is reduced to a 2D channel configuration with a vertical orifice,
resulting in two larger datasets representing steady-state (RANS) and transient
(URANS) regurgitant jets thanks to the reduced cost of a single configuration.

3. Based on these three datasets, PINNs and (hybrid) DeepONets are implemented in
order of increasing CFD simulation complexity and validated against data excluded
from the training datasets.

4. The resulting framework is validated against available experimental PIV data from the
KIT /Heidelberg hemodynamic simulator to investigate its feasibility for reduced-cost,
physics-consistent modeling.

1.3. State of the Art

ML has rapidly become integral across diverse aspects of valvular heart disease research and
care, being applied to diagnosis, disease severity assessment, procedural planning, outcome
prediction, and fundamental methods [40]. This includes data-driven and physics-driven
surrogates for CFD modeling, for which various methods have been proposed [56].

For instance, Pajaziti et al. utilized purely data-driven deep ANNs, trained on 3,000 CFD
simulations derived from a statistical shape model of patient aortas, to accurately predict
3D pressure and velocity flow fields based on aorta shape input, achieving considerable
speedup over conventional CFD [46]. Deep learning is also being used to improve 4D Flow
Magnetic Resonance Imaging by overcoming limitations related to noise, acquisition time
trade-offs and low spatiotemporal resolution [5, 7, 14], and for MR severity quantification
on a 4-step ordinal scale based on echo-cardiograms [35, 40].
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1.3.1. Physics-Informed Neural Networks

PINNS, as first coined by Raissi et al. [50], can solve ill-posed problems and also address
the challenges of high data collection costs and limited generalization or robustness of
data-driven models. This is achieved by incorporating the residuals of the governing
physical laws on collocation points, described by the Navier-Stokes equations (NSE) in the
case of CFD, into the ANN’s loss function during training. Vanilla PINNs use a standard
Multilayer Perceptron (MLP) architecture [1, 4, 50, 56].

Cai et al. show how PINNs can be used to reconstruct transient 3D flow fields when
given just a few planes of two-dimensional, two-component velocity observations [4], which
are analogous to the PIV measurements in the hemodynamic simulator. Other authors
discussed several methodologies for incorporating turbulence models into PINNs, including
the utilization of established two-equation models, or simpler approaches such as the mixing
length model and treating the turbulence closure parameters directly as outputs of the
neural network [10, 16, 19, 47, 62]. Ur Rehman et al. demonstrate an application of PINNs
coupled with the RANS equations for pulsatile aortic flow in Marfan-syndrome aneurysms
[54]. Their network predicts velocity, pressure, and wall-shear-stress fields while minimizing
a composite loss combining partial differential equation (PDE) residuals and data-loss
terms based on CFD reference. The CFD supervision is applied at randomly sampled
spatiotemporal points across the 4D domain, providing volumetric guidance.

For MR specifically, Ling et al. proposed using both a self-supervised PINNs and a physics-
guided supervised network as alternatives to traditional 2D flow mapping algorithms,
demonstrating comparable performance in reconstructing intraventricular flow [34]. Maidu
et al. also focused on 2D flow, but developed a PINN framework that incorporates the
NSE to not only reconstruct velocity but also to derive fluctuating pressure fields and
achieve temporal super-resolution, inferring flow at time points without Doppler data [38].
Wong et al. advanced this to 3D, using a Coupled Sequential Frame PINN to reconstruct
3D velocity and pressure fields from 3D color Doppler, showing that their time-marching
approach could accurately capture detailed hemodynamics even from sparse and noisy data
[60].

1.3.2. Deep Operator Networks

While there are also parametrized PINNs that can infer solutions for different conditions
as prescribed via additional network inputs rather than requiring training an ANN for
each one [9, 15], operator networks have emerged to address this use-case of fast inference
for many configurations. Operator networks learn the mapping between input functions
and output functions, for example, between discretized BCs and the flow field inside the
domain. Among the proposed frameworks, DeepONets are particularly flexible, as they can
handle input functions defined on unstructured data. Their strong inductive bias is realized
through a split trunk-branch architecture that separates the input function (branch) from
the inference coordinate inputs (trunk). This provides robustness, ensures consistency when
calculating partial derivatives, which simplifies integrating physics-informed constraints,
and is supported by the universal approximation theorem for operators. DeepONets are
notably data-efficient, capable of learning from sparse datasets where other models may
require dense grids. PI-DeepONets further enhance this, achieving high accuracy with
fewer or even zero paired training samples. DeepONets generalize well to unseen data from
the same distribution; their error can grow exponentially for out-of-distribution inputs,
which may require further, albeit light, training [18, 30, 37, 56, 57].

Recent works have successfully established DeepONets as a viable tool for hemodynamic
modeling in one-dimensional space. For instance, Hong et al. demonstrated the ability to
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map an input flow rate waveform directly to an output pressure waveform [20]. Li et al.
showed that the framework can learn the complex operator linking abstract physiological
signals like electrocardiograms and photoplethysmograms to complete blood pressure and
flow dynamics, highlighting its potential for cuffless blood pressure estimation [31].

Applying these principles to full-field hemodynamics, Cruz-Gonzéalez et al. developed a
multi-input PI-DeepONet to predict steady-state 3D velocity and pressure fields in an
abdominal aortic aneurysm [6]. In their work, the operator learns to map the system’s
boundary conditions, namely the inlet velocity and outlet pressure, to the complete internal
flow field. This demonstrates the framework’s capability to act as a surrogate for solving
the forward problem governed by the NSE. The authors’ comparative analysis highlights
a key trade-off: incorporating physical laws consistently improves model accuracy at the
cost of increased training time. A PINN, for instance, was more accurate but five times
slower to train than a standard deep ANN, with a similar trend observed between the
PI-DeepONet and its data-driven counterpart. The authors tested how sparse supervised
data, configured as randomly scattered points or cross-sectional or longitudinal 2D slices,
impacts model performance. They found that a random distribution of data consistently
yielded the highest accuracy for both PINNs and DeepONets. Crucially, their results imply
that when supervised data is well-distributed, the additional constraint from the physics
loss is less critical than when the data is highly localized and less representative of the
overall field. While the paper does not directly compare PINN against DeepONet results,
it positions them for distinct use cases: PINNs are applied to solve a single simulation
instance, while DeepONets learn a parametric operator capable of solving for new BCs
without retraining.

To bridge the gap between simulation and clinical reality, Velikorodny et al. introduced a
multifidelity DeepONet that combines many low-fidelity CFD simulations with a smaller set
of high-fidelity in-vitro experimental measurements [55]. Their work highlights a pathway
for leveraging sparse but accurate physical data to anchor and improve models primarily
trained on simulations. To the best of the author’s knowledge, there are no publications
documenting the application of DeepONets to transvalvular blood flow, making this thesis
a novel contribution.

In anticipation of the detailed discussion presented in Section 2.2, the input function to
the DeepONet in this work is defined as the PIV measurement, representing a spatially
masked 2D subset of the target output field. A limitation of using a standard MLP for
the input function network is that the 2D input fields must be flattened into a 1D vector.
This process inherently discards spatial information. To address this, Mei et al. proposed a
Fully Convolutional DeepONet (FC-DeepONet) for predicting seismic travel-time fields
while preserving spatial relationships of the input [41]. Bai et al. employed a convolutional
branch network to predict the temporal evolution of unsteady flow by taking a sequence
of 2D velocity and pressure fields as input [2]. To effectively capture long-range spatial
dependencies across the entire flow field, identified as critical for accurate, stable long-term
predictions, they augmented their architecture with a self-attention mechanism.

As for the hybrid training step mentioned in the Objective Section 1.2, several authors
investigate the application of a two-step, hybrid approach that combines the strengths
of data-driven operators and physics-informed methods. This paradigm is referred to
as “pre-train and fine-tune” or “Test-Time Adaptation” (TTA). The core idea is to first
pre-train a general operator network, such as a DeepONet, on a training dataset to capture
the fundamental dynamics of the system across different configurations. In a second step,
before inferring the results for a new, unseen validation case, this pre-trained network is
rapidly fine-tuned using information specific to that new case. This adaptation step makes
the model more accurate and robust, especially for out-of-distribution inputs [33, 66].
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Several recent works have focused on using the governing PDEs as the source of information
for this fine-tuning step. The Physics-Informed Neural Operator (PINO) framework
proposed by Li et al. formalizes this with an “instance-wise fine-tuning” phase [32]. Similarly,
Zhang et al. demonstrate this concept as “zero-shot fine-tuning”, where a pre-trained model
is adapted to new tasks using physics-informed losses, highlighting that a good initialization
from pre-training enables rapid adaptation with minimal data [65]. To make this process
computationally efficient, Wu proposes an approach that freezes the majority of the pre-
trained DeepONet and fine-tunes only a small fraction of the parameters (FTO-PINN),
accelerating the adaptation process while maintaining high fidelity [61].

Alternatively, sparse observations, analogous to the PIV measurements in the hemodynamic
simulator, can guide the fine-tuning. Addressing the more complex challenge of conditional
shift, where the relationship between inputs and outputs changes between training and
testing, Goswami et al. introduce a sophisticated hybrid loss function [17]. Their method
combines a standard regression loss on the few available labeled target samples, sparse
observations, with a loss term that minimizes the statistical distance between the model’s
predictions and the unlabeled target data, allowing the model to adapt effectively to a new
domain with very limited information. The work by Zhu et al. proposes and evaluates
methods to reliably fine-tune a pre-trained DeepONet when either the governing PDEs
or sparse new observations are available for a new, unseen input [66]. They analyze the
extrapolation behavior of DeepONets and demonstrate that both types of case-specific
information can substantially improve prediction accuracy for out-of-distribution inputs.



2. Methodology

2.1. Computational Fluid Dynamics

All CFD simulations are conducted in the commercial software Simcenter STAR-CCM+
v2406 (19.04.009). The fluid properties are prescribed to match the 30 vol% glycerol 70 vol%
water mixture used in the simulator by Karl et al. [27, 28]. Matching the assumptions
of their work, the fluid is modeled as an incompressible Newtonian fluid. At 20°C
the density and dynamic viscosity amount to constant values of p = 1086.0kg/m? and
p = 2.9961-10"3Pas [59]. The available segregated flow solver of second order is used
for the mass and momentum balance. It solves the balance equations sequentially and
utilizes a SIMPLE algorithm. The under-relaxation is set to 0.8 and 0.2 for velocity and
pressure, respectively. These are conservative values that ensure convergence in most cases
[52]. In the transient cases, the implicit unsteady scheme is used with a maximum CFL
number of 0.5 that is maintained for second-order methods through adaptive time steps.
The calculation moves to the subsequent time step once an asymptotic criterion based on
the orifice mass flow is met. This criterion ensures the mass flow has stabilized within a
specified relative range before the simulation advances, using a time delta that satisfies the
CFL condition.

In all simulations, the (U)RANS approach is followed, which describes the flow by solving
for its time-averaged fields rather than time-dependent instantaneous fields with chaotic
fluctuations in turbulent cases. This method is practical for technical applications and
parameter studies because it is associated with drastically less numerical effort than scale-
resolving simulations like Direct Numerical Simulations (DNS) or Large Eddy Simulations
(LES) at the cost of accuracy. The time-averaging process introduces unknown terms on
the NSE, the Reynolds stresses Titj?‘rb, that require additional turbulence models to close the
system of equations. For incompressible flow, the governing equations take the following
form [8]:

_ _ — urb —
%z’ n 0 (uzuj) _ 1 ap qui B 87—;]' and %

- __- = 2.1
ot Ox;j p@xi+yaxj8xj Ox;j Ox; 0 (2.1)

In the steady RANS equations, the first time-derivative term is simply equal to zero. The
overline [J denotes the time-averaged value and stems from the Reynolds decomposition.
In the unsteady URANS case, ; and P remain time dependent. For simplicity, this overline
is omitted in the rest of this work. The Menter k-w-SST-model [42] is chosen as a robust
and inexpensive two-equation turbulence model with adaptive wall-modeling capability.
The STAR-CCM-+ user guide contains details of these implementations [52]. Initially, a
fully wall-resolved DNS was pursued; however, maintaining the CFL in the cells near the
orifice wall during high jet velocities proved costly. Additionally, the experimental PIV
data used for validation consists of phase-averaged images to reduce noise and capture
the cyclic-steady state [29, 43], a theoretical similarity to URANS. Readers interested in
a more detailed discussion of CFD theory and turbulence modeling are directed to the
fundamental works by Ferziger et al. [13] and Pope [48].
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Figure 2.1.: Hemodynamic simulator schematic (a) and photograph of PIV setup (b). [29]
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Figure 2.2.: MROP shapes with height and width markers. Adapted from [29].

2.1.1. 3D-Transient Hemodynamic Simulator

The hemodynamic simulator and its CFD simulation, referred to as “3D-Transient”, are
discussed first since the simplified setups, particularly the BCs and geometry in the channel
geometry, are derived from here. Please refer to the development studies by Karl et al. [27,
28] and the flow analyses by Leister et al. [29, 43] for information extending beyond the
following discussion. Additionally, the ViVitro Labs Inc. cardiac piston pump’s function
is described in a collection of user manuals [21, 22, 23]. The reader is referred to the
corresponding publications for further details.

2.1.1.1. Setup

The simulator test rig for PIV measurements is depicted in Figure 2.1. Between the LV
and LA, a so called Mitral Regurgitation Orifice Phantom (MROP) is installed. MROPs
are fixed orifices, manufactured from a 0.5 mm thin PVC film, replicating the insufficient
closure of the MV during mid-systole. They are created in various generic shapes (Pinhole,
Slot, Drop) and severity sizes (S, M, L) as shown in Figure 2.2. Their purpose is to create
reproducible regurgitation jets and to assess the impact of different orifice shapes on them.
The main downside is that MROPs simulate only a fixed orifice state, as they cannot
open and close like a natural MV. This necessitates removing the aortic valve in the heart
simulator setup to allow for left ventricle refill more easily during diastole.

Table 2.1.: MROP dimensions for CFD simulations, based on [29]. For eccentric configura-
tion, the values describe the oval that is created on the flat surface as a result
of the angle.

Orifice PinholeS PinholeM  PinholeL SlotS SlotM SlotL
h X w in mm 4.7 8.7 12.2 3.3x11.1 45x140 7.3x229
Orifice DropS DropM DropLL DropXL SlotL-Bent EccJet
hxwinmm | 43x97 65x13.7 9.0x19.8 13.0x27.6 7.3x229 8.0 x10.0
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Figure 2.3.: Hemoydynamic simulator geometry. (a) Cut open CAD model, (b) meshed
internal fluid domain, (c) mesh slices, (d) magnified PinholeL orifice mesh.

The thin polymer is flexible and temporarily deforms into a spherical dome due to the
pressure difference between the LV and LA. This dynamic is not modeled in CFD due to
the stability impact of Fluid Structure Interaction (FSI) on the solver. Instead, the foil
is considered a regular, rigid wall. To assess the impact of this, an additional simulation
with the maximum spherical deformation during systole as the rigid wall is completed for
the largest slot geometry. Additionally, a fourth, extra-large size for the drop geometry
was computed. Finally, a 12mm thick 3D-printed MROP incorporating an eccentric
circular through-hole with a diameter of 8 mm is analyzed. The hole’s axis is tilted 37.5°
relative to the surface normal of the MROP, which is the jet direction in all previous
cases. This produces a tubular passage that exits the opposite side, which faces the LV
interior off-center. The thickness allows the flow to evolve, exiting into the LA from the
same location as the thin MROPs. The orifice dimensions of all 12 3D-Transient CFD
configurations are listed in Table 2.1. Of those, DropXL and SlotL-Bent are selected for
the ML validation dataset, enabling the assessment of out-of-distribution or “extrapolation”
cases. Note that, contrary to what Figure 2.1(a) displays and Figure 2.2 suggests, the
shapes are actually aligned vertically in the PIV and therefore CFD data.

The 3D model for the internal fluid domain is derived from the CAD model of the
hemodynamic simulator, which is shown in Figure 2.3(a) and (b). It is simplified in a
few noncritical locations and meshed in STAR-CCM+ using a polyhedral mesher with a
single prism-layer on wall surfaces. Localized mesh refinements are employed to optimize
the trade-off between spatial resolution and computational expense, prioritizing higher
cell densities in regions of interest and areas characterized by high velocity magnitudes or
steep flow gradients. This is displayed in Figure 2.3(b) to (d). The reservoir above the LA
and the cylinder connecting the LV to the pump are meshed more coarsely since they are
not regions of primary interest and low flow velocities are expected. Meanwhile, the aorta
connecting the LV to the reservoir has a finer mesh to accommodate the small diameter of
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Figure 2.4.: Cardiac pump displacement (blue) and flow rate (green) for PinholeL.

the tubes, and the cylindrical zones in the LV and LA where jets form due to the orifice
are locally refined to resolve this flow feature accurately. Additional refinement is applied
around the opening to support accurate flow development near the sharp geometry. A mesh
independence study has been carried out and is described in the Appendix A.1. Based on
the study, each mesh for the different MROPs contains roughly 400,000 cells and about
2,500,000 faces. To characterize the near-wall mesh resolution relative to the boundary
layer structure, the non-dimensional wall distance y™ is defined as:

yr = (2.2)

where y is the normal distance to the wall. Consistent with the adaptive wall modeling
approach employed in this work, u* is a hybrid velocity scale. In the viscous sublayer, this
scale recovers the standard definition of the friction velocity based on the wall shear stress
(u* =~ u, = \/Tw/p); elsewhere, it blends with a turbulent scale based on kinetic energy
across the buffer and logarithmic regions. The specific proprietary formulation of this
blending is omitted here, but full implementation details are available in the STAR-CCM+
user guide [52]. The SlotL mesh, for example, includes 443,353 cells, where at each timestep,
the spatial maximum y™, meaning the highest y* value among all wall-adjacent cells at
that instant, varies between 4 and 27 on the foil wall, depending on the phase of the
periodic flow. On all other walls, the spatial maximum y* ranges between 11 and 61.

During the in-vitro experiment, physiological pressures are created by the cardiac piston
pump. The pump’s cylinder movement is controlled by a waveform, one cardiac cycle of
which is shown in Figure 2.4. All cases feature a heart rate of 80 beats per minute (BPM)
which corresponds to a period of 0.75s. For each geometry, the displacement amplitude
is adjusted until a peak ventricle pressure of 120 mmHg is reached during systole in the
experiment. Larger orifices produce lower resistance and therefore require a higher mass
flow to reach the same peak pressure. In CFD, the pump is modeled as a mass flow BC
on the fixed circular surface highlighted in red in Figure 2.3(b). For this, the waveform is
scaled to match the displacement amplitude as required in the experiment, for instance,
106.6 ml in the PinholeL case. The scaled waveform is then derived over time to obtain
the volume flow rate, also shown in Figure 2.4. This is converted to mass flow with p and
prescribed at the pump BC surface via a table interpolated by STAR-CCM+ to match
the simulation’s phase within the cycle. The reservoir is simplified as a pressure outlet,
which are the orange surfaces in Figure 2.3(b). All other surfaces are no-slip walls. The
simulations are initiated with zero values for all quantities. Therefore, at least two full
cardiac cycles need to be calculated to create a starting point for reasonable results and
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looping playback in the second one. This behavior is also shown for 2D-Transient in 2.10.
Using all cores on an AMD EPYC 7662 64-Core Processor, one cycle requires approximately
60 hours, depending on the MROP case and corresponding mesh. CFD data is exported
every 2.5ms, creating 300 discrete snapshots over a single cycle.

2.1.1.2. Validation

The quality of the 3D-Transient CFD simulations is assessed using several quantities
measured during the experiments. Firstly, the phase-resolved PIV recordings allow the
comparison of velocity fields. For the Pinholel. MROP, a snapshot of velocity magnitudes
for PIV and CFD is shown in Figure 2.5(a) and (b). The other MROPs where such PIV
data is available are PinholeL, SlotL, DropXL, and EccJet. Similar snapshots of these are
presented in A.2, including a comparison between the SlotL and SlotL-Bent results. Among
these, the velocity magnitude of the regurgitation jet tends to be overestimated by CFD,
while the shape generally agrees well. Moreover, the jet velocity usually rises earlier and
drops later than observed with PIV. PinholeL represents the best result, where the velocity
magnitude of PIV is closely matched by the URANS simulation. The accuracy of other
time-steps is approximated by the comparison of maximum velocity magnitudes plotted
over the cardiac cycle in (d) of these figures. After around 0.25s, these lines diverge due to
PIV not being able to capture the opposite jet that forms during diastole inside the LV.

For the comparisons, the phases of PIV and CFD are synced up manually, so some tolerance
for phase misalignment should be considered. This also applies to Figure 2.7, in which all
Slot MROP results are compared based on mass flow and pressure measurements. The
magnitudes of these are similar between all three sizes, since the same physiological pressure
was established as previously discussed. The aorta of the hemodynamic simulator branches
off into two rubber tubes through which the mass flow is measured ultrasonically. The
general shape and amplitudes of these measurements are matched by CFD results shown
in 2.7(a). The aorta mass flow during regurgitation in systole, seen in the negative peak, is
consistently underestimated. Pressure values are recorded in one wall location each for the
LV and LA. The ventricle pressure is shown in Figure 2.7(b). Similarly to the flow rate, the
systole pressure peak is smaller, and the diastole peak is larger for the simulation. Here,
the experimental data also shows more local extrema, but the overall trend is resolved.
Conversely, the simulation features more local extrema for the atrium pressure, as shown
in figure 2.7(c). It seems possible that the flexible pinhole foil mediates these fluctuations
in the experiment, while the stiff wall is unable to do so in the current simulation setup.

The higher velocities, lower aorta mass flow, and ventricle pressure suggest that the MROPs
create less resistance in the CFD cases. This also manifests in the overall regurgitation
volume (RVol) being consistently overestimated compared to PIV and clinical techniques, as
shown in Figure 2.6. However, the simulations follow the trend of increasing severity based
on MROP size closely. In conclusion, while there are quantifiable differences, the URANS
model is reasonably accurate and captures the key transient and topological features of
the experimental flow. Therefore, it serves as a valid proxy for the real-world physics for
the purpose of developing the ML frameworks in the subsequent chapters.
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Figure 2.5.: Comparison of instantaneous experimental PIV and CFD results for PinholeL
at t = 0.085s. A line in direction of the regurgitation jet is positioned in (a)
and (b) to probe the velocity magnitudes, starting in the center of the orifice
in the foil’s undeformed state. The values probed along them are shown in (c).
The pump BC and the resulting maximum velocity magnitudes are shown in
(d). A vertical line marks the time-step of (a) to (c).
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Figure 2.6.: Regurgitation volume (RVol) of each MROP measured by ultrasound (US)
based on three physicians and PIV with uncertainty confidence intervals.
Adapted from Leister et al. [29] to include CFD results in green.
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Figure 2.7.: Combined mass flow measured through the two aorta tubes and pressures
observed in the LV and LA in the experiment and by CFD for the three sizes
of slot MROPs. Two unit scalings are shown for each. Sizes are offset by 0.25s
to make the presentation clearer.
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Figure 2.8.: 2D-Transient mesh for exemplary half-orifice-height h displayed in the upper
half, BCs and dimensions in the lower half.
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Figure 2.9.: Velocity component in the z-direction sampled near the orifice opening and
displayed in (a) for all 45 2D-Transient cases. Pressure BCs at the inlet are
also shown in (b). Coordinates non-dimensionalized by . = 0.1 m.

2.1.2. 2D-Transient Channel

The purpose of this setup, referred to as “2D-Transient”, is to provide a dataset to train
and validate models on pulsatile flow that mimics the cardiac cycle while reducing the
complexity and associated computation cost. The domain consists of a channel with a
central orifice of varying size. By using a symmetry BC along the z-axis, only half of the
geometry needs to be modeled. The variable h describes the half-orifice-height and covers
the range h € [2.0mm, 17.5mm] in 9 steps, thereby slightly extending the minimum and
maximum 3D-Transient MROP dimensions. The geometry is meshed in STAR-CCM—+
using a polygonal mesher with a single prism-layer on wall surfaces. Again, the area around
the opening is refined to support accurate flow formation near the sharp geometry, with the
refinement area size automatically adjusted according to h. For the largest h, this results
in 3,960 cells and 11,433 faces, which is displayed in Figure 2.8. All defining dimensions
and BCs are also shown. The foil thickness ¢ is doubled to 1 mm to improve mesh quality
at the selected coarseness.

Initial tests with a prescribed mass flow waveform like in 3D-Transient showed stability
issues due to the short CFD domain. The setup was revised to use a pressure drop curve
instead. The ventricle and atrium pressure curves, analogous to 2.7(b,c), are extracted
for the PinholelL case since it is the most accurate case according to the validation of
3D-Transient. The pressure difference is calculated by subtraction and then scaled such that
the total amplitude of the pressure waveform corresponds to a selected Ap € [8kPa, 16 kPa)
value, creating 5 different ppc(t). These are displayed in Figure 2.9(b). The unscaled Ap
for PinholeL is 15.598 kPa. The outlet pressure poy is fixed at zero.

Together with the varying orifice sizes, this creates a distribution of 45 unique URANS

13
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Figure 2.10.: Maximum velocity magnitude (a) and wall y* values (b) over 7 cardiac cycles
for the 2D-Transient h = 17.5mm, Ap = 14kPa case.
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Figure 2.11.: Distribution of 2D-Transient cases with varying pressure BC ranges and
orifice heights. The highest velocity magnitude of all time-steps decides the
case’s marker color. Training set highlighted by white border.

simulations of pulsatile flow. Matching 3D-Transient, this setup assumes 80 BPM, saves
300 snapshots per case and requires multiple cardiac cycles to evolve from the zero-value
initial condition. The seventh period is used to achieve strong similarity between the start
and end. How the jet velocity and wall y for the mesh evolve is shown in Figure 2.10.

To approximate the number of available 3D-Transient cases, only 10 are included in the
ML training dataset. They are selected manually to bias towards a specific pressure
amplitude since that aspect is largely matched in the hemodynamic simulator and to
allow for validation inside and far outside the training distribution. This selection and the
resulting maximum velocity magnitudes for all cases are displayed in Figure 2.11. Figure
2.9(a) also illustrates how the temporal characteristics vary between cases, such as changes
in flow direction or differences in the timing of peak values, as well as variations in jet
velocities.

2.1.3. 2D-Steady-State Channel

This setup is a further reduction in complexity and referred to as “2D-Steady”. It establishes
a foundational test case for the ML models in a steady-state environment, isolating the
spatial challenge from temporal complexities. Largely the same domain and BCs are used
as in 2D-Transient. The inlet pressure BC is now a stationary value and so Ap refers
to the static pressure drop between the inlet and zero-pressure outlet. Furthermore, the
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Figure 2.12.: 2D-Steady mesh for exemplary half-orifice-height h displayed in upper half,
BCs and dimensions in lower half.
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Figure 2.13.: Distribution of 2D-Steady cases with varying pressure BCs and orifice heights.
The maximum velocity magnitude decides the case’s marker color. White
borders highlight the training set. The lowest, harder-to-discern parameters
are Ap = [250Pa, 500 Pa] and h = [0.5mm, 1.0mm, 1.5 mm)].

foil thickness matches 3D-Transient again at 6y = 0.5 mm, since the mesh can easily be
refined for higher resolution at little overhead. Because the locations of large velocity
gradients persist, the 2D-Steady meshes feature more heterogeneous refinement compared
to 2D-Transient. This slightly adjusted domain is shown in Figure 2.12; the specific example
mesh has 17,560 cells and 51,844 faces.

Thanks to the low computation cost, the distribution of cases is expanded to cover
h € [0.5mm, 25mm]| and Ap € [250 Pa, 24kPa] in 15 steps each, creating 225 unique
RANS results. Figure 2.13 gives an overview of the resulting regurgitation jet velocity
magnitudes. The same 10 parameter combinations are chosen as the primary training
dataset as before. Note that the Ap definition differs slightly compared to 2D-Transient,
where it means the distance between the maximum and minimum value of the waveform.
Here, it is more analogous to just the maximum value, so at the same Ap-value, the
maximum jet velocity is expected to be higher.

15



2. Methodology

2.2. Physics-Informed Machine Learning

The core of this thesis is the development and comparison of ML models to reconstruct fluid
flow fields from sparse data. Two primary approaches are investigated: Physics-Informed
Neural Networks and (Physics-Informed) Deep Operator Networks, both implemented
using the NVIDIA PhysicsNeMo Symbolic framework (v1.5.0, formerly NVIDIA Modulus
Symbolic) [45]. Readers are encouraged to consult the PhysicsNeMo Sym sub-module
documentation [44]. It introduces the theoretical foundations, provides practical examples,
and cites academic literature for the various architectures and physics-informed training
methods implemented within the framework. Note that this resource covers integrated
tools rather than a comprehensive survey of all state-of-the-art methods. While subsequent
references to individual methods cite only their original sources, they also appear in the
repository documentation. For additional background on ML theory and principal methods,
readers may consult the works by Bishop [3], James et al. [26], and Rabczuk et al. [49].

A common set of architectural and training components is used across different models.
These are now defined before going into more detail on the two approaches and finally the
exact ANNs, which are then evaluated in the following Chapters 3 and 4.

2.2.1. Shared Model Components

The foundational network for all models is a Multilayer Perceptron (MLP, feed-forward and
fully-connected) with adaptive [25] SiLU (Swish) [11] activation functions. The AdamW
optimizer [36] adjusts the models’ internal parameters, i.e. weights and biases, to minimize
the composite loss function, thereby making the output more accurate. The initial learning
rate of 0.001 is multiplied by 0.95 every 4000 steps, which represents exponential decay.
To balance the influence of the competing loss terms, Neural Tangent Kernel (NTK) based
dynamic weighting [58] is employed. The weights are updated every 100 training steps.
This method based on kernel eigenvalues has the theoretical basis for surpassing empirical
gradient-balancing approaches, which it achieved in early tests of this work. Maximum
training iterations are set for each model and training phase based on performance in initial
trial runs. This manual selection is guided by monitoring of multiple validation metrics,
focusing on optimal results and general convergence. This manual termination strategy
is chosen to prevent performance degradation from potential overfitting during excessive
training. An automated stopping criterion is currently not implemented due to the need to
balance complex performance indicators, including both quantitative scalar metrics and
qualitative visual assessments of many setups.

Among the research on turbulence modeling for PINNs mentioned in the State of the Art
Section 1.3.1, Pioch et al. compare several approaches, one of which is a simple turbulent
viscosity formulation [47]. In this setup, the turbulent viscosity v; is treated as an additional
network output rather than as the solution of a transport equation. This means no extra
PDE residuals must be included in the composite loss term, and it keeps the model simple
to implement. For instance, introducing the two additional complex PDEs for k£ and w
and properly handling wall-distance is not trivial and might affect the ANN optimization
process. Additionally, the 14 formulation allows for the inclusion of data supervision from
(U)RANS simulations for this v, output. When v, is not available or supplied as training
data, the model still enables closure of the Reynolds stresses; the weights of the ANN
are adjusted in the training process such that the predicted output quantities together
satisfy the RANS equations. The results of Pioch et al. indicate that the 14 model performs
competitively and could be a viable alternative to the traditional formulations. For these
reasons, this equation-free model is selected to address the RANS modeling of the ground
truth data.
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All physical quantities « are non-dimensionalized using a characteristic value «, before
being supplied to the ANNs for training and inference, meaning all input and output layers
use non-dimensionalized values. This step aligns the magnitudes of different quantities
and brings their largest values close to unity, which may improve convergence behavior.
For PINNSs, non-dimensionalization has been shown to result in greater consistency of
predictions, offers computational benefits, and may improve extrapolation ability [39].
Denoted by 0%, the non-dimensionalized quantity is then defined as a* = a/a.. The
characteristic values of the present application are chosen as

le=01m, t.=0.75s, u.=max(u;), p.=max(p), v¢.=max(1y) (2.3)

For example, the highest velocity component value of all CFD snapshots of 3D-Transient
defines u, for that 3D-Transient ANN. For density and fluid viscosity, the dimensionless
quantity can be set equal to one, since these quantities are assumed to be constant and
the characteristic quantity is therefore equal to the dimensioned quantity:

pe = p=1086.0kg/m>, .= p=2.9961-10"3Pas where v=pu/p (2.4)

Based on these, the following non-dimensional numbers are calculated as
_ Pe Ue e

l
Re , St=—", Eu= Lz’
e Ue e Pc U

(2.5)

which then leads to the following constant-density, variable-viscosity form of the NSE

Oui L Ouj op* 1 0 our  Ou} our
o T 0sr = " 007 T Reday [’“‘Eff (ax; - ax’fﬂ and =0 (26
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with the z, y and z-momentum equations for i € [1,2,3] and the continuity equation.
These are the PDEs which may individually be included in the composite loss terms. The
formulation retains a variable effective viscosity, peg, to account for the effects of turbulence
within the (U)RANS framework. This is achieved using the Boussinesq hypothesis, which
introduces the turbulent viscosity to model the Reynolds stresses by analogy to the
viscous stresses [48]. The non-dimensional effective viscosity is therefore the sum of the
non-dimensional fluid and turbulent viscosities:

* * U, *
pofr = 4 i = 14— v} (w3, 1) (2.7)

Ve

where v} is the non-dimensional spatial and temporal distribution of the turbulent viscosity
field predicted by the ANN. If this turbulence model is disabled or there are locally no
turbulence effects, peg simply becomes 1.

By default, PhysicsNeMo Sym uses L2 loss that computes the sum of squared errors (SSE)
between the model’s predictions ¢ and the ground truth target data y, on k discrete
points with optional pointwise weights Az:

L2 = M|k —yil® (2.8)
K

Some trained ANNs discussed in this work use spatial pointwise weighting of losses based
on wall-distance. By smoothly lowering the weights to eventually 0 on the wall, this method
prevents steep solution gradients from dominating the PDE loss function at sharp corners.
This approach may accelerate convergence and improve overall accuracy [44], but it didn’t
seem to significantly affect results here.

The outputs of the PINNs and DeepONets are differentiable with respect to their input
coordinates via automatic differentiation, allowing the inclusion of the PDE equations [18].
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By moving all parts of each of the NSE (2.6) to one side, the output target for the loss
function becomes zero. The goal is to minimize this resulting PDE residual at collocation
points, which generally are specific, often randomly sampled, coordinates in the domain
where the PDE satisfaction is promoted, not enforced. Sufficient density of collocation
points is required to avoid overfitting. Note that using SSE leads to the absolute loss
magnitude depending on the number of points k, which may affect the loss balancing of
different terms. These can be categorized in the following way:

L£(0) = wiLi(d) € {Laata, LrpE, LBC} (2.9)
=

N

{‘Ctmin7 Lval} (210)

with 6 being the internal ANN parameters and w; the effective weights assigned by the
dynamic NTK calculation. While a base weight can be assigned before the NTK process,
only very large or small values significantly sway the final effective weights. The subset
symbol C indicates that the elements making up the left-hand side loss term are part of the
right-hand side set. Each of the data, PDE and BC sets can be further qualified as either
concerning the training cases or validation cases. Thereby, Egzlta represents the sparse
observable information of the simulator known before and measured during experiments for
the otherwise unseen application (validation) case, while Efj;‘%ci; contains the full supervision
of all cases and quantities found in the CFD training dataset. Depending on the domain
dimensionality, ANN approach and training phase, loss terms from the following selection

are enabled individually for training and validation cases:

['data c {['ua ['va £W7 'Cpa Lw} (2'11)
['PDE c {['mom,x ) »Cmom,y ) Emom,z ’ »Cconti} (212)
EBC - {['noslipv [fsym} (213)

The BC group contains no-slip, meaning zero-velocity on geometry walls, and symmetry
terms for 2D-Steady and 2D-Transient:
0 0 0
0= p=t_9P_ %" (2.14)
9y oy Oy
The no-slip loss is not used with the training cases because the same zero-velocity informa-
tion is already part of the full flow field supervision.

2.2.2. PINN and DeepONet Architectures

The composition of the validation data loss term, Eéglta, is dictated by the experimental

setup of the hemodynamic simulator described in Section 2.1.1. It specifically comprises the
sparse quantities obtainable during in-vitro experiments: the phase-resolved PIV velocity
fields (u,v) restricted to the optical window, the scalar pressures (p) recorded by sensors
in the LV and LA, and potentially the mass flow rate measured ultrasonically at the aorta.
Crucially, the distinction between training and validation scopes extends to the physics
loss terms as well. L%%E denotes the residuals of the governing equations calculated for
the specific, otherwise unseen application case. This term can support the reconstruction
of the full flow field from the sparse Eéilta by promoting physical consistency across the
extensive 4D domain where experimental data is absent. Conversely, L8231 refer to the
physics losses enabled simultaneously for all training cases. These are interwoven with the
full supervision data points Egﬁig across the spatiotemporal domain, aiding the network in

learning the general solution operator during the initial training phase.
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Figure 2.14.: Schematic of PINNs used in this work. Losses concerning a single validation
case, including the constrained u, v-velocity field, supplied to solve the ill-
posed problem. All inputs and outputs are non-dimensional; notation [1* is
omitted for legibility.
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Figure 2.15.: Schematic of DeepONets used in this work. The constrained u, v-velocity field
is supplied to the branch net as flattened input for all training cases during
training and validation cases during inference of the unseen case. The same
constrained field may be included in hybrid training for partial supervision
of the observable validation case data. The branch net snapshot’s time step
is the trunk net input ¢. Branch and trunk outputs b; and ¢; are multiplied
element-wise to form e;. This output layer size of the branch and trunk is
matched to the hidden layers’ neurons per layer. All inputs and outputs are
non-dimensional; notation [J* is omitted for legibility.
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2. Methodology

The manner in which these data and physics terms are utilized constitutes the fundamental
distinction between the two machine learning approaches investigated in this work:

In the PINN approach, the model functions as a physics-driven surrogate dedicated to a
single flow configuration. Here, the problem is severely ill-posed due to the sparsity of
the experimental observations. The PINN architecture employs the governing equations
in the form of E‘F’,%E to generate the full 3D transient flow fields based on the limited
information provided by £¥ and the known boundary conditions £}{,. As illustrated in
Figure 2.14, the network maps the space-time inference coordinates (z,y, z,t) directly to
the flow quantities of interest. A verification of this physics-based implementation using

simple 2D channel flow without orifices is provided in the Appendix B.2.

The second approach utilizes DeepONets to learn a parametric operator capable of gener-
ating solutions for new configurations without full retraining. This framework is primarily

data-driven, relying on a distribution of full simulation results £ to learn the mapping

between an input function and the output field. In this training phase, L’ggiﬁ can be
included to regularize the solution across the distribution of cases. As shown in Figure 2.15,
the architecture splits into a trunk net, which encodes the coordinates, and a branch net,
which encodes the input function, defined here as a spatially masked subset of the CFD
velocity field analogous to a PIV measurement. While the MLPs for trunk and branch
can be tuned completely separately, the hidden layer count and size were kept equal in
this work to reduce the hyperparameter space for possible optimizations. As mentioned in
Section 1.3.2, utilizing a standard MLP for the branch net necessitates flattening the 2D
input fields into a 1D vector, discarding spatial relationships. A CNN represents the more
suitable approach for such structured inputs. However, this work proceeds with the MLP
architecture as a pragmatic decision to facilitate implementation within the PhysicsNeMo
framework. In practice, the flattening takes place by sampling the velocity component
values on m x n discrete points, first for v and then for v. The selection of these points for
the discretization of the input function is arbitrary but must remain consistent between
cases, since no information of the input function beyond the flattened velocity magnitudes
themselves is supplied to the network. The DeepONets learn to map these simple features,
representing the flow inside the subset of the domain, with the full flow fields of the entire
domain.

Alternative definitions for the branch network input were considered, specifically the
utilization of a geometric parametrization of the MROPs or a multi-branch DeepONet
architecture capable of fusing heterogeneous data sources such as pressure, PIV, and shape.
A single-branch configuration based on the PIV recordings was selected for this work, as
multi-branch architectures are not directly implemented in the PhysicsNeMo version used.
The experimental velocity field serves as likely the richest source of information, capturing
the specific transient state of the flow physics at each instant, anchoring the prediction
in observed data. A distinct characteristic of this snapshot-based approach is that the
model can only infer full fields for time steps where an input recording exists. Conversely, a
geometric input would require complex parameterization to account for the 3D and flexible
nature of the orifices.

While the base model infers results near-instantly, a hybrid “test-time adaptation” step
can be employed. In this step, the pre-trained operator is fine-tuned using the sparse
observations Lg;lta and, optionally, the case-specific physics L‘IS%E with L‘éaé, effectively
bridging the two approaches. It is important to note that in this specific context, the
velocity part of the sparse observable data Eg‘zlta corresponds to the same spatiotemporal
subset used to define the input function. Consequently, this dataset serves a dual purpose
during adaptation: the flattened velocity magnitudes continue to drive the branch net as
the condition, while the specific spatial coordinates associated with these sampling points

are now explicitly supplied to the trunk net. This allows the model to evaluate the error
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2.2. Physics-Informed Machine Learning

between its predictions and the observed “PIV” values at those exact locations, enabling
the supervision.

For flexibility and consistency, development was conducted on networks that always output
p and 14 in addition to the velocity components, even though they are only strictly necessary
when using the PDE losses. So, for specific configurations where this is not the case, some
improvements may be achievable by reducing the output vector size. Additionally, with
full supervision of training cases (L§2), any other quantities of interest from CFD could

be learned as an additional output.

The subsequent sections from 2D-Steady to 3D-Transient introduce the technical details
specific to the various models, for example, what loss terms are enabled for how many
training steps. The reasons for certain evolutionary steps and settings are explored in the
Validation Chapter 3. The shown models are a subset of tested configurations, chosen
to present key findings and ultimately the best results achieved within this work. The
reported calculation times resulted from training on a system with an AMD EPYC 7313
16-Core Processor, an NVIDIA RTX 6000 Ada GPU with 48GB VRAM, and 504GB RAM.
Due to costly and frequent validation steps during the training used for the development,
the training times are not necessarily representative of what a fully optimized framework
might achieve.

2.2.2.1. 2D-Steady

The characteristic quantities of 2D-Steady DeepONets, meaning the maximum values
observed in the entire CFD dataset, round to:

ue = 7.221m/s, p.=23998.7Pa, v.=3.794-10"3m?/s (2.15)

Similarly, the maximum values for the single PINN case are:

ue = 5.268m/s, p.=13830.4Pa, v, =2.772-10"2m?/s (2.16)
name ‘ layers ‘ basis ‘ steps ‘ time ‘ losses
PINN RANS | 5x512 | - 300,000 | 10.12h | AR - . .
val: data, noslip, sym, conti, mom
Dist20 4x128 | - 200,000 | 5.424h tvfjm data
Fourier 4x128 | - 200,000 | 12.47h tvrgjm data
DD 4x128 | - 200,000 | 2.814h tvra‘im data
Sym 4x 128 | DD | +100,000 | +2.051h irjm data, sym
Conti 4x128 | DD | +100,000 | +16.23h | data, sym, conti
RANS 4x128 | DD | +100,000 | +18552h | data, sym, conti, mom
Hybrid Exact | 4 x 128 | Exact | +2,000 | +0.1441 | raiw data
val: data, noslip, sym
Fiybrid Conti x3 | 4 x 128 | Conti | 42,000 | +04gp | 2w data, sym,conti
val: data, noslip, sym, conti

Table 2.2.: Training configurations for 2D-Steady ANNs. All except “PINN” are DeepONets,
for which the hidden layer specification applies to the trunk and branch each.
The basis describes which prior model the training continues on, hence the “+4”
for number of training steps and elapsed time.
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2. Methodology

With these, the evaluation plots can be re-dimensionalized to real units. Naturally, the
architectures shown in Figures 2.14 and 2.15 are adapted so that the inputs and outputs
match the steady-state 2D domain by omitting z, ¢, w.

CFD data is interpolated onto a structured 548 x 102 grid spanning the domain [—2,2] X
[0,0.5]. The discretization employs anisotropic spacing (Az* ~ 7.31 x 1073, Ay* ~
4.95 x 1073). To enhance fidelity near the orifice, three supplementary vertical grid lines are
integrated at the centerline (z* = 0) and the immediately adjacent intervals (z* = £Ax™),
resulting in a total of 56202 points. Even though DeepONets and PINNs can ingest
unstructured or raw point cloud data, interpolating onto a structured grid is used here
to prevent the spatial bias from the highly heterogeneous CFD meshes. To construct
the flattened input vector for the branch network, the interpolated velocity fields are
sampled within a restricted subdomain. This region is defined by a spatial mask spanning
x* € ]0.025,0.525] and y* € [0,0.25], effectively cropping the grid to an area similar to the
3D-Transient experimental PIV field of view. This consistent masking procedure isolates
N = 3,519 discrete points, which serve as the fixed sampling locations for the input velocity
components. Accounting for the two velocity components, twice that number is the total
branch net input dimension. The scalar evaluation metric NRMSE, as defined in Appendix
B.1, is calculated using all grid points across the 225 cases.

Table 2.2 lists the trained models for which results are discussed. To reiterate, a train-data-
loss refers to the supervision of full flow fields from training cases, while val-data-loss refers
to the constrained “PIV” velocity field and pressure measurements of the application case.
For 2D-Steady and 2D-Transient, the two pressure nodes are positioned in the top left and
top right corners, respectively. The Dist20 DeepONet uses a different distribution of 20
instead of 10 training cases. The impact of this change is assessed by comparison against
the DD (data-driven) DeepONet. Sets of PDE terms are added in a second training step
(Sym, Conti, RANS) to augment the baseline DD model, creating PI-DeepONets. The
Fourier DeepONet applies a Fourier feature mapping to the trunk net that transforms
low-dimensional input coordinates into a higher-dimensional space using high-frequency
sinusoidal functions. This process overcomes the inherent spectral bias of standard MLPs,
enabling them to effectively learn high-frequency details and complex functions [53]. The
results presented in this work utilize the axis configuration with integer frequencies from 0
to 34, selected for achieving the best performance in preliminary trials, which employs a
deterministic sampling strategy along the coordinate dimensions to function as a generalized
positional encoding. The loss terms included in the “Hybrid Conti” model result in the
best fine-tuning among the tested combinations. For this reason, 3 different cases are
test-time-adapted:

name ‘ Extra ‘ Extra2 ‘ Inter
hinmm | 20 | 25 | 6
ApinkPa | 14 | 24 | 12

Table 2.3.: Case selection for “Hybrid Conti” 2D-Steady DeepONets.

The “Extra” models evaluate cases that fall outside the training distribution (extrapolation),
as shown in Figure 2.13. The “Inter” model tests an interpolation case that is closely
surrounded by similar training dataset cases. The same “Extra” case is also test-time-
adapted in a DeepONet where the continuity equation is satisfied trivially (“Exact”). Here,
the network outputs u, v are replaced by the stream function ¢ and instead calculated
in a second step via automatic differentiation. With the following velocity component
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2.2. Physics-Informed Machine Learning

definitions, the 2D incompressible continuity equation is satisfied automatically:

o) o ou v oy 0%
“ oy’ v or on Oy 0x0y Oyox 0 (2.17)

This formulation eliminates the need for a continuity loss term and the associated weighting

to balance it against other loss components. However, the approach still requires an

additional differentiation pass, which may affect performance and accuracy. The basis
train

model, trained for 200,000 steps using just Lg%, is not listed in Table 2.2 as its results
aren’t discussed separately.

2.2.2.2. 2D-Transient

The characteristic quantities of the 2D-Transient DeepONets are:
u. = 5.433m/s, p.=9102.3Pa, v, =2.488-10"3m?/s (2.18)

The PINN mistakenly uses the same values, resulting in maximum non-dimensional values
below rather than exactly 1. This is just cosmetic inconsistency and does not affect the
accuracy noteworthily. The network input ¢ is included again compared to the previous
flow regime simplification.

For the 2D-Transient dataset, a 228 x 42 structured grid is employed with anisotropic
spacing (Axz* ~ 1.76 x 1072, Ay* ~ 1.22 x 1072), resulting in 9, 702 total nodes after
including the same centerline refinement. The branch network input mask is also adapted to
the same coordinates. Within this restricted subdomain, a diamond-pattern sub-sampling
strategy retains every second point. This additional reduction step yields a compact
input vector of N = 305 fixed sampling locations. The NRMSE metric when concerning
the performance over the entire cardiac cycle is calculated using a fifth of the available
snapshots, 60 per case. The reduced grid density and temporal subsampling accommodate
the coarser source mesh and manage the computational load of the transient dataset
(300 x 45 snapshots).

As shown in Table 2.4, one model is trained using the instance-specific PINN approach
as defined in this work but without PDE losses. This gives an additional diagnostic step

name ‘ layers ‘ basis ‘ steps ‘ time ‘ losses
PINNDD | 6x512| - 20,000 | 1.271n | - .
val: data, noslip
train: -
PINN RANS | 6 x 512 - 200, 000 10.96 h . .
val: data, noslip, sym, conti, mom
DD Smaller | 6 x 256 | - 200,000 | 4.927h tvjm data
DD 8x512 | - | 200,000 | 4331 | 0 data
. train: data, conti
Conti 8x 512 | DD | +100,000 | +6.96h val: -

train: data, conti

val: data, noslip, conti, mom
train: data, conti

val: data

Hybrid RANS | 8 x 512 | Conti +200 +0.024h

Hybrid DD x4 | 8 x 512 | Conti 4200 +0.024h

Table 2.4.: Training configurations for 2D-Transient ANNs. All except “PINN” are Deep-
ONets, for which the hidden layer specification applies to the trunk and branch
each. The basis describes which prior model the training continues on, hence
the “4” for number of training steps and elapsed time.
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2. Methodology

name ‘ Extra ‘ Extra2 ‘ Extra3 ‘ Inter
hinmm | 175 | 175 | 10 | 6
ApinkPa | 14 | 8 | 16 | 12

Table 2.5.: Case selection for “Hybrid DD” 2D-Transient DeepONets.

but is not what the literature would refer to as a physics-informed neural network. For
the data-driven DeepONets, two different MLP sizes are compared. Again, the continuity
equation is given as supplementary supervision of training cases, and then hybrid fine-
tuning steps are investigated. The data-driven fine-tuning step in “Hybrid DD” is applied
to the extrapolation and interpolation cases listed in Table 2.5.

The first extrapolation case is the same as the PINN case. The second and third extrapo-
lation cases have the worst results of the “Conti” baseline model, and so the fine-tuned
results indicate how well the hybrid step can overcome very difficult out-of-distribution
situations.

2.2.2.3. 3D-Transient

The characteristic quantities of 3D-Transient are for the DeepONets:
u. = 4.988m/s, p.=13439.052Pa, v;.=3.917-10"*m?/s (2.19)
and for the single PINN case, which is DropXL:
u. = 4.354m/s, p.=10382.2Pa, v;.=3.396-10"1m?/s (2.20)

The E‘Gﬁlta for the PINN model not only includes the constrained velocity fields and pressure
measurements but also an integral BC for the aorta mass flow. This is not implemented for
use with DeepONets. The pressure nodes are positioned at xjy, = (—0.84, —0.91, 0.0) and
x] , = (0.085, 0.05,—0.4), mimicking the sensor locations in the physical experiment. The
3D-Transient ANNs are not trained over the entire domain as depicted in Figure 2.3. Their
training is limited to the LV and LA in the following way: with the coordinate system
located in the center of the orifice and the z-axis oriented along the 30° regurgitation jet

direction, points with * > 0.6 or z* < —0.5 are omitted.

For 3D-Transient, the dataset retains the original unstructured CFD mesh points rather
than interpolating onto a structured grid. This approach captures the complex geometry,
whereas a grid would require very high density. To address this, an approach where the
no-slip wall points are retained from the CFD mesh and the interior is filled with a grid
also seems feasible but isn’t used here. For the branch net input, a 2D section is extracted
at z* = 0 and interpolated onto a 119 x 102 equidistant grid spanning z* € [0.005, 0.69]
and y* € [—0.22,0.22]. This rectangular region is geometrically clipped in the top right
and bottom right corners using linear boundaries inclined at —30° and 60°. This polygonal
masking isolates the common field of view shared across all experimental cases, as different
camera setups and the circular window shape resulted in varying coverages of coordinates.
The input vector is thereby constructed from N = 10738 fixed sampling locations.

The NRMSE metric when concerning the performance over the entire cardiac cycle is
calculated using a third of the available snapshots, 100 per case, with 5% of points per
snapshot included. This still results in roughly 70,000 points per snapshot being used,
depending on the case’s CFD mesh density. Additionally, PDE residuals are calculated on
the same points according to Appendix B.1.2, which enables the quantification of results
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2.2. Physics-Informed Machine Learning

name \ layers \ basis \ steps \ time \ losses
PINN RANS | 6x 512 | - | 100,000 | 15.535n | Ui - . .
val: data, noslip, conti, mom
DD Smaller | 8x512 | - | 100,000 | 18746h | o data
Bxact | 9x640 | - | 183,000 | 34344n | A e
DD 9x640 | - | 50,000 | 1203n | oM data
. train: data, conti
Conti 9% 640 | DD | +50,000 | +8.736h | "™
Hybrid Conti | 9x 640 | DD | 41,000 | 40.36n | taim data
val: data, conti
. +0.24h - train: data
Hybrid DD x6 | 9x 640 | DD | 400 | 02007 | B €8

Table 2.6.: Training configurations for 3D-Transient ANNs. All except “PINN” are Deep-
ONets, for which the hidden layer specification applies to the trunk and branch
each. The basis describes which prior model the training continues on, hence
the “4” for number of training steps and elapsed time.

name ‘ DropXL ‘ SlotL-Bent ‘ PinholeLL ‘ SlotL ‘ DropXL ‘ EcclJet
source ‘ CFD ‘ Exp

Table 2.7.: Case selection for “Hybrid DD” 3D-Transient DeepONets.

in the absence of ground truth data across the entire domain, as is the case with the
experimental PIV measurements.

Table 2.6 gives an overview of trained models, which allow for the comparison between the
PINN and DeepONet approaches, between different network sizes, physics inclusions, and
hybrid training steps. The “Hybrid DD” models are fine-tuned for two CFD validation
cases and for the four experimental setups where PIV recordings are presently available.
These are listed in Table 2.7.

The PINN and “Hybrid Conti” model also concern the CFD DropXL data. The “Exact”
continuity approach is implemented for 3D using a vector potential formulation [63]. The
ANN predicts the three components of the vector potential v; rather than the velocity
components u; directly. The velocity field is subsequently derived via the curl operation,
expressed in index notation using the Levi-Civita symbol €;;;:

Oy ( O3 Oty ) ou; O,
P = i 2. =2 _ = € = 2.21
Y ¢ gk 8xj &8 “ (91’2 8903 = 8.7}1 ¢ Jké?xi@mj 0 ( )

While the 2D stream function formulation reduces the network outputs from two to one,
the 3D vector potential formulation maps three potential components to three velocity com-
ponents. This setup maintains the identical number of output variables while automatically
satisfying the continuity equation.
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3. Validation on Synthetic Data

This chapter presents the performance evaluation of the ML models detailed in the
methodology. The different PINN and DeepONet configurations are compared to identify
the most effective architecture and training strategy for the flow reconstruction task. All
evaluations in this chapter are performed against the synthetic CFD data, which serves as
the ground truth.

3.1. 2D-Steady

The initial validation uses the 2D-Steady dataset to assess the models’ fundamental
capability for spatial reconstruction from sparse data in a stationary environment.

3.1.1. PINN

The main results for the 2D-Steady PINN are shown in Figure 3.1. The red rectangle in
(a) highlights the area where the u,v CFD data is supervised via E‘ézlta. Consequently, the
error (c) in this area is visibly lower than the rest of the domain. The colormap in (c)
is scaled non-linearly to make low errors visible too, while the absolute error in (d) uses
a linear colormap, albeit partially occluded by the streamline comparison. The largest
deviation appears upstream of the orifice in what is equivalent to the LV (z* < 0). The
velocity magnitude gradually decreases towards the upper wall, while the CFD solution
remains largely homogeneous until very close to the no-slip condition. Downstream in the
LA, the regurgitation jet velocity decreases more quickly, and the resulting vortex center
significantly misaligns with the target solution. The PINN fails to accurately develop the
pressure field based on the supplied top left and top right corner values. The orifice results
in a pressure drop over a short distance, but the PINN prediction once again develops the
gradient over a longer distance. This is shown in the Appendix Figure C.10. Furthermore,
the 1, field is predicted as zero across the entire domain, which does not agree with the
CFD results. Similarly, Pioch et al. demonstrate that for all turbulence models examined
in their study, including the v;-model, training in the absence of labeled data leads to
predictions that differ significantly from DNS results [47]. While the PINN produces
plausible velocity fields with accurate magnitude, it fails to match the flow topology. The
success of the PINN approach relies on the PDE losses to connect the sparse data to the
BCs. The abrupt geometry change introduced by the orifice is likely challenging to fit
around, and the supplied conditions might be ambiguous. Small training setup changes
lead to substantially different predictions. In light of the promising results presented below,
the subsequent development concentrated on the DeepONet approach, although additional
enhancements of the PINN remain feasible.

3.1.2. DeepONet

The predictive accuracy of the previously introduced DeepONet configurations is summa-
rized in Figure 3.2, which plots the prediction error for all flow variables. The model labels
utilized in the evaluation plots correspond to the configurations detailed in the methodology

26



3.1. 2D-Steady

1.000
0.833
0.667
0.500
0.333
0.167
0.000

() |ulpiny h=10mm, Ap = 14kPa E 0.998

(@)  |ulErp

0.832
0.666
0.499
0.333
0.166
0.000
0.875
0.689
0.504
0.318
0.133
-0.053
-0.239
0.875
0.729
0.583
0.438
0.292
0.146
0.000

(¢) |ulérp — |u[pinn NRMSE = 34.3%

0.50

|

*
Yy
o
%)
&t
NN B

0400H".HH.‘H‘.“.““.Hw.m

Figure 3.1.: (a) Reference 2D-Steady CFD velocity magnitude for A = 10 mm, Ap = 14 kPa.
(b) “PINN RANS” prediction. (c) Signed non-linear and (d) absolute error
magnitude with streamline comparison.
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Figure 3.2.: Comparison of NRMSE for each 2D-Steady ANN output across various trained
DeepONets. The charts display error percentages for (a) training cases and
(b) validation cases.
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tables and adhere to the following pattern: “Type_TableName_ OptionalHybridTableName”.
The figure separates the results into training and validation sets to allow for a comparison
of the data-fitting versus generalization performance across the different configurations.
The network has to learn the relationship between the branch net input and the previously
learned values of other cases, which might result in overfitting. The goal is to train a
general operator, and so for the pre-trained basis models, a low validation case error (b) is
the desired outcome. The hybrid models are also included here to quantify how the overall
model is affected by the inclusion of one case’s sparse data.

Augmenting the training of the baseline “DD” model with the symmetry and continuity
PDE losses results in lower aggregate errors across all fields. The errors on the training
examples rise simultaneously, indicating a transition from data-fitting towards improved
generalization. A further 100,000 steps on “DD” were included to match the total training
budget of the other variants and confirm that the gains arise from the added losses rather
than from extended optimization. The inclusion of the momentum equations results in
slightly worse accuracy of the “RANS” model compared to “Conti”. The “Fourier” model
rivals the latter in terms of validation performance, while simultaneously providing the
closest fit to the training data.

Detailed error maps for the flow variables are presented in Figure 3.3. Each subplot (a—d)
corresponds to a specific output field, displaying the NRMSE for every simulated case
within the h vs. Ap parameter space. The non-linear color scale provides a quantitative
measure of error, and the white-bordered markers identify the subset of cases used for model
training. All remaining samples contribute to the validation error. This figure specifically
shows the errors for just the “Conti” model, but the main topological features appear across
models with the same training cases: the error distribution centers visibly around the
training points and increases gradually towards the extreme ends of the parameter space.
The v field consistently displays slightly higher error rates, even for training cases. This
possibly results from the nature of the flow field and error definition. A target field with
low and highly localized magnitudes produces a small standard deviation. The NRMSE
metric, defined in Appendix B.1, divides the absolute error by this relatively smaller scale.

The model maintains acceptable performance near the training data. The interpolation
cases located between training points show particularly low errors. One such best-case
example is given in Figure 3.4, where the DeepONet manages to nearly instantaneously
infer the velocity field very accurately. A recurring limitation of the non-hybrid DeepONets
becomes visible immediately around and downstream of the orifice. The velocity gradient
along the jet border is sharpest in this region. Consequently, the prediction error reaches
its maximum here. This error manifests as small but distinct streaks of valleys and hills in
(c). This artifact likely stems from the statistical averaging of the different orifice heights
present in the training set. This specific area represents the only region where significant
divergence of a streamline is noticeable. Elsewhere, the prediction aligns nearly perfectly
with the reference. The out-of-distribution performance remains strong in the direction
of increasing pressure drops Ap. The model generalizes less effectively in the direction of
larger gap heights h.

As indicated in Figure 3.2, the “Dist20” DeepONet demonstrates improved generalization,
which stems from the wider distribution of 20 training cases. Figure 3.5 highlights
these specific training points. A larger portion of the validation set now falls within the
interpolation regime. The model achieves consistently low error rates in these areas. The
spatial distribution of error resembles the trends observed in the previous model: The
prediction quality decreases more quickly in the direction of larger h, while performing
very well for larger Ap. Additionally, the model continues to exhibit high error rates at the
lower extremes of the parameter space. The “Dist20” model demonstrates the significant
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Figure 3.3.: Distribution of NRMSE for 2D-Steady “Conti” for all fields across the BC
parameter space defined by orifice height and pressure difference. The color
of each marker indicates the error magnitude, with the 10 training cases
distinguished by a white border. Values higher than 100% are clipped.
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Figure 3.4.: (a) Reference 2D-Steady CFD velocity magnitude for h = 6 mm, Ap = 12kPa.
(b) “Conti” prediction. (c) Signed non-linear and (d) absolute error magnitude
with streamline comparison.

impact of training data availability on the DeepONet approach; increasing the amount of
ground truth data serves as a major influence on accuracy. The remaining models in this
work utilize a standard set of 10 training cases since this aligns the analysis with the target
3D-Transient setup. The analysis now turns to an extrapolation case. This case lies at the
top right corner of the parameter distribution and presents a significant challenge. The
“Dist20” model manages an NRMSE for the velocity magnitude of 39.3% here. This result
appears in the Appendix Figure C.11. In comparison, the “Conti” model reaches an error
of 84.0%. Figure 3.6 displays this outcome.

Here, the predicted velocity magnitude remains too low across the entire domain. The
characteristic streaking artifacts persist, and a prominent underprediction of velocity
magnitude overlays these artifacts within the jet region. This specific case features a large
orifice opening previously absent from the training set. Consequently, the model limits the
flow prediction to the maximum gap height encountered during training. Deviations also
appear in the flow topology; the center of the recirculation vortex in the LA now shows a
distinct misalignment compared to CFD. Visually, the prediction by “DD?” is similar but
results in an NRMSE of 95.7%, showing that the inclusion of Etprgﬁ may improve baseline
performance but not overcome the fundamental challenge for out-of-distribution inference.

This is where the test-time adaptation presents its advantage, such as with the “Hybrid
Conti” model. This approach incorporates the sparse observations E‘ézlta into the composite
loss function during the fine-tuning phase. The results, visualized in Figure 3.7, demonstrate
a substantial improvement of predictive fidelity. The NRMSE decreases significantly from
84.0% to 15.2%, which corresponds to an over 5-fold improvement. Qualitatively, the
velocity magnitude is largely recovered across the LV, the regurgitation jet, and the

downstream LA region. The flow topology improves correspondingly, with the center of
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(a) u (train: 1.59%, val: 22.5%) (b) v (train: 8.62%, val: 32.3%)
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the recirculation vortex aligning much more closely with the ground truth compared to the
baseline model. Despite these improvements, the solution retains artifacts indicative of its
data-driven nature. A secondary recirculation zone appears in the LA adjacent to the orifice
wall, a flow feature absent in the CFD reference. Furthermore, the characteristic streaking
remains visible, and the velocity gradient along the shear layer lacks the sharpness observed
in the CFD solution. A specific artifact also persists along the vertical line extending from
the orifice (z* = 0), where the magnitude is locally underpredicted. These observations
indicate that while test-time adaptation effectively steers the global solution towards the
correct regime, the model may still produce local physical inconsistencies or “hallucinations”
in regions lacking direct supervision. Notably, the streaking artifacts persist within the
observational window where direct supervision is applied. This behavior stands in contrast
to the pure PINN approach, which achieved negligible error magnitudes in the supervised
region. The persistence of these artifacts stems from the hybrid training strategy. The
model continues to train on the full distribution of training cases simultaneously with the
fine-tuning loss. Consequently, the network balances the adaptation to the specific sparse
observations against the general operator learning derived from the broader dataset.

The improvement in predictive fidelity extends beyond the specific case targeted during
the test-time adaptation. As evidenced by the aggregate validation metrics presented in
Figure 3.2, both the “Hybrid Extra” and “Hybrid Extra2” models demonstrate a notable
reduction in the total NRMSE across the validation set compared to the baseline “Conti”
model. This indicates that fine-tuning the operator on a single out-of-distribution case
positively influences the inference quality for neighboring cases in the parameter space.
A noteworthy observation is the improvement of the 14-field, despite the absence of
additional data supervision for this variable during the adaptation step. This suggests
that the shared parameters of the DeepONet adjust in a manner that implicitly pulls
the turbulent viscosity prediction towards a more accurate state as well. Conversely, the
“Hybrid Inter” model yields negligible improvements in the overall validation metrics. This
outcome is expected, as this interpolation case is located in a region densely populated
by training samples, where the baseline prediction is already highly accurate. While the
adaptation step largely mitigates the streaking artifacts discussed previously, it does not
eliminate them entirely in the interpolation case either. Consequently, the fundamental
topology and magnitude of the solution remain largely unchanged and are not shown
separately.

The previous Figure 3.7 presents the “Extra2” case (h = 25mm, Ap = 24kPa). To further
assess the hybrid approach, the “Extra” case (h = 20mm, Ap = 14kPa) is also examined,
shown in Figure 3.8. The NRMSE distribution map for this model is provided in the
Appendix Figure C.12. When compared to the baseline distribution, the error field is
noticeably more homogeneous, and the u-field’s accuracy is increased around the adapted
case. Given a baseline “Conti” accuracy of 40.8% for the velocity magnitude (Figure
C.13), the fine-tuned “Hybrid Conti Extra” model shows a x5.48 lower NRMSE of 7.45%.
This improvement highlights that a more accurate starting point from the pre-trained
operator facilitates an even higher fidelity in the final fine-tuned result. The flow topology
matches the reference closely. The center of the recirculation vortex exhibits only a minor
misalignment in the z-direction, while the streamlines align well throughout the rest of
the domain. The secondary recirculation artifact observed in the “Extra2” case is absent
here. Additional figures for the following field evaluations are provided in the Appendix.
The v-velocity component exhibits an NRMSE reduction of 45.7 — 29.4% relative to the
“Conti” baseline. The provided Figure C.14 shows the low and localized magnitude of this
field, which amplifies the relative error metric despite low absolute deviations. The error
map reveals a persistent vertical line of underprediction along the orifice at * = 0. The
pressure field achieves an improved NRMSE of 40.9 — 32.2%. The prediction captures the
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Figure 3.8.: (a) Reference 2D-Steady CFD velocity magnitude for h = 20 mm, Ap = 14kPa.
(b) “Hybrid Conti” prediction. (c) Signed non-linear and (d) absolute error
magnitude with streamline comparison.

steep gradient across the orifice and the homogeneous distribution elsewhere effectively,
although the magnitude within the LV remains slightly lower than the target (Figure C.15).
The training setup was optimized for velocity field performance, so improved pressure
predictions and stronger adaptation to pressure measurements remain feasible with targeted
adjustments. Finally, the turbulent viscosity field error drops from 19.4 — 13.3% (Figure
C.16). The model refines this additional quantity based on the updated operator state,
even without its inclusion in the sparse adaptation dataset.

Two alternative DeepONet architectures introduced in the Methodology Chapter, the
Fourier-feature network and the stream-function-based “Exact” model, were also evaluated
to determine if addressing spectral bias or automatically satisfying continuity could yield
further improvements. While the Fourier model achieves low training error (Figure
3.2), it exhibits signs of overfitting. The predictions are prone to high-frequency, jagged
artifacts, indicating that the standard MLP architecture is more robust and better suited
for representing the overall smooth field characteristics of the RANS solutions. Hybrid
adaptation of the “Fourier” model results in nonphysical flow patterns significantly worse
than the standard “Hybrid Conti” result. In general, a baseline model candidate can
outperform another baseline model candidate both qualitatively and quantitatively, yet a
fine-tuned hybrid from the better baseline is not necessarily superior to the hybrid based
on the other, which complicates development.

Similarly, the Exact model demonstrated that satisfying the continuity equation by def-
inition does not guarantee a solution close to the ground truth. The basis model for
this architecture suffers from degradation in the flow convergence zone upstream of the
orifice and increased streaking artifacts. This performance drop could be attributed to the
optimization bottleneck of deriving two velocity components from a single scalar output (v),
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which restricts the network’s expressivity compared to predicting u,v directly. Although
the fine-tuned “Hybrid Exact” model achieves comparable error metrics to the “Hybrid
Conti” approach, the visual quality of the streamlines and flow topology remains consis-
tently inferior. Furthermore, a “Hybrid RANS” configuration incorporating momentum
residuals was tested but yielded inferior results, possibly driving the solution toward the
same inaccurate state observed in the PINN approach analysis. While both ideas were
briefly re-evaluated during the development of 2D-Transient models due to their theoretical
benefits, they echoed the findings of 2D-Steady and are therefore not included in this
work, except the “Exact” model, which is revisited for 3D-Transient, where the formulation
restores the same number of output variables.

3.1.3. Interim Conclusion

In summary, the investigation of the stationary 2D channel flow establishes the Hybrid
DeepONet as the superior framework for reconstructing flow fields from sparse observations.
The pure PINN approach, despite utilizing physics constraints, fails to converge to the
correct flow topology or pressure gradients, seemingly unable to resolve the ill-posed
problem given the limited boundary data and complex orifice geometry. Conversely, purely
data-driven DeepONets demonstrate high effectiveness for interpolation within the training
distribution, particularly when the training dataset size is increased or when soft physical
constraints are included in the loss function. However, these basis models consistently
struggle to generalize to parameter regimes outside the training set, yielding high errors
and artifacts in extrapolation cases. The hybrid training strategy successfully bridges this
gap. By fine-tuning the pre-trained “Conti” operator with the sparse measurements specific
to the validation case, the model achieves a five-fold reduction in error for extrapolation
cases without compromising the already high accuracy of interpolation predictions. The
standard MLP-based Hybrid DeepONet successfully combines the generalization power of
a pre-trained model with the specificity of sparse observations, overcoming the individual
limitations of purely data-driven or physics-informed approaches. The practical ineffective-
ness of including the full momentum equations, evidenced by the failure of the turbulence
model in the PINN and the degradation of the “Hybrid RANS” results, suggests that for
this specific setup, simpler constraints like continuity provide a more robust regularization.
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3.2. 2D-Transient

The 2D-Transient dataset introduces the complexity of time-varying, periodic flow to
the reconstruction task. This section evaluates the models’ ability to capture transient
phenomena, such as the formation and dissipation of the regurgitant jet over the cardiac
cycle, based on the setups defined in Table 2.4.

3.2.1. PINN

The performance of the PINN is evaluated first to establish a baseline for a purely physics-
driven surrogate. The “PINN RANS” model is trained on a single case (h = 17.5 mm, Ap =
14kPa). Figure 3.9 displays the velocity magnitude prediction at t* = 0.25. Consistent
with the 2D-Steady results, the prediction error remains minimal within the region directly
supervised by the sparse measurement data. The reconstructed regurgitant jet propagates
downstream past this supervised window, although it exhibits a reduced length and
diminished velocity magnitude relative to the CFD ground truth. While the primary
recirculation vortex center aligns with the reference, the flow topology diverges in the
upstream LV, where the network underpredicts the velocity magnitude and the streamlines
diverge near the upper wall. At the later timestep t* = 0.75, the reconstruction in the
LA remains accurate. However, the model again fails to resolve the flow dynamics within
the LV. The jet appears as a truncated feature localized near the orifice. This structure
demonstrates an incorrect temporal evolution, retracting towards the opening, while the
reference flow extends into the ventricle. This failure suggests that the RANS loss was
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Figure 3.9.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5mm, Ap =
14kPa, t* = 0.25. (b) “PINN RANS” prediction. (c) Signed non-linear and
(d) absolute error magnitude with streamlines.
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14kPa, t* = 0.75. (b) “PINN RANS” prediction. (c) Signed non-linear and
(d) absolute error magnitude with streamlines.

unable to sustain this specific flow feature without more explicit data supervision.

The baseline “PINN DD” model (Appendix Figures C.17 and C.18) exhibits higher error
but retains structural similarities to the physics-informed result, such as the jet extension
beyond the supervision window during systole and better flow capture in the LA. This
confirms that sparse data independently orients the solution, while the RANS equations
are essential for substantial improvements in fidelity. The comparative performance of all
modeling approaches is summarized by the temporal evolution of the NRMSE in Figure
3.11. The trajectories confirm that the inclusion of RANS equations in the PINN yields a
persistent improvement over the data-driven ANN. The turbulent viscosity output avoids
the trivial zero-solution observed in 2D-Steady but remains physically inconsistent without
any explicit supervision. The pressure prediction usually fails to recover correct fields, and
because boundary information is very sparse, it only approximates them briefly at specific
time-steps (e.g. Appendix Figure C.19). Additional p-sensor locations might improve this
field’s prediction, and coupled through the momentum equation, the velocity fields’ too.
This is a change that can be implemented in an experimental setup as well. The relatively
low global v-error reflects good agreement inside the PIV window; low ground-truth
magnitudes outside that window keep the global error small.

3.2.2. DeepONet

All DeepONet configurations significantly outperform the instance-specific PINN models
across the entire cardiac cycle and for every flow variable, showing roughly a x2 reduction
in NRMSE. The horizontal lines in Figure 3.11 summarize this finding. These substantially
lower errors demonstrate that the operator learning framework, by leveraging a distribution
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Figure 3.11.: Temporal evolution of the NRMSE for all fields over the cardiac cycle for
the 2D-Transient h = 17.5mm, Ap = 14kPa case. Horizontal dashed lines
indicate the respective aggregate values computed over the entire period.

of training cases, provides a strong foundation for the reconstruction task. Consequently,
the remainder of this section focuses on evaluating the DeepONet architectures.

It is important to note that this comparison reflects a specific validation case. While the
DeepONet leverages the computational investment of the pre-calculated dataset to achieve
superior accuracy here, the PINN remains a viable candidate for further development.
Although the current physics-driven performance leaves room for improvement, optimizing
the formulation could yield a robust solver for scenarios where generating training data is
impossible. Conversely, the DeepONet’s reliance on the training distribution highlights a
different path for optimization: its robustness can be directly enhanced by strategically
expanding the CFD dataset to cover broader parameter regimes. A scenario likely exists
where a baseline DeepONet performs worse than the PINN due to extreme extrapola-
tion; whether this disparity is best resolved through hybrid adaptation, improved PINN
constraints, or a denser DeepONet training distribution remains uncertain.

The aggregate performance of the DeepONet configurations is compared in Figure 3.12.
Note that the validation metrics (b) for 2D-Transient span a narrower parameter distribution
than in 2D-Steady. The average distance between a validation case and the nearest training
sample is smaller, and extreme cases are no longer included.

The influence of network size is assessed by comparing the “DD Smaller” (6 x 256) against
the “DD” configuration (8 x 512). Preliminary tests with even smaller architectures yielded
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Figure 3.12.: Comparison of NRMSE for each 2D-Transient ANN output across various
trained DeepONets. The charts display error percentages aggregated over
the cardiac cycle for (a) training cases and (b) validation cases.

consistently inferior results. Despite the large parameter count, the network does not
overfit at this size and instead achieves superior generalization. This improvement is most
pronounced in the pressure field, where the error drops from 35.7% to 29.0%. However,
this gain is not strictly uniform across all metrics; for example, v; has a slightly higher
NRMSE. A recurring challenge in evaluating these models is that global scalar metrics
can obscure significant qualitative differences, as fine-scale topological improvements
or localized artifacts are absorbed into the aggregate value. The benefit of increased
expressivity becomes evident when examining specific flow features. The larger model
renders the diastolic jet within the LV with significantly higher physical consistency. This is
reflected in the temporal evolution of the v-component error for the validation case (Figure
3.11,b), where the error during diastole drops from approximately 70% in the smaller model
to 40%. Conversely, the increased complexity introduces a transient instability. The larger
models exhibit a momentary artifact in the regurgitation jet around t* = 0.1, visible as a
localized error spike in (a). This artifact momentarily drives the error higher than even the
PINN baseline, skewing the global NRMSE. A snapshot of this is appended in Figure C.20.
However, because this specific instability is readily corrected during the subsequent hybrid
fine-tuning step, the larger architecture is selected as the superior basis for the hybrid
framework. The subsequent addition of the continuity constraint in the “Conti” model
yields further improvements. While the gains are more subtle than in the 2D-Steady case,
the constraint appears to act as a beneficial regularizer, slightly smoothing the prediction
without conflicting with the data. Appendix Figures C.21 and C.22 display the resulting
flow fields at t* = 0.25 and t* = 0.75, which surpass the PINN baseline accuracy. A
streak of underpredicted velocity magnitude remains downstream of the orifice, caused by
the model extrapolating to an orifice height beyond the maximum observed in training
data. Compared to the 2D-Steady models, the finer streaks below this one are no longer
present due to the many observed transient flow states. A RANS-informed baseline is
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Figure 3.13.: Temporal evolution of NRMSE for all fields over the cardiac cycle for the
2D-Transient “Conti” model. The 45 lines represent all cases from the BC
distribution.

excluded from this comparison. Following the negligible or negative impact observed in
2D-Steady and confirmed by preliminary tests on this dataset, the momentum equations
seem redundant. The training process involves full-field supervision from CFD data that
was solved to satisfy these physics; the additional loss term appears to offer little value
beyond what the network learns directly from the data.

Figure 3.13 expands the analysis from a single instance to the entire dataset, illustrating the
temporal NRMSE evolution for all 45 cases using the “Conti” model. It indicates that the
transient artifact at t* = 0.1 affects four cases. Distinctly clustered are the training cases,
which maintain a consistent low-error baseline, and the validation cases, which exhibit
higher variance. Regions of lower and higher accuracy seem to occasionally correlate
with flow strength, but many trajectories are unique. A critical observation concerns the
pressure field, where the error rises sharply towards the end of the cycle, affecting even
the training set. The logarithmic scaling obfuscates the difference, with a maximum of
876% compared to the global validation NRMSE of 29.2%. This deviation stems from
the cyclic nature of the ground truth data. As detailed in the methodology (Figure 2.9),
the pressure waveform quickly reverts to positive values in the final few frames (approx.
0.9 < t* < 1.0) to close the loop. The network lacks specific treatment for periodicity and
tends to preserve the negative pressure state established during diastole. Furthermore, the
ground truth pressure magnitude approaches zero at the cycle’s end; in this regime, faulty
predictions create substantial relative errors. Strategies such as shifting the phase of the
pressure BC to align the sharp BC gradient with the start of the simulation or employing
temporal padding by duplicating initial and final snapshots could help the network better
resolve this rapid transient without architectural changes.
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of each marker indicates the error magnitude over the cardiac cycle, with the
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are clipped.

Figure 3.14 condenses the temporal performance into a spatial distribution, displaying
the cycle-aggregated NRMSE for each case across the h-Ap parameter space. Compared
to the 2D-Steady results, the error distribution appears significantly more heterogeneous,
with even central interpolation cases exhibiting error magnitudes previously associated
with extrapolation. While this pattern suggests potential overfitting, the metric is heavily
influenced by the transient nature of the problem. Unlike the steady-state case, where
topological alignment drives the score, the transient evaluation penalizes even minor
temporal misalignments. A slight phase shift in the jet formation results in a high
mathematical error, even if the flow structure is physically sound. Consequently, even
the “interpolation” regime in this dynamic context presents a substantially more complex
challenge for the operator than the steady-state equivalent.

This sensitivity to phase alignment is exemplified by the hybrid interpolation result shown
in Figure 3.15. Visually, the reconstruction of the velocity magnitude and streamlines
appears nearly flawless, recovering the flow topology with high fidelity. However, the
quantitative error remains elevated at 29%. The signed error map in Figure 3.15(c) reveals
the source of this discrepancy: a distinct dipole pattern of positive and negative error
regions emerging due to the predicted regurgitant jet pulse, which is slightly behind the
ground truth location. While not the sole source of error, this temporal shift may occur
across all flow fields and significantly elevates the error metrics whenever it does. Therefore,
a high error metric does not necessarily signify a meaningful failure to reconstruct the flow.
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Figure 3.15.: (a) Reference 2D-Transient CFD velocity magnitude for h = 6 mm, Ap =
12kPa, t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.

Figures 3.16 and 3.17 present the predictions of the “Hybrid DD” model for the same case
previously analyzed with the PINN. Further comparisons of the v-velocity, pressure, and
turbulent viscosity fields against the CFD ground truth are provided in Appendix Figures
C.25 through C.27. At t* = 0.25, the flow field within the LV (2* < 0) is reconstructed
with significantly higher fidelity, displaying low magnitude error and accurate streamline
alignment. The error in the LA is similarly reduced, although the regurgitant jet shape
remains slightly shorter than the CFD reference, resembling the PINN prediction in this
specific feature. At t* = 0.75, the LV flow again closely matches the ground truth; the
streamlines indicate a correctly aligned vortex center, and the velocity magnitude is largely
recovered. Crucially, the diastolic jet develops realistically, extending into the ventricle
rather than retracting. Conversely, the streamlines in the LA exhibit some dissimilarity
at this time step, particularly in the region around x* = 1. The temporal evolution of
the error, displayed in Figure 3.11, confirms that the hybrid fine-tuning step effectively
resolves the transient artifact characteristic of the data-driven baseline models. The most
significant improvement over the “Conti” model occurs before t* = 0.2, coinciding with
the appearance of the regurgitant jet within the supervised observation window. In this
phase, the high flow magnitudes lead to large absolute errors in the baseline, which are
subsequently corrected by the data supervision. For the remainder of the cycle, the NRMSE
remains below that of the “Conti” model. However, the magnitude of this reduction is
considerably smaller than the five-fold improvement observed in the 2D-Steady case and
still mostly due to the better accuracy within the constrained window.

A comparison with the baseline “Conti” model predictions provided in Appendix Figures
C.21 and C.22 reveals that the hybrid fine-tuning induces only very subtle adjustments to
the jet magnitudes and streamlines outside the supervised window. These changes remain
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Figure 3.16.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5mm, Ap =
14kPa, t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure 3.18.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5 mm, Ap =
8kPa, t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.

barely perceptible at a glance and likely exert minimal influence on the global error metrics.
The error reduction within the window itself holds limited value, as this region allows for
direct replacement by the measured input data during post-processing. Consequently, the
distinct global improvement observed in the 2D-Steady case is not replicated to the same
extent here. Nevertheless, the DeepONet predictions are decently accurate and exhibit
strong temporal coherence, ultimately achieving a higher fidelity than the instance-specific
PINN.

The “Extra2” and “Extra3” configurations, the cases with the lowest accuracy in the
“Conti” baseline evaluation, serve to demonstrate the application of the hybrid framework
to the most challenging extrapolation scenarios. While the temporal evolution of the
flow generally remains physically plausible, specific transient intervals exhibit substantial
deviations that drive up the aggregate error metrics. Figures 3.18 and 3.19 illustrate worst-
case snapshots to highlight limitations of the current approach. Figure 3.18 displays the
low-pressure “Extra2” case (h = 17.5 mm, Ap = 8kPa), where streamlines unexpectedly
diverge downstream of the regurgitation jet. Additionally, the jet appears elongated and is
surrounded by erratic overpredictions of velocity magnitude. Supplementary figures in the
Appendix (C.28, C.29) reveal that the magnitude of the early diastolic jet is significantly
overpredicted, while the local pressure peak during diastole similarly exhibits excessive
magnitude and temporal misalignment. The high-pressure “Extra3” case (h = 10 mm,
Ap = 16kPa) presented in Figure 3.19 reveals a visibly elongated vortex during early
diastole, effectively appearing like two distinct flows overlaid. This feature subsequently
collapses into the shorter form and remains spatially lagged behind the ground truth jet.
The temporal evolution of the NRMSE for these additional configurations is presented in
Appendix Figures C.30 through C.32. The interpolation case achieves a cycle-aggregated
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Figure 3.19.: (a) Reference 2D-Transient CFD velocity magnitude for A = 10 mm, Ap =
16 kPa, t* = 0.45. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.

NRMSE for the u-velocity of 18.7%, outperforming the 25.8% of the primary validation case,
while the more challenging extrapolation scenarios yield higher errors of 39.0% and 41.2%.
The trajectories echo the behavior observed in the previous temporal analysis, where the
hybrid fine-tuning yields minimal improvement to the instantaneous performance outside
the specific intervals where the PIV window captures the regurgitant jet; the distinct
artifacts identified in the worst-case snapshots remain unaddressed by the adaptation step.

In addition to the data-driven hybrid models, the “Hybrid RANS” configuration, which
incorporates momentum residuals during the fine-tuning phase, was evaluated. As indicated
in Figure 3.11, this model achieved lower errors for u and vy, but the difference compared to
the “Hybrid DD” model proved negligible. Therefore, the simpler data-driven configuration
was selected as the primary framework. The inclusion of the RANS equations did not
induce significant changes. This suggests that the operator’s background training (Egﬁi;‘)
dominates the solution or that the RANS formulation faces similar convergence challenges to
those observed in the pure PINN baseline. While extended training might eventually allow
the physics losses to exert greater influence, the current termination strategy prioritizes
optimal validation performance, which occurs rapidly in both setups. This represents a
simplification compared to the optimal 2D-Steady strategy, which successfully leveraged
additional no-slip, symmetry, and continuity terms during the adaptation step. Further
optimization using these auxiliary constraints remains a potential avenue for enhancement.

3.2.3. Interim Conclusion

In summary, the investigation of the transient 2D channel flow establishes the DeepONet
framework as the superior approach for reconstructing pulsatile flows from sparse data,

45



3. Validation on Synthetic Data

significantly outperforming the instance-specific PINN. While the PINN demonstrates
the theoretical capability to model the flow without prior training data, it struggles to
maintain physical consistency in the global flow topology and fails to capture the correct
temporal evolution of the jet. Conversely, the DeepONet leverages the training distribution
to provide a generally stable prediction foundation. Evaluation reveals a key distinction
from the 2D-Steady results: in the transient domain, the hybrid adaptation acts primarily
as a local constraint. Corrections are largely confined to the supervised window, where
they are least needed, rather than propagating global improvements to the flow physics in
extrapolation regions. Consequently, random artifacts and temporal misalignments persist,
underscoring the data-driven model’s inherent dependence on the training distribution’s
coverage.

Several avenues for enhancing predictive fidelity remain. The spatial resolution of the
interpolated training data and the size of the branch input vector could be increased to
match the density used in 2D-Steady. Some information in the training data and branch
input may be lost as a result of the interpolation to a grid. Furthermore, optimizing
the RANS implementation to overcome the practical ineffectiveness observed in both 2D-
Steady and 2D-Transient could provide better results than the simple continuity constraint
currently employed. Moreover, analogous to how the MLP architecture flattens spatial
dimensions into a vector, the snapshot-based framework processes time instants in isolation
and without special consideration of the periodic nature of the cardiac cycle, effectively
discarding temporal information; both of these could be addressed. Alternatively, the
DeepONet’s robustness could be directly improved by expanding the training distribution.
Despite these potential optimizations, the “Hybrid DD” DeepONet approach currently
demonstrates promising predictive fidelity and is evaluated for 4D hemodynamics of the
simulator in the following section.
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3.3. 3D-Transient

The final validation section addresses the 3D-Transient flow within the hemodynamic
simulator. This setup introduces significant flow complexity compared to the 2D channels.
The single-plane PIV measurement at z* = 0 represents an imperfect observation, as
multiple 3D flow configurations could theoretically produce similar 2D footprints. This
ambiguity makes the reconstruction task highly ill-posed.

3.3.1. PINN

The evaluation begins with the “PINN RANS” model, trained on the DropXL case. Figure
3.20 presents the velocity magnitude prediction at ¢* = 0.2 during systole. At first glance,
the reconstructed regurgitant jet appears decent, largely due to the data fitting area being
relatively large. However, a closer inspection reveals several significant issues with the
prediction.

Firstly, the streamlines lack detail, appearing more homogeneous and parallel than the
reference, particularly within the LV. Similarly, the velocity magnitude distribution misses
fine-scale features observed in the CFD ground truth. Most crucially, the model largely
ignores the presence of the walls. The jet clearly penetrates the geometry, whereas the
ground truth demonstrates how the flow should roll off along the wall in all directions.
This failure to respect the wall BC is further evidenced in other regions, such as around the
aorta, where the velocity magnitude clearly does not approach zero. The geometry is only
discernible in the visualization because it was manually cut out during post-processing.
The limitations extend to the temporal evolution, as shown in Appendix Figure C.33
for the diastolic phase. Similar to the 2D-Transient results, the reconstruction of the jet
remains inaccurate during this phase. The velocity magnitude rises and falls immediately
adjacent to the MROP, yet the model fails to form a detached jet with significant magnitude
that travels towards the left ventricular wall. Consequently, the LA, which contains the
supervised window, exhibits better performance than the LV. However, the prediction
quality for both regions is inferior to the 2D-Transient results. It is worth noting that
the 2D-Transient domain lacked a wall at the end of the jet path, so whether that model
would have respected the no-slip condition in a bounded domain remains a matter of
speculation. The most critical limitation of the current PINN implementation is illustrated
in Appendix Figure C.34 The solution fails to propagate into the surrounding domain along
the z-direction. A sharp discontinuity appears at z* = 0, corresponding to the supervised
data plane. While the flow features exist within this slice, the velocity magnitude drops to
effectively zero immediately outside of it.

Investigations into the loss function weighting suggest this balance acts as an obstacle.
The no-slip condition becomes visible only after substantially reducing the weights for the
sparse velocity observations. However, this adjustment leads to a considerable deterioration
in data-fitting accuracy; the network struggles to satisfy both constraints simultaneously.
Furthermore, introducing a second parallel supervision plane results in negligible improve-
ments and fails to extend the solution volumetrically. Overall, the PINN approach fails to
produce satisfying results here.
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3.3.2. DeepONet

The aggregate performance of the DeepONet configurations is summarized in Figure 3.21.
A comparison with previous results reveals that the training case errors (a) are noticeably
higher than those observed in 2D-Steady and 2D-Transient, reflecting the increased difficulty
of fitting the complex 3D transient data. Conversely, the pressure field retains a low fitting
error. As detailed in the methodology, the experimental and CFD setups were calibrated
to match physiological pressure targets, resulting in fields that are similar while also being
largely homogeneous within the LV and LA chambers. The validation case metrics are no
longer combined into one, since only two remain. Their NRMSE values are comparable
to the more challenging 2D-Transient “Extra2” and “Extra3” cases. In addition to the
potential for temporal misalignment, this dataset uses CFD data points directly, which are
spatially biased towards areas of interest, those that have mesh refinements to accommodate
higher velocities and gradients. Consequently, larger absolute deviations appear more often
in the metrics calculation, which should be considered when comparing to 2D-Steady and
2D-Transient.

The “DD Smaller” model, which shares the 8 x 512 size of the successful 2D-Transient
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Figure 3.21.: Comparison of NRMSE for each 3D-Transient ANN output across various
trained DeepONets. The charts display error percentages aggregated over
the cardiac cycle for (a) training cases and the two (b, c¢) validation cases.
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DeepONet, already yields results superior to the PINN. Increasing the network capacity
to the 9 x 640 “DD” configuration provides further gains. This change improved the
visual fidelity of the jet and is reflected in the reduced error metrics shown in the barplot.
The inclusion of physical constraints is investigated through the “Conti” and “Exact”
configurations. The “Conti” model yields NRMSE values very similar to the data-driven
baseline. While tests with larger batch sizes or effective weights induced a smoothing
effect on the fields, confirming the loss term’s impact, further tuning was constrained by
computational limits. The memory demand scales with the number of collocation points
evaluated per branch input snapshot. Overcoming this bottleneck would necessitate either
increased hardware resources or a more efficient code implementation, both of which fell
outside the scope of this study. The “Exact” architecture, which utilizes a vector potential
formulation to intrinsically satisfy the continuity equation, similarly fails to provide a
benefit. Visually, the jet reconstruction degrades, and the error metrics in Figure 3.21 are
noticeably higher than “DD”. This performance drop could stem from the additional gradient
pass required to calculate velocity from the potential, which complicates the optimization
landscape. The impact of these approaches on the physics compliance is visualized in
the PDE residual analysis provided in Appendix Figure C.35. While the “Exact” model

(a) w (train: 25.3%, val: 56.9%) (b) v (train: 45%, val: 70.8%)

100

o
1 A —
:\ 100:

50 1

NRMSE in %

20 A

o 2000
100 1\ 1000
o ] -\/‘//\_@( j 500 4
ZZ ] 200
o 50 - 100 5
& 50
= 20
~ 10 o
Z 5 3

20 A 2]

1 =
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t*
(e) vt (train: 26.6%, val: 63.4%)
100
] V\J\/AJ*%QCF

=X 50 4 —— PinholeS ~—— SlotL_Bent (val)
k= == PinholeM ——— DropS
[€a)] —— PinholeL DropM
g = SlotS ——— DropL
= 20 —— SlotM DropXL (val)
Z. —— SlotL

10

t*

Figure 3.22.: Temporal evolution of NRMSE for all fields over the cardiac cycle for the
3D-Transient “DD” model. Each line is a different CFD case.
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achieves near-perfect satisfaction of the continuity equation, barring numerical noise, this
mathematical rigor does not translate into a tangible improvement in matching the ground
truth flow. This PDE residual bar plot further confirms that the “Conti” configuration
reduces the continuity residual compared to the “DD” baseline. Furthermore, the standard
“DD” model consistently yields lower residuals than the “DD Smaller” variant, aligning with
the improved accuracy observed in the direct field comparisons. The x-momentum residual
is significantly higher than that of the y and z components; the flow is dominated by the
high-velocity u-component of the jet. Finally, the disparity between training and validation
residual percentages is notably smaller here than the gap observed in the NRMSE metrics.
While a correlation between residual magnitude and predictive fidelity exists, this reduced
separation makes it difficult to gauge the absolute quality of a validation result based solely
on the PDE residuals, which becomes important for the evaluation of experimental results
in Chapter 4.

Figure 3.22 provides the temporal context for the aggregate values presented in the bar
plot, illustrating how the NRMSE evolves over the cardiac cycle for the “DD” model.
The separation between the training distribution and the unseen validation cases remains
clearly defined throughout the period. A distinct anomaly appears in the PinholeL training
case, where the error spikes suddenly after ¢t* = 0.4. While not investigated further,
this behavior resembles the transient artifacts encountered in the 2D-Transient analysis.
Generally, the cases track closely together, with the error magnitudes oscillating in response
to the changing flow physics. These fluctuations stem from the interplay between the
flow conditions and the error metric itself. Phases characterized by low magnitudes can
artificially inflate the relative error, while high-velocity intervals may lead to larger absolute
deviations. Additionally, specific parts of the cardiac cycle involve inherently more complex
flow dynamics, presenting a greater challenge for the operator to resolve compared to
quiescent phases. Analogous to the NRMSE bar plot, a version of this figure that instead
concerns the PDE residuals is included in the Appendix Figure C.36. Here, the distinct
separation between training and validation sets disappears. The validation cases blend into
the cluster of training trajectories, occasionally exhibiting even lower residuals than some
supervised instances.

As the previous bar plot 3.21 shows, the fine-tuned “Hybrid” models slightly improve the
aggregate NRMSE over the baseline “DD” model for their respective cases. Like with
2D-Transient, it is a modest difference. Figure 3.23 provides a direct temporal comparison
for the DropXL validation case. The most substantial error reduction appears during the
systolic phase (t* < 0.3), coinciding with the development of the regurgitant jet within
the supervised region. While the numerical performance tracks the baseline closely for
several intermediate time steps, a distinct improvement emerges again during the later
diastolic phase, starting around t* = 0.5. These reductions in global error likely stem from
the enhanced fitting accuracy within the observation window.

The “Hybrid Conti” model was evaluated to determine if including the continuity PDE loss
term during the adaptation phase improves the solution. The aggregate error metrics in
Figure 3.21(b) indicate a performance regression compared to the “Hybrid DD” approach.
Figure 3.23 details this behavior over the cardiac cycle, showing consistently higher errors
for the physics-informed model. The pressure trace highlights a numerical characteristic
of the NRMSE formulation (Appendix 5.1). The instantaneous error spikes to extreme
values during phases of low or uniform values. In these intervals, the standard deviation
in the denominator approaches zero, causing even negligible absolute errors to produce
massive relative values. The aggregate metric remains low because it is not calculated
as the average of these instantaneous ratios but is instead normalized against the total
variance of the entire sequence, which is dominated by the high-magnitude phases. The
PDE residual evolution is shown in Appendix Figure C.37. While the continuity adherence
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Figure 3.23.: Temporal evolution of the NRMSE for all fields over the cardiac cycle for the
3D-Transient DropXL case. Horizontal dashed lines indicate the respective
aggregate values computed over the entire period.

improves, the x-momentum residuals increase, indicating a deterioration of the global flow
physics. This effect is visually confirmed in the snapshot provided in Appendix Figure
C.47. The constraint imposes a strong smoothing effect that diminishes the jet magnitude
and hinders the model from accurately fitting the data even within the supervised window.
Although further hyperparameter tuning might reduce this smoothing to a beneficial
effect, the potential gains are expected to be moderate based on previous 2D-Steady
and 2D-Transient results. Furthermore, training a full “Hybrid RANS” model proved
computationally prohibitive, as the memory requirements exceeded the presently available
GPU capacity even at minimum batch sizes. Consequently, the purely data-driven “Hybrid
DD” framework is selected as the optimal approach.

The spatial reconstruction capabilities of the “Hybrid DD” model are visualized in Figure
3.24 for the systolic phase at t* = 0.25. The model reconstructs the high-velocity regurgitant
jet with high fidelity, matching both the magnitude and the spatial extent of the CFD
reference. In strong contrast to the PINN results, the prediction respects the complex
boundaries; the jet interacts naturally with the atrial walls, rolling off the geometry rather
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than penetrating it, resulting in low error magnitudes along the surface. Despite this high
overall accuracy, exact streamline matching across the entire complex 3D domain proves
more challenging than in the simplified 2D setups. Deviations are visible in secondary flow
features, such as the upward path connecting the LV to the reservoir. A comparison with
the baseline “DD” prediction provided in Appendix Figure C.38 confirms that the hybrid
fine-tuning induces minimal structural changes outside the supervised PIV window. This
reinforces the observation that the accurate global topology is primarily derived from the
pre-trained operator, while the adaptation step locally refines the solution to match the
specific experimental observation. To demonstrate the general reconstruction quality of
the remaining flow variables, Appendix Figures C.43 through C.46 display the predictions
for v, w, p and vy using the current snapshot. The diastolic jet is visualized in Figure
3.25 at t* = 0.5. The operator successfully captures the overall topology, with streamlines
largely matching the ground truth. A distinct region of underprediction persists as a thick
streak emerging from the orifice. This error stems from the extrapolation to a larger orifice
size than encountered during training, affecting the LV side where the sparse supervision
provides no direct correction. A comparison with the baseline “DD” prediction in Appendix
Figure C.39 reveals that the hybrid adaptation improves the jet magnitude and streamline
alignment outside the PIV window in this phase in a slightly more noticeable but still
minor way.

The ability of the framework to infer the full 3D flow field from 2D data is assessed in
Figure 3.26, which displays the velocity magnitude on the y-plane at t* = 0.05. The
model successfully generates a volumetric solution that extends into the depth of the
domain. However, a comparison with the baseline “DD” prediction in Appendix Figure
C.40 reveals that the fine-tuned result appears less physically cohesive despite achieving a
lower numerical error. This stems from the localized nature of the hybrid update. The
baseline prediction positions the jet pulse ahead of the ground truth. The fine-tuning step
accurately retracts the jet within the supervised z* = 0 plane to match the observations.
Crucially, this correction does not propagate uniformly across the full z-width of the jet.
The outer fluid layers remain in their original advanced position, creating a disjointed
appearance in the cross-section. Furthermore, the underprediction streak caused by the
orifice size extrapolation manifests in the LA, as the single-plane supervision leaves these
off-center regions unconstrained. In other phases of the cardiac cycle, the model achieves
significantly higher volumetric fidelity. Appendix Figures C.41 and C.42 illustrate the
y-plane predictions during systole and diastole, respectively. In these instances, the
velocity magnitude distribution is more accurately recovered throughout the cross-section.
The primary residual deviation remains the streaking artifact downstream of the orifice,
resulting from the extrapolation of the gap height. These results indicate that the framework
produces qualitatively robust 3D reconstructions, yet the restriction to a single input and
fine-tuning plane at z* = 0 imposes an inherent limit on the off-plane accuracy in specific
transient states.

The generalization capability is further tested on the SlotL-Bent case. This geometry
differs from the training set due to the bent orifice. Figure 3.27 visualizes the results for
the systolic phase. The branch network input for this case is extracted from a location
shifted in the positive z-direction. This adjustment accounts for the physical displacement
of the orifice opening caused by the bent geometry. However, the supervision remains
anchored to the original coordinate system to align with the training distribution, where
the jet origin is invariant. This positioning ensures that the DeepONet infers the jet start
in a location consistent with its prior learning. The experimental PIV data supervision
is subsequently applied in the same manner in Chapter 4. The impact of this inherent
geometric misalignment appears clearly in the error maps in Figure 3.27(c). A localized
error spike exists at the jet origin because the predicted flow initiation point is shifted
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3.3. 3D-Transient

relative to the ground truth. Outside this specific region, the prediction quality remains
robust. Figure 3.28 confirms this behavior for the diastolic phase. Here, the maximum
velocity magnitude is underpredicted. This intensity drop actually lessens the NRMSE
impact of the misalignment; a full-magnitude jet in the shifted position would produce
a larger deviation. Distinct streaking artifacts are also visible. Unlike in the 2D-Steady,
2D-Transient, or DropXL cases, where such features stem from extrapolating unknown
orifice heights, the flat SlotL geometry is included in the training distribution. Consequently,
the streaking here is a result of the novel bent shape and the input coordinate shift. The
temporal evolution of the NRMSE for this case is detailed in Appendix Figure C.48. The
“DD?” baseline clearly outperforms the “Exact” and “DD Smaller” architectures. The hybrid
fine-tuning step yields minimal improvement here, and for some fields, the aggregate metrics
actually exceed those of the baseline, a trend reflected in the bar plot 3.21(c). Regarding
physical consistency, the temporal evolution of the residuals in Appendix Figure C.49 and
the residual bar plot in Figure C.35(c) indicate that the metrics deteriorate following the
hybrid adaptation. This increase in residuals is similarly observed for the DropXL case
(C.37 and C.35,c) and likely stems from the disjointed 3D jet structure observed in the
snapshot analysis.

3.3.3. Interim Conclusion

The validation on the 3D hemodynamic simulator dataset reinforces the conclusions drawn
from the 2D cases while highlighting the unique challenges of volumetric reconstruction.
The instance-specific PINN fails to solve the ill-posed problem of inferring a 3D flow field
from a single 2D slice. Lacking the prior knowledge of the flow topology, the network
overfits to the dense data window and fails to propagate the solution physically into the
depth of the domain or respect the boundary conditions.

In contrast, the DeepONet framework successfully leverages the training distribution to
reconstruct plausible 3D flow fields from sparse 2D inputs. The “Hybrid DD” approach
proves to be the more effective strategy. While the inclusion of physical constraints like
continuity or vector potential formulations offer theoretical benefits, they induce over-
smoothing or optimization difficulties in practice without yielding tangible accuracy gains.
Consequently, the purely data-driven architecture was selected as the optimal surrogate.
The validation revealed that while the hybrid fine-tuning effectively corrects the solution
within the supervised plane, it can introduce disjointed artifacts in the third dimension,
as the correction does not always propagate uniformly across the volumetric jet width.
However, the analysis of the SlotL-Bent case demonstrates the model’s robustness to
geometric variations and coordinate misalignments. This capability is useful for the
transition to real-world application, where exact geometric matching is challenging. Having
established the “Hybrid DD” DeepONet as a capable and robust tool on synthetic ground
truth data, the following chapter applies this framework to the experimental PIV data to
reconstruct the full 4D hemodynamics of the simulator.
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4. Application to Experimental Data

Having established the superiority of the “Hybrid DD” DeepONet architecture in the
validation chapter, this section applies the final framework to real experimental data [43]
from the hemodynamic simulator. The primary objective is to assess the framework’s
capability to perform 2D-to-3D flow field reconstruction on real-world transient cases.
Unlike in the validation phase, a complete 3D “ground truth” velocity field is unavailable
for these experimental cases. Consequently, the evaluation focuses on the qualitative
plausibility of the volumetric reconstruction and its physical consistency, which is assessed
through the calculation of PDE residuals.

The application covers four distinct experimental configurations: PinholeL, SlotL, DropXL,
and EccJet. For each case, the pre-trained DeepONet is adapted using the specific sparse
PIV observations. A quantitative comparison against available measurements is performed
for the EccJet case, where additional PIV planes at different z-depths were recorded
and serve as a validation set. It is important to note that the experimental datasets are
temporally sparser than the CFD simulations, containing between 25 and 50 irregularly
spaced time steps instead of 300. Consequently, fewer snapshots are provided as branch
input and utilized for supervision during the fine-tuning process. This chapter assesses
whether the DeepONet can produce physically plausible and experimentally consistent 3D
flow fields from these limited real-world observations.

4.1. Results

The physical consistency of the experimental reconstructions is evaluated using the PDE
residuals, summarized in Figure 4.1. The experimental datasets are limited to up to
50 irregularly spaced snapshots; these available time steps predominantly capture the
active regurgitation phase. As observed in the validation of 3D-Transient, residuals during
these active phases are typically higher than during quiescent periods. Therefore, a direct
like-for-like comparison with the cycle-aggregated CFD metrics requires caution.

Despite this bias towards challenging flow states, the residual magnitudes align closely with
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Figure 4.1.: Comparison of PDE residuals for the RANS equations across various trained
3D-Transient DeepONets. The chart displays residual percentages aggregated
over the cardiac cycle for the fine-tuned experimental cases.
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the validation results. For context, the CFD-based DropXL validation case yielded aggregate
residual percentages of 22.8 (Continuity), 9.97 (z-Momentum), 4.21 (y-Momentum), and
4.77 (z-Momentum). The SlotL-Bent case exhibited values of 22.4, 32.4, 5.05, and 5.57,
respectively (Figure C.35b,c). In comparison, the experimental applications in Figure 4.1
show ranges of 15.7-29.2, 9.59-23.1, 4.74-6.66, and 4.93-7.18. These values indicate that
the PIV-based reconstructions achieve a level of physical adherence comparable to, and
in some metrics even surpassing, the CFD validation cases, suggesting that the model
maintains some level of consistency when driven by sparse real-world data. Figure 4.2
breaks down the aggregate metrics, illustrating how the PDE residuals evolve over the
available time steps for each experimental case. This temporal resolution offers nuance
to the favorable aggregate comparison observed in the bar plot. When compared to the
equivalent evolution plots from the 3D-Transient validation (e.g., Figure C.36), the residual
peaks in the experimental application tend to reach the upper bound of, or exceed, the
highest values recorded for the CFD cases in the early systolic phases. This indicates
that while the average physical inconsistency is comparable, the model struggles more
significantly to resolve the governing equations during specific, highly dynamic instants
when driven by the experimental input.

The visual analysis of the velocity magnitude reconstruction begins with the PinholeL,
case. As noted in Section 2.1.1.2, this configuration demonstrated the strongest agreement
between the URANS validation and the experimental measurements. Figure 4.3 presents
three snapshots of the predicted field. Subfigure 4.3(a) displays the z-plane at t* = 0.26.
This snapshot depicts a coherent and plausible flow topology. The streamlines are well-
formed, and the regurgitant jet extends naturally to the right LA wall, where it rolls off
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Figure 4.2.: Temporal evolution of the PDE residuals for the RANS equations over the
cardiac cycle for the 3D-Transient “Hybrid DD” model. Each line is a different
fine-tuned experimental case.
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Figure 4.3.: “Hybrid DD” velocity magnitude predictions for 3D-Transient Pinholel. Exp,
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t* = 0.527.
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the surface as expected physically. However, the phases preceding this stable state exhibit
noticeable artifacts not captured in this single frame. Specifically, the jet connects to the
wall prematurely in a speckled, disjointed manner. While the jet tip remains clearly visible
within the supervised area, high velocity magnitudes appear simultaneously to the right of
this region. Consequently, the vertical structures along the wall, which correspond to the
circular spreading of the flow on the flat surface (visible as vertical roll-off in 2D), emerge
earlier than the main jet body arrives.

This phenomenon is explicitly captured in subfigure 4.3(b), which shows the y-plane at
t* = 0.087. Here, the premature connection to the wall is clearly visible. Furthermore, the
flow vertices appear near the wall, significantly ahead of the actual jet tip. This artifact
mirrors the specific limitation identified during the validation of 3D-Transient: the hybrid
fine-tuning effectively corrects the jet propagation within the supervised z* = 0 plane, but
this correction does not propagate laterally to adjust the full z-width of the jet. As a result,
the outer layers of the inferred 3D jet remain in their original, uncorrected positions, shown
in Appendix Figure C.50, creating a disjointed topology. These structural inconsistencies
coincide temporally with the spikes observed in the PDE residual evolution (Figure 4.2).
Subfigure 4.3(c) illustrates the diastolic phase at t* = 0.527. Here, a degradation in
prediction quality is evident compared to the CFD validation. While streaking artifacts are
present in the 3D-Transient validation, the issue manifests differently and more severely in
current context. The snapshot displays a strong central jet core surrounded by a diffuse
region of weaker velocity magnitude. It is important to distinguish this artifact from
those observed in the validation chapter; it does not stem from geometric factors such
as a bent nozzle or orifice height extrapolation, as the PinholeL. geometry is represented
in the training set. Rather, this streaking appears to be a specific byproduct of using
the experimental data. This specific degradation likely points to a challenge associated
with the domain shift between the training distribution and the experimental input. The
baseline DeepONet is trained exclusively on idealized synthetic data derived from URANS
simulations. In contrast, the PIV measurements are subject to inherent experimental noise
and statistical errors arising from the phase-averaging acquisition process. As the training
phase does not employ augmentation strategies to prepare for these imperfections, the
network appears sensitive to the discrepancy in signal characteristics.

The analysis of the SlotL experimental case begins with the physical consistency metrics.
The PDE residuals presented in the bar plot (Figure 4.1) and the temporal evolution (Figure
4.2) indicate a performance degradation compared to the PinholeL case. Notably, the
z-momentum error is the highest among all experimental configurations. This case’s data
finely captures the complex initial development of the jet. The experimental flow features a
double vortex ring formation [43], a complex topological structure that is not present in the
initial training distribution and is now driving the model’s output through the branch input
layer. Figure 4.4 visualizes the velocity magnitude reconstruction, presenting a pattern
of artifacts similar to those observed in the PinholeL analysis. Subfigure (a) displays
the z-plane prediction, which appears qualitatively reasonable; the jet is well-formed and
connects to the atrial wall, albeit too narrow near the junction. However, the temporal
progression reveals that this connection to the LA wall occurs prematurely again. Subfigure
(b), showing the y-plane, confirms this early impact. Again, the structure is disjointed in
z-direction, and the vortices are ahead of the jet due to the test-time adaptation correcting
the baseline model’s prediction insufficiently.

The PDE residual analysis for the DropXL case, shown in Figure 4.1, reveals an increase in
the continuity error compared to the PinholeL and SlotL results. The momentum residuals,
however, remain within the intermediate range of the experimental cohort, indicating a
middling performance in terms of dynamic consistency relative to the other cases.

Figure 4.5 presents inferred velocity fields. Subfigure (a) depicts the regurgitant jet in the z-

63



4. Application to Experimental Data

0.688

(a) [ulHhon t* =0.147 0.631

0.573

0.516

0.459

0.401

0.344

- 0.287

- 0.229

0.172

0.115

0.057

0.000

0.745
0.683
0.621
0.558
0.496
0.434
0.372
0.310
0.248
0.186
0.124

0.062

z* 0.000

Figure 4.4.: “Hybrid DD” velocity magnitude predictions for 3D-Transient SlotL Exp, (a)
z-plane for t* = 0.147 and (b) y-plane for t* = 0.085.

plane. Once established, the flow topology appears coherent, with the jet clearly extending
to the LA wall. However, the temporal evolution again indicates a premature connection. A
distinct feature in this case is the intensity parallel to the wall; the flow exhibits high velocity
magnitudes relative to the main jet body, appearing disproportionately energetic compared
to observations in the previous cases. Subfigure (b) presents the y-plane slice during
the fully connected phase. While many figures in this chapter are selected to illustrate
specific reconstruction challenges, this snapshot serves as a counterpoint, demonstrating
the model’s capacity to generate results that appear reasonable. In contrast, the onset of
the diastolic phase shown in subfigure (c) highlights significant reconstruction failures. The
field is marred by speckled artifacts and a prominent streak of high-velocity magnitude. A
similar flaw is observed in the y-plane view for these time steps.

A potential explanation for the specific challenges observed in this case is provided in
Appendix Figure A.4: The experimental setup for this run operated under a different
boundary condition than the standard training set due to a hardware limitation; the cardiac
pump reached its power limit, resulting in a “clipped” input waveform. This deviation
alters the driving pressure dynamics significantly compared to the smooth profiles the
model is trained on, forcing the operator to reconstruct a flow field governed by unfamiliar
constraints.

The final application case, EccJet, presents the most significant deviation from the training
distribution due to its highly eccentric jet angle. This is reflected in the physical consistency
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Figure 4.5.: “Hybrid DD” velocity magnitude predictions for 3D-Transient DropXL Exp,

(a) z-plane for t* = 0.193, (b) y-plane for t* = 0.260 and (c) z-plane for
t* = 0.393.
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metrics; the continuity residual, shown in Figure 4.1, is the highest among all experimental
configurations. The challenge is evident when examining the baseline prediction. Appendix
Figure C.51 illustrates that the standard “DD” model fails to resolve the novel flow
trajectory, incorrectly predicting a jet that connects to the right atrial wall. The efficacy
of the hybrid adaptation in correcting this behavior is visualized in Figure 4.6. The fine-
tuned model successfully reorients the jet direction to match the eccentric angle observed
in the PIV data. The reconstructed jet extends beyond the immediate bounds of the
supervised area. However, the physical validity of this extension remains ambiguous; it
bears a resemblance to the extrapolation observed in the 2D-Transient data-driven PINN,
suggesting it may be a numerical byproduct of the MLP architecture rather than a true
propagation of flow physics. Furthermore, temporal analysis reveals that the jet does not
progress significantly beyond this snapshot and fails to reach the bottom wall of the atrium.

Despite the directional correction, remnants of the training distribution persist. Faint
regions of elevated velocity magnitude appear along the right atrial wall, the location where
jets typically impinged in the training cases. Additionally, the streamline quality in the
LV is notably degraded. The flow patterns appear overly uniform and lack the nuanced
features observed in previous reconstructions, indicating that the global flow prediction
degrades due to the adjustment to the novel jet.

Given the limitations established throughout the validation chapter and the preceding
experimental analyses, specifically the recurring artifacts and the insufficient propagation
of the hybrid fine-tuning, the poor qualitative results observed in the EccJet snapshots are
an expected outcome. However, despite this predictable performance deficit, the EccJet
case offers a unique analytical value: The experimental dataset includes time-resolved
PIV measurements for adjacent z-planes. This allows for at least a partial numerical
judgment of the experimental application, quantifying the reconstruction accuracy along
the z-direction, even though a full validation of the entire volumetric domain remains
impossible.

The quantitative analysis is visualized in Figure 4.7, which compares the reference PIV data
and the DeepONet prediction across different z-planes. The left half of the figure shows the
plane at z* = —0.02, corresponding to a dimensional depth of 2mm. Subfigure (a) presents
the PIV reference, revealing fine-grained velocity magnitude details. Topologically, this
slice is characterized by a large upper vortex and a smaller secondary vortex located near
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Figure 4.6.: “Hybrid DD” velocity magnitude prediction for 3D-Transient EccJet Exp,
z-plane at t* = 0.1.
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NRMSE in % ‘ t*=0.040 t*=0.063 t*=0.067 t*=0.080 ¢t*=0.093
z* = —0.02 28.2 26.5 24.6 23.9 21.0
z* = —0.04 62.0 52.9 43.1 41.6 35.1
2" = —0.06 96.3 72.1 52.6 49.8 43.9

Table 4.1.: NRMSE values for the “Hybrid DD” velocity magnitude prediction compared
against PIV measurements for the EccJet case across available time-steps and

z-planes.
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Figure 4.7.: (a) Reference 3D-Transient EccJet Exp velocity magnitude. (b) “Hybrid
DD” prediction. (c) Signed non-linear and (d) absolute error magnitude with
streamlines. The left half shows z* = —0.02 at t* = 0.067, the right half shows
z* = —0.06 at t* = 0.093.

67



4. Application to Experimental Data

the jet tip. The corresponding DeepONet prediction in subfigure (b) successfully captures
the general macroscopic features, with the jet direction and length roughly matching the
experimental observation. The streamlines in the prediction also reproduce the large
upper vortex structure. However, a closer inspection reveals localized discrepancies: the
streamlines momentarily invert direction just before reaching the upper edge of the jet, and
the smaller lower vortex is not properly resolved. These inaccuracies result in an NRMSE
of 24.6% for this plane and time-step.

The entire error quantification for the five available PIV time-steps is summarized in
Table 4.1, which reveals a distinct spatial dependency: while prediction accuracy remains
moderate near the supervised center slice, the error metrics degrade as the distance from
the z* = 0 plane increases. For example, at the time-step shown in the left subfigure
(t* = 0.067), the NRMSE doubles from 24.6% at z* = —0.02 to 52.6% at z* = —0.06. This
quantitative evidence reinforces the qualitative observations regarding the limited lateral
propagation of the hybrid corrections.

The right half of Figure 4.7 visualizes the flow at a deeper plane (z* = —0.06) during a later
time-step (t* = 0.093), where the jet has propagated to the edge of the recorded domain.
The absolute velocity magnitudes here are lower, approximately half those observed in
the previous subfigure; the colormaps are scaled separately. The DeepONet prediction (b)
exhibits a marked loss of definition, appearing even smoother and more featureless than
the shallower slice. The structural agreement also degrades considerably; even the large
vortex structure fails to match the experimental reference. While the model predicts some
influence of the jet penetrating into this layer, the resulting feature remains undefined,
confirming the rapid decline in reconstruction quality away from the supervised center
plane. Appendix Figure C.52 displays the reconstruction for the intermediate plane at
z* = —0.04 and t* = 0.080, illustrating a prediction quality that naturally falls between
the extremes of the shallower and deeper slices discussed above.

4.2. Interim Conclusion

The transition from synthetic validation to experimental application demonstrates that the
DeepONet framework maintains a baseline level of robustness when driven by real-world
measurements. Despite the domain shift, characterized by measurement noise, temporal
sparsity, and unseen boundary conditions, the model generated volumetric flow fields
with aggregate physical consistency comparable to the CFD benchmarks. The “Hybrid
DD” approach successfully adapted the baseline model to match specific experimental
observations.

However, this chapter confirms the limitation in the framework’s ability to ensure volumetric
coherence from planar supervision. The detailed snapshot analysis reveals that while the
hybrid fine-tuning effectively constrains the flow within the supervised observation plane,
this correction fails to propagate laterally through the depth of the domain. This results
in disjointed 3D topologies where the outer flow layers and vortex rings remain misaligned
with the corrected central jet. Furthermore, the model exhibits sensitivity to experimental
signal characteristics; the absence of augmentation in the training phase likely contributes
to the severe artifacts observed during the diastolic phases. This performance degradation
is further compounded by the systemic discrepancies identified in the URANS Validation
Section 2.1.1.2. The CFD training dataset, characterized by overpredicted jet magnitudes
and idealized orifice geometries, conflicts with the physical reality of the flexible orifice
foil in the experiment, creating a fundamental domain gap that may drive these elevated
errors.
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4.2. Interim Conclusion

The quantitative assessment of the EccJet z-planes empirically confirms these qualitative
findings. The reconstruction accuracy degrades sharply as the distance from the supervised
slice increases, proving that the current single-plane fine-tuning strategy is insufficient to
constrain the full volumetric solution reliably. Consequently, while the DeepONet functions
as a flexible surrogate capable of assimilating sparse real-world data, achieving accurate
4D hemodynamics requires further work.
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5. Conclusion and Qutlook

Accurate characterization of hemodynamic flows is fundamental to the diagnosis and
treatment planning of cardiovascular pathologies. While clinical imaging modalities like
4D Flow MRI offer volumetric insight, they remain constrained by limited spatiotemporal
resolution. Computational Fluid Dynamics (CFD) provides high-fidelity resolution but
entails high computational costs and relies on boundary condition assumptions. This thesis
addressed the gap between these domains by developing a machine learning framework
capable of reconstructing time-resolved volumetric (4D) flow fields. The investigation
was grounded in a physiological hemodynamic simulator designed to replicate left heart
dynamics and mitral valve regurgitation. This experimental setup defined the scope of
experimentally observable inputs used to drive the reconstruction: time-resolved pressure
boundary conditions acquired from sensors and planar velocity slices obtained via two-
component Particle Image Velocimetry (2D2C PIV).

The core objective was to establish a robust methodology for solving the ill-posed problem
of inferring full 4D hemodynamics from these limited observations. To achieve this, the
research evaluated two contrasting architectural strategies. The first approach utilized an
instance-specific Multilayer Perceptron (MLP) trained via the Physics-Informed Neural
Network (PINN) method, optimizing a single network for a specific flow configuration. The
second approach employed (Physics-Informed) Deep Operator Networks (PI-DeepONets),
designed to learn the mapping between a discretized input function and the resulting
volumetric flow field through multiple training cases, thereby acting as a generalizable
surrogate. The input function was chosen as a spatially restricted subset of the full velocity
field, serving as an analogue to the planar slice captured by the experimental PIV setup.

To enable this investigation, synthetic ground truth data was created using Unsteady
Reynolds-averaged Navier-Stokes (URANS) simulations, which replicated the operating
conditions, geometry of the hemodynamic simulator, and the specific mitral regurgitation
orifice phantoms (MROPs) employed. This dataset has been validated against experimental
measurements. Building upon this setup, two simplified dataset tiers were derived to facili-
tate a hierarchical development strategy. The 2D-Steady setup established a foundational
environment, isolating the spatial reconstruction challenge from temporal complexities
by modeling steady-state flows through varying orifice sizes. The 2D-Transient setup
reintroduced temporal dynamics, employing pulsatile pressure boundary conditions to
mimic the cardiac cycle while maintaining a reduced computational cost compared to
the full volumetric domain. Using these datasets, the reconstruction frameworks were
evaluated using three training modalities: purely data-driven models, physics-augmented
strategies incorporating non-dimensionalized RANS loss-functions, and a hybrid “test-time
adaptation” approach. The latter strategy leverages a pre-trained DeepONet as a gen-
eralized base model, which is then fine-tuned to maximize consistency with the specific
sparse target observations. The final framework was applied to real experimental PIV data
acquired from the hemodynamic simulator, assessing the model’s capability to generalize
to real-world measurements.

The validation of these models was conducted using extensive snapshot analysis, flow field
comparisons, and aggregate error metrics. Through this hierarchical evaluation, the operator
learning framework consistently demonstrated its superiority over the instance-specific
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PINN approach. Across all complexity levels, the PINN failed to satisfactorily solve the
ill-posed reconstruction problem given the sparsity of the boundary data. In the 2D-Steady
case, the PINN failed to converge to the correct flow topology or pressure gradients. Moving
to the 2D-Transient environment, the PINN was unable to capture the correct temporal
evolution of flow features, resulting in a retracting jet artifact during diastole rather than the
physical extension into the ventricle. In the 3D-Transient setup, the model overfitted to the
data window and failed to propagate the solution physically into the depth of the domain or
respect the boundary conditions. Similar to the PINN, alternative DeepONet architectures,
including Fourier-feature networks and “exact” continuity formulations utilizing stream
functions or vector potentials, yielded results inferior to the standard MLP despite their
theoretical merit. Consequently, the standard MLP-based DeepONet was selected as the
primary architecture for further optimization.

The investigation of steady-state 2D channel flow established the “Hybrid” training strategy
as a critical innovation for handling extrapolation cases. The performance of the DeepONet
proved reliant on the training dataset distribution, where increasing the number of training
cases significantly improved generalization capabilities. The test-time adaptation strategy
demonstrated high effectiveness; by continuing the background training of the operator while
simultaneously minimizing the error on the sparse validation observations, the Normalized
Root-Mean-Square Error (NRMSE) for out-of-distribution cases was reduced by a factor
of 5.53, dropping from 84.0% to 15.2%. While the addition of physics-informed loss-terms
such as the continuity equation improved generalization, these constraints required careful
balancing even while utilizing automatic Neural Tangent Kernel (NTK) weighting. This
balancing act became progressively more difficult in the subsequent transient and 3D
domains. The hybrid fine-tuning also largely corrected “streaking” artifacts caused by the
appearance of common shapes in the training data and extrapolating to larger orifice sizes,
although some remnants persisted.

Introducing temporal dynamics with 2D-Transient revealed that while the DeepONet
remained superior to the PINN, the effectiveness of the hybrid adaptation became spatially
localized. The DeepONet provided generally stable predictions across the cardiac cycle,
achieving approximately a two-fold improvement in error metrics compared to instance-
specific PINNs. Unlike in the steady-state case, the improvements from hybrid fine-tuning
were largely contained within the supervision window, where they are least needed due
to the availability of measurement data, and failed to propagate global improvements
significantly. Consequently, the streaking artifacts observed in 2D-Steady were no longer
fully corrected in 2D-Transient due to the presence of the diastolic jet flowing in the
opposite direction and the increased temporal complexity.

The 4D reconstruction in 3D-Transient highlighted the geometric limitations of inferring
volumes from planar data while simultaneously demonstrating a significant computational
efficiency potential: a single URANS simulation for 3D-Transient required approximately
120 hours of computation time, whereas the baseline DeepONet trained in roughly 12 hours,
and the test-time adaptation for a new case was completed in as little as 15 minutes. While
not a direct comparison due to the prerequisite of the CFD training set, this highlights
the rapid inference capability of the surrogate. The final optimal strategy, “Hybrid DD”,
relied purely on data-driven losses; physics constraints were abandoned as they induced
over-smoothing and increased computational cost without yielding accuracy gains in the
tested configurations. Similar to 2D-Transient, the hybrid correction was effective within
the supervised z = 0 slice but failed to propagate outside of it. This resulted in disjointed
3D jet structures, where the corrected central slice misaligned with the uncorrected outer
flow layers.

Applying the framework to real experimental PIV data added the challenge of domain
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5. Conclusion and Outlook

shift between the idealized synthetic training data and the noisy real-world measurements.
The model proved sensitive to this discrepancy in signal characteristics, which destabilized
the operator’s inference, leading to more severe artifacts, especially during the diastolic
phases. While the diastolic jet is a byproduct of using fixed MROPs rather than functional
mitral valves and lies outside the primary research focus on systolic regurgitation jets, the
model’s struggle to render this challenging feature accurately serves as a valuable marker
of robustness. The model was evaluated qualitatively and through PDE residuals across
four distinct cases. The training distribution did not cover the specific geometry of the
EccJet case, leading the baseline operator to predict a standard jet angle rather than the
highly eccentric angle observed in the experiment. The hybrid adaptation successfully
reoriented the jet direction in this case to match the observations. However, quantitative
assessment confirmed that reconstruction accuracy degrades sharply as the distance from
the supervised slice increases.

The investigation across all complexity levels concludes that while hybrid fine-tuning offers
a mechanism to correct the inevitable artifacts arising from the DeepONet’s dependence
on training data for out-of-distribution predictions, this adaptation presently remains
insufficient in transient applications. Improvements fail to propagate globally and remain
largely confined to the additionally supervised region. Addressing these limitations requires
either enhancing the baseline prediction accuracy to reduce the initial error or amplifying
the global impact of the fine-tuning step, possibly achievable through the architectural and
methodological advancements proposed below.

For enhancing spatial predictive fidelity, the current reliance on MLPs necessitates flat-
tening the PIV input data, which inevitably discards spatial relationships. Replacing the
branch network with Convolutional Neural Networks (CNNs) could preserve this structural
information and potentially improve the encoding of the velocity fields. Furthermore, the
framework might benefit from multi-branch architectures capable of fusing heterogeneous
data sources, such as pressure readings and geometric shape parameters, directly into the
operator. Utilizing geometric parameterization of the orifice phantoms instead of velocity
snapshots implies a trade-off, as it would eliminate the dependency on instantaneous flow
recordings while potentially reducing the immediate state information available to the
network. To address the challenge of volumetric coherence, incorporating multi-plane
supervision using orthogonal recordings appears necessary to anchor the solution in the
third dimension and facilitate lateral propagation during the fine-tuning process. Moreover,
reducing the output vector size by excluding variables such as pressure or turbulent viscosity
when not strictly necessary could reduce the complexity of the mapping task and improve
performance, provided that a purely data-driven framework remains the optimal choice.

The temporal consistency of the reconstruction requires attention as well. The current
snapshot-based methodology processes time instants in isolation and neglects the flow
history. Integrating temporal learning structures, such as Temporal Convolutional Networks
(TCNs), would allow the model to process sequences and maybe assist in resolving the
transient artifacts observed in this study. Similarly, architectures that explicitly account for
the periodic nature of the cardiac cycle could further stabilize the predictions. Otherwise
incorporating information from adjacent time steps or employing temporal padding strate-
gies might also help the network resolve the rapid transients and boundary condition shifts
that occur at the end of the cycle. However, utilizing multiple snapshots simultaneously
introduces a new constraint: the architecture must be capable of handling irregular time
intervals, or the input data must either be regularly spaced, a requirement not currently
met by the available experimental PIV datasets.

Enhancements to the physics-informed components and data strategies also warrant
investigation. Optimizing the formulation of the Reynolds-averaged Navier-Stokes equations
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used for the physics losses could help overcome the practical limitations observed in the
current setup. Specifically, the incorporation of established two-equation turbulence models
might offer superior closure compared to the current approach. Refining the weighting
of these physical loss terms remains a critical step for balancing generalization with data
fidelity. Parallel to model improvements, the robustness of the operator is fundamentally
tied to the training distribution. Strategically expanding the CFD dataset to cover broader
parameter regimes would likely reduce extrapolation errors by converting difficult test cases
into easier interpolation tasks. To bridge the domain gap between idealized simulations and
real-world measurements, implementing data augmentation strategies such as the addition
of artificial noise during training could improve the operator’s resilience to experimental
signal characteristics. Improving the accuracy of the underlying URANS simulations
represents another pathway to reduce the domain shift impact, though transitioning
to scale-resolving methods such as Large Eddy Simulations (LES) or Direct Numerical
Simulations (DNS) would likely incur prohibitive computational costs. Furthermore, higher
fidelity data would not address the fundamental limitation where fine-tuning corrections
fail to propagate volumetrically in transient flows, as this behavior persisted even during
validation against synthetic data.

Finally, it must be noted that while extensive testing was conducted, the exploration of
hyperparameter tuning and computational efficiency optimizations was not exhaustive,
leaving room for potential performance gains through systematic refinement. In terms of
experimental design, future setups could accommodate additional pressure sensor locations.
This would not only refine the pressure field prediction but, through the coupling of PDE
losses, potentially improve the overall velocity field solutions. Regarding the validation
process, the current sparse experimental dataset is sufficient to characterize the existing
performance limitations. However, as the reconstruction fidelity improves, acquiring
more comprehensive volumetric measurements will become important to provide a clearer
assessment of the model’s capabilities. Ultimately, these methodological advancements aim
to pave the way for applying this framework with reduced-cost inference to more complex
mitral valve geometries and enabling the detailed analysis of advanced flow features such
as wall shear stress and vorticity.
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Symbols and Abbreviations

Symbol Meaning of Latin symbol

b; Branch network output components

€; Element-wise product of branch and trunk outputs
Eu Euler number

h (Half for 2D-Steady/Transient) Orifice height

k Turbulent kinetic energy

l Length

L Loss term

m Mass flow

m,n Grid dimensions for branch network input discretization
N Number of discrete points/samples

P Pressure

Re Reynolds number

St Strouhal number

t Time

t; Trunk network output components

u/v/w Velocity components

u, U; Velocity vector

w; Loss term weights

x, T; Coordinate vector

x Regurgitation jet direction

Y Vertical direction

yt Wall distance in non-dimensional viscous length scaling
z Spanwise depth direction

Symbol Meaning of Greek symbol

of Foil or orifice wall thickness

€ L1 integral norms of PDE residuals

0 Artificial neural network parameters

7 Dynamic viscosity

Leff Effective viscosity used for turbulence modeling
v Kinematic viscosity

yt Turbulent viscosity

P Density

P Stream function

Y Vector potential

w Specific dissipation rate
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(PI-)DeepONet
CFL
CNN
Conti

DD

DNS
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Extra/Inter
FOV

I1S

ISTM
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LA

LV

ML

MLP
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MR

MRI
MROP
MV
NRMSE
NSE
NTK
PDE
PhysicsNeMo Sym
PINN
PIV
(U)RANS
SSE

Sym
Train
UTokyo
Val
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Symbol Meaning of operator or index

o Partial derivative

AO Interval or difference

U; /5 Cartesian tensor components, Einstein notation implies summation
O (Time-)averaged value

O] Absolute value or vector magnitude

- Non-dimensional quantity

e Characteristic value used for non-dimensionalization

Symbol Meaning of abbreviation

2/3D- Terms describing the three setups/datasets of CFD simulations
Steady/Transient

4D Four-dimensional (3D space + time)

ANN Artificial neural network

BC Boundary condition

BPM Beats per minute heart rate

CAD Computer-aided design

CFD Computational fluid dynamics

(Physics-informed) Deep operator network, also DON
Courant-Friedrichs-Lewy condition
Convolutional neural network

Continuity equation

Data-driven

Direct numerical simulation

Experiment

Extrapolation/Interpolation case

Field of view

Institute of Industrial Science

Institute of Fluid Mechanics

Karlsruhe Institute of Technology

Left atrium

Left ventricle

Machine learning

Multilayer perceptron

Momentum equation for i-direction

Mitral regurgitation

Magnetic resonance imaging

Mitral regurgitation orifice phantom

Mitral valve

Normalized root-mean-square error
Navier-Stokes equations

Neural Tangent Kernel

Partial differential equation

NVIDIA PhysicsNeMo Symbolic, formerly Modulus Symbolic
Physics-informed neural network

Particle image velocimetry

(Unsteady) Reynolds-averaged Navier-Stokes
Sum of squared errors

Symmetry

Training dataset

The University of Tokyo

Validation dataset or single application case
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Appendix

A. Computational Fluid Dynamics

A.1. 3D-Transient Mesh Independence

For the Pinhole. MROP, four meshes of different base cell sizes and slightly different
relative refinement sizes were investigated. Table A.1 lists the resulting cell counts. Figure
A.1 shows that the mass flow through the orifice is almost identical. After 0.06s, the two
finer and coarser meshes separate more clearly regarding the maximum velocity magnitude.
This value appears in the tip of the regurgitant jet, which is relatively small compared
to the entire structure. Due to computational cost, the Mesh2 settings are chosen. The
development of the ML framework itself is not contingent upon the source data being
maximally accurate; improving the training data at a later stage is possible. For the
PinholeL case specifically, Mesh3 is chosen, since the data is already available.

mesh ‘ Mesh1 Mesh?2 Mesh3 Mesh4
cell count ‘ 146,000 426,000 1,042,000 1,993,000

Table A.1.: PinholeL mesh cell counts rounded to nearest 1,000
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Figure A.1.: Mass flow through the orifice and global maximum velocity magnitudes in the
beginning of the simulations for 4 different Pinholel. meshes. Experimental
values derived from PIV recording
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A. Computational Fluid Dynamics

A.2. 3D-Transient Validation
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Figure A.2.: Comparison of PIV and CFD results for SlotL. at t = 0.1s. Magnitude
overestimated and jet shape inaccurately rendered by CFD.
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Figure A.3.: Comparison of PIV and CFD result for SlotL, with deformed (b) and flat (c)

rigid foil walls. While the magnitude remains inaccurate, the shape of the jet
is more closely matched in (b).
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5. Appendix
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Figure A.4.: Comparison of PIV and CFD results for DropXL at ¢ = 0.045s. After
this time-step, the cardiac pump reached its power-limit and “clipped” the
waveform. The effect of this is demonstrated by the blue line in (d); the
velocity magnitude suddenly drops off and maintains similar values for an
uncharacteristically long time. This is not modeled in CFD, which uses the
green BC line. A clipped (and inverted) pump BC trace is displayed in Neff
[43] Figure 4.3 (a). The effect of this clipping is clearly visible in the pressure
and aorta mass flow recordings too; not included in this work.
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Figure A.5.: Comparison of PIV and CFD results for EccJet at ¢t = 0.085s. Plotting
artifacts inside the 12 mm thick MROP. Magnitude overestimated by CFD.
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B. Physics-Informed Machine Learning

B.1. Error Metrics
B.1.1. NRMSE

The normalized root-mean-square error (NRMSE) is the primary error metric chosen for
evaluations of network prediction ¢ against ground truth data y of N discrete values. This
is also the default PhysicsNeMo Sym evaluation metric. The normalization happens via
the standard deviation o, where i represents the mean of the ground truth data:

RMSE _ Vi Sk O — w)?
AT )

If a trivial model simply predicted the mean value of the dataset for every single point, the
RMSE would equal the standard deviation. Therefore, a value of 1.0 indicates the model
has no predictive power beyond knowing the average value of the target variable. Values
lower than 1.0 indicate the error is smaller than the natural variance of the data. This
metric is mathematically related to the R? score commonly used in regression. While R?
measures the variance explained, NRMSE measures the variance unexplained [51]:

NRMSE =

. _ 1
with 7= N Zyk (5.1)
k

R? =1 — NRMSE? (5.2)

For example, an NRMSE of 0.9 corresponds to R? = (1 — 0.9%) = 0.19. This suggests
that only 19% of the variance in the target field is “explained” or captured by the model’s
prediction. Conversely, 81% of the variance remains unexplained, indicating that there are
relevant factors or dynamics that the model has failed to capture. Similarly, an NRMSE of
0.5 already captures 75% of the variance.

B.1.2. PDE Residuals

To evaluate the satisfaction of the governing equations, the NSE are now considered in their
compressible form. Because the model outputs might not strictly satisfy the continuity
equation, the simplifications from a divergence free velocity field no longer apply to the
momentum equations. The compressible form implemented in PhysicsNeMo Sym [44, 45]
is modified in the same way as Equation (2.6) with non-dimensional numbers and the
effective viscosity turbulence model. All terms are moved to one side and named in the
following way to build the residuals:

ouf ou? op*
Tmom,i = St 8t: + ’Uz;k 837’1* + Eu e
—— J L

Transient T;

Convection C;  Pressure P;

_ii % _|__i (9(_2 @>+ 87(9 _*__i a:ueffau; 5.3
Re oz} "oz Re |0zt \ 3/f Hefl s Re \ 027 oz (5:3)

Shear S; Dilatational D; Coupling V;
*
8uj

and  reonti = — =: ©
*
Oz}

where the viscous term is split up into S;, D; and V;. The dilatational term D; is exactly
zero when the velocity field is divergence free. Removing this part under the assumption
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of incompressibility and restructuring S; and D; is what leads to Equation (2.6). The
viscosity—gradient coupling term Cj is zero if peg is constant and large if it has steep
gradients due to the turbulent viscosity field.

The PDE satisfaction of models is quantified using the L1 integral norms of these PDE
residuals, which are calculated in the following way: The instantaneous spatial error
approximates the spatial integral of the absolute residual (L1 norm) over the domain
volume € at a specific time instance t. This is computed by weighing the absolute residual
value at each discrete sampling point by a uniform spatial weight, defined as the total non-
dimensional domain volume, 1.5421 for 3D-Transient, divided by the number of sampled
points:

Q *
Eopace(t) = /Q (O] dQ ~ S wapnce [7x(E)] Where  twipaco = Nl |
k

(5.4)

points

The time-integrated total error approximates the integral of the error over both space and
the time duration. Subsequently, the total spatiotemporal error is obtained by aggregating
the instantaneous spatial errors over the simulation duration using a temporal weight,
calculated as the total time span divided by the number of analyzed snapshots:

t — tmi
Etotal = // r(t)] dQdt = > Wiimeespace(tn)  Where  wiime = o (5.5)
tJQ n Nsnapshots

These weights are necessary to normalize the discrete summation, ensuring the resulting
error metric remains invariant to changes in sampling density across space and time. To
isolate specific sources of physical error, the constituent terms of rmom: (I3, Ci, ...) are
evaluated independently before their summation into the final aggregate errors.
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B.2. PINN Verification

(a)

(¢)

« R
fulten CTHOBC g tooo
0.833
0.667
0.500
0.333
0.167
0.000
"

[ulbnn Re = 1000 1.000
0.833
0.667
0.500
0.333
0.167
0.000

lulcrp — |ulping NRMSE = 0.235% 0.002

Figure B.6.:

(a)

0.50
*5 0.25

0.00

(b)

(¢)

0.50

0.00

Figure B.7.:

90

0.002
0.001
0.000
-0.000
—— -0.001
-1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 2.0 ® -0.002

Comparison of (a) CFD ground truth and (b) PINN velocity magnitudes for
laminar 2D channel flow at Re = 1000. Velocities u, v inside the red rectangle
and pressures p at top left and right corner supplied as data supervision.
No-slip and symmetry BCs included. 5 hidden layers at 512 neurons each.
Results in exceptionally low error (c).
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Comparison of (a) CFD ground truth and (b) PINN pressure fields for same
setup as Figure B.6. Error (c) worse but would have further improved with
more training steps.
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Comparison of (a) CFD ground truth and (b) PINN velocity magnitudes for
turbulent 2D channel flow at Re = 4000. Velocities u, v inside the red rectangle
and pressures p at top left and right corner supplied as data supervision. No-
slip and symmetry BCs included. Additional full supervision of turbulent
viscosity v¢ over entire domain to test turbulence model, as it struggled to learn
this field without any labeled data. 5 hidden layers at 512 neurons each. Error
(c) generally low, but increases with distance from velocity data, suggesting
too early training termination or potentially unsuccessful implementation of
1; turbulence model.
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C. Results

C.1. 2D-Steady
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Figure C.10.: (a) Reference 2D-Steady CFD pressure for h = 10 mm, Ap = 14kPa. (b)
“PINN RANS” prediction. (c) Signed non-linear error.
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Figure C.11.: (a) Reference 2D-Steady CFD velocity magnitude for h = 25 mm, Ap =
24kPa. (b) “Dist20” prediction. (c) Signed non-linear and (d) absolute error
magnitude with streamline comparison.
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(a) u (train: 7.43%, val: 27.1%) (b) v (train: 22.3%, val: 42.7%)
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Figure C.12.: Distribution of NRMSE for 2D-Steady “Hybrid Conti Extra” for all fields
across the BC parameter space defined by orifice height and pressure differ-
ence. The color of each marker indicates the error magnitude, with the 10
training cases distinguished by a white border. Values higher than 100% are
clipped.
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Figure C.13.: (a) Reference 2D-Steady CFD velocity magnitude for h = 20mm, Ap =
14kPa. (b) “Conti” prediction. (c) Signed non-linear and (d) absolute error
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Figure C.14.: (a) Reference 2D-Steady CFD wv-velocity for A = 20mm, Ap = 14kPa. (b)
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C.2. 2D-Transient
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Figure C.17.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5 mm, Ap =
14kPa, t* = 0.25. (b) “PINN DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamline comparison.
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Figure C.18.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5 mm, Ap =
14kPa, t* = 0.75. (b) “PINN DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamline comparison.
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Figure C.19.: (a) Reference 2D-Transient CFD pressure for h = 17.5mm, Ap = 14kPa,
t* = 0.75. (b) “PINN RANS” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.20.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5 mm, Ap =
14kPa, t* = 0.1. (b) “Conti” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.21.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5mm, Ap =
14kPa, t* = 0.25. (b) “Conti” prediction. (c¢) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.22.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5mm, Ap =
14kPa, t* = 0.75. (b) “Conti” prediction. (c¢) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.23.: Distribution of NRMSE for 2D-Transient “Hybrid DD Extra” for all fields
across the BC parameter space defined by orifice height and pressure dif-
ference. The color of each marker indicates the error magnitude over the
cardiac cycle, with the 10 training cases distinguished by a white border.
Values higher than 100% are clipped.
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NRMSE in %

NRMSE in %

Figure C.24.: Temporal evolution of NRMSE for all fields over the cardiac cycle for the
2D-Transient “Hybrid DD Extra” model. The 45 lines represent all cases
from the BC distribution.
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Figure C.25.:

(a) Reference 2D-Transient CFD v-velocity for h = 17.5mm, Ap = 14kPa,

t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.26.: (a) Reference 2D-Transient CFD pressure for h = 17.5mm, Ap = 14kPa,

100

t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.27.: (a) Reference 2D-Transient CFD turbulent viscosity for h = 17.5 mm, Ap =
14kPa, t* = 0.25. (b) “Hybrid DD” prediction. (c¢) Signed non-linear error.
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Figure C.28.: (a) Reference 2D-Transient CFD velocity magnitude for h = 17.5mm, Ap =
8kPa, t* = 0.5. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.29.: (a) Reference 2D-Transient CFD pressure for h = 17.5mm, Ap = 8kPa,

t* = 0.75. (b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Temporal evolution of the NRMSE for all fields over the cardiac cycle for the
2D-Transient h = 6 mm, Ap = 12kPa case. Horizontal dashed lines indicate
the respective aggregate values computed over the entire period.
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Figure C.31.: Temporal evolution of the NRMSE for all fields over the cardiac cycle for
the 2D-Transient h = 17.5mm, Ap = 8kPa case. Horizontal dashed lines
indicate the respective aggregate values computed over the entire period.
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Figure C.32.: Temporal evolution of the NRMSE for all fields over the cardiac cycle for
the 2D-Transient h = 10mm, Ap = 16kPa case. Horizontal dashed lines
indicate the respective aggregate values computed over the entire period.
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C.3. 3D-Transient

Figure C.33.:
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(a) Reference 3D-Transient DropXL CFD velocity magnitude for z-plane
at t* = 0.55. (b) “PINN RANS” prediction. (c) Signed non-linear and (d)

absolute error magnitude with streamlines.
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Figure C.34.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for y-plane
at t* = 0.2. (b) “PINN RANS” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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(a) Training Cases
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Figure C.35.: Comparison of 3D-Transient PDE residuals for the RANS equations across
various trained DeepONets. The charts display residual percentages aggre-
gated over the cardiac cycle for (a) training cases and the two (b, c¢) validation
cases.
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(a) Continuity (train: 15.8%, val: 22.5%) (b) Momentum z (train: 6.37%, val: 17.1%)
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Figure C.36.: Temporal evolution of the PDE residuals for the RANS equations over the
cardiac cycle for the 3D-Transient “DD” model. Each line is a different CFD

case.
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Figure C.37.: Temporal evolution of the PDE residuals for the RANS equations over the
cardiac cycle for the 3D-Transient DropXL case. Horizontal dashed lines
indicate the respective aggregate values computed over the entire period.
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Figure C.38.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for z-plane at
t* =0.25. (b) “DD” prediction. (c) Signed non-linear and (d) absolute error
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Figure C.39.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for z-plane at
t* = 0.5. (b) “DD” prediction. (c) Signed non-linear and (d) absolute error

magnitude with streamlines.

109



5. Appendix

(a)  |ulgrp

: 0.680
0.4 4 0.623
1 0.567
E 0.510
027 0.453
] 0.397
*« 0.0 0.340
] 0.283
o ] 0.227
1 0.170
] 0.113
—0.4 7 0.057
E : : : 0.000

(b)  |ulpon £ = 0.050
- 0.651
0.4 4 0.597
1 0.543
1 0.488
027 0.434
] 0.380
*« 0.0 0.326
i 0.271
oo ] 0.217
1 0.163
] 0.109
—0.4 7 0.054
E —_—— 0.000

(¢)  |uleep — |ulpox NRMSE = 71.9%
0.543
0.4 4 0.452
] 0.360
1 0.269
027 0.178
*« 0.0 -0.005
] ﬁ -0.097
oo ] -0.188
1 -0.279
] -0.371
—0.4 7 -0.462
—Y— -0.553

(d)  lulgrp — lulbonl CFD DON
— - = — 0.553
0.4 N\ ="\ \ T 0.507
] = y s | 0.461
, h = 0.415
02 | s ; 0.369
] . ; 5 0.323
% 0.0 - T\ 0.277
i == 3 \ 0.231
o ] = 0.184
1 . — ) = ) , 0.138
] \ — g = : 0.092
—047 \ ' ' - - 0.046
N N 0.000

~1.0 —0.5 0.0 0.5
x*

Figure C.40.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for y-plane at
t* = 0.05. (b) “DD” prediction. (c) Signed non-linear and (d) absolute error
magnitude with streamlines.
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Figure C.41.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for y-plane
at t* = 0.15. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.42.: (a) Reference 3D-Transient DropXL CFD velocity magnitude for y-plane at
t* = 0.5. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d) absolute

error magnitude with streamlines.
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Figure C.43.: (a) Reference 3D-Transient DropXL CFD v-velocity for z-plane at t* = 0.25.
(b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.44.: (a) Reference 3D-Transient DropXL CFD w-velocity for z-plane at t* = 0.25.
(b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.45.: (a) Reference 3D-Transient DropXL CFD pressure for z-plane at t* = 0.25.
(b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.46.: (a) Reference 3D-Transient DropXL CFD turbulent viscosity for z-plane at
t* = 0.25. (b) “Hybrid DD” prediction. (c) Signed non-linear error.
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Figure C.47.:
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(a) Reference 3D-Transient DropXL CFD velocity magnitude for z-plane
at t* = 0.25. (b) “Hybrid Conti” prediction. (c) Signed non-linear and (d)
absolute error magnitude with streamlines.
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Figure C.48.: Temporal evolution of the NRMSE for all fields over the cardiac cycle for the
3D-Transient SlotL-Bent case. Horizontal dashed lines indicate the respective
aggregate values computed over the entire period.

118



C. Results

(b) Momentum x

(a) Continuity

60 A

40

ein %

20 A

(¢) Momentum y

ein %

—— DON_Conti —— DON_Exact ~—— DON_Hybrid_DD_SlotL Bent

—— DON_DD_Smaller =~ —— DON_DD

Figure C.49.: Temporal evolution of the PDE residuals for the RANS equations over the
cardiac cycle for the 3D-Transient SlotL-Bent case. Horizontal dashed lines
indicate the respective aggregate values computed over the entire period.
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Figure C.51.: “DD” velocity magnitude for 3D-Transient EccJet Exp, z-plane at t* = 0.1
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Figure C.52.: (a) Reference 3D-Transient EccJet Exp velocity magnitude for z* = —0.04
at t* = 0.08. (b) “Hybrid DD” prediction. (c) Signed non-linear and (d)

absolute error magnitude with streamlines.
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