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Abstract
Elliptic integral-differential operators resembling the classical elliptic partial differ-
ential equations are defined over a compact d-dimensional p-adic domain, together
with associated Sobolev spaces relying on coordinate Vladimirov-type Laplacians
dating back to an idea of Wilson Zúñiga-Galindo in his previous work. The associ-
ated Poisson equations under boundary conditions are solved and their L2-spectra are
determined. Under certain finiteness conditions, a Markov semigroup acting on the
Sobolev spaces which are also Hilbert spaces can be associated with such an operator
and the boundary condition. It is shown that this also has an explicitly given heat kernel
as an L2-function, which allows a Green function to be derived from it.

Keywords p-adic numbers · Boundary value problems · Elliptic operators · Poisson
equation · Markov process · Heat kernel · Green function

1 Introduction

Elliptic partial differential equations over the p-adic numbers are much less studied
than their classical counterparts. The latter can be learned about e.g. in [13]. Certain
constructions like operators and Sobolev spaces can be carried over to p-adic domains.
In many cases, this has been done for p-adic pseudodifferential operators, as e.g. in
[23, 36, 38]. Alternative constructions of Sobolev spaces over the p-adic numbers or
more general abelian groups are found e.g. in [14–16, 26]. p-adic Sobolev embedding
theorems are proved in [17] and [24, Ch. III.7], and Hölder boundary regularity results
[18]. However, so far, the operators themselves are confined to special kinds of elliptic
operators, built on bounded versions of Vladimirov-Taibleson Laplacians, cf. [19].
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This means that they can be seen locally as p-adic pseudodifferential operators. The
applications range from p-adic diffusion (with a vast literature, by now), or the p-
adic analogue of a wave equation to non-linear cases like the p-adic version of the
Navier-Stokes equation [1].

Concerning the p-adic spaces on whose functions the operators act, other than on
the additive groups of local fields, the multivariate p-adic pseudodifferential operators
are increasingly becoming the focus of interest. They are defined and studied in the
context of stochastic processes, evolution equations and semigroups [3, 21, 27–29].
Furthermore, p-adic vector fields on p-adic Lie groups, building on these previous
ideas are considered in [31, 33].

Since a large amount of the work on p-adic differential-integral operators focuses
on the induced diffusion, many authors study the Markov process associated with it,
culminating so far in scaling limit theoremsusingpath spaces, cf. [20, 34]. This inspired
the author to study diffusion invariant under finitely generated discrete groups which
give rise to p-adic Riemann surfaces akaMumford curves [5, 6] after observing that p-
adic Laplacians can reconstruct finite graphs [10]. Finally, a successful approximation
approach for Green functions onmanifolds via their relationship with heat kernels [11]
motivates to prove the existence ofMarkov processes, heat kernels andGreen functions
on a compact subspace of Qd

p for elliptic operators which resemble classical elliptic
partial differential operators and their applications to suitable Sobolev spaces under
the additional condition of vanishing on a boundary of an open subset of the compact
domain induced by the operator’s kernel functions. This is a different approach from
[8], where p-adic Dirichlet and von Neumann boundary conditions were defined.

The notion of ellipticity for operators on functions with a p-adic domain seems to
be less than straightforward. Namely, the idea of defining a symbol via the Fourier
transform as in the classical case, cf. [37] and the references therein, does not always
carry over due to a lack of a Fourier transform via unitary group representations in
in some situations. However, the idea of having a second degree homogenous poly-
nomial with coefficients from a space of real-valued functions into which coordinate
Laplacians can be inserted, and then asking for the positivity of the coefficient matrix
almost everywhere, like e.g. in [13, Ch. 6.1, Definition] does carry over. This is the
approach chosen for this article. However, a suitable notion of symbol over the p-adic
still remains open. In particular, this could be helpful in the task of bringing together
p-adic Brownian motion and algebraic structures like suitably define D-modules and
de Rham complexes in view of [25].

A note on Sobolev spaces is also in order. The ones here are different than the ones
defined in [39, Ch. 5.1] where e.g. Sobolev embeddings become straightforward. The
approach here follows the classical example of [13, Ch. 5.2] by using products of
coordinate Laplacians in place of the partial derivatives in the classical setting. These
coordinate Laplacians are locally pseudodifferential operators, if restricted locally to
p-adic discs, plus an additional term of the type in [35] which produces a kind of
non-locality within the compact p-adic domain the (global) operators are defined on.
Since in this study, only the Sobolev spaces based on the L2-norm are of interest,
questions like embedding theorems are not addressed here.

The results of this article can be summarised as follows:
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After summarising the spectra and the Feller semigroup property of component
Laplacians Li for i = 1, . . . , d, defined as in [9], these are used to define elliptic
operators P(L) as polynomials in degree 2 whose coefficients are L∞-functions and
the unknowns replaced with the component Laplacians, such that the coefficent matrix
in the homogeneous degree 2 part is positive definite almost everywhere and has a
positive infimum eigenvalue. First, the case of constant coefficients is treated, resulting
in an explicit expression for its L2-spectrum in Theorem 3.1.

After this, boundary conditions and Sobolev spaces are introduced. The former
depend on the kernel function in that it expresses the transitions between vertices of
a finite graph in each coordinate, whose vertices are represented as disjoint p-adic
discs, and a Vladimirov-type diffusion inside each of these discs. A p-adic divergence
property is proved in Theorem 4.7.

Energy estimates written out in Theorems 5.3 and 5.5 prepare the way to solving
the Poisson equation given by the elliptic operator P(L). It has weak solutions in the
underlying Sobolev spaces, as shown in Corollaries 5.4 and 5.6.

If the coefficients of P(L) are test functions, then it is unitarily diagonalisable with
point spectrum under certain invariance and commutativity conditions, as expressed in
Theorem 5.11. If in this case, the operator is elliptic, then there is an associatedMarkov
semigroup e−t P(L) for t ≥ 0 acting on suitable Sobolev spaces. This is Theorem 6.3.
In this case, there is also a heat kernel function of L2-type: Theorem 6.5, and a Green
function is obtained by solving the corresponding Poisson equation: Corollary 6.6.

The following Section 2 introduces the coordinate Laplacians as so-called
Zúñiga-Parisi operators and recalls their spectral and stochastic properties. Also, sub-
Laplacians of arbitrary order are defined. Their L2-spectrum is studied in Section 3.
Section 4 introduces boundary conditions and Sobolev spaces. Elliptic operators in the
form of divergence operators are introduced in Section 5, where also the correspond-
ing Poisson equations are studied, and the unitary diagonalisability together with their
spectra as point spectra are proved. Section 6 proves the Markov property of the semi-
group action on Sobolev spaces associated with P(L) and proves the convergence
properties of the associated heat kernel function as well as the Green function.

Throughout this article, only the Sobolev spaces which are also Hilbert spaces are
actually used.

The remainder of this section consists of fixing notationwhile recalling the standard
Vladimirov-Taibleson operator.

Let Qp denote the field of p-adic numbers. As a locally compact abelian group, it
is endowed with a Haar measure dx , normalised such that

∫
Zp

dx = 1 ,

where
Zp = {

x ∈ Zp | |x |p ≤ 1
}
,
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and where |·|p is the p-adic absolute value. The Haar measure on Qd
p will also be

denoted as dX , and is given as the product measure

dx = dx1 ∧ · · · ∧ dxd

normalised such that ∫
Zd

p

dx = 1 ,

and is denoted on sets as

μ(A) =
∫
A
dx .

This double notation for dx is not an issue, because throughout this article d ≥ 1 is a
fixed natural number. The by now classical Vladimirov-Taibleson operatorDα onQd

p
has the following form as an integral operator:

Dαu(x) = 1 − pα

1 − p−α−d

∫
Qd

p

u(x) − u(y)

‖x − y‖α+d
p

dy (1)

for functions u : Qd
p → C which are locally constant and with compact support,

cf. e.g. [22], where it is shown that the Cauchy problem for the corresponding heat
equation has a unique solution, and the fundamental solution is a transition density of
a Markov process whose paths are right-continuous and have jumps as discontinuities
[22, Theorem 2].

Equation (1) is not the only way of generalising the operator Dα from the case
d = 1 to general d ≥ 1. E.g. in [21], the pushforward ofDα along the projection onto
the i-th coordinate is used, in order to construct from these coordinate operators other
kinds of Laplacian operators on Qd

p. A similar idea is also to be found in [3] and in
[32]. This observation is the starting point for what follows.

2 Zúñiga-Parisi sub-Laplacian operators

LetQp be the field of p-adic numbers, and let F ⊂ Qd
p be a compact open subset. Let

πi : Qd
p → Qp be the projection onto the i-th coordinate, and fix a disjoint covering

Ui of πi (F) as

πi (F) =
Ni⊔
k=1

Bi,k

with p-adic discs Bi,k ∈ Ui for every i = 1, . . . , d. This is possible, because the
projection maps πi are continuous and open. Using multi-index notation, this yields
a disjoint covering

U = U1 × · · · × Ud

of F given by
F =

⊔
k∈N

Bk
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with polydiscs

Bk =
d∏

i=1

Bi,ki ∈ U

for

k = (k1, . . . , kd) ∈ N =
d∏

i=1

{1, . . . , Ni }

and N1, . . . , Nd ∈ N.
For a polydisc Bk it holds true that

μ
(
Bk
) =

d∏
i=1

μi (Bki ) = p−(k1+···+kd ) ,

where k = (k1, . . . , kd) ∈ Zd , and where μi is the i-th component Haar measure
dxi for i = 1, . . . , d. It is also normalised such that the i-th component unit disc has
measure one for i = 1, . . . , d.

2.1 Component hierarchical Parisi Operators

Using the notation
U (z) ∈ U, Ui (ζi ) ∈ Ui

for the unique polydisc in U containg z = (ζ1, . . . , ζd) ∈ F , and for the unique disc
in Ui containing ζi ∈ πi (F), it is now possible to define an i-th component Laplacian
L

αi
Xi

on functions f : F → C as

L
αi
Xi

f (x) =
∫

πi (F)

Li (ξi , ηi )( f (x) − f (ξ1, . . . , ηi , . . . , ξd)) dηi (2)

with αi > 0, x = (ξ1, . . . , ξd) ∈ F , and

Li (ξi , ηi ) =
{

|ξi − ηi |−αi
p , Ui (ξi ) = Ui (ηi ), ξi 
= ηi

wi (Ui (ξi ),Ui (ηi )), Ui (ξi ) 
= Ui (ηi )

with
wi (Ui (ξi ),Ui (ηi )) ≥ 0

symmetric on Ui × Ui outside the diagonal. The operator Lαi
Xi

defines a hierarchi-
cal Parisi Laplacian operator in the terminology of [9], and is the i-th component
Laplacian, where Xi indicates the i-th coordinate in Qd

p.

Remark 2.1 Observe that the part of Li defined for Ui (ξi ) = Ui (ηi ) is up to a mul-
tiplicative constant the Vladimirov pseudodifferential operator restricted to functions
on Ui (ξ), whereas the other part with Ui (ξ) 
= Ui (ηi ) is a Zúñiga operator as in [35].
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Lemma 2.2 It holds true that

L
αi
Xi

◦ L
α j
X j

= L
α j
X j

◦ L
αi
Xi

for i, j = 1, . . . , d on the space D(F) of locally constant functions on F.

Proof Assume that i 
= j . Then it holds true that

L
αi
Xi
L

α j
X j

f (x) =
∫

πi (F)

Li (ξi , ηi )(L
α j
X j

f (x)) − L
α j
X j

f (ξ1, . . . , ηi , . . . , ξd ) dηi

=
∫

πi (F)

Li (ξi , ηi )

(∫
π j (F)

L j (ξ j , η j )( f (x) − f (ξ1, . . . , η j , . . . , ξd )) dη j

−
∫

π j (F)

( f (ξ1, . . . , ηi , . . . , ξd ) − f (ξ1, . . . , ηi , . . . , η j , . . . , ξd )) dη j

)
dηi

=
∫

πi (F)

∫
π j (F)

Li (ξi , ηi )L j (ξ j , η j )( f (x) − f (. . . , η j . . . )

− f (. . . , ηi , . . . ) + f (. . . , ηi , . . . , η j , . . . )) dηi dη j ,

which, using Fubini’s Theorem and the symmetry of the kernel functions Li (ξi , ηi )

and L j (ξ j , η j ), implies the assertion. �

The following push-forward operator will now be used:

πi,∗Li f (ξi ) =
∫

πi (F)

Li (ξi , ηi )( f (ξi ) − f (ηi )) dηi , (3)

where
Li = L

αi
Xi

for i = 1, . . . , d. The Kozyrev wavelets supported in πi (F) will be denoted as

ψBn(a), j = p
n
2 χ(p−n−1 jξi )1Bn(a)(ξi ) , (4)

where Bn(a) is its support with a ∈ πi (F), j = 1, . . . , p − 1, and χ : Qp → S1 is a
fixed unitary character. Notice that a Kozyrev wavelet has the three parameters n ∈ Z,
a ∈ Qp, and j ∈ {1, . . . , p − 1}.

AlreadyZúñiga observed in [35] that his operators have two types of eigenfunctions:
Kozyrev wavelets on the one hand, and functions which are linear combinations of
indicators of maximal discs in the compact set K of Qp on which the operator lives.
We will call the latter graph eigenfunctions. This classification of eigenfunctions also
holds true for the more general operators defined in [9]. For the operator πi,∗Lαi

Xi
, this

is also the case:

Theorem 2.3 (Pushforward-component operator Spectrum) TheHilbert space of com-
ponent L2-functions L2(πi (F), μi ) has an orthonormal eigenbasis for πi,∗Lαi

Xi
consisting of the Kozyrev wavelets ψBn(a), j , j = 1, . . . , p − 1, supported in
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Bn(a) ⊂ πi (F), and associated graph eigenfunctions. The eigenvalue associated
with ψ = ψBn(a), j is

λψ = pn(1+αi )(p−m(1+αi ) + 1) +
∑

Ui (b) 
=Ui (a)

wi (Ui (a),Ui (b))μi (Ui (b)) − 1 ,

where it is assumed that Ui (a) = Bm(a), and contains Bn(a). The operator is self-
adjoint, positive semi-definite, and each eigenvalue has only finite multiplicity.

Proof Cf. [9, Theorem 3.6]. The idea behind that proof is actually a simplification of
the idea behind the proof of [5, Theorem 4.10]. �

Remark 2.4 If F is replaced by an open subset U ⊆ F , then Theorem 2.3 remains
valid with the induced graph structure on the subset of vertices represented by open
sets in πiU given as the intersections of the discs representing the original graph with
U . Cf. [5, Theorem 4.10], where this situation was studied under Schottky invariance.

For later reference, include the following result:

Theorem 2.5 (Component Feller Semigroup) There exists a probability measure
pt (x, ·) with t ≥ 0, x ∈ F, on the Borel σ -algebra of πi (F) such that the Cauchy
problem for the heat equation

∂

∂t
u(x, t) + L

αi
Xi
u(x, t) = 0

for αi > 0 has a unique solution in C1((0,∞),C(F)) of the form

u(x, t) =
∫

πi (F)

Li (ξi , ηi )pt (x, dηi )

In addition, pt (x, ·) is the transition function of a strong Markov process whose paths
are càdlàg.

Proof The proof is analogous to that of [9, Theorem 3.5], which is an adaptation of
the proof of [5, Lemma 5.1]. �

Remark 2.6 Theorem 2.5 remains true, if F is replaced by an open subset U ⊆ F ,
similarly as with the L2-spectrum of Theorem 2.3. Cf. [5, Theorem 5.2], where this
was shown under Schottky invariance.

2.2 Sub-Laplacians of arbitrary order

The operator from which the operators of interest in this article are built, is the tuple

L = (L1, . . . ,Ld) , (5)
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where Li is the i-th operator Lαi
Xi

defined in (2). The operator Li acts on real- or
complex-valued functions on F .

Following ideas from [31, 33], first define the following sub-Laplacian

P1(L) =
d∑

i=1

γiL
αi
Xi

(6)

with γ1, . . . , γd : F → R suitable functions. The operator acts on functions f : F →
C. This integral operator can be viewed as a p-adic analogue of a partial differential
operator in classical analysis. Observe that P1(L) is a symmetric operator, because
all component Laplacians are symmetric. Other kinds of p-adic analoga of partial
differential operators are work in progress, e.g. such which are built from advection-
type operators as in [7].

Observe that if γ1, . . . , γd are constant, then P1(L) is an integral operator of the
form

P1(L) f (x) =
∫
F
L(x, y)( f (x) − f (y)) dy (7)

with

L(x, y) =
d∑

i=1

γi Li (ξi , ηi )

d∏
j=1
j 
=i

δξi (ηi ) (8)

for x = (ξ1, . . . , ξd), y = (η1, . . . , ηd) ∈ F , and where δξi is the delta-function on
πi (F) supported in ξi for i = 1, . . . , d.

Using Lemma 2.2, it is possible to take a polynomial P(X1, . . . , Xd) ∈
C[X1, . . . , Xd ], and construct the operator

P(L) = P(LX1,α1 , . . . ,LXd ,αd ) =
∑
k∈Nd

γkL
k
X ,a

for
a = (α1, . . . , αd) ∈ Rd

>0

acting on D(F), where polynomial P is given as

P(X) =
∑
k∈Nd

γk X
k ∈ C[X ]

in multi-index notation for the variable tuple X = (X1, . . . , Xd). The operator (6) is
also such an operator, determined by a linear polynomial P1 ∈ C[X1, . . . , Xn].

Again, P(L) is an integral operator whose kernel function L(x, y) can be obtained
by iterating the calculation in the proof of Lemma 2.2. Notice that from this, it can be
seen that the integral operator uses higher differences of the function f (x).
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Remark 2.7 It is also possible to take the coefficients γk appearing in operator P(L)

as functions γk : F → C, and thus produce a very general linear operator similar to
partial differential operators in the classical case. Such operators will be studied from
Section 5 in the case of degree 2. In view of the following section, sub-Laplacians w.r.t.
a polynomial P(X) of degree 2 are a special case of this kind of general operators.

3 L2-Spectrum of p-adic sub-Laplacians

The aim is to construct an explicit eigenbasis of L2(F) for a given sub-Laplacian
P(L) with P ∈ C[X1, . . . , Xd ], and L taken from (5), using the decomposition

L2(F) =
d⊗

i=1

(
L2(πi (F))0 ⊕ CNi

)
,

where

L2(πi (F))0 =
{
f ∈ L2(πi (F)) |

∫
πi (F)

f (ξi ) dξi = 0

}

and Ni is the cardinality of Ui . This will turn out useful for the case of the elliptic
operators defined below in Section 5.

Notice that the decomposition

L2(πi (F))0 ⊕ CNi

is an invariant decomposition of a p-adic Laplacian in the case d = 1, which was
shown in Theorem 2.3. More precisely, the part CNi is spanned by eigenfunctions ϕi
of the Laplacian associated with the adjacency matrix

(μ(Ui )w(Ui , Vi ))Ui ,Vi∈Ui

of a simple graph Gi on Ni vertices (i.e. it is assumed that wi (Ui ,Ui ) = 0), called the
i -th component graph of Lαi

Xi
, whereas the part L2(πi (F))0 is spanned by Kozyrev

wavelets ψi supported in πi (F) for i = 1, . . . , d. Both, ϕi and ψi are eigenfunctions
of the operator

�i = P(1, . . . ,Lαi
Xi

, . . . , 1)

projected down to an operator acting on L2(πi (F)), where P(X) ∈ C[X ] =
C[X1, . . . , Xd ] is the defining polynomial of P(L). Hereby, the operator�i is a linear
combination of tensor products of powers of πi,∗Li , as defined in (3) with the identity
operator 1 on the other component spaces L2(π j (F)) for j 
= i . The eigenvalue λψi

associated with a Kozyrev wavelet ψi can be calculated using Theorem 2.3.

Theorem 3.1 The space L2(F) has an orthonormal eigenbasis for P(L) consisting
of functions of the form

b(x) =
d∏

i=1

bi (ξi ),
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where x = (ξ1, . . . , ξd) ∈ F, and bi (ξi ) is either a Kozyrev wavelet ψi supported in
πi (F), or a Laplacian eigenfunction ϕi for the weighted i-th coordinate graph Gi .
The corresponding eigenvalue λb equals

λb = P(λb1, . . . , λbd )

where λbi is the eigenvalue associated with bi (ξi ) for i = 1, . . . , d. The operator
P(L) is self-adjoint.

Proof In view of the remark in the paragraph before the Theorem, this is an imme-
diate consequence of applying Theorem 2.3 to the tensor product space, and by the
construction of operator L. �

Corollary 3.2 Given P(X) ∈ R[X1, . . . , Xd ] such that P(L) has only non-negative
eigenvalues, each having only finite multiplicity, there exists an associated heat kernel
function providing a fundamental solution for the heat equation

∂

∂t
u(x, t) + P(L)u(x, t) = 0

with u(x, 0) = u(x) ∈ L2(F, μ) for t ≥ 0.

Proof The prospective heat kernel function is given by

p(t, x, y) =
∑
b

e−λbt b(x)b(y) ,

where b runs through the eigenbasis of Theorem 3.1. In order to show that this sum
converges for x, y ∈ F , assume first that x 
= y. In this case, there are only finitely
many functions b of the eigenbasis such that b(x)b(y) 
= 0. Since each eigenvalue
has only finite multiplicity, the convergence now follows also if x = y. This proves
the assertion. �


An example for Corollary 3.2 is given by a polynomial P(X) of degree 2 such that
the coefficients of the homogeneous part P2(X) form a positive definite matrix. This
is a special case of an elliptic operator which will be dealt with in Section 5.

4 Boundary Conditions and Sobolev Spaces

Boundary conditions w.r.t. the operators Li from (5) are defined, as well as corre-
sponding Sobolev spaces are introduced.

4.1 Boundary conditions

Define the i-th component boundaries of an open subset U ⊂ F as

δiU = {ηi ∈ πi (F \U ) | ∃ξi ∈ πi (U ) : Li (ξi , ηi ) 
= 0}
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and the i-th component boundary condition for a function u : F → R w.r.t. Li as

u|δiU (x) := u(x)
∫

δiU
Li (ξi , ηi ) dηi = 0

for all x = (ξ1, . . . , ξd) ∈ U .
Notice that δ is used here to denote the boundary, and there is no confusion with

e.g. the Dirac δ-distribution, as this plays no role here.
The boundary U w.r.t. L is defined as

δU =
d⊔

i=1

(U1 
 δ1U ) × · · · × δiU × · · · × (Ud 
 δdU ) ⊂ F ,

and we say that u vanishes on the boundary δU , if

u|δiU (x) = 0

for all i = 1, . . . , d and all x ∈ U . In this case, also write

u|δU (x) = 0

for all x ∈ U . Write also
clδ U := U 
 δU

for the δ-closure ofU . It is determined by the connectivity structure of F imposed by
the kernel functions L1, . . . , Ld .

Lemma 4.1 The set clδ U is closed-open in F.

Proof This follows immediately by construction. �

Use the notation

Li,φ = L
αi
Xi , φ

,

for the operator

Li,φu(x) =
∫

πi (F)

Li (ξi , ηi )(u(x)−u(ξ1, . . . , ηi , . . . , ξd))φ(ξ1, . . . , ηi , . . . , ξd) dηi .

There is a Leibniz-like rule:

Lemma 4.2 It holds true that

Li (uφ) = Li,φu + uLiφ

for i = 1, . . . , d, whenever the two terms on the right-hand side are defined.
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Proof Use the notation
g(η̂i ) := g(ξ1, . . . , ηi , . . . , ξd)

and calculate

Li (uφ)(x) =
∫

πi (F)

Li (ξi , ηi )(u(ξ̂i )φ(ξ̂i ) − u(η̂i )φ(η̂i )) dηi

=
∫

πi (F)

Li (ξi , ηi )(u(ξ̂i )φ(ξ̂i ) − u(ξ̂i )φ(η̂i )

+ u(ξ̂i )φ(η̂i ) − u(η̂i )φ(η̂i )) dηi

= u(ξ̂i )

∫
πi (F)

Li (ξi , ηi )(φi (η̂i ) − φ(ξ̂i )) dηi

+
∫

πi (F)

Li (ξi , ηi )(u(ξ̂i ) − u(η̂i ))φ(η̂i ) dηi

= u(x)Liφ(x) + Li,φu(x) ,

which implies the assertion. �


4.2 Sobolev spaces

Let U ⊆ F be an open subspace. Define the following Sobolev spaces:

Wk,q(U ) =
{
f ∈ L1(U ) | ∀� ∈ Zd : ∣∣�∣∣ ≤ k ⇒

∥∥∥L� f
∥∥∥
Lq (U )

< ∞
}

Wk,q
0 (U ) =

{
f ∈ Wk,q(clδ U ) | f |δU = 0

}

for q > 0, where clF is the closure operator on subsets of F , and with

L� := (
La

X

)� =
(
L

α1
X1

)�1 · · ·
(
L

αd
Xd

)�d

with � ∈ Zd . The Sobolev norm on Wk,q(U ) is defined as

‖ f ‖Wk,q (U ) =
⎛
⎝∑

|�|≤k

∥∥∥L� f
∥∥∥q
Lq (U )

⎞
⎠

1
q

just like in the classical case.

Proposition 4.3 The Sobolev spaces Wk,q(U ) are Banach spaces for 1 ≤ q < ∞ and
k ≥ 0, and the space Wk,q

0 (U ) is a closed subspace of Wk,q(clδ U ).

Proof Following the proof of [13, Theorem 5.2.2], first observe that ‖·‖Wk,q (U ) is
indeed a norm on Wk,q(U ). In order to see completeness, let un ∈ Wk,q(U ) be a
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Cauchy sequence. Then L�un is a Cauchy sequence in Lq(U ) for each
∣∣�∣∣ ≤ k. Thus,

there exists a sequence of functions f� ∈ Lq(U ) such that

L�un → f�

in L2(U ) for each
∣∣�∣∣ ≤ k. In particular, it holds true that u := f(0,...,0) ∈ Lq(U ) is

the limit of un . In order to now see that u ∈ Wk,q(U ) and L�u = f� for
∣∣�∣∣ ≤ k,

observe that for any φ ∈ D(U ), it holds true that

∫
U
L�uφ dx =

∫
U
uL�φ dx = lim

n→∞

∫
U
unL

�φ dx

= lim
n→∞

∫
U
L�unφ dx =

∫
U

f�φ dx ,

where the self-adjointness of L� has been used, cf. Theorem 3.1. The first assertion
now follows. It is also valid forWk,q(clδ U ). SinceWk,q(U )0 is obtained by restriction
to an open subspace U ⊆ clδ U , the second assertion also follows. This proves the
proposition. �

Corollary 4.4 The Sobolev space Wk,2(U ) is a Hilbert space for k ∈ N.

Proof The Sobolev norm on Wk,2(U ) takes the form

‖ f ‖2Wk,2(U )
=
∑
�≤k

∥∥∥L� f
∥∥∥2
L2(U )

which comes from a suitable inner product on Wk,2(U ) for k ∈ N. This proves the
assertion. �

Proposition 4.5 (Poincaré Inequality)Let u ∈ W 1,2(U ). Then there exists someC > 0
such that

‖u‖L2 ≤ C ‖Li u‖L2

for i = 1, . . . , d.

Proof Using Theorem 2.3, it follows from Theorem 3.1 that the function u has an
expansion over an orthonormal eigenbasis ψ w.r.t. Li as

u =
∑
ψ

αψψ

and the eigenvalues λψ associated with ψ are unboundedly increasing with shrinking
support of the wavelet eigenfunctions in the i-th coordinate. Hence,

‖u‖2L2 =
∑
ψ

∣∣αψ

∣∣2 ≤ C
∑
ψ

∣∣αψ

∣∣2 ∣∣λψ

∣∣2 = C ‖Li u‖2L2

for some C > 0, as asserted. �
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Lemma 4.6 Let u ∈ W 1,2(clδ U ). The boundary condition u|δU = 0 in the distribu-
tional sense is equivalent with

∫
U
Li (uφ)(x) dx = 0

for all φ ∈ D(U ) and all i = 1, . . . , d.

Proof It holds true that
∫
U
Li (uφ)(x) dx = 〈uφ,Li1U 〉

=
∫
U

∫
πi (F\U )

u(x)Li (ξi , ηi ) dηi φ(x) dx

=
∫
U
u(x)

∫
δiU

Li (ξi , ηi ) dηi φ(x) dx

=
∫
U
u|δiU (x)φ(x) dx ,

whose vanishing is equivalent with the boundary condition for u in the distributional
sense. This proves the assertion. �


Observe that, if u|δiU = 0 in the distributional sense, it follows that

∫
U
Li,φu(x) dx = −

∫
U
u(x)Liφ(x) dx = −〈u,Liφ〉 = −〈Li u, φ〉

for φ ∈ D(U ).
Define the operator πi,∗Ai : D(F) → D(πi (F)) on functions u : F → R as

[
(πi,∗Ai )u

]
(ηi ) =

∫
U
Li (ξi , ηi )u(x) dx

for x = (ξ1, . . . , ξd) ∈ U , ηi ∈ F , and i = 1, . . . , d. This allows to imitate a
divergence theorem as follows:

Theorem 4.7 (p-adic Divergence Theorem) It holds true that

∫
U
Li f (x) dx =

∫
δiU

[
(πi,∗Ai ) f

]
(ηi ) dηi

for i = 1, . . . , d.

Proof It holds true that
∫
U
Li f (x) dx = 〈 f ,Li1U 〉 =

∫
F
f (x)

∫
πi (F\U )

Li (ξi , ηi ) dηi dx
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=
∫

δiU

∫
U
Li (ξi , ηi ) f (x) dx dηi

=
∫

δiU

[
πi,∗Ai f

]
(ηi ) dηi

as asserted. �


5 Elliptic Divergence Operators

A suitable analogue of test functions on U with compact support in the context of the
operators Li from (5) is given by

D0(U ) =
{
φ ∈ D(clδ U ) | ∀ i = 1, . . . , d ∀ x ∈ U : φ(x)

∫
δiU

Li (ξi , ηi ) dηi = 0

}
,

where it is assumed that x = (ξ1, . . . , ξd) ∈ U .

5.1 Poisson equation

A homogeneous second-order divergence operator is given as the following:

P2(L)u =
d∑

i, j=1

L j

(
ai jLi u

)
, (9)

where ai j : F → R are functions such that

ai j = ai j

for i, j = 1, . . . , d, i.e. the matrix (ai j (x)) ∈ Rd×d is symmetric in each point x ∈ F .
The operator P2(L) is called elliptic, if the matrix A = (ai j (x)) is positive definite for
almost all x ∈ F , and the smallest positive eigenvalue of A is always at least θ > 0.
Of interest is the boundary value problem of the Poisson equation:

{
P2(L)u(x) = f (x), x ∈ U

u|δU = 0
(10)

with some given f ∈ L2(U ). A function u ∈ W 1,2
0 (U ) is a weak solution of (10), if it

holds true that ∫
U

d∑
i, j=1

L j (a
i jLi u)φ dx =

∫
U

f (x)φ(x) dx
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for all φ ∈ W 1,2
0 (U ). From the self-adjointness of L j (Theorem 3.1), it follows that

this is equivalent with

∫
U
L j (a

i jLi u)φ dx =
∫
U
ai jLi u · L jφ dx .

Hence,

B2[u, φ] =
∫
U

d∑
i, j=1

ai jLi uL jφ dx =
∫
U

f (x)φ(x) dx

for all φ ∈ D0(U ) is an equivalent formulation of u being a weak solution of (10).

Lemma 5.1 A function u is a weak solution of (10), if and only if

∫
U

d∑
i, j=1

L j,φ(ai jLi u) dx = −
∫
U

f (x)φ(x) dx

for all φ ∈ D0(U ).

Proof It holds true that

∫
U
L j (a

i jLi u · φ) dx = 〈ai jLi u · φ,L j1U 〉

=
∫
U
ai j (x)Li u(x) φ(x)

∫
π j (F\U )

L j (ξ j , η j ) dη j dx

=
∫
U
ai j (x)Li u(x) φ(x)

∫
δi (U )

L j (ξ j , η j ) dη j dx = 0 ,

because

φ(x)
∫

δ jU
L j (ξ j , η j ) dη j = 0

for all x ∈ U . From Lemmas 4.2 and 4.6, the assertion now follows. �

Assumption 5.2 It is assumed that ai j ∈ L∞(F) for i, j = 1, . . . , d.

Theorem 5.3 (Energy estimates, homogeneous case) There exist constants α, β > 0
such that

|B[u, v]| ≤ α ‖u‖W 1,2
0 (U )

‖v‖W 1,2
0 (U )

β ‖u‖W 1,2
0 (U )

≤ B[u, u]

for all u, v ∈ W 1,2
0 (U ).
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Proof First, observe that

|B[u, v]| ≤
d∑

i, j=1

∥∥∥ai j
∥∥∥
L∞

∫
U

|Li u| ∣∣L jv
∣∣ dx ≤ α ‖u‖W 1,2

0 (U )
‖v‖W 1,2

0 (U )

for some α > 0. Next, ellipticity means that from the properties of the Rayleigh
quotient, it follows that

θ

∫
U

d∑
i=1

|Li u|2 dx ≤
∫
U

d∑
i, j=1

ai j |Li u| ∣∣L j u
∣∣ dx = B[u, u]

Using the p-adic Poincaré inequality in Proposition 4.5, the second inequality now
follows. �

Corollary 5.4 Assume that the operator P2(L) is elliptic. Then (10) has a unique weak
solution in W 1,2

0 (U ).

Proof This follows from the Lax-Milgram Theorem [13, Theorem 6.2.1]. �

Now, let P(L) be of the form

P(L)u = P2(L)u + P1(L)u + P0(L)u (11)

with P2(L) an operator as in (9), and

P1(L)u =
d∑

i=1

biLi u,

P0(L)u = cu ,

where again it is assumed that

ai j , bi , c ∈ L∞(clδ U )

with U ⊆ F open. The operator P(L) is called elliptic, if P2(L) is elliptic. Now, the
boundary value problem is

{
P(L)u(x) = f (x), x ∈ U

u|δU = 0
(12)

with some given f ∈ L2(U ). A function u ∈ W 1,2
0 (U ) is a weak solution of (12), if

∫
U

⎛
⎝ d∑

i, j=1

L j (a
i jLi u) +

d∑
i=1

biLi u + cu

⎞
⎠φ dx =

∫
U

f (x)φ(x) dx
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for all φ ∈ D0(U ). Again, it follows from the self-adjointness property (Theorem 3.1)
that (12) is equivalent with

B[u, φ] =
∫
U

⎛
⎝ d∑

i, j=1

ai jLi uL j +
d∑

i=1

biLi u + cu

⎞
⎠φ dx =

∫
U

f (x)φ(x) dx

and, according to Lemma 5.1, the quadratic part can be replaced as follows:

B2[u, φ] =
∫
U

d∑
i, j=1

ai jLi uL jφ dx = −
∫
U

d∑
i, j=1

L j,φ(ai jLi u) dx

for φ ∈ D0(U ).

Theorem 5.5 (Energy estimates) There exist constants α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α ‖u‖W 1,2
0 (U )

‖v‖W 1,2
0 (U )

β ‖u‖2
W 1,2

0 (U )
≤ B[u, u] + γ ‖u‖2L2(U )

for all u, v ∈ W 1,2
0 (U ).

Proof The proof of the analogous classical result found in [13, Theorem 2] can be
adapted as follows:

θ

∫
U

|Lu|2 dx ≤
∫
U

d∑
i, j=1

ai jLi uLi u dx

= B[u, u] −
∫
U
biLi u u + cu2 dx

≤ B[u, u] +
d∑

i=1

∥∥∥bi
∥∥∥
L∞

∫
U

|Lu| |u| dx + ‖c‖L∞
∫
U
u2 dx .

Using Cauchy’s inequality with ε, cf. [13, §B.2], obtain

∫
U

|Lu| |u| dx ≤ ε

∫
U

|Lu|2 dx + 1

4ε

∫
U
u2 dx

for ε > 0. Choose ε > 0 so small that

ε

d∑
i=1

∥∥∥bi
∥∥∥
L∞ <

θ

2
.

This implies
θ

2

∫
U

|Lu|2 dx ≤ B[u, u] + C
∫
U
u2 dx
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for someC > 0. Again, using the p-adic Poincaré inequality in Proposition 4.5, obtain

β ‖u‖2
W 1,2

0 (U )
≤ B[u, u] + γ ‖u‖2L2(U )

for suitable β > 0, γ ≥ 0. This proves the assertions. �

Corollary 5.6 There is a number γ ≥ 0 such that for all μ ≥ γ and every f ∈ L2(U ),
there exists a weak solution in W 1,2

0 (U ) of the boundary value problem

{
P(L)u(x) + μu(x) = f (x), x ∈ U

u|δU = 0
(13)

for U ⊆ F open.

Proof Due to the energy estimates of Theorem 5.5, the proof of [13, Theorem 6.2.3]
carries over. �


5.2 Diagonalisability of elliptic divergence operators

Let
φ, φ̃ ∈ E := {eigenbasis for L1} ⊗ · · · ⊗ {eigenbasis for Ld}

where “eigenbasis for Li” refers to the orthonormal basis of L2(πi (U )) consisting of
eigenfunctions of the push-forward component operator πi,∗Li , cf. Theorem 2.3.

Proposition 5.7 The operator P2(L) is densely defined on L2(U ). It is also self-adjoint
on L2(U ). If further ai j ∈ D(U ) for all i, j = 1, . . . , d, then the spectrum of P2(L)

on L2(U ) is a point spectrum. If, furthermore, P2(L) is elliptic, then P2(L) is positive
semi-definite.

Proof The operator

P2(L) =
d∑

i, j=1

Li Mai jL j ,

is densely defined on L2(U ), because each summand is defined on the space of test
functions D(U ).

Next, observe that

P2(L)∗ =
d∑

i, j=1

L j Mai jLi = P2(L)

by the double summation. Hence, P2(L) is self-adjoint.

In order to see the point spectrum, observe that for φ ∈ E, there is an E-expansion:

P2(L)φ =
∑
φ′,φ′′

d∑
i=1

λφ, jλφ′′,i 〈ai j , φ′〉〈φφ′, φ′′〉φ′′ .
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Now, observe that

∑
φ′

〈ai j , φ′〉〈φφ′, φ′′〉 =
∑
φ′

〈ai j , φ′〉〈φ′, φ̄φ′′〉 = 〈ai j , φ̄φ′′〉 ,

because the middle sum is an �2-inner product, and this coincides with the L2-inner
product on the left hand side. Hence,

P2(L)φ =
∑
φ′′

〈
d∑

i, j=1

ai jλφ, jλφ′′,i , φ̄φ′′
〉

φ′′

=
∑
φ′′

〈
φ

d∑
i, j=1

ai jλφ, jλφ′′,i , φ
′′
〉

φ′′ .

Since the ai j ∈ D(U ) for i, j = 1, . . . , d, it follows that for fixed φ ∈ E, the last sum
is a finite linear combination of φ′′ ∈ E. By self-adjointness of the Mai j , it follows
also that given φ′′, there are only finitely many φ ∈ E such that the matrix

P2(φ, φ′′) =
〈
φ

d∑
i, j=1

ai jλφ, jλφ′′,i , φ
′′
〉

has only finitely many φ′′ ∈ E with non-zero values. Since E is an orthonormal
basis of L2(U ), it now follows that this space decomposes into P2(L)-invariant finite-
dimensional subspaces which will be denoted as Vφ for φ ∈ E. Notice that for φ′ 
= φ,
it may happen that Vφ′ = Vφ . The restriction of P2(L) to Vφ is the left-multiplication
by a matrix of the form

d∑
i, j=1

Cφ,i j

with
Cφ,i j = Dφ,i Aφ,i j Dφ, j ,

where Aφ,i j is symmetric, and Dφ,i , Dφ, j are diagonal matrices for i, j = 1, . . . , d.
It follows that

⎛
⎝ d∑

i, j=1

Cφ,i j

⎞
⎠

�
=

d∑
i, j=1

Dφ, j Aφ,i j Dφ,i
(∗)=

∑
i, j=1

Dφ, j Aφ, j i Dφ,i =
d∑

i, j=1

Cφ,i j ,

where (∗) holds true because ai j = a ji for i, j = 1, . . . , d. Hence, this matrix
is symmetric. This implies that P2(L) is unitarily diagonalisable as an operator on
L2(U ), and thus its spectrum is a point spectrum, as asserted.



Boundary Value Problems… Page 21 of 31     9 

The non-negativity of the eigenvalues follows thus: let φ ∈ E. From

P2(L)φ =
∑
φ′′

P2(φ, φ′′)φ′′

it follows that

〈P2(L)φ, φ〉 = P2(φ, φ) =
〈
φ

d∑
i, j=1

ai jλφ, jλφ,i , φ

〉

= λφ, jλφ, j

∑〈
φ

d∑
i, j=1

ai j , φ

〉
≥ 0 ,

because the matrix (ai j ) is positive semi-definite almost everywhere on U (actually
everywhere on U by assumption). Hence, P2(L) is positive semi-definite, since for
f ∈ L2(U ), it now follows that

〈P2(L) f , f 〉 =
∑
φ

〈 f , φ〉〈φ′′, f 〉
∑
φ′′

P2(φ, φ′′)〈φ′′, φ〉

=
∑
φ

|〈 f , φ〉|2 P2(φ, φ) ≥ 0

as asserted. �

In order to address the homogeneous part of degree one, observe first that

P1(L)∗v =
d∑

i=1

Li (b
iv) (14)

for v ∈ L2(U ). It is assumed that bi ∈ D(U ) for i = 1, . . . , d.

Proposition 5.8 (Normality Condition) The operator P1(L) is normal, if and only if

d∑
i, j=1

λφ,iλψ, j

∑
φ′

〈φ, biφ′〉〈b jφ′, ψ〉 =
d∑

i, j=1

∑
φ′

λφ′,iλφ′, j 〈φ, biφ′〉〈b jφ′, φ′〉 (15)

for all φ,ψ ∈ E.

Proof First, observe the expansions, using also (14):

P1(L)φ =
d∑

i=1

∑
φ′

λφ,i 〈φ bi , φ′〉φ′ (16)
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P1(L)∗φ =
d∑

i=1

∑
φ′

λφ′,i 〈φ bi , φ′〉φ′ ,

from which it follows that

〈P1(L)φ, P1(L)ψ〉 =
d∑

i, j=1

λφ,iλψ, j

∑
φ′

〈φ, biφ′〉〈b jφ′, ψ〉 (17)

〈P1(L)∗φ, P1(L)∗ψ〉 =
d∑

i, j=1

∑
φ′

λφ′,iλφ′, j 〈φ, biφ′〉〈b jφ′, ψ〉 . (18)

Observe that the domain of each of the operators P1(L) and P1(L)∗ is the intersection
of the domains of the operatorsLi . Thus, they are both the same. Hence, the normality
of P1(L) is equivalent to the equality of expressions (17) and (18), as asserted. �

Remark 5.9 Assume that b1, . . . , bd ∈ D(U ). Then Proposition 5.8 says that the
eigenvalues λφ,i for φ ∈ E, i = 1, . . . , d satisfy an algebraic condition given by
Proposition 5.8, if and only if P1(L) is normal. The reason why this condition is
algebraic, is because the functions b1, . . . , bd are test functions.

Lemma 5.10 The operator P1(L) is diagonalisable on L2(U ), and its spectrum is
a point spectrum, if each eigenspace of Li is invariant under each Mbi , where i =
1, . . . , d.

Proof Observe that the restrictions Cφ,i of the operators MbiLi onto the invariant
finite-dimensional subspaces Vφ given by

P1(L)φ =
d∑

i=1

λφ,i

∑
φ′

〈φbi , φ′〉φ′

are all diagonalisable, because

Cφ,i = Dφ,i Bφ,i

with Bφ,i a symmetric and Dφ,i a diagonal matrix, and

Cφ,i Dφ,i = Dφ,i Bφ,i Dφ,i = Dφ,iC
�
φ,i ,

which is known as the detailed balance property [30, (4.1) and (6.15)].

Since Vφ is a direct sum of eigenspaces of P1(L), it follows under the hypothesis,
that the restrictions of the operatorsMbiLi toVφ mutually commute.Hence, since these
operators are themselves diagonalisable, they are also simultaneously diagonalisable.
This implies the diagonalisablity of P1(L) and the point spectrumproperty, as asserted.

�
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Theorem 5.11 Let P(L) be the operator (11) with ai, j , bi , c ∈ D(U ) for i, j =
1, . . . , d on L2(U ) for U ⊂ F an open domain. Assume further that the eigenspaces
of L are invariant under Mbi for i = 1, . . . , d, or that P1(L) is normal. Moreover,
assume that

Pk(L)P�(L) = P�(L)Pk(L)

holds true for k, � = 0, 1, 2. Then P(L) is unitarily diagonalisable, its spectrum is a
point spectrum, and all eigenvalues have only finite multiplicity.

Proof According to Proposition 5.7, P2(L) is unitarily diagonalisable, and according
to Lemma 5.10, P1(L) is diagonalisable, or in the other case, P1(L) is unitarily diag-
onalisable. Also, P0(L) is unitarily diagonalisable. Since these operators mutually
commute, they are simultaneously diagonalisable, and also unitarily diagonalisable.
This now proves that P(L) is unitarily diagonalisable.

Similarly as in the proof of Proposition 5.7, arrive at the equality

P(L)φ =
∑
φ′

〈
φ

⎡
⎣ d∑

i=1

⎛
⎝ d∑

j=1

λφ,i a
i jλφ′, j

⎞
⎠+ λφ,i b

i + c

⎤
⎦ , φ′

〉
φ′ , (19)

which gives, similarly as in the proof of Proposition 5.7, the restriction of P(L) to a
finite-dimensional subspace Vφ of L2(U ) as left-multiplication with the matrix

Wφ =
d∑

i=1

d∑
j=1

Cφ,i j + Cφ,i + Cφ ,

where

Cφ,i j = Dφ,i Aφ,i j Dφ, j , Cφ,i = Dφ,i Bφ,i (20)

with Dφ,i , Dφ, j diagonal and Aφ,i j , Bφ,i ,C symmetric. The multiplicity of the eigen-
values of P(L) is determined by the multiplicity of the eigenvalues λφ,i of πi,∗Li ,
which are finite for i = 1, . . . , d, cf. Theorem 2.3. Using (19) and the block struc-
ture given by the invariant subspaces Vφ , this implies the finite multiplicity of the
eigenvalues of P(L), and also that its spectrum is a point spectrum. �

Remark 5.12 In the context of randomwalks, the conditionC = DBwith B symmetric
and D a diagonal matrix is called detailed balance property, because

D−1C = B = B� = C�D−1 ⇔ CD = DC�

corresponds to [30, eq. (4.2)] with D playing the role of a stationary distribution. It
will here also be said that P1(L) satisfies the detailed balance condition, because of
(20). Similarly, we can also say that P2(L) satisfies a generalised form of the detailed
balance condition, so that the operator P(L) can be viewed as belonging to a kind of
a balanced process.
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The space of Lq -functions on clδ U satisfying the boundary condition u|δU = 0
will be denoted as Lq

0(U ) for 0 < q ≤ ∞.

Corollary 5.13 Under the hypotheses of Theorem 5.11, the eigenfunctions of P(L) are
inD(U ). In this case, L2

0(U ) is invariant under P(L) acting as an unbounded operator,
and the restricted operator is also unitarily diagonalisable with point spectrum, and
with eigenfunctions in D0(U ).

Proof From the representation (19), i.e. the P(L)-invariant finite-dimensional sub-
spaces Vφ ⊂ L2(U ), it follows that the eigenfunctions of P(L) are linear combinations
of the functions φ ∈ E, i.e. they belong to D(U ).

The spaceD0(U ) certainly contains the polywavelets supported inU , and the graph
test functions f w.r.t. the coordinate subgraphs conditioned by f |δU = 0. Notice that
the vertices in this case do not always correspond to p-adic discs, similarly as in the
case of Mumford curves [4, Section 4.1]. The latter graphs define in each coordinate
a finite-dimensional subspace invariant under Li , cf. Remark 2.4. It follows that the
proof of Theorem 5.11 carries over to P(L) restricted to L2

0, which is thus seen to be
invariant in the unbounded sense, and with eigenfunctions being test functions, hence
in D0(U ), also in this case. This proves the assertions. �


6 Heat kernels and Green function

Here, the following is assumed for L as in (5):

Assumption 6.1 It is assumed that P(L) is elliptic, satisfies the hypothesis of Theorem
5.11, and that its eigenvalues are non-negative.

The action of e−t P(L) onWk,2
0 (U ) for k ∈ N is of interest in the study of diffusion

under boundary conditions. These are Hilbert spaces according to Corollary 4.4 and
Proposition 4.3.

Lemma 6.2 The semigroup e−t P(L) acts compactly on Wk,2
0 (U ) for t > 0 and k ∈ N.

Proof The operators e−t P(L) for t > 0 are trace-class as operators on the Hilbert
spaces Wk,2

0 by Assumption 6.1. �

Let x0 ∈ U . The Green function for the diffusion equation

∂

∂t
u(x, t) + P(L)u(x, t) = 0 (21)

on U under the boundary condition u(·, 0)|δU = 0 is given as a solution of the
following Poisson equation:

{
P(L)G(x, x0) = δ(x − x0), x ∈ U

G(x, x0) = 0, x ∈ δU ,
(22)
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where the constantsμ, γ as in (13) are not going to be required, because of the stronger
assumptions on P(L). The Green function is related to the heat kernel via

G(x, y) =
∫ ∞

0
h(x, y, t) dt (23)

with

h(x, y, t) =
∑
ψ

λψ>0

e−λψ tψ(x)ψ(y)

being the part of the heat kernel

H(x, y, t) = h(x, y, t) +
∑
ψ

λψ=0

ψ(x)ψ(y) (24)

associated with (21), and where ψ runs through an eigenbasis of Wk,2
0 (U ) for P(L).

According toCorollary 5.13, these exist and are test functions. The function H(x, y, t),
if convergent, is formally the heat kernel for P(L)-diffusion under boundary condi-
tions with U ⊆ F open.

In order to prove the existence of the Green function, the strategy will be to prove
the convergence of H(x, y, t) for t ≥ 0, as well as of the right hand side of (23) in the
generality of (22).

6.1 Markov property

In order to rightly say that P(L) defines a diffusion, theMarkovian semigroup property
is established first under Assumption 6.1.

Theorem 6.3 The operator −P(L) generates a contraction semigroup e−t P(L) with
t ≥ 0 on Wk,2

0 (U ) for k ∈ N, and the action satisfies the Markov property if k ≥ 2.

Proof Since the operator−P(L) acts on the Hilbert space L2
0(U ) (cf. Corollary 5.13),

and its eigenvalues are bounded from above (they are non-positive by Assumption
6.1), it follows that e−t P(L) is a strongly continuous semigroup acting on L2

0(U ) for

t ≥ 0. Due to the non-positiveness of the eigenvalues of −P(L), the spaces Wk,2
0 (U )

are invariant under e−t P(L) for t ≥ 0, and the semigroup is also strongly continuous
on these Hilbert spaces.

The semigroup e−P(L) with t ≥ 0 is also a contraction semigroup, because

∥∥∥∥
∫ t

0
e−τ P(L)u dτ

∥∥∥∥
W 1,2

0 (U )

≤ t ‖u‖W 1,2
0 (U )

, (25)
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which can readily be seen for eigenfunctions first, and then for linear combinations of
such using Pythagoras. The reason, why (25) implies the semigroup to be contractive
is that with

R(λ)u = λ

∫ ∞

0
e−λt

∫ t

0
e−τ P(L)u dτ dt

being an expression for the resolvent:

R(λ) = (λ + P(L))−1 ,

it follows that

‖R(λ)u‖W 1,2
0 (U )

≤ λ

∫ ∞

0

∥∥∥∥
∫ t

0
e−τ P(L)u dτ

∥∥∥∥
W 1,2

0 (U )

dt

≤ λ

∫ ∞

0
e−λt t ‖u‖W 1,2

0 (U )
dt

= 1

λ
‖u‖W 1,2

0 (U )
,

implying that

‖λ + P(L)‖−1 ≤ 1

λ
,

and thus, using the Hille-Yosida Theorem for contraction semigroups [12, Theorem
II.3.5], it follows that e−t P(L) with t ≥ 0 is a contraction semigroup onWk,2

0 (U )with
k ∈ N.

The Markovian property for k ≥ 2 follows from first showing that

f ≥ 0 a.e ⇒ e−t P(L) f ≥ 0 a.e. (26)

f ≤ 1 a.e. ⇒ e−t P(L) f ≤ 1 a.e. . (27)

e−t P(L)1U = 1U , (28)

and then by exhibiting an invariant measure for e−t P(L) with t ≥ 0.

Statement (26) is seen thus: f ≥ 0means that it is a linear combination of eigenfunc-

tions which is invariant under the action of
(
F×

p

)d
via x �→ j x = ( j1ξ1, . . . , jdξd),

where x = (ξ1, . . . , ξd) ∈ clδ U , and j = ( j1, . . . , jd) ∈
(
F×

p

)d
. For here, the

group
(
F×

p

)d
is called torus. It follows that f is a positive linear combination of

torus-invariant sums of eigenfunctions. By the invariance of the eigenspaces under
the torus action, cf. (19) and the F×

p -invariance of the coordinate Laplacians Li for

i = 1, . . . , d (cf. Theorem 2.3), it follows that this is also the case for e−t P(L) f .
Property (27) is verified in a similar manner, because all eigenvalues of −P(L) are
non-positive. Property (28) follows from the fact that 1U is an eigenfunction of−P(L)

with eigenvalue 0.
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In order to find an invariant measure, the detailed balance condition (20) can be used
by taking for each of the finite-dimensional invariant subspaces Vφ an the invariant
measure πφ for the semigroup

e−t P(L)φ := e−t P(L)|Vφ .

It satisfies

e−t P(L)φπφ fφ =
∫
U

fφ(y) dπφ(y)

for fφ ∈ Vφ . Write f ∈ D0(U ) as a (finite) sum

f =
∑
Vφ

fφ ,

where fφ is the orthogonal projection of f onto Vφ . Then, by taking formally

π =
∑
Vφ

πφ

as a direct sum, observe that

e−t P(L)π f =
∑
Vφ

e−t P(L)φπφ fφ =
∑
Vφ

∫
U

fφ(y) dπφ(y) =
∫
U

f (y) dπ(y) ,

i.e. π is a distribution on D0(U ). In order to see that it is also one on Wk,2
0 (U ) for

k ≥ 2, approximate f ∈ Wk,2
0 (U ) with a convergent sequence of test functions

f (n) ∈ D0(U ), and observe that

∑
Vφ

e−t P(L)φπφ f (n)
φ =

∑
Vφ

∫
U

f (n)
φ (y) dπφ(y) = e−t P(L)π f (n)

converges for n → ∞ to

∫
U

f dπ =
∑
Vφ

∫
U

fφ dπφ =
∑
Vφ

e−t P(L)φπφ fφ =
⎛
⎝∑

Vφ

e−t P(L)φπφ

⎞
⎠ f , (29)

and this does converge for the following reason: first, observe from (19) and (20) that
πφ ∈ Vφ is a tuple containing expressions of the form

ε2λφ,iλφ, j + ε1λφ,i + ε0

with λφ,� the eigenvalue of P(L) corresponding to eigenfunction φ, εr ∈ {0, 1} for
r = 0, 1, 2 and i = 1, . . . , d, in their respective order and multiplicities. So, for
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f ∈ Wk,2
0 (U ) with k ≥ 2, it holds true that

∣∣∣∣
∫
U

f dπ

∣∣∣∣
2

= |〈 f , π〉|2 =
∑
Vφ

∣∣〈 fφ, πφ〉∣∣2

=
∑
φ

⎛
⎝ε0 + ε1

d∑
i=1

λφ,i + ε2

d∑
i, j=1

λφ,iλφ, j

⎞
⎠

2 ∣∣ fφ∣∣2

≤ ‖ f ‖2
W 2,2

0 (U )
< ∞ ,

where
f =

∑
φ

fφφ, fφ ∈ C,

is the orthogonal eigendecomposition in Wk,2
0 (U ). This means that

∑
Vφ

e−t P(L)φπφ ∈ Wk,2
0 (U )′

is a distribution on Wk,2
0 (U ) for k ≥ 2, which coincides with the formally given

distribution
e−t P(L)π

together with the identity (29). Hence, π is the distribution on Wk,2
0 (U ) for k ≥ 2,

invariant under e−t P(L) for t > 0. This now proves the assertions. �

Corollary 6.4 The semigroup e−t P(L) with t ≥ 0 has a kernel representation pt (x, ·)
for t ≥ 0, x ∈ clδ U, i.e. the map A �→ pt (x, A) is a Borel measure and it holds true
that ∫

U
pt (x, dy) f (y) = e−t P(L) f (x)

for f ∈ Wk,2
0 (U ) with k ≥ 2.

Proof The operator e−t P(L) takes positive measurable functions to positive measur-
able functions, cf. (26). Further, it holds true that e−t P(L)1clδ U = 1clδ U . Also, e

−t P(L)

is bounded on L1
0(U ) for t ≥ 0, because the eigenvalues of P(L) are non-negative.

Thus, according to [2, Proposition 1.2.3], a kernel representation pt (x, ·) exists for
x ∈ clδ U , and t ≥ 0. �


6.2 Convergence of heat kernel and Green function

The goal here is to show that pt (x, ·) given by Corollary 6.4 has a probability density
function given by the function H(x, y, t) in (24), and to show the convergence of the
corresponding expression of the associated Green function.
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Theorem 6.5 The Markov semigroup e−t P(L) on Wk,2
0 (U ) has a heat kernel function

given by H(x, y, t) ∈ L2
0(clδ U ) ⊗ L2

0(clδ U ) for t > 0.

Proof In light of Theorem 6.3 and Corollary 6.4, it suffices to prove that H(x, y, t) ∈
L2
0(clδ U ) ⊗ L2

0(clδ U ) for t > 0.

Assume x = y, t > 0. Then H(x, x, t) for x ∈ clδ U is the trace of e−P(L) which
is finite by Assumption 6.1.

Assume x 
= y, t > 0. Since

∣∣∣ψ(x)ψ(y)
∣∣∣ ≤ μ(clδ U )

it follows that
|H(x, y, t)| ≤

∑
ψ

e−tλψ < ∞

for t > 0 by Assumption 6.1. This proves the assertion. �

Corollary 6.6 The Green function G(x, y) associated with −P(L) exists and is given
by

G(x, y) =
∑
ψ

λψ>0

λ−1
ψ ψ(x)ψ(y)

for x, y ∈ clδ U.

Proof The expression (23) yields the asserted sum. Its convergence follows from the
unbounded growth of the eigenvalues as follows: Theorem 2.3 says that for φ ∈ E, it
holds true that

λφ,i ∈ O
(
pn(1+αi )

)

for μi (supp(φ)) = p−n with n >> 0. Let

α = max {α1, . . . , αd} .

Then with (19) it follows that

λψ ∈ O
(
p2dn(1+α)

)
,

whereψ is assumed to befinite sumof eigenfunctionsφ ∈ Ehaving supportmaximally
of volume p−dn for n >> 0. Since the value

∣∣∣ψ(x)ψ(y)
∣∣∣ ≤ μ(clδ U )

is bounded for x, y ∈ clδ U , the asserted convergence now follows. �
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