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Abstract

We consider the full set of Maxwell equations in a slab or cylindrical waveguide with a
cubically nonlinear material law for the polarization of the electric field. The nonlinear
polarization may be instantaneous or retarded, and we assume it to be confined inside the
core of the waveguide. We prove existence of infinitely many spatially localized, real-valued
and time-periodic solutions (breathers) propagating inside the waveguide by applying a vari-
ational minimization method to the resulting scalar quasilinear elliptic-hyperbolic equation
for the profile of the breathers. The temporal period of the breathers has to be carefully cho-
sen depending on the linear properties of the waveguide. As an example, our results apply
if a two-layered linear axisymmetric waveguide is enhanced by a third core region with low
refractive index where also the nonlinearity is located. In this case we can also connect our
existence result with a bifurcation result. We illustrate our results with numerical simulations.
Our solutions are polychromatic functions in general, but for some special models of retarded
nonlinear material laws, also monochromatic solutions can exist. In this case the numerical
simulations raise an interesting open question: are the breather solutions with minimal energy
monochromatic or polychromatic?

Mathematics Subject Classification 35Q61 - 49110 - 35C07 - 78 A50

1 Introduction and exemplary results

Our results show the existence of spatially localized, real-valued and time-periodic solutions
(called breathers) to the full set of Maxwell’s equations. We consider two types of waveguide
geometries: the slab waveguide and the axially symmetric waveguide. Our breathers travel
inside the waveguide and are periodic in the direction of travel. In the axially symmetric
waveguide they decay to zero in all directions orthogonal to the waveguide, whereas in the
slab waveguide they are independent of one direction orthogonal to the waveguide and decay
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to zero in the remaining direction. The nonlinear properties of the material are confined
to the waveguide and are built according to a Kerr-law which may be instantaneous or
retarded (temporally averaged). Before we summarize the main literature contributions we
first introduce the physical problem. Towards the end of this introduction we comment on
the physical consequences of our main theorems.

As our underlying physical model we consider Maxwell’s equations

V.-D=0, VxE=-B,

(D
V-B=0, VxH=D,,

in the absence of charges and currents. Constitutive relations between the electric field E and
electric displacement D as well as the magnetic field H and the magnetic induction B are
formulated by the following material laws

D=gE+P®E), B=puH, @

where g > 0 is the vacuum permittivity, ;o > O the vacuum permeability and co = 1/, /eor0
the vacuum speed of light. The relation B = poH reflects that the we assume no interaction
of the magnetic field with the material. The interaction of the electric field with the material,
however, is described by the polarization field P(E) which we assume to take the form

P(E) = g0x1(X)E + €0 x3(X)N(E) (€)

with X = (x, y, z) being the spatial variable, cf. [2, 4, 29]. Moreover, we assume that the
cubic nonlinearity N(E) is isotropic, of Kerr-type, and retarded (temporally averaged) of the
form

NE)(x, 1) = /00 R(0) [E(x,t —1)> dT E(x, 1) )
0

which includes the case of an instantaneous nonlinearity
N(E) = |[E*E Q)

if we allow k¥ = §p to be the delta-distribution supported at time 0. A physical discussion
of these material laws is given in [10, 16, 29] where also higher-order dependencies and
anisotropy are discussed. Since we are looking for time-periodic fields E(x, t +T) = E(x, t)
with period 7 > 0, the nonlinearity may be re-written as

T
NE)(x, 1) = %/0 k(D) [Ex, t — D) dTE(x, 1) = (k * [E(x, )[*) OEX, 1)  (6)

with the T-periodic function k (t):=T ), ., K (v +kT) and where we understand & |(—s0,0)=

0. Moreover we have used the convolution notation (k *v)(t) = % fOT k(t)v(t —1) dt for the
weighted temporal average of a measurable function v (which still includes the instantaneous
case where k = Sger). From these equations we obtain the following second-order quasilinear
equation for the electric field E:

V x V x E+eopo((1+ x1(%) E+ x3(0)N(E)),, =0. (7

We will show as part of our results how to recover the full set of Maxwell’s equations from
(7). Under suitable assumptions on the convolution kernel «, cf. (15), we will show that (7)
has a variational structure. Examples are given in Section 1.1.

We are interested in breather solutions of (7) which are moving with speed ¢ € (0, ¢p).
Our results depend on the choice of the coefficients x1, x3, the retardation kernel «, the
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propagation speed ¢, and the desired period 7' > 0. We denote the frequency associated to
T by w::zT”.

In the literature there are several treatments of the existence of breather solutions of (7).
The first sequence of papers deals with monochromatic breathers, i.e., breathers of the type
E(x, 1) = E(x) cos(kowt +1p). Such breathers are not compatible with the instantaneous non-
linearity but with the retarded nonlinearity, e.g., in the case x (#) = 1 which may occur when
k@) = ZneNo LT, (i 1yT) With @y > 0, D0 jo, = T—!. Monochromatic breathers
have the advantage that (7) reduces to the stationary elliptic problem

x3(X)

V x V x E — gopokge® (1 + x1(x)) E + T|E|2)E =0. ®)

Instead of a cubic nonlinearity E, also saturated nonlinearities g(x, |E |2)E with a
bounded function g naturally appear. The cases of saturated nonlinearities were first elab-
orated by Stuart et al. [24, 35-41] in the case of traveling breathers in an axisymmetric
waveguide. Using divergence free, TE- or TM-polarized ansatz fields, (8) was reduced to a
one-dimensional nonlinear elliptic problem which can, e.g., be solved variationally. In the
follow-up result [25] the assumption of strict axisymmetry is dropped and more general two-
dimensional waveguide profiles are considered, also allowing pure power nonlinearities. The
case of standing monochromatic breathers also originates from Stuart’s work and leads to the
elliptic nonlinear curl-curl problem (8) in the vector-valued case. First works [3, 6, 7] con-
sidered axisymmetric divergence free ansatz functions, which allowed to reduce V x V x to
—A. Using Helmholtz decomposition and suitable profile decompositions for Palais-Smale
sequences, this restriction has been overcome by Mederski et al. [26-28], see also the survey
[5] and references therein, with the isotropic cubic Kerr-nonlinearity still being left as an open
problem. A different approach using limiting absorption principles [21] or dual variational
approaches was carried out by Mandel [23], cf. also [22] where a spatially nonlocal variant of
the stationary curl-curl problem was solved. Still within the area of monochromatic breathers,
Dohnal et al. considered in [13] breathers at interfaces between (lossy) metals and dielectrics
including retardation and in [14] they rigorously approximated breathers in photonic crystals
when the frequency parameter is near a band edge.

In the second, much smaller sequence of papers, truly polychromatic breathers are con-
sidered for instantaneous nonlinearities. The first approach which we are aware of, is [32]
where spatially localized traveling wave solutions of the 1+1-dimensional version of the
quasi-linear Maxwell problem (7) were investigated. The authors treat the case where the
linear coefficient x; is a periodic arrangement of delta potentials. Using local bifurcation
methods the authors solve a related system which is homotopically linked to the Maxwell
problem written as an infinite coupled system arising from a multiple scale ansatz. It is ana-
lytically not clear whether the bifurcation branch ever reaches the original Maxwell system
but numerical results support the existence of spatially localized traveling waves. A fully
rigorous treatment for the existence of breathers on finite large time scales was given in [15]
for a set-up of Kerr-nonlinear dielectrics occupying two different halfspaces. Two further
rigorous treatments of exact polychromatic breather solutions occurred in [9] and [20] where
either the linear or the nonlinear coefficients take the form of delta-distributions and the exis-
tence of travelling breathers was accomplished by using bifurcation theory and variational
methods, respectively. We are not aware of any treatment of polychromatic breathers in the
presence of retarded nonlinearities.

X32(X) |E|2
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1.1 Examples of our results

We first describe our results on the level of examples. General results will be given in Sec-
tion 2. Breather solutions are rare phenomena, and hence the fact that our examples contain
rather specific assumptions on the material coefficients and do not leave much leeway for
perturbations should not be surprising. The main difference to the previous results may be
summarized as follows: while we allow both instantaneous and retarded material laws, our
traveling breather solutions are generally polychromatic and hence not limited to monochro-
matic ansatz functions. Moreover, our solutions satisfy the full set of Maxwell’s equations
exactly, the material coefficients yi, x3 are bounded, and our solutions can be numerically
approximated with little effort.

In the following, the speed of light is assumed to be 1 = 1/,/euo. Breather solutions
will be time-periodic with period T and are propagating along the z-axis with speed ¢ €
(0, 1). We consider two geometries for breathers: the cylindrical geometry where x(x) =
x1(r), x3(x) = x3(r) only depend on r = y/x2 + yZ, and the slab geometry where x;(x) =
X1(x), x3(x) = x3(x) only depend on x. In the cylindrical geometry we consider electric
fields of the form

Ex,0) =Wt -1z (=2, 2,07

and in the slab geometry the electric field takes the form
Ex, 1) =(0, W(x,1 — 12),0)"

where in both settings W is a real-valued profile which is localized in the first variable (-
direction in the cylindrical case and x-direction in the slab case) and T -periodic in the second
variable. In both geometries the electric field is a divergence-free TE-mode which means that
E is orthogonal to the direction of propagation.

Definition 1.1 The fieldsD,E, B, H € Llloc(]R3 x R; ]R3) weakly solve Maxwell’s equations
provided

/D«Vd)d(x,t):O, /E~V><d>d(x,t)=/ B9, ®d(x, 1),
R4 R4 R4

/ B-V¢d(x,t) =0, / H-de>d(x,t)=—/ D-3,dd(x, 1)
th ]RA ]Rét
holds for all ¢ € C°(R*; R) and ® € C°(R*; R?).

The following theorem can be read as an explicit recipe for the construction of materials
which support breathers. For the kernel ¥ we generally assume (15). Explicit examples
include, e.g., K () = 1{0,00) (T4 + 4t4)_1 tork(t) = ZneNo ALt (n+1)7)(t) Where o, >
0 with ZneNo ap = T, cf. Remark B.2 for details. The material coefficients X1, X3 are
assumed fixed and positive and take the form

- d, x| < R, - -y, |x] <R,
xix) =3 _, x3(x) =
Xl(l'x'_R)’ |x|>R7 07 |x|>R
where either ¥ = )Zf . R — Risa P-periodic function defined on one periodicity cell by
x| < 30P,

~per a
X) =
Xi ) {b, lop <ix|<1p
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or 1 = %P : R — Riis a step function defined by

- a, x| <p,
P x) =
b, x| >p

witha,b,d, P,R,y,p > 0,0 € (0, 1).
We are also using a sign-dependent distance function for a point p € Randaset M C R:
|p —m| ifm > p,

distt(p, M) = inf{d* (p,m) : m € M} withd™ (p,m) = : )
ifm < p.

Theorem 1.2 Suppose that the nonlinearity N is given by either (5) or by (6) where Kk satisfies
(15). Then there exists a (nonzero) T -periodic real-valued weak solution of the Maxwell
problem (1), (2), (3) in the sense of Definition 1.1 both for the slab and the cylindrical case’,
and for the following two choices of the polarization coefficient X :

(i) If x{ = )Zfer then we assume that the propagation speed ¢ € (0, 1) is chosen such that
0<d<c?—1<min{a,b, 4%} and

VJa+1—c2.6 _meNodd
Vb+l—-c2.(1—-6) n  No

(€))

and define

T._4«/a +1-c20P 4Vb+1-c2(1—-0)P

m n

(i) If x{ = )Z‘;tep then we assume that the propagation speed c¢ € (0, 1) is chosen such that
0 < min{b, d} < max{b,d} < ¢2—1 < a. Moreover, there arem,n € N coprime with

atl—c? — dictT a+1—c2 MT i
0 < & < arctan,/  —— where &:= dist <arctan,/ To-Tte 2 3, + ;Z (10)

and
n
T:=4vVa+1—c2p—.
m

Additionally, the solution has at all times finite and uniformly bounded electromagnetic
energy per unit square in y, 7 (slab case), or per unit segment in z (cylindrical case).

1.2 Discussion of the examples

Let us explain the reason behind the particular choices of the coefficients in a physical context.
The parameters a, b are properties of a linear waveguide (without any nonlinear effect) whose
profile is given either by the purely periodic profile )Zfer or the pure step profile )thep. Then
the conditions on a, b, ¢ have the nature of a nonresonance condition, i.e., there are no guided
waves E(x, 1) = W (r)etket—o) . (—%, = 0)" with time period T = %” propagating with
speed c¢ along the linear waveguide. Mathematically, this is expressed by a property of the
operator (1 + x; x)1-V xVx appearing in (7): namely all multiples k2w? with k € Zoaa
are required to stay away from the spectrum of this weighted operator when restricted to
suitable TE-modes propagating with speed ¢ along the waveguide. This requirement is quite

! In the cylindrical case, write r instead of x, and restrict X1, x3 to the half-line [0, 00).
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restrictive and its fulfillment can be guaranteed if @ = 2& is chosen in the particular way

and the parameters a, b, ¢ satisfy either (9) or (10). !

The remaining conditions on d may be described as follows: by inserting a new material
of width 2R at the center of the waveguide the purely periodic or pure step waveguide is
perturbed. On the linear level the new material has a low refractive index d and on the level
of the nonlinear refractive index it contributes a defocusing effect. The quantitative strength
of the nonlinear effect plays no role in the sense that y > 0 may be arbitrary small. The value
d always satisfies a two-sided condition: on one hand 0 < d < ¢~% — 1 and on the other

hand td
-2 a [ at1—c"?
C —1< ) or 0< -‘;‘_ < arctan m

We note that these conditions are always satisfied if d is below but sufficiently close to ¢ =2 —1.
On the linear level, the presence of the new (linear) material at the core of the waveguide still
does not allow for guided waves of time period 7" and wave speed c. However, at a different
value d, < d such alinear guided mode exists. Moreover, for all values de (dy, d) asolution
of the nonlinear equation (7) exists, which bifurcates from 0 as d — d,.. In other words, the
solution of Theorem 1.2 is part of a bifurcation phenomenon with d as a bifurcation parameter.
In a nutshell: the nonlinear equation allows for guided modes in the waveguide at parameter
values for which there are no linear guided modes. We comment on this phenomenon in
Section 7.

1.3 Outline of paper

In Section 2 we state the general form of our results (Theorem 2.1 and Theorem 2.4) of
which Theorem 1.2 is a special case. For particular choices of the parameters compati-
ble with Theorem 1.2, illustrations of approximate breathers can be found at the end of
Section 2. Our main results are stated both for the cylindrical geometry and the slab geom-
etry. For the proofs we discuss in detail only the cylindrical geometry, as the slab geometry
can be treated similarly with less difficulties. Sections 3—5 contain the proof of our main
results. In Section 3 we show how the problem (7) on R? x R can be reduced to a problem
on the bounded domain [0, R] x [0, T']. We then treat this reduced problem using a sim-
ple variational minimization method. In Section 4 we study a regularization of the bounded
domain problem and in this way obtain an improved regularity result for the solutions of
both the regularized and the original problem. Section 5 closes the proof of the main results.
Adaptations for the slab geometry are discussed in Section 6. Moreover, in Section 7 we
show the further regularity result that |E|| foosupp 5:22(0,77)) 18 finite and we explain what
this has to do with the dielectric character of the waveguide. Finally, in the same section, we
comment on the bifurcation phenomenon w.r.t. the parameter d.

The appendices contain important technical tools. In Appendix A we prove some auxiliary
results on the fractional Laplacian as well as a version of the famous Kenig-Ponce-Vega
inequality on the torus. In Appendix B we show a basic convexity result for our variational
approach, lower bounds on integrated versions of the nonlinearity, and two trace inequalities.
Then, in Appendix C we verify that the examples given in Theorem 1.2 satisfy the conditions
of the general existence results. Lastly, Appendix D details the numerical methods used to
obtain approximations to the breather solutions that appear in the following section in the
images in Figure 1 and 2 as illustrations of Theorem 1.2.

Let us finish this introduction by pointing out some observations and open questions,
cf. Section 2 for details. In all our results we allow the breathers to be a polychromatic
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superposition of Fourier modes of arbitrary multiples of the basic frequency w. In case of
an instantaneous nonlinearity, necessarily infinitely many Fourier modes are non-zero. For
time-averaged nonlinearities there is the possibility of monochromatic breathers and indeed
(under suitable assumptions on «) such monochromatic breathers exists. As our numerical
simulations suggest, they appear to be more smooth than their polychromatic counterparts,
and moreover, for the slab geometry, it seems that only monochromatic ground states exist.
This is not the case for the cylindrical geometry. These findings based on numerical obser-
vations are analytically still open, but they do shed new light onto the a-priori choice of a
monochromatic ansatz by Stuart et al. [24, 35-41] and later by others [3, 5-7, 26-28].

2 Main results and numerical illustration

After having given examples we now state our main results in more general form. We divide
this into two subsections: one for the cylindrical geometry and one for the slab geometry.
We define T:=R/77 as the torus of length T which is our time domain equipped with the
measure df = %d)» where dX is the Lebesgue measure on [0, T'].

2.1 Cylindrical geometry

First we consider a cylindrical material, where x;(x) = xi(r) and x3(x) = x3(r) with
r:=+/x2 4 y2. For E we consider a wave which is radial in the (x, y)-directions, travels with
speed ¢ > 0 in z-direction, and which has the form

Ex, 1) =w(r,t —12) (=2, £,07 (11

with a real-valued profile function w, (r, t). Inserting the ansatz (11) into (7) and integrating
once w.r.t. ¢ yields

—wyr = tw, + Hw 4 (510) + 1= H)wy + 3INw); =0, ref0,00),1€R

(12)
with
N(w;) = Nins(w;) = w] (13)
or
N(wy) = Nay(w;) = (i % w)w; (14)

corresponding to (5) and (6), respectively. If the nonlinearity is given by (14), we require k
to satisfy the following assumptions:

k € C*(T) for some o > 0,
k(t) =k(—t) >0forr e T, (15)
LY(T) — R, v > [1(x * v*)v? dr is convex
where the convexity assumption is satisfied if, e.g., max k < 2 min « or if the Fourier trans-
form of « is non-negative, cf. Lemma B.1 and Remark B.2 for further concrete examples.

In the following, N will always denote either Njps or N,y. Under assumptions (15) on «, we
will show that (12) has a variational structure that is crucial in our study.
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In the context of radial symmetry it is important to see the relation between a radially sym-
metric function f; : R2\B r(0) — R, R > 0, and its radial profile function f: [R, 00) — R

via the map f;: R?\ Br(0) — R, (x,y) = f(v/x2+y2).For 1 < p < oo this gives rise
to the function spaces

LE(R, 00):={f € Ljoo((R, 00)): fy € LP(R*\ Br(0))}

with norm

”f”Lrpad( R.00)) = HH i “Lr'(IRz\BR(O)) = If lLr(R,00), rar) -

For functions depending on radius and time we define
L? (IR, 00) x T):={f € L{,.((R,00) x T): fs € LP(R*\ Bg(0) x R)}.

Other spaces of radially symmetric functions based on Lfad([R, o0) x T), such as
Hr’;d([R, o0) x T), are defined analogously.

For time-periodic functions w: [0,00) x T — C we consider the temporal Fourier
transform F and denote for k € 7Z the k-th Fourier coefficient of w by wy = Fi[w] =
fT weg dt where ex (1):=e*®! . For the linear part of the differential equation (12)

Lw=—-w,, — %w, + rizu) + ()Z] +1- cfz)w,,
we can apply the Fourier transform and obtain F[Lw] = LWy with
Li:=— 8,2 — %8r + %2 — kza)z()h +1-— c_2).

We make the following assumptions on the nonlinearity N, the potentials 1, x3 and the
operators L. Denote by Nogq:=2N — 1 = {1, 3, 5,...}.

(AD) x1, x3 € L*°([0, 00), R) and supp(x3) = [0, R] where R > 0.
(A2) N is given either by (13), or by (14) where « satisfies (15).
(A3) esssupjg g1 X1 < ¢ 2 —1,ess supjo. gy X3 < 0.
(A4) There exists a solution ¢ € Hrid([R, 00)) \ {0} of Ly = 0 for each k € Nygq.
(AS5) The following inequalities hold for ¢, k € Nogq:
R " (R
lim inf M >0, sup M
k— o0 ”(bk”L?ad([R*oo)) Kk ”¢k||erad([R~°°))
(A6) With I, denoting the modified Bessel function of first kind, there exists ko € Nygq
such that ¢y, (R) # 0 and the following inequality holds:

o, (R) /\koll’ (AkoR)
¢k0(R) I (AkoR)

We call ¢ a fundamental solution for Lj;. Since Ly = L_; we define ¢_i:=¢y
for all k € Nygq. The reason for considering k € Nygq instead of k € Ny is that
ker(Lg) = span{ } does not contain nonzero Lrad([R, o0))-functions. The restriction
to Nogq amounts to con51der1ng T/2-antiperiodic functions which is compatible with the
cubic nonlinearity in (12).

Assumption (A6) is in place to ensure existence of nontrivial solutions to (12). Since

% — 1 as z — oo (see [17]), a sufficient condition for (A6) to hold is

SL(R)
A6’) 1
(A" timsup o Ty = e

—_ e ~\2
where A:=w(c™2 — 1 — essinf
( [0,R] Xl)

_ PN V)
— 1 —essinf s
[0,R] Xl)
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which additionally ensures that (A6) holds for infinitely many k.
Next we state our main theorem for the cylindrical geometry.

Theorem 2.1 Assume (Al)—(A6) hold for given N, «, X1, x3 and T. Then there exists a
(nonzero) T -periodic real-valued weak solution of the Maxwell problem (1), (2), (3) in the
sense of Definition 1.1. Furthermore, localization orthogonal to the direction of propagation
is expressed by the fact that at all times ty € R the electromagnetic energy per unit segment
along the z-direction

/ (D-E+B-H)d(x, y,2)
RxRx[z0,z0+1]

is finite for all 7o € R and uniformly bounded.

Remark 2.2 Let us explain why our assumptions (A3), (A6) enforce x; to take values both
below and above ¢ 2 — 1. Suppose for contradiction that §; < ¢~2— 1 everywhere on [0, 00).
If w is a weak T'-periodic solution to (12), we see that w = 0 must hold by multiplying (12)
with w and integrating on [0, co) x T with respect to the measure  dr dz. Hence, non-trivial
solutions do not exist. In fact, the assumption (A6) conflicts with x{(r) < c2-1 everywhere
on [0, 00). Namely, in this case ¢ satisfies (r¢)" = (} —+ rkza)z(c_2 —1- )Zl(r))qbk.
Multiplication with ¢ and integration from R to co yields R, (R)¢r(R) = — [° rldp|* +
(% + rkza)z(c_2 —-1- )Zl(r))|¢k|2 dr < 0. Thus, ¢,’((R) and ¢ (R) have opposite sign,
contradicting (A6) and the fact that 11, / 1’ are positive on (0, 00).

We end this subsection with a multiplicity result. For this, we first explain what kind of
multiplicity we consider. Given a solution w of (12), any time-shift (x, t) — w(x,t + 7)
for T € T also solves (12). Moreover, if N = N,, with x = 1 one can shift the individual
frequencies separately, i.e. (x, t) — ZkeZ Wi (x)ex (t + 1) solves (12) for all 75 € T with
T = T_k. By distinct solutions we mean solutions that are not shifts of one another.

Theorem 2.3 Assume (Al)—(AS) hold for given N, k, X1, X3, T. If (A6) holds for infinitely
many ko € Nogd (e.g. if (A6’) is true) then there exist infinitely many distinct T -periodic real-
valued weak solutions of the Maxwell problem (1), (2), (3) in the sense of Definition 1.1 with
finite and uniformly bounded electromagnetic energy per unit segment along the z-direction.

2.2 Slab geometry

In our second setting, we consider slab materials that extend infinitely in the (y, z)-directions.
Here x1(x) = x1(x), x3(x) = x3(x) and we look for traveling polarized waves moving at
speed ¢ > 0 in y-direction and being constant along the z-direction. More precisely, we
consider fields E given by the ansatz

E(x, 1) =(0,0, w,(x,1 — 1y)". (16)
Inserting into (7) and integrating once w.r.t. ¢ we obtain the equation
—wy + (110 + 1= ¢ 2) wy + TN ), =0 (17)
for the profile function w;(x, r). Similar to the radial setting we define the operators
Li=— 2+ (i) +1-c¢2) 82, Lp=-02 ko (i) +1—-c7?),
so that sz = Zk]-"k holds ior the temporal Fourier transform F. We require the following

assumptions on X, x3 and Lyg:
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35 Page 10 of 52 S. Ohrem, W. Reichel

(,‘}1) X1, X3 € L®(R, R) are even with supp()3) = [—R, R] where R > 0.

(62) N is given either by (13), or by (14) where « satisfies (15).

(63) €SS SUp[_g g} X1 < c™2—1,ess SUP[_R R] X3 < 0.~

(A4) There exists a solution ¢, € H?([R, 00)) \ {0} of Ly, = 0 for each k € Nogq.
(AS5) The following inequalities hold for ak, k € Nogq:

3 (R)|
H Pr H L2([R,00))

|61 (R)|

> 0, Pz
k k|3 ”Lz([R,OO))

lim inf
k—o00

< Q.

(A6) There exists kg € Nogq such that $kO(R) # 0 and the following inequality holds:

odd

(R) : .-
?ko > Ak tanh (\kgR) with )\::w(c’2 — 1 —essinf xl)l/z.
i, (R) [~R.R]

Again, a sufficient condition for (A6) to hold is

S P (R)
(AGD T sup 33 ®) ~

We can now formulate our main theorems for the slab geometry.

_2 . ~\12
w — 1 —essinf .
(€ [=R.R] %)

Theorem 2.4 Assume (A1)—(A6) hold for given N, %1, %3 and T. Then there exists a (nonzero)
T -periodic real-valued weak solution of the Maxwell problem (1), (2), (3) in the sense of
Definition 1.1. Furthermore, localization in the x-direction is expressed by the fact that at
all times ty € R the electromagnetic energy per unit square in the y, z-direction

/ (D-E+B-H)d(r. y.2)
Rx[yo,y0+11x[z0,20+1]

is finite for all yo, zo € R and uniformly bounded w.r:t. ty, zo.

Theorem 2.5 Assume (A1)~(A5) hold for given N, %1, %3, T. If (A6) holds for infinitely many
ko € Nogq (e.g. if (A6’) is true) then there exist infinitely many distinct T -periodic real-valued
weak solutions of the Maxwell problem (1), (2), (3) in the sense of Definition 1.1 with finite
and uniformly bounded electromagnetic energy per unit square along the y, z-direction.

2.3 Numerical illustrations, discussion, and some open questions

In the following we apply the numerical scheme outlined in Appendix D and show results
for the profile w; of the electric field, cf. (11) or (16). The breathers we obtain analytically
are ground states in the sense that they are minimizers of the energy functional E discussed
in Section 3. Here we show approximations to these ground states. We consider particular
potentials x| and x3 which are compatible with the parameter choices of Theorem 1.2. For
the periodic case ¥ = )Z})er we show in Figure 1 four images which cover both choices of the
nonlinearity (time-averaged and instantaneous) and both choices of the geometry (cylindrical
and slab). For the step case ¥ = )le **P also four images covering both types of nonlinearities
and both types of geometries are shown in Figure 2.
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Fig. 1 Periodic potential outside [—R, R]: intensity (approximated) of electric field of breather solutions to
Theorem 1.2 in reduced coordinates (cf. (11) and (16)) over 2 time periods, with potentials x| (orange) and
X3 (blue). Parameters are T = 4, w = %,c = %,a = %,b = %,d = %,R =P=2,6= %,y =m=
n = 1,k = 1. Top to bottom: Njng and cylindrical geometry; Njns and slab geometry; N,y and cylindrical
geometry with R = % instead; N,y and slab geometry
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The following observations can be made leading to open questions or conjectures:

e Although itis in general impossible to tell whether a computed solution is a global or just
a local minimizer, the numerical minimization scheme in the instantaneous case always
ends up in the same state (up to time shifts) independently of the initial state. One may
therefore conjecture that ground states are unique up to shifts in time. Moreover, they
seem to be even in time.

e Ground states for time-averaged nonlinearities seem to be more smooth than for
instantaneous nonlinearities. Can one show improved regularity of ground states for
time-averaged nonlinearities?

e For time-averaged nonlinearities one can consider monochromatic solutions with fre-
quencies kw provided kp; = 0 (see discussion below). In the cylindrical setting we found
both monochromatic and polychromatic breathers (depending on the chosen parameters),
whereas in the slab setting we only found monochromatic breathers. Can one prove that
in the slab setting ground states are monochromatic? Under which parameter conditions
in the cylindrical setting are ground states monochromatic/polychromatic?

A monochromatic breather has a profile w of the form
w(r, 1) = Re[u(Mex(t)] = 30(r)ex () + 30(r)e—(1)
for some function v. It is compatible with the nonlinearity in the time-averaged case if
Ko = 0, since then the nonlinearity

Nay(w) = § Refko (v ezp + [v]* ver) + 2&0 [v]> ver] = 4 Refv]* vex]

is also monochromatic along monochromatic functions. The bottom images in Figure 1 and
2 always depict monochromatic breathers (for the slab geometry, time-averaged nonlinearity
with ¥k = 1, and frequency index k = 1). All other images show polychromatic breathers.
Furthermore, for the time-averaged nonlinearity one can state that if there exists a nontrivial
breather w then there also exists a monochromatic breather with frequency index k € Nygq
provided ©ox = 0 and fooo LWy - Wy rdr < 0.

The instantaneous nonlinearity N = Njps however is not compatible with monochromatic
breathers, hence all breathers for N = Nj,s are necessarily polychromatic, and they have
infinitely many excited frequency indices k.

3 Reduction to a bounded domain problem

From now on we assume that assumptions (A1)—(A6) are satisfied, and we set
V(r)=— ) +1-c?) and T(r):=— 30, (18)
allowing us to write (12) as
—wyr — tw, + 5w — V(P )wy —T)Nw), =0, rel0,00),1€T (19

where V > 0,I" > Oon [0, R] dueto (A3). While (19) is variational with associated indefinite
energy functional

2
Emd(w)::/ (%w2 + 5 (w) + IVew + %F(r)N(w,)w,) rd(r, 1),
[0,00)xT

we reduce it in the following to the variational problem (23) which is coerive. For the reduction
the conditions (15) on k are essential.
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Fig. 2 Step potential outside [—R, R]: intensity (approximated) of electric field of breather solutions to
Theorem 1.2 in reduced coordinates (cf. (11) and (16)) over 2 time periods, with potentials x| (orange) and x3

(blue). Parameters are T = 4, w = %,c: %,a = %,b: %,d: %,R =2,p=y=m=n=1,k=1.
Top to bottom: Njpg and cylindrical geometry; Njng and slab geometry; N,y and cylindrical geometry with

R= % instead; Nay and slab geometry
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We consider functions w which are 7/2—antiperiodic in time. This is compatible with the
structure of (19), in particular with the cubic nonlinearity, and we use the suffix “anti” to
denote spaces consisting of functions which are 7/2—antiperiodic in time.

Using the fundamental solutions ¢y given by (A4) we can further make the ansatz

w(r. 1) = {u(r, 1), 0<r <R, 20)
D keTogy WPk (P)ex (), 1> R.

where o € Cand u € H! ([0, R] x T) are to be determined. Note that «_; = ory since

rad,anti
w, ¢ being real-valued together with ¢_; = ¢ imply a_xp_; = g di.

We want to ensure that w and w, taken from inside and outside match at r = R. This
leads to the following conditions:

uR.0= Y adpRe), wR.O= Y api(Red). Q)

k€Zodd k€Zodd

By assumption (A5) we have ¢y (R) # O for almost all k € Zggq. Let
§:=1{k € Zoda: ¢r(R) = 0} C Zoaa

denote the finite exclusion set. The exceptional indices k € § have to be treated differently
than the regular indices k € R:=Zoqq \ §. Note also that due to assumption (A5) there exist
constants ¢*, C* > 0 such that

BB _c
(R~ e
(22)

|¢k(R)| = c* “¢k”L§ad([R’°°)) ) |¢]/<(R)| = c* |k| ||¢k||L|%ud([R’OO)) s

hold for all k € fR.
Using the Fourier-decomposition u(r, 1) = >, Zotd iy (r)eg (t) let us show the difference
between § and fR: for k € § equations (21) reduce to

N A
Up(R) =0 and o = ¢>I/€(R)’
whereas for k € R we have
_(R) L R
o = S (R) and i (R) = rk(R)uk(R).

Thus we formally obtain the following boundary value problem for u:

—ttry — tuy + Hu—V(@)uy — T ()N (), =0in [0, R] x T,
i, (R) = S it (R) for k € R, (23)
ur(R) =0fork € §.

The formal calculation will be justified in the proof of Theorem 2.1 when we establish the
weak-solution property. Problem (23) again is variational with energy functional formally
given by E(u) = Ejnq(w) with w as in (20). In fact, by a short calculation using that w solves
the linear wave equation on [R, 0co) x T, we see that
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E(u)=E;(u) — Eg(u) where

2
Er(u) = /[o,qur (%u% +3 (Fu) +3veud + %F(r)N(u,)u,) rd(r, 1), o

R o (R) . 2
Epw) ==Y ik (R)|* .
2 5 o®

To see that (23) is the Euler-Lagrange equation of E subject to the constraints iz (R) = 0
for k € §, take a sufficiently regular solution u# of (23) and a sufficiently smooth function
¢: [0, R] x T — R. Then we have

0= / (rr = Fur + hu = Vs = TON @) 9rder o)
[0,R]xT r

[ (et o Vo + TONGR) a0 = R [ Ro0p(R. 0 ar
[0,R]xT " T

A J—
Z’; ) RO (R)

(urer + Jup + Vg + TN gt rder 0 = R Y.
[0,R]xT 4 keRr

= E'wle].
Here we used ¢ (R) = 0 for k € § and that by Plancherel

"(R o
Z’;E R; k(R (R)

R/ ur (R, )p(R, 1) dt = R/ ur(R,OGR, )dt =R Y
T T keR

so that this quantity is real and thus coincides with Ej(u)[¢] = Re [R D ke

—zﬁﬁ;ﬁk(R)(ﬁk(R)]. We further used that EN(u)::f[O,R]x'H‘ (%F(r)N(ut)u,) rd(r, t) sat-

isfies
Eywle] :/ (LN e rd(r, 1).
[0,R]xT
Indeed, for N = Nj,s we have

En(u) = %/[O,R]x’]l‘ (l"(r)u?) rd(r,t), hence E;\,(u)[(p] = /[0’ (F(r)u?go;) rd(r, t).

R]x
If N = N,y, using that « is even by (15) one has
/ (1 * (urpr))up dt = f / e (t = T)ur (V) (T)u; (1) dr dr
T TJT
= / / k(T — t)u,(‘c)<p,(1')uz(t)2 drdr = /(K * utz)ut<p, dr,
TJT T

and therefore Ey (1) = § Jo.RixT (D) (ke * u?)u?) rd(r, t) does satisfy

EyN)lpl = 3 f{o | T(F(r)(x*w»u?+F(r)(x>w,2)u,<pz) rd(r, 1)
,R]x

- ‘/[0 RIXT (F(r)(K * "‘zz)ut‘ﬂt) rd(r, t).

As a next step we properly define the functional E and investigate its properties.
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35 Page 16 of 52 S. Ohrem, W. Reichel

Definition 3.1 Define the norm || - |y depending on the nonlinearity N by

1/4
lvlln,, = (/ vt rd(r, f)) = ||U||L;£ld([o,R]xT)
[0,R]XT :

R 2 e
vlly,, = (/0 (fjrvzdt> rdr) = lvllzs o,y 22Ty -

Remark 3.2 We have

and

”v”L?ad([O'R]XT) = % ”U”Nav > ”U”NaV = ”U”Ni,,S s
and / C(r)N@vrd(r, 1) = |vlly .
[0,R]xT

The first two estimates immediately follow from Holder’s inequality. The last estimate is clear
for N = Niye since N (v)v = v* and T is bounded and strictly positive by assumption (A1).
For N = N,y we have

/N(v)vd(t)://K(t—r)vz(r,r)vz(r,t)dtdt
T TJT
so that

essir]lfF-minlc ol 5/

C(r)N@)vrd(r,t) <esssupl - maxk - ||v||‘}v .
[0,R [0,R]xT [0,R]

Proposition 3.3 The functionals E, E;, Ep given by (24) are well-defined and differentiable
on the reflexive Banach space

1 2
_ 1 ur. tu e L2,([0, R] x T),
= {Lt © Wloc’ami([o, i (|2t ||rN <00, ur(R)=0forke3F

with norm

o 1
lllyy := llurllz2 o, r1xT) + ”?”“Lfﬂd([o,R]xT) + lluelly -

rad
The derivative is given by

E'(w)g] =f

[0,R]xT

AL I—
-RY ik (R)@i(R).
oo Pk(R)

Uy + Sup + Vg + TN ) rd(r, 1)

Furthermore, Ej is sequentially weakly lower semicontinuous, Ep is sequentially weakly
continuous, and E is sequentially weakly lower semicontinuous as well as coercive. Therefore
E attains its minimum E*:=inf E = E(u*) and u* is a critical point of E.

Proof Using assumption (A1) and Remark 3.2 one can show in a standard way that E; is
well-defined and differentiable. The formula for the derivative follows from the calculations
above. Since V' > 0 the quadratic terms of E; are convex, and the same holds for the
remaining part Ey since I' > 0 together with assumption (15) in the time-averaged case.
Therefore Ej is (sequentially) weakly lower semicontinuous.
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With (22) we obtain |Eg(u)| < Cop ||u(R, ')”21/2(1?)’ so from compactness of the trace

(see Lemma B.5) it follows that Ep is sequentially weakly continuous and in particular
continuous.

It remains to show that E is coercive. Using Remark 3.2 and Lemma B.5 with ezzﬁ we
estimate

E(u)

A%

1 2 11,2 - 4 2 2
Yl + 5 | Rule + 5 huelly = Co (e lurls +Ce) )
ra ra ra

1 2 11,2 : 4 2
7 ||“r||L2 + 3 H;MHLz +%||ut||N_COC(8) llue Iy
rad rad

for some ¢y > 0. Thus E(u) — oo as [lu]y, — oo. Using [34, Chapter I, Theorem 1.2] we
find that E attains its infimum at a critical point, which completes the proof. O

Next we show that assumption (A6) is a sufficient condition for the solution u* obtained
above to be nontrivial.?

Proposition 3.4 The minimal energy level of E satisfies E* < 0 and hence u* # 0.
Proof Let ko € R be as in (A6) and recall that . = w ||V ”]I{io ([0.R]) . Define

fr)y=Ii(kor), — u(r,t):=¢ef(r) (ex,(t) + e—k, (1))

where I is the modified Bessel functions of first kind, i.e., it satisfies
(-2 -to+L+1)n=0. nO=0.

We calculate

R #(R) 2
E(u) = /(0 - (%u% + w2+ bviu? + %F(r)N(u,)u;) rdr.0) = 3 ke% ¢k(R) |ig (R)|

Rgj, (R)
)

R
= g2 (/ ((f/)2 +dnr+ wzk%V(r)fz) rdr — f(R)Z) +0EY
0

R¢j, (R)
Bro (R)

582</0Rf( =tk f+12k0f) rdr +[rff']e -
/ " (R
=e?Rf(R)? (];((If)) - z’;ZE R;) +0@").
We have f(R) > 0 and by assumption (A6) also
f'(R)  $, (R dkol{(GkoR) 1, (R)
FR)  ¢r(R) I (AkoR) &Ko (R)
Thus E(u) < 0 for & > 0 sufficiently small, which completes the proof. O

f(R)z) +0@Eh

4 Approximation by finitely many harmonics

In this section we discuss approximations of the minimizers of E by finitely many harmonics

u(r )~ Y d(r)er(t),

k€Zodd
[kI<K

2 One can show that (A6) is also necessary for u* # 0 in the case where V is constant on [0, R].
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that is we consider E on the subspace Y /{,( of Yy defined next.
Definition 4.1 Let K € Nyqq. Then we define
Y :={ueYy:ip=0for k| > K}.
First we discuss the canonical projection from Yy to Y 1{,(

Lemma 4.2 For K € Nyqq, define the operator

Koy - vl SKue = > dr)en
k€Zoda
|k|<K

Then the operators SX are uniformly bounded in B(Yy) and S¥u — w in Yy as K — oo
forallu € Yy.

Proof For p € (1, 00) the Fourier cutoff operators S defined by

S LG = Lia(, S5 10 = ) fre®
fhiEre

are uniformly bounded and SX f — f in L? (T) as K — oo (see [18, Theorem 4.1.8

anti
and Corollary 4.1.3]). By acting on the time variable only, SX extend to uniformly bounded

operators

sK: L7 (10, RT; LE () — L7 ([0, RT; LP .(T))

rad anti rad anti

with S¥u — winL? ([0, R]; LY .(T))as K — oo.Thenfrom S [u,] = (§¥u),, $¥[u,] =
(S%u),, and SK[Lu] = L(SKu) it follows that SX: Yy — YX are also uniformly bounded

operators and SXu — u in Yy as K — oc. O
Next we show that the minimal energy level E* can be approximated from within ¥ ,1\,(

Lemma4.3 For every K € Nygq there exists u®* ¢ Y,{f such that EX-*:.=inf E|Y]<]< =

EuX"*). Furthermore Klim EX* = E* holds.
—00

Proof Arguing as in Proposition 3.3, one can show that there exists a minimizer u%* € ¥ ,Iv(
of E|Y1{/<. Setting uk:=5K (u*) we find

Ew*) = E* < EX* < EW®). (25)

Using uX — u* as K — oo and that E is continuous, the second claim follows from (25)
in the limit K — oo. O

As a next step we establish uniform estimates on the minimizers »X* which in particular
lead to improved regularity. As we shall see in Proposition 4.8, compared to the domain of
the functional we gain half a time-derivative for the minimizers. Hence, we introduce the
fractional time derivative |9;|* and a quantity Q that behaves like a norm stronger than

- lin-

Definition 4.4 Fors € R we define the fractional time derivative |9;|* as the Fourier multiplier
with symbol |wk|®, i.e. Fi |0;]° = |wk|® Fk.
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Definition 4.5 For N = Nj,s we define the quantity

2 /4
szm(v>:=</ (121 @wivD) rd(r,t)> :
[0,R]xT

For N = N,y we define the quantity
R 1 /4
On,, (v):= ( / R RN A KRGS Py rdr>
0

Remark 4.6 For N = Nj,s by Lemma B.3 we have
/ F () Nins ) 136 0 7d(r, 1) > ¢* Qi (0)°
[0,R]xT

with ¢* = %ess infjo, g I" > 0 whereas for N = N,y using Lemma B.4 (with constants
c1, C2) we have

/ T(r)Nay(v) |3 vrd(r, 1) > ¢*Qn,, ) = C* v}
[0,R]xT

with ¢* = c; essinfio g) I and C* = Cz esssupjg g ' In particular,

f N 18] vrd(r, 1) > 0y )* — C* ol
[0,R]xT
holds for both choices of N.

The minimizers u®X* formally are solutions of

SKl=ttry — ur + 5u =V @uy = T(IN )] = 0in [0, R] x T.

. (R) = %ﬁk(m for k € R, |k| < K,

uk(R) =0fork € 3§, [k] < K.

Here the main part —97 — 19, 4+ - — V(r)87 — T'(r)3;N(d; -) is elliptic by (A3), which is
why we expect the solution u to have increased regularity. Often this is shown by testing the
problem against derivatives of the solution. In Proposition 4.7, we obtain improved regularity
by testing the problem against |3, | uX-*. However, with this method it is impossible to obtain
even more regularity because when testing against |3;|* u%X* with s > 1 one can no longer
control the appearing boundary terms.

Proposition 4.7 There exist constants Cy, ..., Cs > 0 independent of K such that the fol-
lowing holds:
(@) || <,
Yy
N <,
(b) |10 u, erad([O,R]x’]I‘) =02
1 12 K,*
a <Cj,
(c) |+ 101" u L2, (0BT 3
@ on (u") = cy
(&) |uf @ 0| <cs
HY(T)
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Proof Since E is coercive (see Proposition 3.3), there exists C; > 0 such that E(u) > 0
holds for all # € Yy with [lully, > Cj. Using EwX* = minE|Y1<,< < EQ0) = 0 we

conclude |uX*|,, < Ci, so that (a) holds.
For (b)—(e) we %rst note that

— ! 1A A
Mol =3~ (e 2 g0, + i 2, 0. + Dkl 0.0
k€Zoda
|kI<K

defines an equivalent norm on Yzlv( . Thus the operators |9;|* are bounded on Y/v< foralls € R.
In particular, |0;| uk* e YI(,(. Using V > 0 on [0, R] and (22) we calculate

0= E'@®")[lo] u]
= /w per (S 1ol wf K o K v Oyl 1o af AT N G o] ) rder o)
,R]x

_RZ

k€Zodd

2 2
> / <(|af|‘/2u5**) + (L1012 uf) +r<r>N<u{"*>|at|uf**) rd(r, 1)
[0,R]xT

#(R)
oK (R)

wlkl |t 1R) [

—CoR Y ok ‘]-'k[uK’*](R))z.
k€Zoad
Using further
2 - 2
CoR Y ok |Flu®"1(R)|" = Co |uf (R, )|

H\(T)’
k€Zodd M

2
Remark 4.6, Lemma B.7 with ¢ = 2é aswellas aX? — bX > X — (bzal) , we obtain
0

2 2 4 4 2
0> 3 o 2uk " + | L1a 2k weton (uF*) —c* |uf | ~Coceron (uf*
QHI L2, ! L2, N(’ ) L Y N(’ )
ol 2
1|ya 12 K2 1012, K| kx)\2_ (CCE+D> 4
> H|3r| N P L T P (u, ) ol
(26)
b - (CoCe)+1)? 4 -
With C:=>%,%"—- + C*C{ the estimates (b)—~(d) follow from (26) where
C:=v2C, C3:=C4:=vC,
and lastly (e) follows from (b) and (d) using Lemma B.7 again. ]

The following result is the most important result in this section. It shows how a minimizer
u of E gains additional regularity via the approximation by finitely many harmonics. This
will be the key to establish regularity of the solutions of (19) across the boundary at r = R.

Proposition 4.8 Up to a subsequence, the limit u = limg _, o, u®* exists in Y. The function
u is a minimizer of E and satisfies

(@) lully, = Cu,
(b) 1o,

< (y,
L2 (10,R1xT)
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1 12
L ‘ <G,
() H P12 u L2,(0.RIxT) —
(d) On (ur) < Cq,
(e) Nlu(R, Hgi) =Cs,
where the constants C1, ..., Cs are the same as in Proposition 4.7.

Proof We only consider the case N = Ny, as for N = Nj,g one can argue similarly. Then
due to Proposition 4.7 and the definition of Q,, the weak limits

u®*~uin Yy,

19,12 uk*— fin L2 ([0, R] x T),
L1a, "2 u®*~gin L24([0, R] x T),
et 2y 186172 uf " —~hin L2410, R] x T),
u¥*(R, )—bin HY(T)
exist for K — oo up to a subsequence and satisfy [lully, < Cy, ||f||Lz < (Cy, ||g||Lz < Cs,

||h||LzEl < C4, |Ibllgn < Cs. Using the properties of the functional E from Proposmon 3.3
and Lemma 4.3 we further obtain
E* <E@) < lim Ew®f*) = hm EX* = E*,
K—o0 K—o00

so that E(u) = E* = limg_, o0 E@®*). In particular u is a minimizer of E.

Also, since Eg(uX*) — Ep(u) for K — oo, we obtain E; uX*) - E;(u)as K — oo.
From this it follows that u¥* — 4 in Yy as K — oo as we show next. Since uX*—y we
see that

rl'MK’*—‘lu MK — Uy in Lrad([o R] x T) utK’*_\ut in “ ’ ”N

Moreover, by weak sequential lower semicontinuity we have

2 2 4
_ 1 2 11 1]y 12 1| 1/4
Er@) = w2, +1 qu s +7Hv u,H 2 +ZHF u,‘
Liad L Lia N,

av

2 2 2 4
< i *H 2 + 2hmmf HluK’* 211m1nf HVI/ZM,K'* ) 4hmmf HF1/4 Ko
K—oo Lg, K—oo Lia K—oo L Nay
2 2 2 4
hmsup uf * , T3 L Jim inf H :uK’* +5 ! lim inf HVI/2 Ko , t1 hmmf HF1/4 Kox
K—00 Lia K—o0 Lia K—o0 Lia av
<limsup E; uX*) = E; ).
K—oo

Notice that in the second inequality we have replaced one lim inf by a lim sup and in the
last inequality we used that limsup,_, ., an + Zle liminf, o b), < lim supn_)oo(an
3P, bi) which follows from sup,cya, + Y b infuen bl < sup,cn(an + Y1, bi)

2
*
~
L

.. K, .
. Combining weak convergence u, **—u, with convergence of the norms

It follows that |lu, ||

|
K, x
Uy

L2,,([0,RIxT) 2 (0.RIXT) 1im Sup — oo

K, x 2

r

L2 (10,R1xT)

K,

— ||“r||L2 , we find that "™ — u, in Lmd([O, R] x T) as K — oo. With a

2
rad
.. 1 K.,*x :

similar argument we find ;u Kx ~uin Lmd([O, R] x T) and u, "™ — u, in || - ||y, as

K, x

K — oo. Together, this shows u — uin Yy as K — oo.
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It remains to show the estimates (b)—(e). These follow from the identities
f=100"u, g=210"u, h=lulp2erld”u. b=uR, ),

where we only discuss & = [lul .2y 10| 72y, as an example. First, by definition of O and
convergence uX* — u in Yy we have ””K'*”LZ(T) uk* — lull 2y w in erd([O, Rl xT).

Taking the Fourier transform, for k € Zyqq we find

”Lz(’]l‘) ] — Filllu; ||L2(’]I‘) ur]

and also

Vo kIFluf | oyt ™1 = Felluf ™| gy 10017 1= Filh]
in erad([O, R]) as K — oo. Thus Fi[h] = /o |k|Fillluell 2T ur], and hence h = 19"/
el z2ery we) = el p2ery 186172 ws. o

5 Proof of Theorems 2.1 and 2.3

The proof of Theorem 2.1 is split into two parts. First, using results from Sections 3—4, we
show in Proposition 5.2 that there exists a weak solution to the problem (19) in the sense
of Definition 5.1 below. In Proposition 5.4 we show that from the solution of (19), one
can reconstruct a solution of Maxwell’s equations (1)—(3), and that this solution has finite
electromagnetic energy per unit segment in z-direction.

Definition 5.1 A function w: (0, c0) x T — R is called a T-periodic weak solution to (19)
if w lies in

X:= [w e W1((0, 00) x Tt Lw, wy, wy € L2410,

lio.rixt ||y < OO]

and satisfies the equation
/ (wr(pr + hwe + Vwe + F(r)N(w,)(pt) rd(r, 1) =0
[0,00)xT

forall p € X.
Proposition 5.2 There exists a nontrivial weak solution to (19) in the sense of Definition 5.1.

We prepare the proof of Proposition 5.2 with the following estimate on the fundamental
solutions ¢y.

. /
Lemma 5.3 There exists a constant C > 0 such that “ P H L2 ,([R.0)) < C |k| |lpx IILéd([R’OO))
holds for all k € Zodq-

Proof By assumption we have

2 ok + Ko? Vor H

” 2( 1 2
o <k (1 + 07 1V hoo) 19012 (15 ooy

Lyg (R, o) L2 4 ([R.00))

Due to [1, Lemma 5.5] the inequality

||¢k ||L2 ([R,00)) = = Co (5 ||¢k + ¢k H 12, (IR,00)) t+e ”¢k”Lmd( R 00)))

rad
holds for some Cy > 0.Choosing e = |k| , we obtain the claim with C = Co( +o? |V ot
1). O
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Proof of Proposition 5.2 Let u denote the minimizer of E obtained through Proposition 4.8.
Then u is nonzero by Proposition 3.4. As motivated in Section 3 we define

u(r,t), r <R,
Wi 0= i (R) i 27)
Yies i AOIen®) + Cien BB te(Ient) > R.
First we show that i) (R) exists for all k € Zoygq. To do this, let ¢ € (0, R). Then for
¥ € C((e, R); C) we have

0 = E'[Re[ (rer (N]]

R P
=Re [/0 (ﬁ,;(r)wf(r) + [rizﬁk(r) + K0PV (i (r) — ikaT (1) Fy [N(u,)](r):| w(r)) rdri| .

Since v was arbitrary, this shows that i, € H 1 ([e, R]) is a weak solution to
iy = — iy + S + Ko’ Vig — kol Fi [N ()] on [e, R]. (28)

Note that the right-hand side of (28) lies in L**([e, R]). Thus i € W>**([e, R]) and solves
(28) pointwise. In particular, we have iy € C'([e, R]) and therefore it (R) exists.

Next we show that w lies in X . Clearly, w is real-valued, and %w, wy, Wy € erad([O, R]1xT)
and N (w,)w; € Lrlad([O, R] x T). Since the antiperiodicity of w forces the zero-th Fourier
mode to vanish, we see that ||w ”erad([R,oo)xT) and hence || %w I L2, ([R.00)xT) 1€ bounded by
[lwy ”Lfad([R,oo)xT)- Therefore, it remains to show that w,, w; € L?ad([R, o0) x T) since the

function values at » = R match by the construction of w.
Using (22), Proposition 4.8, and Lemma 5.3 we find

2 ik (R) |° 2
Z by |L§ad([R,oo)) = Z ) ¢ ||L§ad([R,oo))
keRr keRr
S YR S lu (R, I < oc,
keRr
2 ik (R)|*
szkz “ Wk H L2 ([R,00)) = Z ok’ or(R) ”(Pk”iéd(lR,oo))
ker keR
<Y R R S IR, 121, < 00,
keR

Since the finite sum Zkes %(ﬁk (r)ex(¢) belongs to Hrlad([R, o0) x T) this shows that the
k

sum w(r, t) = ZkEZodd Wi (r)eg (t) converges in Hrlad([R, 00) x T). It remains to show that

w is a weak T'-periodic solution to (19) in the sense of Definition 5.1. That is, we need to
verify

I[¢J]:=/ (wrcor + Zwe + V(I we + F(r)N(wr)rpr) rd(r,1) =0
[0,00)x T

for all ¢ € X. Since w,, w, w;, N(w;) are T/2-antiperiodic in time, it follows that I[¢] = 0
for T/2-periodic ¢. So from now on let ¢ be T/2-antiperiodic in time. We calculate

Hol= [ (g + huo + Ve + TON@R) rdeen@9)
[0,R]xT
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(R [ = | = 5, =
+%¢}((R)/R (¢k<ﬂk + Sopr +k o V(r)¢k</>k) rdr

ﬁk(R) e >V 1 =~ 2 2 .
+ + 5 + k0 V(r rdr
/;em SeR) I (¢k§0k = PPk ( )¢k<ﬂk>

= / (“r‘pr + Zug + V(rug + F(”)N(Mz)</’z) rd(r, 1)
[0,R]xT

R s i (R)
=Y s ROLRIG(R) — - REL(R)Gi(R).
% Ry TR ,% Ry T

If in addition @ (R) = 0 holds for all k € F, then

@
or(

R
Hor= [ (o + hup + Voo + Teudar) rdeon - R Y TS (RF R
[0.R]xT ! ko PR B

= E'Wleljo,g)xT] =0

where we have used ¢|[o, rjxT € Y~. Now we want to conclude /[¢] = 0 in the general case
where ¢ € X but ¢x(R) # 0 for some k € §. Note that since ¢ is real-valued we have the
decomposition

X={peX:p(R)=0forallk € §, k >0} ® ling{Re[ver], Re[ivver]: k € §, k > 0}

for any ¥ € C2°((0, 00)) with ¥ (R) # 0. By linearity it suffices to show the identity
I[Re[y (r)ex(t)]] = 0 = I[Reliy (r)ex (t)]] for all k € §. Using (29) we calculate

I[Re[y (r)ex(H)]]

R, _ —
=Re [fo (ﬁLW T [rlzuk 1 K202V (it — ikwr(r)]-‘k[N(u,)](r)] 1//) rdr — Rﬁ,’((R)w(R):|

R
=Re [/ (—a;g — i+ b+ KoV )iy — ikwl"(r)]—'“N(u;)])gbrdr] =0,
0

where the last equality follows from (28) with ¢:=min supp ¥. Replacing ¥ by iy in the
above calculation, we obtain also I[Re[iy (r)ex (¢)]] = 0. O

Proposition 5.4 Let w be a T -periodic weak solution to (19) in the sense of Definition 5.1.
Then the fields D, E, B, H given by

D(x, 1) = g0 (1 + x1(Dw (r, t — 12) + 3N W), t — 12)) - (=2, £,0)7,

Ex. 1) =w(r,t—12) (=2, £07,

B(x.1) = — (fw(r.t = 22) +we (it = 32) - (0,0, DT = fwy (1 = 32) - (5. 7.0,

— 1

H(x, 1) = -B(x, 1),
where x = (x, y,z) and r = /x? + y2 are weak solutions to Maxwell’s equations (1)—(3)

in the sense of Definition 1.1. Furthermore, the electromagnetic energy is finite orthogonal
to the direction of propagation, i.e.

/ (D-E+B-H)d(x, y,2)
RxRx[z0,z0+1]
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is uniformly bounded w.r.t. 7o and t.
Proof We use cylindrical coordinates (x, y, z) = (r cos(@), r sin(0), z). We abbreviate

a=E20" =207, e=0.001"

e e

and use the representations

Vo =0¢-e+ Lopp-eo+ 0. e,
Vx®=(1ag0° - 9.0% e + (0,0 — 8, %) ep + L (3,rd”) — 3 @") e,

where ® = ®"e¢, + ¢y + de,. For better readability, we omit the domain [0, co) x
[0, 27] x R x R when integrating with cylindrical coordinates as well as arguments, so e.g.
w=w(r,t— %z). In particular, d,w = —%B,w = —%w, holds, which we use below. Now
let ¢ € C (R*:R) and ® € (CSO(R“; R3). Identities (2) and (3) hold by definition, so it
remains to check the four integral identities of Definition 1.1, beginning with

/4(D V) d(x,y,z,1) = /(D930¢) rd(r,0,z,1) =0,
R

where the integral above is zero because D is independent of 6. Next,

/R4 (B-V¢)d(x,y,z,0) = /(—(;w + w36 — Lwdr¢) rd(r,6,z,1)

= /(—}a,(rw)az¢+azwar¢) rd(r,0,z,t) = /(w(8r81¢—318r¢)) rd(r,0,z,t) = 0.

For the third integral we have
/}R4(E-V x ®—B-,P)d(x,y,z,1)
= /(w,(azqf — 30 + (w4 )9 0% + Lw,3,0") rd(r, 0, 2, 1)
= /(8,w(az<br — 3 ®%) + 13, (rw)d, ®° — 3, wd, @) rd(r, 0, z,1)
= /(w (—0,0, D" + 9,0, D — 9,0, + 3.0, P")) rd(r,0,2,1) =0.

For the last identity, using integration by parts, that integrals with dg vanish, and the definitions
of V, T' in (18), we have

—H-Vx®—D-3,dd(x,1)

R4

=L [(d 1 ®%) — 3p®") + Lw, (L399 d* — 3.9%) rd(r, 0

= (Gw+w) 3@ (r®”) — 8 P") 4+ 2w (509 D7) rd(r, 0, z,1)
—/80((1 + xDw + x3Nw)) 3 7) rd(r, 6, z, 1)

= ﬁ /(8,w8,<b9 + L@wd” + wd, o) + Lwd’ — 19.wd, %) rd(r, 6,2, 1)

T o

! f (s0m0(1 + x1)dwd, D + eopox3N (9 w)d @%) rd(r, 6, z, 1)
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=L | (4w, @ + Lwd’ + V()dwd, @ + T ()N (w)3,®’) rd(r, 6, z,1)

= (wror + Jrwe + V() wgr + TN (wiey) rd(r, 1) = 0
[0,00)x T

where in the last line w = w(r, t) is no longer in traveling coordinates, ¢ is given by

o 1):=T Y 7 (r, 0,2, + kT + L2)d(6, 2).
ez /10,27 1xR
and the last equality holds due to Definition 5.1. To show finiteness of the energy, using

D-E+B-H=¢y(1+ )(l)wt2 + ex3N(w))w, + i(%w + wr)2 + CZLO wt2

we calculate

/ (D-E+B-H)d(x,y,2)
RxRx[z0,z0+1]

_ 2nc

(V) + Z)wf = TONwOwr + G+ wp)?) rd(r. 1),
Ho /[O,oo)x[to—(z0+l)/c,to—z0/cj( . SR " )

which is uniformly bounded w.r.t. #p and zo because V, I' are bounded and w liesin X. O

Now that we have completed the proof of Theorem 2.1 it remains to show the multiplicity
result of Theorem 2.3.

Proof of Theorem 2.3 Let £ denote the (infinite) set of numbers kg € Nygq for which (A6)
holds. For kg € & we consider the subspace

YN,kO._{u €Yy ’ uis m—antlperlodm in tlme} CYy.

Similarly to the proof of Proposition 5.2 one can show that E attains a minimum value on
YN k, and that from the minimizer, one can construct a weak solution of (19) using (27). Here
we use that problem (19) is compatible with considering %-antiperiodic in time functions,
ie., N(w,) is %-antiperiodic in time if w; has this property. The solution of (19) gives rise
to a solution of Maxwell’s equations by Proposition 5.4.

Repeating this for all kg € R, we obtain a family {(Dx,, Ex,, Bx,, Hg,.): ko € &} of
solutions to Maxwell’s equations. Each solution has a minimal nonzero time-period that is a
divisor of % Thus, this family has minimal periods becoming arbitrarily small and therefore
infinitely many among the solutions must be mutually distinct. O

6 Modifications in the slab setting

Here we sketch modifications that have to be done in Sections 3 and 5 in order to prove
Theorems 2.4 and 2.5. First our solution ansatz becomes

u(x, 1), x| < R,

Y ez P (xDex (). x| > R

([—R, R] x T) is to be determined and

w(x,t) = {

1
where u € Hanti,even

(R
(R’

oy = ur(R) =0 fork € §,
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oo BB BB,
i (R) bx (R)
We use the subscript “even” to denote functions that are even in space.

The restriction to even functions is done in order to shorten this chapter, but it is not
necessary. For example, one could instead look for functions u that are odd in space, or not
impose any spatial symmetry. In the latter case one need not make any symmetry assumptions
on V, I' (see assumption (Al)) if instead one requires fundamental solutions to exist both on
[R, 00) and (—o0, —R].

Going back to the problem, we (formally) obtain the boundary value problem

r(R) for k € fR.

—uyy — V(@)uy —T(x)N(u); =0in [0, R] x T,
i (R) = ik% ix(R) for k € R,
ur(R) =0fork € §,

(0, ) =0

for u, where the last condition comes from u being even in space. This problem has variational
structure as solutions are critical points of

Eu) = JUr + 3V U7 + §TON () dix, ACEP
() /[O’ijTZux v eou? + ST CON @), dx, 1) — kzm 5. |2

subject to the constraints ix(R) = 0 for k € F. We can proceed like in Sections 3 and
5 in order to prove existence, regularity, and multiplicity of some minimizers of E. The
main differences to the radial setting are the following: First, we do not work in radially
weighted Sobolev spaces, so rdr is replaced by dx and Lﬁd by LP. Further, the radial
Laplacian 8,2 + }8, is replaced by the 1d Laplacian 83. In addition, the term r%w is absent

in problem (17), so that this term (and related terms, e.g. %u in E and part (c) of Proposition
4.7) do not appear in the slab setting.

So we define || - ||y and QN like || - || y and Q y but without the radial weight. Notice that
E is well-defined on the reflexive Banach space

YN:_ {u € H!

anti,even

([=R, RI x T): [luslly < o0, iix(R) =0fork € F}.

More noticeable changes have to be made in the proof of Proposition 3.4. There we made
the ansatz

u(r. 1) = eI Gukor) (exy (1) + ey (1)
in order to show that inf £ < 0, and /; was a solution of
(-0} — Lo, + L+ 11 =o0.
For the slab setting the natural ansatz is
u(x, 1) = & cosh(Akox) (ex, (1) + e—, (1))

since (—d2 + 1) cosh = 0, which also explains the way we formulated assumption (A6).
We note that the trace embeddings can be adapted to the slab setting, i.e., the trace map
tr: ?N — H(T), v > v(R, -)is compact and the estimates appearing in Lemma B.5 and
B.7 also hold with Lﬁ;d, Il-1lv, Qn replaced by L2, || - Iy, QN. This is because the trace
of v only depends on the function v in a small neighborhood of x = R, and the radial weight

is not singular at x = R.
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Lastly, the electromagnetic waves reconstructed from the profile w for the slab geometry
are given by

D(x, 1) = g0 ((1 + 1 (D w;(x, 1 — 1y) + 3N W) (x, 1 — 1y)) - 0,0, DT,
Ex, 1) = w,(r,t —1y)- (0,0, )",

B(x,1) = Qw(x, 1 = Ly) we(x. 1 = 1), 07,

H(x, 1) = ;LB(x, 1),

which can be shown similar to Proposition 5.4 for the cylindrical geometry.

7 Further regularity estimate and bifurcation phenomenon

Checking the assumptions (A1)—(A6) and (Al)—(A6) one sees that they depend not directly
on xp but on Xf = X1 — ¢™2. As we show next, for every solution of Theorem 2.1 or
Theorem 2.3 the L ([0, R]; L*>(T))-norm of the E-field is finite and can be bounded by a
constant depending only on x{ (as well as on x3 and k). A possible physical interpretation
of this result is described below.

Proposition 7.1 Let D, E, B, H be a solution of Maxwell’s equation as in Theorem 2.1 or
Theorem 2.3. Then |E|l o (10, g: 2(Ty) i finite. The same holds true in the slab setting for
solutions from Theorem 2.4 or Theorem 2.5.

Proof We focus on the radial setting and time-averaged nonlinearity. As in Section 5 let
D, E, B, H be a solution of Maxwell’s equations such that |E|2 = wt2 where w is a weak
solution of (12) in the sense of Definition 5.1. We begin by formally multiplying (19) with
—wy, and integrating w.r.t. ¢ to obtain

0= [ (=urr = by + o= Ve =PIy ) ()
- | - _1 1.2 2 2y, 2
= ; WirrWr — 3 Werwy + = w; + V(rws; + 20 (r) (k s wewe ) wrwyr + () (& wi)wy; dr.

Writing f(r):=3 [ w? dt, we have
0=—f"-1f+ UT Lw? +wh 4+ V(r)wy, dt + ()" (w)lwy. wn]]

where J (v)::% fT (1 % v2)v? dr is convex by assumption (15) and therefore all terms in the
square bracket are non-negative. This combined with f(0) = 0, f(R) > 0 shows that f
is increasing on [0, R]. Thus [[w; | ;2(T) is bounded on [0, R] by [[w; (R, -)|l;2(T), Which is
finite by Proposition 4.8.

To justify this formal calculation, we argue as in Section 4: since w/|[o, g]xT Was obtained
as the limit in Y of a sequence u®* defined in Lemma 4.3, we set fK (r):=% fT(u,K”')2 dt
and get that fX — fin L2 ([0, R]). Since u®* € Y and time-derivatives are bounded
on Y/v(, we have (fK)’, %fK e L'([0, R)) so that fK is continuous and it indeed satisfies
F%(0) = 0. The formal argument above can therefore be applied to fX and yields that f¥
is monotone increasing on [0, R]. Thus f is monotone increasing and hence bounded by the
constant %C 5 from Proposition 4.8, completing the proof.
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The proof for the slab setting is similar; the main difference is that at zero we have
a Neumann condition wy (0, ¢) = 0 instead of a Dirichlet condition. The proof with the
instantaneous nonlinearity follows by setting k = §p above. O

Recall the constitutive relation
D = eE + P(E) = eo(1 + x1(X)E + £0x3(X) (x * |[E[*)E
for the time-averaged nonlinearity. The quantity
go(1 + x1(0) + e0x3(X) (i * [E*)
may be called the effective permittivity and can be estimated from below by

eo(1 + x1(X)) + £0x3(X) (k * |E|?)

> e0(1+ ¢ = I xfll o)) — ollx3ll oo sy el ooy NENZ oo gy 220m)) -

As described above, the existence of E hinges on x{ = x1 — ¢™2 and the norm
||E||2Loo (10.R]:L2(T)) only depends on x{ and noton x1.Hence, if ¢ > 0is sufficiently small then

the effective permittivity is positive, which gives the waveguide the character of a dielectric.
In other words, for time-averaged nonlinearities and for sufficiently small propagation speed
¢ > 0, the fields are not strong enough to change the dielectric character of the waveguide.
It is open if the same holds for instantaneous nonlinearities.

Finally, we comment on the bifurcation phenomenon outlined in Section 1.2 in the context
of the cylindrical geometry. We consider V;(r) = —(x1,4(r) + 1 — ¢, T = —53(r),
where the material parameters x4, X3 are as in Section 1.2 and where we emphasize the
d-dependance of x| and V by adding a lower index d. In fact, d will be seen as a bifurcation
parameter. Due to the ansatz E(x, t) = w;(r, t — %z) . (—%, % 0)" and the fact that u(-, 1) =
w(-, 1) |[0,r] solves the boundary value problem (23), the bifurcation phenomenon can be
explained on the level of u as a solution of the d-dependent boundary value problem (23)
on [0, R] x T. Recall that on [0, R] the function V;(r) = —=(d + 1 — ¢ %) is just a positive
constant.

Let us first fix a value d* as in Theorem 1.2 so that assumptions (A1)—-(A6) hold. Then
we consider the linear eigenvalue problem

—ttry = tup + Lu+ @ + 1= ) uy = duyy in [0, R] x T,
N ——’

Ve (r)
BL(R) A (30)

up(R) =0fork € §.

The smallest eigenvalue A can be obtained by minimizing
2
E g+ tin(u) = / (u% + (Lu)” + Vg (r)u,z) rd(r, t) — 2Ep(u)
[0,R]xT

subject the constraint

/ ut2 rd(r,t) =1
[0,R]xT

on the space

Yim = [u € Wbl i (ORI X T) [ uy, b, uy € L24([0, R] x T)].
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Since assumptions (A1)-(A6) hold for d*, the negative minimum A < O is attained. It
appears as a Lagrange multiplier which coincides with the smallest eigenvalue. Moreover,
the minimizer uj, satisfies (30) so that

—Ulin,rr — %Ml‘m,r + ’_Lzlllin +(d+1—c D upng = (d — dy)upng; in [0, R] x T,
—Va(r)

ity 1 (R) = ¢k2§; in k (R) for k € R,

Wink(R) =0fork € §

where we have set d, = d* — A. In particular, for the bifurcation parameter d € (d, d*] we
find that

2
Eq1in(uiin) = / . (%uﬁn,, + % (%ulin) + %Vd(r)uﬁn,,) rd(r,t) — Eg(uin) < 0.
[0,R]x

Hence, for a sufficiently small multiple ¢ > 0 we can insert gujj, into the functional E; for
the nonlinear problem and get E;(sujin) < 0. This shows that £ = infy, E; < 0 and itis
therefore the substitute for (A6) which we do not verify for d € (dy, d*). Since (A1)-(AS5)
continue to hold for all d € (dy, d*] we conclude that the nonlinear problem

—trr — Yup + Su — Vy(ryuy — T(r)N(uy); = 0in [0, R] x T,

il (R) = ﬁkﬁgﬁk(R) for k € R,

up(R)y=0fork € §
has a nontrivial ground state u?. Let us now show that indeed u¢ — 0 in suitable norms

as d — d,, which shows bifurcation from the zero-solution at d = d, and continuation of
solutions as d runs from d, up to the primarily chosen value d*.

Lemma 7.2 Ford € [dy, d*] any minimizer ud of Eg4 satisfies

ud

‘ =0((d —d)")
Yy
as d \ dy.

Remark 7.3 As Lemma 7.2 shows bifurcation from 0 at d = d, it comes to mind to try
classical bifurcation theory and Lyapunov-Schmidt reduction arguments to this problem.
Hoewever, there might be problems with this approach. It is not clear whether the eigenvalue
A constructed before is a simple eigenvalue or not. Moreover, as with any quasilinear problem,
one has to deal with loss-of-derivatives problem. It is therefore not clear (and remains an open
problem) if classical implicit function arguments such as the Lyapunov-Schmidt reduction
are applicable or Nash-Moser-type hard implicit function arguments would be needed.

Proof of Lemma 7.2 We first show that ||u§1 ||  1s uniformly bounded for d € [d, d*]. As in
the proof of Proposition 3.3 we find

2
E; (u) = L2 VLAY £ v + iroynvw u)rdr,t —Eg(u
() /[o,qur(“ 3 (Lu)" + SVar? + AN @ous ) rdr, ) — Eptuy
2
> /[0 - (52 + 4TIV @ou ) raer.0 = ColuR, I

1
> /[‘0 RIXT (zu + 1 F(r)N(uz)uz) rd(r,t) — ||ur|| 12 (0.RIxT) Coc(ﬁ) ”ut”%}
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2 Ml (lurliyy = CoClge5))-

If we insert u¢ and use E, = Ey4 (ud) < 0 the claim on the uniform boundedness of
||u;1 ||N follows.
Next we claim that E; = O(d — d,). To see this, we find

Eq(u) > Egjin(u) = /

2
(302 + 4 (bu)” + 2va) w? rdr. 1) = Ep )
[0,R]xT

> (dy — d) u? rd(r, 1)
[0,R]xT

> (dy — d) lluslly

by Remark 3.2. The claim follows by inserting u = u.

Now we can use the equality
1
0> E} = Equ®) — ~E,(uh[u’] = —%/ LN @hud rd(r, 1)
2 [0,R]xT

and the previous step to conclude ||u§1 ||j\, = O(E}) = O(d — dy). Finally,

0= Ejuh)[u?]

/[0 RIxT ((uf)Z + G”d)z + Va( ) + F(r)N(M?’)M?) rd(r, 1) — 2E(u?)

11,,d 2 u? 2 -2 * d 2
—f‘r 2 T2 +(c _l_d))”tuz
L2 ,([0,R]xT) L2 ,([0,R1xT) L:,4([0,R]xT)
Ly |dl?
- 26C () [uf [,
. . d ud d _ d _
implies that |[u | 2,00.050 |7 | 12 g0 mpery [u ”er,dd([O,R]xT) =0(|uf] ) =0
d,)'*y as claimed. o

A The fractional Laplacian

In this section, we present some results on the fractional Laplacian on the torus, and related
spaces. They are not given in the most general form available, but in a form which is sufficient
for our applications. We begin by giving the definition of the fractional Sobolev-Slobodeckij
space WP (T).

Definition A.1 Fors € (0,1),0 > 0and p € [1, 00), we set

— P
[f]’v’vs_,,ﬂr):zfT RW” T g 41,

|h|1+sp

”f”cV‘w’(T):: ”f”zlz(']r) + [f]‘p/vs.p(']r) B
WHP(T):={f € LP(T): [flwsr(r) < 00},
as well as WO P (T):=L?(T) and W*°(T):=C*(T). Setting
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Ko():=T ) |h+kT|7'=7 wehave [f1{5pp, =/T/TI€‘\-p(h) 1f() = £+ )P dhdi
kel

Note that K, (h) ~ d(0, h)~1=% where d denotes the metric on T.

Next we show that the fractional Laplacian [9;* f = F 1wk fk] can be expressed
using a singular integral.

LemmaA.2 Lets € (0,2) and f € CVV(T). Then
2f(t) = ft+h)— f(t—h) dh

|h|l+s

mwmzq/
R

=AKMMQﬂ0—fU+m—fO—MMM

holds where

1 — - s
Cyi= (2/ wdo and  K(h):=C, R (h).
R 't

For a proof see [33, Theorem 2.5] where the case T = 2 is discussed®. In[33] a principal
value formulation is used which can be avoided by using the above symmetric representation,
as discussed in [30, Lemma 3.2].

Related to Lemma A.2 is the fact that the seminorm [ f Iws2(m) coincides with H [0:]° f ” )

up to a constant, and in particular that W* 2(T) = H*(T).

LemmaA.3 Lets € (0,1)andu € H*(T). Then

2
mewngmﬁmm=Aﬁxmmum—ﬂwmﬁww
holds.

This can be shown in the same way as [30, Proposition 3.4]. Formally, it follows from
Lemma A.2 (with 2s instead of s) by multiplying the identity with f and then integrating.

Next, let us note that the fractional Gagliardo-Nirenberg inequality of Lemma A.4 and
the Sobolev embedding theorem of Lemma A.5 hold on the torus.

LemmaA4 Let s1,sp € [0,1), 0 € (0,1), p1,p2 € [1,00] and s = 0s1 + (1 — 0)s2,
1 6 1-6 6 1-6

= + 0 Then ||f||Wx«p(1r) f, ||f||Ws1,p1 (T) ”f”wSz:pz(']I‘) holds.

LemmaA.5 Let sy, sy € (0, 1), p1, p2 € [1, 00] with 52 < 51 and é — 5y > ﬁ — s with
strict inequality for sy p1 = 1. Then || f |lys2.r2 (T S lwsioen () holds.

Proof of Lemmas A.4 and A.5 We first remark that both results hold if W*:?(T) is replaced by
W*S-P(I) where I is a bounded interval. This space is defined by

1
W”’(I):{fGLP(I): [f]wx-v(l):=</1 dedy>p <oo}

1 lx =yt

3 The constant in [33, Theorem 2.5] has a typo: o needs to be replaced by 2o. Then the constant in [33]
coincides with Cy up to a factor of 2.
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fors € (0,1),1 < p < 0o, and WS°(I) = C(1), WOP(I) = LP(I).

Indeed, on intervals the Gagliardo-Nirenberg inequality holds by [8]. Also on intervals we
have from [30] that W37 (I) < L4(I) foré = ﬁ —spifsip1 < 1, WSePL(]) < L9(I)
for 1 < g < ooif s;p; = 1, and that WP () — C%(I) for —a = ﬁ —spifsypp > 1.
From these properties we can deduce the claimed embedding estimate on intervals by applying
the Gagliardo-Nirenberg inequality (on intervals).

Then, the statements of Lemmas A.4 and A.5 follow from the results on intervals since
the norms || fllys.p(ry and || fllws.»0,277) are equivalent for periodic f. ]

Additionally, the following version of the Kenig-Ponce-Vega inequality (cf. [19]) holds
on the torus.

LemmaA.6 Let f,g € C®(T), s € (0,2), 51,52 € (0, 1) withs < s1 + s2, and p, p1, p2 €

p L — L4 1
[1, co] with = + e Then

|||3t|s (fe) — flol g — gl f”Lp(T) S [f]anm('ﬂ‘) [glws2.p2(T)

holds.
Proof We only consider the case pi, p» < oo. Using Lemma A.2, we write
18:1° (fg)(®) — f() 1317 g(r) — g(t) 18 1° £ ()
= /T Ks(h) 2f()g®) — [t +h)glt+h) — f(t —h)g(t —h)) dh
- f® /T Ks(h) (2g(t) — g(t +h) — gt — h)) dh
—g& /T Ks(h) Qf @) = ft+h) — f@—h)) dh
=- /T Ks(W((f@) = f+ ) () — gt + 1) + (f(t) — f(t — 1) (g(t) — g(t — h))) dh
= —Z/T Ks(h) (f(t) = ft+h) (g(1t) — g(t + h)) dh.

Now let r:=1 — % +s5s—51—95< ﬁ. Using Holder’s inequality twice we estimate

H/T Ky(h) (f(t) — f(t +h)) (g(t) — gt + h)) dh

LP(T)
< /T K (h) | f () = f(&+h)gt) =g+ MLy dh

N K p (W) 1 £(8) — f(t +h)| R Ky py (W) | f (1) — [t + D)

= [flwsiri () [8]ws2r2 ()

S

LP1(TxT) LP2(TxT)

where we have also used that

1 1 ~ ~
Ky (h)d(0, h)" 2~ d(0, h)~ "+ = d(0,n) 7 " "2 "\1/1(511,1 (h) ”\Z/Km,z(h).

[}
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Lastly, we make the following observation on derivatives of time-antiperiodic functions.
The proof, which follows via the Fourier transform from the fact that the zero Fourier mode
vanishes, is omitted.

LemmaA.7 Let the function v € L'(T) be %-antiperiodic in time. Then for any s > 0 and
o € R we have

1 1
lvllz2ery) < P |13,1° UHLZ(T) and thus |||3,1 UHL2(T) = > 18,17 ”HLZ(T)'
If furthermore Fi[v] = O for |k| < K, then these estimates can be improved to
1 1
lvllz2my < Koy 1181 v]| oy and 181 0] 2y < Koy 1317 v Lo -

B Properties of the nonlinearities

For the instantaneous nonlinearity, it is clear that the function Ey is convex. In the time-
averaged case this follows from assumption (15) together with I' > 0. Next we discuss two
conditions that are sufficient for convexity in the time-averaged setting, i.e. (15).

Lemma B.1 The convexity assumption of (15) on k is satisfied for example if the other assump-
tions hold and either max k < 2mink or ki > 0 for all k € Z, or more generally if k is a
sum of functions satisfying these conditions.

Proof Set f: LYT) > R, f) = fT(K x v2)v2. Then using that « is even we calculate

£ ), ul =4/(K>kv2)u2 dt—i—S/(K*uv)uvdt.
T T

Part 1: If max x < 2 min «, with c:=(min k 4+ max «)/2 we can estimate

2
fW[u, u] = 4/(/{ * vz)u2 dr + 8¢ </ uv dt) + 8/ ((k —c¢) *uv)uvds
T T T

> 4mink uv|? — 8k — cllo lluv]} > 0.

Part 2: If instead k¢ > 0, we can estimate

£ )[u, ul > 8/(/( xuv)uvdt =8 & | Fr(uv)]* = 0.
T

keZ
O

Next we aim at lower bounds for E’(u)[|9;| u]. Using integration by parts, one sees that the
quadratic terms appearing in E’(u)[|9;| u] are L?-norms of suitable fractional derivatives of
u. In the next two lemmas, we investigate the remaining non-quadratic term f N (u;) |0 uy.
We begin with the instantaneous nonlinearity.

Remark B.2 Let us give a few examples of kernels x describing the nonlinear polarization
(cf. (4)) that lead via k (t) = T ) ;o7 £ (t + kT) to admissible potentials « for (15).

(a) First, we consider

0, t <0,

K= (T4 +4% e, 120
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(b)
(©

(d)

where ¢ > 0. Let us shows that the resulting « is admissible. To do this, we write

1 1 1
K(t) = — — fort >0,
o 2T(ﬂ+awﬂﬁ TLH%+DJ o=

so k(1) is a telescoping series with value

1

W=7 (T2 + 21 — T)?)

fort € [0, T).

We see that k is even about T and by periodicity also even about 0, and that mink =
k(0) = 4T3 ,max Kk = K(%) = 2T3 hold. Since « is Lipschitz continuous, this combined
with Lemma B.1 shows that « satisfies (15).

More generally, (1) = 1;>0[g(2t —T) — g(2¢t 4+ T)] with even, Holder-continuous
g: R — Ris an admissible example if max[p 7] g < 2min[g 7] g holds.

Let us give another example: Consider

k() = Z anﬂ-[nT,(nJrl)T)(t)

neNy

where (o) € £! with ZneNU oy = % Then k = 1 and therefore it satisfies (15).
Finally, using a Debye-type exponential decay in the kernel function cf. [12], let us con-
sider & (t) = ae P10 and its discretized version &4 (1) = o Y oc e "I 1,7 (1)
with a, B > 0. Subject to the choice @ = (1 — e~ PT)/T the discretized version clearly
falls into the category (c) whereas for the continuous version we get x(t) = e P! for
t € [0, T) so that « is neither even nor continuous on T and hence does not satisfy (15).
Therefore our results do not apply to &, but can be used for ;. Clearly, the smaller 7 > 0
the better k4 approximates &, and our results provide existence of breathers with frequen-
cies tending to infinity as 7\ 0. This, however, does not allow for any conclusion about
breathers for nonlinear Maxwell equations with Debye-type exponential decay kernel.

Lemma B.3 The inequality

2/#»%vmzfowwwwﬂﬂh 31)
T T

holds for all v € C*°(T).

Proof We first encountered an estimate similar to (31) in [11, Proposition 2.3], and we prove
(31) in a similar fashion. Note that v [v| € C1(T) € H"2(T). Thus both sides of (31) are
well-defined and we may use symmetry to obtain

1/2 2
(1017 @ D) dr = | wiol- 1] @ o)) dr.
T T

Using the representation of Lemma A.2, we calculate

2/ 310 vdr — /vlvl [0 (v vl)de

// —u(z) (2v() — vt + h) — v(t — b))
- h—zv(z) [ (2v() ()] — vt + h) v(t + B — v(t — k) [v(t — h)]) dhdt

1
= C/ 7 / 2v(t) (v(t) —v(t+ h)) —v(@) |v(@)| (v(t) lv()| — v + h) |v(t + h)l)
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+20()3 (v(r) — vt — ) — V(&) @] (v(@©) [V(E)] — v — k) v — h)|) dt dh
= [ [2007 60 v +10) = o0 0] (00 100] = w6+ 1o+ )
+ 200t + 1) (v(t 4+ h) = () = v(t +h) [o(t + b (v + h) [t + )| — (@) [v()]) de dh
= C/R hiz /T v + vt + 1) = 20020 + h) = 20@) (@ + )P+ 20() @) v+ h) [ + k)| dr dh.

Next we claim that the last integrand is everywhere non-negative. To see this, abbreviate
a:=v(t), b:=v(t + h). If a and b have the same sign, we find

a* +b* —2a’b — 2ab> +2aa| b |b] = (a* + b*) (a — b)* = 0.
If a and b have opposite signs, we instead calculate

a* +b* — 2a°b — 2ab’ + 2alal b|b| = (a® — b*)* — 2ab(a® + b?) > 0. o

The counterpart for the temporally averaged nonlinearity reads as follows. Its proof is
very different from the proof of the previous lemma.

Lemma B.4 There exists constants ci, Co» > 0 such that
/T(K * v )3 vdr = e vl 1101 vl = Ca vl
holds for all v € C*°(T).

Proof By (15), k € C%(T). Inspired by the famous Kenig-Ponce-Vega inequality [19], we
define the Leibniz-defect for the fractional half-derivative as

8 = 10,17 ((k * v*)v) — v 9] (i % v?) — (1 % v?) 8] v.
Using Lemma A.4 and Lemma A.6 we estimate
18112 S [ie % v*]cu 0] 1o < [l 10113 (] g1 S Lelca 0157 Tl0ll s
We further have
1017 (e 5 v?) = (19,17 1) s (1017 0?) = 18, ke 5 (20 19,1** v + §)
with Leibniz-defect § given by
§ =19, *) — 209, 0.
By applying Lemma A.6, Lemma A.5, and Lemma A .4 for p close to 1 we obtain the estimate

g 2 2 14a/2 1—a/2
18, S 08 iess S I S 0057 0l

so that
1,17 Ge 5 v | < 201862 ke ol [ 10127 0], + 10,1 i

1 1— 1+4w/2 1—a/2
S Illee (0I5 Bl + 1oy ol 7°)

P J ” p
H'2
where we have used [33, Theorem 2.6] for the estimates on |0, I“/ Zk.
Next we estimate the quantity appearing in the claim:
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/(K*Uz)v. |81| vdt :/ |al|l/2 ((K*vZ)v) . |3t|l/zvdt
T T
=/ ((K*y2)|3t|1/2v+v|3z||/2 (K*v2)+6> ) |3z|1/2vdz
T
Z/(K*vz)(|at|'/2 v)zdz
T

1+«
—C vl iclice (15 it

5 o],

14« 1—«
+ 1oy ol ) 1ot 2 o)

2
= Clelea 0I5 Il )8

The claim now follows using
/(K +v)) (13,1 v)? dr = mink - |v]3] 18,17 v]3
T
and Young’s inequality for products. O

Next we prove two important trace inequalities that are adapted to the terms appearing
in our functional. In Lemma B.5 we estimate the trace in H"2(T) against | - || y, and the
“regularized” embedding Lemma B.7 estimates the trace in H'(T) against Q.

Lemma B.5 The trace map
tr: Yy — H"2(T), u — u(R, -)
is well-defined and compact. Furthermore, for all ¢ > 0 there exists C(¢) > 0 such that

lltr ) <elul? +C(e) llucl% (32)

HY2(T) = L2 ,([0,.R]xT)

holds for all u € Yy.

Remark B.6 By Remark 3.2 we have the continuous embedding ¢: Yy < Hrad([O R] xT),
and it is well known that the trace maps H' ([0, R] x T) into H 2(T), and the same holds for
f‘d ([0, R] x T). However, both the embedding ¢ and the trace map tr: H_ ([0, R] x T) —
H'2(T) are noncompact maps. Their composition tr ot however is compact as we show
below. This is true because of the temporal decay in the embedding :.

Proof of LemmaB.5 Since |- ||y, < |-y, by Remark 3.2 and thus Yy, < Yy, if
suffices to consider the case N = Nyy.
Letu € Hazml([O, R] x T). Fix some ¢ € C*°([0, R]) with ¥ = 0 on [0, %R] and

Y (R) = 1. With v(r, t): =y (r)u(r, t) we calculate

1
lltr = |l vl < Coll 19,12

3
H'2(T) HY2(T) rolza

R
=3C0/ (|||at|‘/2v||Lz(T)/ |a,|'/2v~|a,|‘/2vrdr> dr
0 T
R 1
=3Co/ (II |3z|/2v||L2(1r)/ [0 v~vrdt> dr
0 T

R 1/2
<3¢ ([ W2 rd(r, 1) - / 110012 0125 11 130] 012 rdr)
[0,R]xT 4 0 LZ(T) LZ(T)
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where the factor r can be introduced since v is supported on [%R, R] x T. Using
Lemma A.7, Remark 3.2 and infT « > 0, infp, ) I" > 0 we continue the estimate

3 <

”tru”Hl/z(T) =

2
Ci ”Ur”erad([O’RJXT) v ”}\/av
2
< (”uf”Lfad([O,R]xT) + ||“r||L§ad([0,R]><'J1‘)) ”ul”Nav

2
< C3 (el + it 2, g0,y ) N
3
< Cslull},
By approximation, the inequality

3

2
e oy = Ca (Ntellvg, + 122 o mper ) e

can be shown to hold for all u € Yy, so that tr is a well-defined and bounded operator on
Yn. The inequality (32) now follows immediately using Young’s inequality for products. It
remains to show compactness of the trace operator. To do this, we consider the operator

X = tr 0S¥

for K € Nogd, cf. Lemma 4.2 for a definition of the projection operators SX. Then tr¥ is a
compact operator since it is bounded and has finite-dimensional range. Since Fi[u — S Kyl=
0 for |k| < K + 2, using the improved estimate from Lemma A.7 in our calculation above,
we find

Htr(u - SKu)H3 <

C3
H'2T) ~ JK +2

3

)

Yn

Hu — Ky

so that in particular

3 3 C (14 s¥ )
Htru—trkuHHl/z(T)=Htr(u—SKu)HHl/Z(T)S el

holds. Using Lemma 4.2 it follows that trX — tr in B(Yy; H"*(T)), which shows that tr is
compact. o

Next we show in Lemma B.7 the “regularized” trace inequality, which is the main tool
used to obtain improved regularity in Section 4.

LemmaB.7 Forall ¢ > O there exists a constant C (&) > 0 such that

2
2 1
lor ullds oy < & 10017

22 doren, T CEOLN () (33)
rad ’

holds for all u € Y1<,( and K € Nygq and where C(g) does not depend on K.

Proof Part 1: Let N = Nips. Fix ¢ € C*°([0, R]) with v = 0 on [0, %R], Y(R) =1 and
set v(r, t): =y (r)u(r, t). Further let H denote the Hilbert transform in time, which is given
by FxH = isign(k)Fy. Using 9, = H |9,| we calculate

3
HY(T)
3
L2(T)

3

Jerul .

= ol

S el
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s/ (R, P di
T
=3/ vervy lurl der, )

[0,R]xT
3/ H1312 vp - 10012 (or g dCr, 1)

[0,R]xT

2 2 1/2

([ () . (10" ar ) a1

[0,R]xT [0,R]xT

2 2
:3(/ (¢’|3t|1/2ur +¢//\8z|1/2u) d(r,t)./ s (|3t\l/2 (uy |th|)) d(r,t))
[0,R]xT (0. RIxT

< <H|a;|l/2ur

IA

12

+ 1ol 2 u ) O,y ()’

L?ad L?ad e

where in the last inequality we have estimated 2, \///2, ¥* < r.From Lemma A.7 we further

have

1/2
2

18,17 u = Oy ().

12 1
< < — < /2
20~ “ut”L?ad ~ ”u’”Li\d It |Mt|||erad ~ ”|3t| (uer |ugl)

rad rad

Combining both inequalities with Young’s inequality for products, the estimate (33) follows.
Part 2: Here we consider N = N,,. We define v as above, but now we estimate

3

o el gy S cuell3a

= lltr vl

R
= 3/ (”vt”LZ(T)/ Vs Vg dt) dr
0 T
R 1 1
3/ (||vt||L2(T)/|at|/2UI'H|at|/2Urdt) dr
0 T

vy ) e Y

3 f (HW|%)(WJ»f|wn 18,170
( [0.R]xT t r 0 t LZ(T) t t
smme

where again supp ¢ € [%R, R] has been used. Using Lemma A.7 we further obtain

IA

2 2
dr)
L2(T)

+fr
Lmd

%)Qhwf

1/4
161" u]

R
< < = D4
erﬂd ~ ||“t||Lfad ~ ||ut||Lgd([0*R];L2(T)) = (/0 llue; (r, )”LZ(T) rdr)

R
s(/nmmwﬁmwmwmmﬂ
0

Combining both estimates above with Young’s inequality for products, the estimate (33)
follows. o

2

1/4
dr) = On, ().

r
LX(T)

C Examples

In this section we prove Theorem 1.2 by verifying the assumptions of Theorem 2.1 or
Theorem 2.4. We prepare the proof with a lemma on convergence of infinite matrix products.
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Lemma C.1 Let

Il+a, B 2x2
A, = e R
" ( Yo A +5n>

where |A| < 1, and |ay,| < n% as well as |Bul . |Vnl s 18n] < % hold for all n € N. Then the
product

o0
[]An= lim (A;-Ay-... Aw)
el m—00

. . 0 . .
converges against a matrix of the form (: 0). If all A,, are invertible, then HZOZ] A, # 0.

Further, there exists a function f: (0, 00) — (0, co) with f(04) = 0 such that

T4 (50)

n=1

= f(C).

Proof First we consider the product

(=)

where we choose N € N so large that denominators appearing in the following four constants
Cq4, Cp, C,, C4 with

Cy:=2CCyp,
. 1 c
Cp:=max 2N _{_2° N A= C+2C2
N+1 N N+l
C.:=2CCq,
C C?
e max A NO-TD C+vom
4= N2 Ny - e
N+1 N NI N

are positive and % < 1 holds. We show by induction that the following estimates hold for
m > N:

lam — 1] < Ca(F — ), bl < 2,
lem| < Ce (7_7)+C11|M\T\\N’ ’dm_)Lm—N S%. (34)
We will moreover show for the differences that
|41 — | < st lemt1 = cml < ey + 5 M"Y (35)

holds. First, for m = N the estimates (34) hold since ay = 1,by = 0,cy = 0,dy = 1.
For the induction step, let us assume that (34) holds for fixed m > N. Using a,,+1 =
(1 + am)am + Ymbm as well as |a,, | < C;’::l + % we find

1 Cq

CC;, (N+DC -
mm4+1) ~ m@m+1)

P N (CI-}—CI,)

C
lam1 — am| < 3 + + —
m
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This in turn implies that |a,,+1 — 1| < |lam+41 — am| + lam — 1| < C4 (% — #) Next,
from by, 11 = Bnam + (A + 8,,) by We obtain

C CC, N+1 CcC 1 C
|bm+1|fac+ A =2 +ZEbST(CCff++|MC”+ ”) < b

N m+1 " m+1

Then we use ¢+1 = (1 + am)em + Ymdm as well as ¢, | < Cj::% + m to obtain

A

C C
+ 4 N

lemi1 = enl = —CF 4 — (13N 4 S2)

(N+1DcC
N
< L £ (A" N

~m(m+ 1)

from which the desired estimate on |c,,+1| follows as before. From dy,+1 = Bmem + (A +
Sm)d,, We obtain

1 C

o) C; C C
dm 11 —)»”'“‘N’ < =Ch+IM =+ = (IM’”‘N + —")
m m m m
N +1 CCy 1 Cad
<——|ccr+nCcy+cC < )
- N < ¢ TIMCat +N>m+1_m+1

This shows the estimates (34), (35). It follows that b,,, d,, — 0 and that a,,, ¢,,, converge as
m — co. Thus we have shown that the product [/ A, converges against a matrix of the

form <i 8) This implies convergence of the product [ [~ ; A, with the limit being given
by

limy; 00 € O

“An-1]- (li~m"Hoo m 0) ,

Ml

which has the specified form of vanishing second column. From (34) we get |a,, — 1| <
% < 1 so that limy,;,—, o0 @, 7% 0. Thus ]_[;',0:1 Ay, # 0 if we assume that Ay, ..., Ay_; are
invertible.

It remains to show the estimate

H An ( ) < £(O).
We choose || - || to be the column sum norm. To emphasize the dependence of Cy, ..., C4 on
the constant C, in the following we write C,(C), ..., C4(C). Let C* > 0 and observe

that there exists a sufficiently large N € N such that the denominators appearing in
C,(C), ..., Cq(C) are positive for all C € (0, C*]. Then (34) shows that

Mo (50)
n=N

holds, where fy: (0, C*] — (0, co) with fy(0+) = 0. Then
o0 o0

10 10 10 10
14~ (o0) 14 (50) |+ |- (50) = 50)

n= n=N
@ Springer
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gmax[l—i-(N D2’ N— 1+|)"|}fN(C)+(N Dz — =:fn-1(C)

where fy_1(0+) = 0.Repeating this N —2 times, we find a function f; suchthat f;(04+) =0

and
o0
l—IAn_ 10
00

n=1

= f1(C).

m}

The proof of Theorem 1.2 is split into four parts, because the fundamental solutions ¢y
strongly depend on both the chosen geometry (radial problem or slab problem) and on the
linear potential x;* (step potential x ~S  or periodic step potential 7).

For the proof, We introduce the followmg (non-negative) varlables to denote the values of
the piecewise constant potential V = — (31 + 1 — ¢™2):

@) If xf = )Zfer, we set
a=a+1—c2 B=b+1—-c2 s=—(d+1-c?),

where by the assumptions of Theorem 1.2 we have «, 8, § > O and § < «.

(i) If 35 = %,;"P, let
a=a+1—-c2 B=—0b+1-c?), S=—(d+1-c?),

where again «, 8, § > 0 by assumption.
Proof of Theorem 1.2, Part 1 First, we consider the periodic step potential )Z}Jer with cylindri-
cal geometry, i.e. (12). We verify the assumptions (A1)—(AS) and (A6’) in order to apply
Theorem 2.3. Firstly, assumptions (A1), (A2), and (A3) hold by definition.

Step 1. Here we construct the fundamental solutions ¢ based on the following idea: we

define propagation matrices My, (r, ') with the property: (gf E:;)::M L (r. r)(3) provides
k

the solution of L;¢; = 0 atr with initial values (Z) at ’. On subintervals where the potential
V takes constant values, M, can be explicitly computed. Iterating the propagation from

r:=R+nP + %HP back to r with prescribed decay r,fl/zt” at r,, T = min{ %’ \/g} <1

and sending n — oo will provide the fundamental solution.
Now we start with the propagation matrices on intervals where V' is constant. The general
solution of

(<02 = Lo, + 5 — o) f =0 (36)
is given by
f(r) = AJi(agr) + BY (o)

where J,,, Y, are the Bessel functions of first (resp. second) kind and o :=kw./c. Thus the
propagation matrix for (36) is given by

£ _ W (@)
(f’(r)) _Mol,k(rsr) <f/(r/)>

Jiagr)  Yi(agr) )( Jiagr”)  Yi(oyr”) >_1

o J| (axr) oY (axr) ) \owJ| (arr’) ax Y (cxr”)

with

Ma,k(r»r/) = (
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Next we calculate the asymptotic expansion of My (r, r"). With the asymptotics (cf. [17])

h@ = /g(sin(z — D+ deosz - P+0(4)),
N =2 (~eosie= P+ s~ H+0 (%)),
s = 2 (eoste = - e = D+ (4)),
Y@ = \/t (sinGe = ) + Leosc ~ D+ 0 (%))

as z — 0o, we find

(10 = -1 ! cos(z —z') sin(z — 7))
ak(r r) = \/:<0 o ) I:<8]Z ) + O (;)] <_ sin(z _ Z/) COS(Z _ Z/))

1E D)ot10

as 7, 7/ — oo, where 7z = oy r, 7 = ayr’. If, in particular, r’ — r = 6 P, then since

(37

7 —7 = ko PJa € 5o,
we have cos(z — z/) = 0 and sin(z — z’) = %1, so we can further simplify

it Z (O (E 2 Yot 2](02)

87 8z 273

S GO(EE B )o@ (2)

2kw /ar

as kr — oo. If we denote by r,:=R +nP + %OP, rj:>=R+nP + (1 — %0) P forn € Ny
the points where V changes from one constant value to the other, then we have

MLk(rna rn+l) = Mﬁ,k(rru ry/,) ' Mot,k(ry/p rn-H)

=°\/T<ék?o> (\/5—\/@) ; 0’3 7o) <(1)’3”>

B/ 2kwr, o

as kn — oo where 0 = — sin(kwf P.\/a) sin(kw (1 — 0) P/B) € {£1} does not depend on
k. To simplify the asymptotics, we introduce the rescaling

10
Sk (r):=/r (0 L)
wk

and define the rescaled propagation matrices

M} (r, ) =Scr) M, (r, r) S
M (=S () Mo e, 1) Sk () 71,
M (o ):=Sk(r) Mg i (r, r) Sk ()7
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In the following we assume « > £, the case 8 > « can be treated similarly. We then define

Wi (r):= lim (071\/5) M} (5, rm). (38)

This definition is according to the idea introduced at the beginning of the proof: W (r)
contains decaying fundamental solutions for a rescaled version of the operator Lj, where

the geometric decay factor ,/ g has been built into the solution. As we shall see, the second
column of W vanishes, which reflects the fact that there can only be one solution which
decays at infinity. Next we note that

m—1

Wy (r) :mli_r)nooMfk(r,rO) I1 (fl\/g/wfk (rn,rnﬂ))
n=0

o0
= Mfk (r,ro) ]—[ (U‘l\/ngk (rn, rn+1)> .
n=0

Using the asymptotics

/B 1 0
o 1\/;Mfk("mrn+l) = <O (ﬁ) ﬁ) +O(#)

o

as kn — oo and Lemma C.1, the limit in (38) exists and is nonzero. In particular, the limit
matrix Wy has a vanishing second column so that we can define

(1) 0
(5’52) E:; 0) =W (r).

If we also undo the rescaling and define

() WP 0l ()

o\ _ NG
<¢,§2>(r) = M gy

since 1//,9) , 1//,52) satisfy the identity

v O\ s o (90D
@ | =ML\ ) L]
v () V(')
This shows that ¢y (r)::(b,il)(r) satisfies Lr¢r = 0 and g[),’C = ¢,§2) so that ¢ is the sought
fundamental solution. Its properties will be verified in the next step.
Step 2. We are left with verifying assumptions (A4), (AS), and (A6’) for the functions
¢x obtained in Step 1. We have already seen as a result of Lemma C.1 that ¢ # 0. Next
we show that ¢ € L2 ([R, 00) x T). From the asymptotics (37) we see that there exists a

rad
constant C; > 0 such that

then

’

|MS )

M, (r.r')

‘SCI
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holds forall k € Nogq and all 7, ¥’ > R. By Lemma C.1 there further exists a constant C; > 0
such that

¢}

I1 <o—l\/§Mfk (P, rn+1)>

n=ngq

<G

holds for all ng € Ng and all k € Nggq.
For every r € [R, o0) there exists a unique ny € Ny such that r € (rr’loil, 73, ]- From

Vo) =9 () = <m1£%o (““@) M3, rag) M (g, W)
1,1

Ny o (39)
= (a_] g) (Mfk(r,rno) 1_[ (U_]\/EMfk(rn,rn+l)>> )
1,1

n=ng
and
S ’
Ve orn) = Ma’k(r, Tng)s T € (rno_l, gl
Li\"»"no/ — M3 ( 4
B.k rarno); re(rnovrno]
we obtain

no
rigeP < (8)" cic?
and therefore also
2 * 2 O "0 50
167 (1 ooy = fR e rdr = 3 ()7 cic3p < o,
no=0

where we used 7, 0 rr’lof , = P. While we obtained an L2-bound on ¢ which is uniform in

k, with the help of the equation L;¢r = 0 one can easily show that ¢ € Hrzad([R, 0)), but
the H2-bound will be k-dependent. Thus assumption (A4) holds.
Next we discuss the asymptotics of ¢;. We use

s N cos(kw/a(r —r')) ﬁ sin(kw/a(r —r')) 1
Max(rr) = (—ﬁ sin(kwn/a(r —r')) costkw/a(r —r')) +O (k)

and likewise for Mg’k(r, r’) as well as

l_[ (a*l\/ngk(rn,rnH)) — (é 8)

n=ngo
as k — oo, cf. Lemma C.1. Thus, together with (39) we obtain

I

g rdr

rno—l
no ) 5 ™
) / cos(kw/a(r — ryy))” dr + /
rz/zo—l n

:( 0

(£)" (4 +om)

R

" costkan/B(r — )2 dr + 0(1))
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as k — oo. In particular, we have

L 2
>
lim inf ”d)k”Lfad([R,oo)) >

2

(g)no g > 0.

In order to verify assumptions (A5) and (A6’) we calculate the asymptotics of ¢ (R) and
¢ (R). Setting

no=1

ma::4w\/&0£ € Nodd,

we have

VRG(R) =y (R) = (M;km, o ] (G—I@Mfk (- rnm))
n=0 1,1

= cos(kwv/a(R —rp)) +o(l) = cos(kma%) +o(l) = :I:% + o(1)

as k — oo. Combined with the estimates on ||¢|| ;2 . this shows the first part of assumption
ra
(AS). Next we have

/R o0
(R = v (R) = (M(f’k(R,ro) [] (a—l\/EMfk(rn,rnH)))
2,1

n=0

= —Jasin(kov/a(R —rg)) +o(1) = ﬁsin(kma%) +o(l) = :I:% +o(1),

which shows the second part of assumption (AS). Finally, we have

kﬁk((RR’) — wv@tan(bmg ) +o1) = —wv/a(-H "2 +o(l)

as k — 00, so

lim su =w a>w«/§:w|lV|I o
o ki (R) L2(0.RD
since o > §. Thus assumption (A6’) holds, and Theorem 2.3 yields the result. ]

Proof of Theorem 1.2, Part 2 Now we consider the periodic step potential with the slab geom-
etry, i.e. (17). We verify the assumptions of Theorem 2.5 in order to apply it.

By the set-up we have that (A1), (A2), and (A3) hold. The determination of the funda-
mental solutions ¢, follows the Floquet-Bloch theory for second-order periodic differential
operators. Details can be found in [20, Appendix 6.2]. The main outcome is the following:
there are two Floquet-multipliers

Ok € :—\/i sin(km'lm) sin(km'm), —\/gsin(km’ln) sin(km’n)}
where

1-6 P P
I = \/ET and {Zm’ = 4\/&90)5, 2m'l = 4/B(1 — G)a)g} C Nodd

and in our setting m = 2m’, n = 2m’l. This implies that |o¢| € {\/%, \/g}, so that in

modulus one of them is smaller than 1 and one of them larger than 1. For each Floquet
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exponent there is a solution of Ly$, = 0 with ¢ (x + P) = pr@(x) for all x € R. If we
choose the fundamental solution corresponding to the Floquet multiplier with modulus less
than 1 then this leads to

~ 112 ~
”d’k ”LZ([R,oo)) = 1_7101{ ”‘bk HLZ([R,R+P))'

Using the normalization ak(R) = 1 we have

31 (R) = —kor/a tan(kon/ad L) = —kova tan(mk™) = koya(—1)" 2"
and
0< inf || < sup &> < o0
keloge | VK NL2aR Repy = SP NPk 2R R4 PY) = OO
From these estimates it follows that also (A4)—(A5) hold. Moreover, since % =
(—1)#a)«/& and « > 3 = ||Vlpxq—r gy the final condition (A6’) is true and so
Theorem 2.5 yields the result. O

Proof of Theorem 1.2, Part 3 Next we consider the step potential ¥ ; P with cylindrical geome-

try, i.e. problem (12). We verify the assumptions (A1)—-(A5), (A6’) in order to apply Theorem
2.3. First, (A1), (A2), and (A3) hold by definition. Let J,,, ¥, denote the Bessel functions
of first (resp. second) kind and K, denote the modified Bessel function of second kind. For
k € Nogq and with ag:=kw+/a, Br:=kw./B, the fundamental solution ¢y is (up to a constant)
then given by

) ApJ1(ogr) BeYi(okr), R<r <R+p,
or(r) =

Kl(,Bkr)7 r>R+p
with

(Ak> =< Ji(ap(R+p))  Yi(a(R + p)) >l< K1(Br(R + p)) )
By arJ{ (@ (R + p)) arY{(ax(R + p)) BK{(Br(R+p))) "

We begin by estimating the functions ¢. Using the asymptotics (cf. [18])
Ji1(2) = \/>(sm(z— H+0(1). Ji(2) = \/7(008(2— H+0(1)).
N@ =2 (~eosc-D+0(H). K@ =2 (inc-D+0(L).
Ki@ = [Ee (1+0(Y)), Ki@ = [Ee (-1+0(})

as z — 0o, we find

Ay = —Fe ARED (J%COS(ak(R +0) =5 = /Esin@(R+p) =5 +0 (%)) :

By = —Ze PuRtn) (,/g—’; sin(or (R + p) — ) +,/ 5 cos(ex(R+ p) — ) + O (%)) ,
and thus

fe_Zﬁk(R-H)) (1 + 0O ))

106132 oy = a5 (4 2) 0 (14 0D)

2
1Plly2 .00 = 3
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as k — oo. In particular we have
e~ Bu(R+p)

Ipell 2, 1R, 000) = 7 (C+0(z))

for some C > 0. We further have

o(R) = \/T —Br(R+p) <\/§j’;cos(akp) + g—’; sin(axp) + O (%))
(R) = /akﬂ e BeR+p (\/gjl’:sin(akp) — \/gj:COS(akp) + 0 (%)) .

Note that /‘;k = \/% is constant.
As ¢y above is the fundamental solution, assumption (A4) holds, and the second part of
assumption (A5) follows directly from the asymptotics. Let ¢ = arctan ( ) Then

onR) = g (54 B )5 (sinewp +) + O (1),

Gp(R) = — |42 (Z—’; + %)e_ﬂ"(Rﬂ’) (cos (axp + ) + O (3))-

By assumption of the theorem on the values 7" and ¢ we can write

kmm  mm  Inw
yp+t=—+—+ ——&
2n 2n n

for some [ € 7Z. Since m, n are co-prime, the expression Zodd > k + oxp + 9 mod 7 is
2n-periodic and attains the n values

b4 2
— =& —-§ ..., 71—§
n n

and no others. Further, none of these values are zeros of sine. This shows that also the first
part of assumption (AS5) holds. In addition, we have

¢.(R) R (cot (((k+l)2r:+2l)n _ %_) Lo (%)) .

ék(R)
Therefore for ¢ > 0 sufficiently small we find infinitely many k& € Nygq such that
¢ (R) 1
o+ =m—§& modsmr and = wacot(é)+ O (¢ > oV +¢
ki (R) (%)
hold. This verifies (A6’). Finally, we have checked all assumptions of Theorem 2.3 which
provides existence of T-periodic solutions. O

Proof of Theorem 1.2, Part 4 Lastly we discuss the step potential with slab geometry, i.e. (17).
Like in part 3, we set ay:=wk/a, Br:=wk+/B. Then the fundamental solutions ¢, are (up
to a constant) given by

~ ;fk sin(agx) + Ek cos(oxx), R<x <R+ p,
G =110
e Pk, x>R+p
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with
A:k _ | sin(ex(R+p))  cos(ak(R + p)) 1/ e Be(R+p)
By ) \akcos(ax(R + p)) —ay sin(ex (R + p)) — Bre Pr(R+p)

_ o—BuRp) [SIN@(R+ p)) — B cos(ar (R + p))
- cos(ax(R + p)) + of sin(ak (R +p)) )

Therefore (A4) holds and

~ 112 _
”¢k HLZ([Rer,oo)) — ﬁe Zﬂk(R-‘rﬂ)’

~ _ 2
|Bx ”iz([R,Rer]) = fehRED <1 + %) (1+0m)
so that

”ak ||L2([R,oo)) = e AulftD) (C +0 (%))

holds for some C > 0 as k — oo. In particular,

Fe(R) = e HE (cos(arp) + L sin(aip)) = e E 14 Esinacp + 0)
and

P (R) = —ape PR 14 B cos(ayp + )

with ¢ = arctan ( \/%) From here on we can argue almost identically as in the proof of
part 3 for the verification of the conditions (A5) and (A6"). m}

D Numerical method

In this section we provide details on the generation of Figures 1 and 2. For simplicity, we
only consider the radial geometry setting.

As discussed in Section 3, solutions w to (12) can be obtained from critical points u of the
functional E, see (24), and in particular from the minimizer of E. We numerically minimize
E|z over a finite dimensional space Z: E(u) ~ min E|z. Then from u we reconstruct an
approximate breather w using the formula (27).

Motivated by Section 4 we choose the ansatz space

Z={uuw =Y AWe®|feF fo=TFl.

k€Zodd
[k|<K

where F is a (complex-valued) 1d finite element space, which we have chosen to be the space
of piecewise linear elements with equidistant nodes 0, %, R w, R.

The illustrations from Figure 1 and 2 are then obtained by choosing K = 64, N = 128 and
using a MATLAB built-in function to solve the minimization problem. The code to generate

them can be found in [31].

@ Springer



35 Page 50 0f 52 S. Ohrem, W. Reichel

Acknowledgements We thank Willy Dorfler (KIT) for providing his discontinuous Galerkin MATLAB-code
on which our numerical simulations are based.

Funding Open Access funding enabled and organized by Projekt DEAL. Funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — Project-ID 258734477 — SFB 1173.

Data Availability The software used in the numerical simulations in Section 2 can be found in [31].

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams, R.A., Fournier,J.J.E.: Sobolev Spaces, 2nd edn. Pure and applied mathematics, vol. 140. Academic
Press, Amsterdam (2003)

2. Agrawal, G.: Nonlinear Fiber Optics (Fifth Edition), 5th edn. Optics and Photonics, p. 648. Academic
Press, Boston (2013). https://doi.org/10.1016/C2011-0-00045-5

3. Azzollini, A., Benci, V., D’ Aprile, T., Fortunato, D.: Existence of static solutions of the semilinear maxwell
equations. Ric. Mat. 55, 123-137 (2006)

4. Babin, A., Figotin, A.: Nonlinear photonic crystals. III. Cubic nonlinearity. Waves Random Media 13(4),
41-69 (2003). https://doi.org/10.1088/0959-7174/13/4/201

5. Bartsch, T., Mederski, J.: Nonlinear time-harmonic Maxwell equations in domains. J. Fixed Point Theory
Appl. 19(1), 959-986 (2017). https://doi.org/10.1007/s11784-017-0409-1

6. Bartsch, T., Dohnal, T., Plum, M., Reichel, W.: Ground states of a nonlinear curl-curl problem in cylin-
drically symmetric media. NoDEA Nonlinear Diff. Equ. Appl. 23(5), 52-34 (2016). https://doi.org/10.
1007/s00030-016-0403-0

7. Benci, V., Fortunato, D.: Towards a unified field theory for classical electrodynamics. Arch. Ration. Mech.
Anal. 173(3), 379414 (2004). https://doi.org/10.1007/s00205-004-0324-7

8. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann. Inst.
H. Poincaré C Anal. Non Linéaire 35(5), 1355-1376 (2018). https://doi.org/10.1016/j.anihpc.2017.11.
007

9. Bruell, G., Idzik, P., Reichel, W.: Traveling waves for a quasilinear wave equation. Nonlinear Anal. 225,
113115 (2022). https://doi.org/10.1016/j.na.2022.113115

10. Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. Cambridge University Press (1990). https://
doi.org/10.1017/CB0O9781139167994

11. Cérdoba, A., Cérdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math.
Phys. 249, 511-528 (2004)

12. Debye, P.J.W.: Polare Molekeln, p. 200. Hirzel, Leipzig (1929)

13. Dohnal, T., Romani, G.: Eigenvalue bifurcation in doubly nonlinear problems with an application to
surface plasmon polaritons. NoDEA Nonlinear Diff. Equ. Appl. 28(1), 9-30 (2021). https://doi.org/10.
1007/500030-020-00668-2

14. Dohnal, T., Romani, G.: Justification of the asymptotic coupled mode approximation of out-of-plane gap
solitons in Maxwell equations. Nonlinearity 34(8), 5261-5318 (2021). https://doi.org/10.1088/1361-
6544/ac0485

15. Dohnal, T., Schnaubelt, R., Tietz, D.P.: Rigorous Envelope Approximation for Interface Wave Packets
in Maxwell’s Equations with Two Dimensional Localization. STAM J. Math. Anal. 55(6), 6898-6939
(2023). https://doi.org/10.1137/22M 1501611

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/C2011-0-00045-5
https://doi.org/10.1088/0959-7174/13/4/201
https://doi.org/10.1007/s11784-017-0409-1
https://doi.org/10.1007/s00030-016-0403-0
https://doi.org/10.1007/s00030-016-0403-0
https://doi.org/10.1007/s00205-004-0324-7
https://doi.org/10.1016/j.anihpc.2017.11.007
https://doi.org/10.1016/j.anihpc.2017.11.007
https://doi.org/10.1016/j.na.2022.113115
https://doi.org/10.1017/CBO9781139167994
https://doi.org/10.1017/CBO9781139167994
https://doi.org/10.1007/s00030-020-00668-2
https://doi.org/10.1007/s00030-020-00668-2
https://doi.org/10.1088/1361-6544/ac0485
https://doi.org/10.1088/1361-6544/ac0485
https://doi.org/10.1137/22M1501611

Existence of breather solutions to nonlinear Maxwell equations Page 51 of 52 35

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

Fabrizio, M., Morro, A.: Electromagnetism of Continuous Media, p. 668. Oxford University Press, Oxford
(2003). https://doi.org/10.1093/acprof:0s0/9780198527008.001.0001

Gradstejn, 1.S., Ryzik, .M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam
(2007)

Grafakos, L.: Classical Fourier Analysis, 3rd edn. Graduate Texts in Mathematics. Springer, New York
(2014)

Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de
Vries equation via the contraction principle. Comm. Pure Appl. Math. 46(4), 527-620 (1993). https:/
doi.org/10.1002/cpa.3160460405

Kohler, S., Reichel, W.: Breather solutions for a quasi-linear (1 4 1)-dimensional wave equation. Stud.
Appl. Math. 148(2), 689-714 (2022). https://doi.org/10.1111/sapm.12455

Mandel, R.: Uncountably many solutions for nonlinear Helmholtz and curl-curl equations. Adv. Nonlinear
Stud. 19(3), 569-593 (2019). https://doi.org/10.1515/ans-2019-2050

Mandel, R.: Ground states for Maxwell’s equations in nonlocal nonlinear media. Partial Differ. Equ. Appl.
3(2), 22-16 (2022). https://doi.org/10.1007/s42985-022-00159-2

Mandel, R.: A simple variational approach to nonlinear Maxwell equations. CRC 1173 Preprint 2022/82,
Karlsruhe Institute of Technology (December 2022). https://doi.org/10.5445/IR/1000154207 . https:/
www.waves.kit.edu/downloads/CRC1173_Preprint_2022-82.pdf

McLeod, J.B., Stuart, C.A., Troy, W.C.: An exact reduction of Maxwell’s equations. In: Nonlinear Diffu-
sion Equations and Their Equilibrium States, 3 (Gregynog, 1989). Progr. Nonlinear Differential Equations
Appl., vol. 7, pp. 391-405. Birkhiduser Boston, Boston, MA (1992)

Mederski, J., Reichel, W.: Travelling waves for Maxwell’s equations in nonlinear and nonsymmetric
media. NoDEA Nonlinear Diff. Equ. Appl. 30(2), 22-38 (2023). https://doi.org/10.1007/s00030-022-
00824-w

Mederski, J., Schino, J.: Nonlinear curl-curl problems in R3. Minimax Theory Appl. 7(2), 339-364 (2022)
Mederski, J., Schino, J., Szulkin, A.: Multiple solutions to a nonlinear curl-curl problem in R3. Arch.
Ration. Mech. Anal. 236(1), 253-288 (2020). https://doi.org/10.1007/s00205-019-01469-3

Mederski, J.: Ground states of time-harmonic semilinear Maxwell equations in R3 with vanishing per-
mittivity. Arch. Ration. Mech. Anal. 218(2), 825-861 (2015). https://doi.org/10.1007/s00205-015-0870-
1

Moloney, J., Newell, A.: Nonlinear Optics, p. 440. Westview Press. Advanced Book Program, Boulder,
CO (2004). https://doi.org/10.1007/978-1-4612-1714-5

Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci.
Math. 136, 521-573 (2012)

Ohrem, S.: Breather approximations on gitlab. https:/gitlab.kit.edu/sebastian.ohrem/ohrem_reichel-
quasilinear_breather_approximation

Pelinovsky, D.E., Simpson, G., Weinstein, M.1.: Polychromatic solitary waves in a periodic and nonlinear
Maxwell system. SIAM J. Appl. Dyn. Syst. 11(1), 478-506 (2012). https://doi.org/10.1137/110837899
Roncal, L., Stinga, PR.: Transference of fractional Laplacian regularity. In: Georgakis, C., Stokolos,
A.M., Urbina, W. (eds.) Special Functions, Partial Differential Equations, and Harmonic Analysis, pp.
203-212. Springer, Cham (2014)

Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamilto-
nian Systems, 4th edn. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge: A Series of Modern
Surveys in Mathematics, vol. 34. Springer, Berlin Heidelberg (2008)

Stuart, C.A., Zhou, H.S.: A variational problem related to self-trapping of an electromagnetic field. Math.
Methods Appl. Sci. 19(17), 1397-1407 (1996). https://doi.org/10.1002/(SICI)1099-1476(19961125)19:
17<1397::AID-MMAS833>3.0.CO;2-B

Stuart, C.A., Zhou, H.-S.: Existence of guided cylindrical TM-modes in a homogeneous self-focusing
dielectric. Ann. Inst. H. Poincaré C Anal. Non Linéaire 69(96), 18—1 . https://doi.org/10.1016/S0294-
1449(00)00125-6

Stuart, C.A., Zhou, H.S.: A constrained minimization problem and its application to guided cylindrical
TM-modes in an anisotropic self-focusing dielectric. Calc. Var. Partial. Differ. Equ. 16(4), 335-373 (2003).
https://doi.org/10.1007/s005260100153

Stuart, C.A., Zhou, H.-S.: Axisymmetric TE-modes in a self-focusing dielectric. SIAM J. Math. Anal.
37(1), 218-237 (2005). https://doi.org/10.1137/S0036141004441751

Stuart, C.A., Zhou, H.-S.: Existence of guided cylindrical TM-modes in an inhomogeneous self-
focusing dielectric. Math. Models Methods Appl. Sci. 20(9), 1681-1719 (2010). https://doi.org/10.1142/
50218202510004751

Stuart, C.A.: Self-trapping of an electromagnetic field and bifurcation from the essential spectrum. Arch.
Rational Mech. Anal. 113(1), 65-96 (1990). https://doi.org/10.1007/BF00380816

@ Springer


https://doi.org/10.1093/acprof:oso/9780198527008.001.0001
https://doi.org/10.1002/cpa.3160460405
https://doi.org/10.1002/cpa.3160460405
https://doi.org/10.1111/sapm.12455
https://doi.org/10.1515/ans-2019-2050
https://doi.org/10.1007/s42985-022-00159-2
https://doi.org/10.5445/IR/1000154207
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2022-82.pdf
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2022-82.pdf
https://doi.org/10.1007/s00030-022-00824-w
https://doi.org/10.1007/s00030-022-00824-w
https://doi.org/10.1007/s00205-019-01469-3
https://doi.org/10.1007/s00205-015-0870-1
https://doi.org/10.1007/s00205-015-0870-1
https://doi.org/10.1007/978-1-4612-1714-5
https://gitlab.kit.edu/sebastian.ohrem/ohrem_reichel-quasilinear_breather_approximation
https://gitlab.kit.edu/sebastian.ohrem/ohrem_reichel-quasilinear_breather_approximation
https://doi.org/10.1137/110837899
https://doi.org/10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B
https://doi.org/10.1016/S0294-1449(00)00125-6
https://doi.org/10.1016/S0294-1449(00)00125-6
https://doi.org/10.1007/s005260100153
https://doi.org/10.1137/S0036141004441751
https://doi.org/10.1142/S0218202510004751
https://doi.org/10.1142/S0218202510004751
https://doi.org/10.1007/BF00380816

35 Page52o0f52 S. Ohrem, W. Reichel

41. Stuart, C.A.: Modelling axi-symmetric travelling waves in a dielectric with nonlinear refractive index.
Milan J. Math. 72, 107-128 (2004). https://doi.org/10.1007/s00032-004-0035-4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1007/s00032-004-0035-4

	Existence of traveling breather solutions to cubic nonlinear Maxwell equations in waveguide geometries
	Abstract
	1 Introduction and exemplary results
	1.1 Examples of our results
	1.2 Discussion of the examples
	1.3 Outline of paper

	2 Main results and numerical illustration
	2.1 Cylindrical geometry
	2.2 Slab geometry
	2.3 Numerical illustrations, discussion, and some open questions

	3 Reduction to a bounded domain problem
	4 Approximation by finitely many harmonics
	5 Proof of Theorems 2.1 and 2.3
	6 Modifications in the slab setting
	7 Further regularity estimate and bifurcation phenomenon
	A The fractional Laplacian
	B Properties of the nonlinearities
	C Examples
	D Numerical method
	Acknowledgements

	References



