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A fully resolved numerical study was performed to investigate interfacial heat and mass
transfer enhanced by the fully developed Rayleigh–Bénard–Marangoni instability in a
relatively deep domain. The instability was triggered by evaporative cooling modelled by a
constant surface heat flux. The latter allowed for temperature-induced variations in surface
tension giving rise to Marangoni forces reinforcing the Rayleigh instability. Simulations
were performed at a fixed Rayleigh number (Rah) and a variety of Marangoni numbers
(Mah). In each simulation, scalar transport equations for heat and mass concentration at
various Schmidt numbers (Sc = 16−200) were solved simultaneously. Due to the fixed
(warm) temperature prescribed at the bottom of the computational domain, large buoyant
plumes emerged quasi-periodically both at the top and bottom. With increasing Marangoni
number a decrease in the average convection cell size at the surface was observed,
with a simultaneous improvement in near-surface mixing. The presence of high aspect
ratio rectangular convection cell footprints was found to be characteristic for Marangoni-
dominated flows. Due to the promotion of interfacial mass transfer by Marangoni forces,
the power in the scaling of the mass transfer velocity, KL∝Sc−n , was found to decrease
from n = 0.50 at Mah = 0 to ≈ 0.438 at Mah = 13.21 × 105. Finally, the existence of a
buoyancy-dominated and a Marangoni-dominated regime was investigated in the context
of the interfacial heat and mass transfer scaling as a function of Mah + εRah , where ε is a
small number determined empirically.
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1. Introduction
It is well known that surface water is a very important buffer for the (temporary) storage
of heat and atmospheric gases (Johnson et al. 2021; Cheng et al. 2022; Gruber et al.
2023; Pan et al. 2023 ). Hence, a proper understanding of the heat and gas transfer across
the air–water interface is of fundamental importance to reliably predict the global heat
and greenhouse gas budget (Yu 2019). The very low mass diffusivity D of atmospheric
gases in water, combined with their typically low to moderate solubility, gives rise to
very steep concentration gradients throughout the water phase. Especially at the surface
this leads to a very thin concentration boundary layer that is extremely difficult to fully
resolve both in experiments and in numerical simulations. Because of this, to date, in
many direct numerical simulations (DNS) the Schmidt number Sc = ν/D, where ν is the
kinematic viscosity, was often limited to values below 50 (e.g. Schwertfirm & Manhart
2007; Nagaosa & Handler 2012; Tsai et al. 2013). Note that for atmospheric gases dissolved
in water, the Schmidt number in typical ambient temperature conditions varies between
100 and 1000, for instance, at 20 ◦C the Schmidt number for helium is Sc ≈ 150, for oxygen
it is Sc ≈ 500 and for carbon dioxide it is Sc ≈ 600 (see, e.g. Jähne & Haussecker 1998).

Interfacial heat and mass transfer at the air–water interface is enhanced by various
turbulence generating mechanisms, which often reinforce one another. The most
prominent one is turbulence induced by wind shear directly at the surface (Zappa et al.
2007; Wanninkhof 2014; Garbe et al. 2014; Kurose et al. 2016; Turney 2016; Blomquist
et al. 2017; Komori et al. 2018). In, for example, streams and rivers, bottom-shear induced
turbulence, as studied by Magnaudet & Calmet (2006), Herlina & Jirka (2008); Huotari
et al. (2013), Turney & Banerjee (2013), Variano (2013), Herlina & Wissink (2014),
Pinelli et al. (2022), is prevalent. Finally, turbulence in the water phase can also be
generated by surface cooling induced instabilities, e.g. due to evaporation (Shay & Gregg
1984; Soloviev & Klinger 2001; Podgrajsek, Sahlee & Rutgersson 2014; Ali 2020). The
latter effect usually dominates at very low wind speeds in more or less stagnant water
(Rutgersson & Smedman 2010; MacIntyre et al. 2018, 2021).

Turbulence generated by surface cooling effects can give rise to (deeply penetrating)
buoyant convection (Schladow et al. 2002; Jirka, Herlina & Niepelt 2010; Wissink &
Herlina 2016) that often acts in concert with surface-temperature-gradient-induced
Marangoni forces (Nield 1964; Toussaint et al. 2008). At the surface this process typically
results in the appearance of a pattern of convection cell footprints, such as studied
by Pearson (1958), Bodenschatz, Pesch & Ahlers (2000), Nepomnyashchy, Legros &
Simanovskii (2006), Schwarzenberger et al. (2014), Köllner et al. (2016).

It should be noted that Marangoni effects can also be generated by local concentration
variations in a multicomponent fluid (e.g. Schwarzenberger et al. 2014). For instance, in
binary droplets, evaporation of the more volatile component induces density differences
as well as surface tension gradients (see Diddens, Li & Lohse (2021) and the references
therein). Another example is the Marangoni force induced by surfactant-concentration
gradients as studied by, e.g. Khakpour, Shen & Yue (2011) and Wissink et al. (2017).
The latter study showed a gradual decrease in interfacial mass transfer with increasing
surfactant concentration. In the natural world, surface tension effects are generally induced
by a combination of surface-temperature and solutal-concentration gradients. To gain a
fundamental understanding of the effectiveness and intricacies of the individual heat and
gas transfer mechanisms, however, a first step is to study each case in isolation.

Traditionally, chemical engineering applications have been a major driving force
for Marangoni-instability studies, usually focusing on droplets and/or shallow
domains bounded from below by a solid wall (e.g. Koschmieder & Prahl 1990;
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Figure 1. Schematic of computational domain. Evaporative cooling was modelled by a constant heat flux
∂T/∂z at the surface. The concentration c at the surface was assumed to be at saturation (c = cs ) at all times.
Periodic boundary conditions were employed in the horizontal directions.

Toussaint et al. 2008; Schwarzenberger et al. 2014; Diddens et al. 2021; Dhas, Roy &
Toppaladoddi 2023). Contrastingly, studies in relatively deep domains are much less
common (Spangenberg & Rowland 1961; Davenport 1972; Tan & Thorpe 1996; Flack,
Saylor & Smith 2001). Recently, in (Wissink & Herlina 2023) a detailed parameter study
was presented to investigate the combined influence of buoyancy and surface-temperature-
induced Marangoni effects in the case of a developing Rayleigh–Bénard–Marangoni
(RBM) instability in a deep domain. To this end, a number of simulations were performed
for varying Rayleigh and Marangoni numbers. The analysis focused on the initial
development of the instability until the moment that the first plumes started to plummet. It
was shown that the Marangoni and buoyant instabilities reinforce one another, leading to
a rapid development of the RBM instability for high Rayleigh and/or Marangoni numbers.
The results show that in the case of evaporative cooling it is incorrect to discard the
Marangoni instability, which was found to significantly contribute to near-surface mixing.

In contrast to the aforementioned developing RBM cases, the present paper extends
the study to interfacial heat and mass transfer in the presence of a fully developed RBM
instability. This includes the influence of quasi-periodic buoyant plumes generated by
the Rayleigh instability at the bottom of the domain. To this end, fully resolved, time-
accurate DNS were performed. A schematic of the computational domain is shown in
figure 1. The set-up of the simulations was inspired by the buoyant-convectively driven gas
transfer experiments conducted at the Karlsruhe Institute of Technology (Jirka et al. 2010;
Murniati et al. 2025) and somewhat resembles the situation encountered immediately
below the water surface of a quiescent lake. The simulations aim to help explain the
unexpectedly high interfacial heat and gas transfer detected at low wind speeds (see, e.g.
MacIntyre, Amaral & Melack 2021). Further aims of this paper are to elucidate, e.g. the
effect of surface-temperature-induced Marangoni forces on surface and bulk temperature,
convection cell topology and the scaling of the heat and mass transfer with Schmidt
number and convection cell size. To achieve this, in the simulations the Marangoni number
was varied, while the Rayleigh number was kept constant.
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Ideally, for a detailed description of evaporative cooling effects, both the water and
air phase would need to be simulated simultaneously, as the evaporative-induced cooling
changes locally with the relative humidity of the overlying air. As such simulations are very
expensive, it was decided to reduce the (computational) complexity by only simulating
the water phase and model the evaporative cooling by a constant surface heat flux.
The latter allows for a non-uniform surface-temperature distribution, generating surface-
temperature-gradient-induced Marangoni forces. To subsequently obtain a fully developed
RBM flow, a constant temperature was prescribed at the bottom boundary.

The interfacial mass transfer of dissolved gases was modelled by assuming that the
concentration at the interface is at saturation at all times. This was combined with a
zero normal flux for the concentration at the bottom (see also § 2.4). Normal ambient
conditions were assumed with dissolved gas concentrations that do not alter significantly
the surface tension nor the density of water. These assumptions hold for most atmospheric
gases such as helium, oxygen, nitrogen and carbon dioxide. Hence, the dissolved gas
concentrations were represented by passive scalars that were solved simultaneously with
the time-dependent flow equations. The latter allows for a non-biased study of the Schmidt
number effects on the scalar fields.

While the mesh needs to be sufficiently fine to accurately resolve the extremely steep
concentration gradients associated with the high Sc numbers, the computational domain
needs to be sufficiently large to accommodate the large length scale associated with
the quasi-periodic buoyant plumes generated at the top and bottom of the domain.
Simultaneously, the large time scale associated with the buoyant instability requires
a significant simulation time in order to obtain sufficiently converged statistics. This
makes the present simulations very challenging and time consuming. Because of the
aforementioned considerations, the following actions were taken: (i) the horizontal size of
the computational domain was chosen such that in the purely buoyancy-dominated case, on
average, at least two large convection cells (often accompanied by a number of much small-
er cells) could be conveniently accommodated, and (ii) Schmidt numbers up to Sc = 200
were considered (which includes the Schmidt number that is characteristic for helium
dissolved in water). Results presented later in the paper suggest that various observations
and scaling laws for the gas transfer velocities obtained for 50 � Sc � 200 would also apply
for Sc> 200. Where applicable, this will be highlighted in the discussion of the results.

2. Computational aspects

2.1. Governing equations
As mentioned above, this study addresses both heat and mass transfer across the air–water
interface driven by surface cooling. Around a temperature of T = 20 ◦C, an almost linear
dependency between water density and temperature exists. The typically small changes in
density allow for the Boussinesq approximation to be employed to model the flow induced
by the unstable stratification near the surface. Following Balachandar (1992), for the non-
dimensionalisation of the Navier–Stokes equations, a reference length scale h and velocity
scale Uκ = κ/h were used, where κ is the thermal diffusivity and h is the depth of the
computational domain. The resulting continuity equation, using the Einstein summation
convention, reads

∂u∗
i

∂x∗
i

= 0, (2.1)
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and the momentum equations are given by

∂u∗
i

∂t∗
+ ∂u∗

i u∗
j

∂x∗
j

= −∂p∗

∂x∗
i

+ Pr
∂2u∗

i

∂x∗
j ∂x∗

j
+ Rah Pr T ∗δi3, i = 1, 2, 3, (2.2)

where x∗
1 , x∗

2 are the horizontal (x, y) directions and x∗
3 is the vertical (z) direction,

u∗
1 = u/Uκ , u∗

2 = v/Uκ and u∗
3 =w/Uκ are the velocities in the x , y and z directions,

respectively, p∗ is the generalised pressure, t∗ denotes time and Pr = ν/κ is the Prandtl
number corresponding to the ratio of the momentum and thermal diffusivities, while the
superscript ‘∗’ denotes non-dimensionalisation using h and Uκ . The buoyancy force in the
z direction is represented by the last term on the right-hand side of (2.2), in which δi3 is
the Kronecker delta,

Rah = αqgh4

κν
(2.3)

is the modified Rayleigh number, where α is the thermal expansion factor and g = −9.81
m s−2 is the gravitational acceleration, and finally,

T ∗ = (Tbot − T )

qh
(2.4)

is the non-dimensional temperature, where Tbot is the (constant) bottom temperature and
q = (∂T/∂z)|s is the temperature gradient at the water surface, which is kept constant.

The three-dimensional convection–diffusion equation for T ∗ is given by

∂T ∗

∂t∗
+ ∂u∗

j T ∗

∂x∗
j

= ∂2T ∗

∂x∗
j ∂x∗

j
. (2.5)

Similarly, the passive scalar transport is governed by the convection–diffusion equation of
the non-dimensional scalar concentration c∗,

∂c∗

∂t∗
+ ∂u∗

j c∗

∂x∗
j

= Pr
Sc

∂2c∗

∂x∗
j ∂x∗

j
, (2.6)

with

c∗ = c − cb(0)
cs − cb(0)

, (2.7)

where cs is the (constant) saturation concentration at the surface and cb(0) denotes the
initial bulk concentration at t = 0, where

cb(t)= 1
h

∫ h

0
〈c(x, y, z, t)〉x,ydz, (2.8)

using 〈·〉x,y to denote averaging in the horizontal (x, y) directions.
As in Wissink & Herlina (2023), the effect of surface-temperature-gradient-induced

Marangoni forces on the horizontal velocity components was modelled by

∂u∗
i

∂x∗
3

∣∣∣∣
s

= −Mah
∂T ∗

∂x∗
i

∣∣∣∣
s

, i = 1, 2, (2.9)

where

Mah = (dσ/dT ) qh2

μκ
(2.10)
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denotes the Marangoni number, in which σ and μ are the surface tension and dynamic
viscosity, respectively. Note that (2.9) was derived from the surfactant-induced Marangoni
model used by Wissink et al. (2017) and is equivalent to the model of Pearson
(1958). For water at about 20 ◦ C, κ = 0.143 × 10−6 m2s−1, α = 0.000207 K−1 and
dσ/dT = −0.000151 Nm−1 K−1. Except for dσ/dT (which was varied between
−0.000151 and 0 Nm−1 K−1), the (macro) Rayleigh and Marangoni numbers were based
on the aforementioned values, along with the fixed h = 0.05 m and constant q = −500 (K
m−1). The latter corresponds to a heat flux of approximately 300 Wm−2.

2.2. Appropriate scales
In our previous study (Wissink & Herlina 2023), we focused on the effects of Marangoni
forces on the initial development of the RBM instability, which is independent of the depth
of the computational domain. Hence, the ‘initial’ length scale was chosen (arbitrarily) to
be fixed at a value of L = 0.01 m, while the ‘critical length scale’ was based on the thermal
boundary layer thickness defined by

δT (t)= 〈Ts(x, y, t)〉x,y − Tb(t)

q
, (2.11)

where

Tb(t)= 1
h

∫ h

0
〈T (x, y, z, t)〉x,ydz (2.12)

denotes the bulk temperature and Ts is the surface temperature. For the developing RBM
instability, both length scales (L and δT ) were independent of the actual (much larger)
depth of the computational domain.

Here, for the fully developed RBM instability, the depth (h) of the computational domain
is the appropriate length scale only for the Rayleigh number. A proper length scale for the
Marangoni number would be the mean thermal boundary layer thickness δT , which can
only be determined a posteriori. Hence, the a priori determined Mah (2.10) was used in
the computations. Based on this Mah , dimensional analysis suggests that

δT ∝ δσ =
√

μκ

(dσ/dT ) q
, (2.13)

where δσ is the a priori Marangoni length scale, which is proportional to
√

1/Mah , but is
independent of h. Similarly, the typical Marangoni velocity scale reads

Uσ =
√
(dσ/dT ) qκ

μ
∝√

Mah . (2.14)

Analogously, based on Rah , an a priori Rayleigh length scale

δR =
(
κν

αgq

)0.25

∝ Ra−0.25
h (2.15)

and velocity scale

UR = αgqh3

ν
∝ Rah (2.16)

can be obtained. Note that UR for a fully developed flow inherently depends on h.
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Run Mah Base mesh size Sc of passive scalar Refinement

M0 0 400 × 400 × 252 16, 50, 100, 200 1, 2, 2, 3
M1 0.88 × 105 400 × 400 × 252 16, 50, 100, 200 1, 2, 3, 3
M2 1.76 × 105 400 × 400 × 252 — —
M3 2.64 × 105 400 × 400 × 252 — —
M5 4.40 × 105 400 × 400 × 252 16, 50, 100, 200 2, 3, 4, 5
M10 8.81 × 105 800 × 800 × 504 16, 50, 100, 200 1, 2, 3, 4
M12 11.01 × 105 800 × 800 × 504 — —
M15 13.21 × 105 800 × 800 × 504 16, 50, 100, 200 2, 2, 3, 4

Table 1. Simulation parameters. In all simulations, the domain size was 2h × 2h × h, Pr = 7,
Rah = 4.44 × 107, (∂T ∗/∂z∗)|s = −1.

2.3. Numerical method
The simulations were performed using the in-house KCFlo solver described in Kubrak
et al. (2013). The solver was specifically designed to generate fully resolved subsurface
velocity and scalar fields for high-Schmidt-number (low-diffusivity) mass transfer
processes at the air–water interface. In this solver the discretisation of the three-
dimensional incompressible Navier–Stokes equations uses a fourth-order-accurate central
discretisation of the diffusion terms, combined with a fourth-order central kinetic energy
conserving discretisation (Wissink 2004) of the convective terms. The Poisson equation
for the pressure is solved using a conjugate gradient solver with simple diagonal
preconditioning. For the discretisation of the scalar convection and diffusion, the fifth-
order-accurate weighted essentially non-oscillatory scheme of Liu, Osher & Chan (1994)
and a fourth-order-accurate central method are employed, respectively. A staggered
Cartesian non-uniform mesh arrangement was used, where the velocities are defined in
the middle of the cell faces, while all scalars (temperature, pressure and concentration) are
defined in the centre of the grid cells. The time integration of the velocity and the scalar
fields were performed using the second-order-accurate Adams–Bashforth method.

As the temperature is an active scalar and directly affects the velocity, it is essential
to solve both on the same (base) mesh. To further increase the accuracy of the scalar
discretisation, the solver allows the usage of refined meshes, where scalar fields are solved
on a finer mesh than the flow field (see also Kubrak et al. 2013). A divergence-free
instantaneous velocity field on each of the refined meshes was obtained by performing the
following steps. First, a fourth-order-accurate interpolation of the u∗, v∗ components of the
velocity field to the refined mesh was carried out. Second, this u∗, v∗ field was employed
to reconstruct the w∗-velocity field by using the second-order central discretisation of
the continuity equation starting with the interfacial boundary condition w∗ = 0 and
subsequently moving downwards grid plane by grid plane.

The simulations presented in this paper comprised medium- to large-scale computations
(cf. table 1). The code was parallelised by splitting the computational domain into blocks
of equal size. Communication between blocks was performed using the standard message
passing interface protocol. For the largest simulation, up to 20.644 × 109 grid points and
4800 cores were used.

2.4. Computational set-up, boundary and initial conditions
The simulations were performed at a fixed Rayleigh number (Rah = 4.44 × 107) combined
with a wide range of Marangoni numbers (Mah = 0 to Mah = 13.21 × 105). The 2h ×
2h × h computational domain (cf. figure 1) was discretised using a 400 × 400 × 252 base
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mesh for the cases with Mah � 4.40 × 105 and a 800 × 800 × 504 base mesh for Mah �
8.81 × 105. To attain a finer resolution near the interface, the mesh was stretched using the
node distribution

z(k)=
[

1 − tanh(z p)

tanh(ψ/2)

]
z(0)/2 +

[
1 + tanh(z p)

tanh(ψ/2)

]
z(nz)/2 (2.17)

for k = 1, . . . , nz − 1, with ψ = 2 and

z p =ψ

[
k

nz
− 0.5

]
, (2.18)

where z(nz)− z(0)= h is the vertical extent of the computational domain and nz is the
number of nodes in the z direction. In parallel to the flow and temperature fields, in each
simulation up to four passive scalar fields with different Schmidt numbers were solved
simultaneously. The latter allowed an unbiased parametric study of the Schmidt number
dependency of the mass transfer velocity KL . As mentioned in § 2.3, when required, a
refined mesh was employed in order to accurately resolve the higher-Sc concentration
fields. An overview of the simulations, including the respective scalar mesh refinement
factors used, is provided in table 1. Note that the results of a rigorous grid refinement
study that was performed to evaluate the quality of the mesh are presented in Appendix A.

In the horizontal directions of the computational domain, periodic boundary conditions
were employed for all variables. As discussed in § 1, to mitigate possible effects of lateral
confinements, the chosen domain size (in combination with the chosen Rayleigh number)
was such that at least two (large) convection cells could be conveniently accommodated.
At the bottom, free-slip boundary conditions were imposed. The surface was assumed to
be flat with a vertical velocity of zero, while the horizontal velocities were modelled using
(2.9). This rigid lid assumption can only be justified a posteriori by, e.g. calculating the
Crispation (Cr = ρνκ/σδT ) and Galileo (Ga = |gδ3

T /νκ|) numbers for each simulation
using the thermal boundary layer thickness δT as the characteristic length scale. It was
found that Cr ranges from 2.04 × 10−6 to 6.18 × 10−6 and Ga ranges from 2.2 × 103

to 6.12 × 104. As in all simulations Cr 	 1 and Ga 
 1, the flat surface assumption
employed here was justified.

As illustrated in figure 1, the heat flux at the top was kept fixed (∂T ∗/∂z∗ = −1), while
at the bottom the temperature was kept constant (T ∗ = 0). Finally, for the passive scalar
concentrations, at the bottom the scalar flux ∂c∗/∂z∗ was set to zero. At the surface, the
concentrations for all Schmidt numbers Sc were fixed at c∗

Sc = 1 (indicating fully gas-
saturated conditions at all times). Validation of the latter assumption can be found in
Duda & Vrentas (1968), who showed that interfacial resistance effects are negligible for
atmospheric gases.

To establish fully developed temperature and velocity fields, each simulation was
initially run without passive scalar calculations. The velocity field was initially set to zero,
while the non-dimensional temperature in (2.4) was initialised by

T �(ζ ∗, t∗)= −
[

2

√
t∗
π

exp
(−(ζ ∗)2

4t∗

)
− ζ ∗erfc

(
ζ ∗

2
√

t∗

)]
, (2.19)

where ζ ∗h = h − z. The initial simulations started at t∗ = 5.7143 × 10−4 at which time
random disturbances (uniformly distributed between T ∗ = 0 and 0.0008) were added to
the initial temperature field to trigger the RBM instability. The flow was deemed fully
developed after it reached a statistically steady state for both the temperature and velocity
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(a) −0.030 −0.025 −0.020 −0.030 −0.025 −0.015−0.020−0.015 −0.010 (b)

Figure 2. Temperature isosurfaces at T ∗
1 = ath〈T ∗

s 〉x,y (blue) and T ∗
2 = 2〈T ∗(z = 0.5h)〉x,y − T ∗

1 (red) :
(a) case Mah = 0 using ath = 0.975, and (b) Mah = 8.81 × 105 using ath = 1.175.

fields. To achieve this, the simulations were run for at least six large eddy-turnaround times
corresponding to about t∗ = 0.0114.

The actual mass transfer simulations were started using the fully developed flow and
temperature fields produced in the initial simulations. To quickly establish a quasi-steady
turbulent concentration boundary layer, rather than using a zero gas concentration in the
interior of the domain, the concentration fields were initialised using the solution of the
unsteady diffusion equation (cf. e.g. Fischer et al. 1979)

c∗
Sc(ζ

∗, t∗)= erfc

(
ζ ∗
√

Sc/Pr
4t∗

)
, (2.20)

with t∗ = 5.7143 × 10−4. Mass transfer simulations were performed over a period of about
three bulk time units, which was deemed to be sufficiently long to obtain statistically
quasi-steady results.

3. Results

3.1. Flow topology
Figure 2(a) and 2(b) show snapshots of fully developed temperature fields obtained at
Mah = 0 and 8.81 × 105, respectively. The figure illustrates the effect of Marangoni forces
on the heat exchange mechanism between the cooled water surface and the warmer bottom
boundary of the computational domain. Temperature isosurfaces at T ∗

1 = ath〈T ∗
s 〉x,y and

T ∗
2 = 2〈T ∗(z = 0.5h)〉x,y − T ∗

1 (where ath is given in the caption) were used to identify,
e.g. the thermal plumes that are characteristic for buoyant instabilities. Irrespective of the
presence of Marangoni forces, relatively few large buoyant rising plumes of similar size
were found to emerge quasi-periodically from the bottom of the computational domain
to the surface. While deeply penetrating plumes of similar size and frequency can also
be observed to arise from the top in all simulations, their shape and the mechanism by
which they form changes with Mah . In a fully developed RBM flow, heat fluxes at the
surface and bottom of the computational domain need to be in equilibrium. Hence, at
Mah = 0 the shape of these large plumes (that are purely buoyancy-generated) mirrors
the situation at the bottom of the domain. Contrastingly, in the presence of Marangoni
forces the local near-surface flow topology is significantly affected. For instance, at Mah =
8.81 × 105 areas containing a multitude of small-scale structures of relatively cold water
emerge (cf. figure 2b). Due to the entrainment of these Marangoni generated small-scale
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h

Figure 3. Near-surface cross-sectional temperature distribution with fluctuating velocity vectors to identify
counter-rotating vortices at one of the small plumes. The snapshot is from simulation with Mah = 13.21 × 105

in the plane x/h = 1 at t∗ = 0.00295.

structures, with increasing Mah the shape of the large, deeply penetrating plumes becomes
more and more irregular. The size of these small-scale structures tends to reduce as they
become more numerous with increasing Mah . Because of their limited size, the buoyancy
force acting on these structures is very small, so that the (horizontally) elongated plume-
like structures were found to linger for a significant time at the surface forming a fine,
non-uniform mesh.

As illustrated by the detailed cross-section in figure 3, underneath the joint edges of
(typically small) neighbouring convection cells, pairs of counter-rotating vortices can be
found lying side by side. The Marangoni-induced convection cells form due to surface-
temperature gradients, which induce gradients in the surface tension. These gradients
generate Marangoni forces that move warm (low surface tension) water along the surface
to locations with relatively cool (high surface tension) water. While water moves along the
surface it is gradually cooled due to evaporation. At the edges of convection cells, opposing
streams of cooled water collide, generating small plumes of cold water that are actively
pushed down into the upper bulk by the surface Marangoni forces. A more quantitative
discussion of the Marangoni plumes will be presented in § 3.5.

The Marangoni effect on the near-surface flow topology is elucidated in figure 4,
showing sequences of surface divergence (β∗ = −∂w∗/∂z∗) contour plots for cases M0,
M1, M5, M10 and M15 (cf. table 1). A non-uniform distribution of large and small
convection cells can already be observed at Mah = 0.88 × 105 (case M1). The average
proportion of the surface occupied by small cells is observed to increase significantly with
Mah (which is further quantitatively evidenced by the histograms in figure 5). As a result,
on average the number of large cells becomes negligible (even though the area they occupy
remains non-negligible) compared to the number of small convection cells. Obviously, as
the number of cells increases, the characteristic length scale of the small cells tends to
gradually reduce with Mah , which is in agreement with the dimensional analysis (2.13),
as was previously reported by, e.g. Schwarzenberger et al. (2014). Note that to compute
the area of individual convection cells, the cells were identified by isolated patches at the
surface with a surface divergence β∗ �−0.5β∗−

rms, where β∗−
rms is the corresponding root

mean square of all β∗ � 0.
From the sequences in figure 4, it can also be seen that, for Mah � 4.4 × 105, the number

of small cells (and, hence, the surface area that they occupy) significantly fluctuates in
time between two limiting states, one with relatively few cells and one with a large
number of cells. The time interval between the two limiting states is determined by
the characteristic period at which large plumes are generated by buoyancy forces at
the bottom of the computational domain. Starting from the state with a relatively large
number of (small) convection cells (roll cells), a (significant) reduction in the number
of these cells is achieved through the surface interaction between warm buoyant plumes
and Marangoni structures. On their way to the surface (depending on the strength of the
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Figure 4. Sequences of scaled surface divergence β∗/β∗
rms contour plots extracted from cases M0, M1,

M5, M10 and M15 with [Mah ; β∗
rms] = [0 ; 0.44 × 104], [0.88 × 105 ; 0.80 × 104], [4.40 × 105 ; 2.71 × 104],

[8.81 × 105 ; 6.51 × 104], [13.21 × 105 ; 9.4 × 104], respectively. The first image in each row represents a
snapshot near the end of a large-rising-plume event, characterised by an overall reduction in the number of
cells and often by large regions completely devoid of small-scale Marangoni structures. The two subsequent
images show the emergence of small-scale Marangoni plumes in the absence of large-plume events. In each
row, the time interval between the first, second and third snapshots is �t∗ = 0.000115. The last snapshot is
about 0.5 bulk time units apart from the first snapshot and illustrates the state immediately before the next
large-plume event (see § 3.2 for the increase in β∗

rms with Mah).
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Figure 5. Distribution of convection cell footprint sizes from cases M5, M10 and M15 with Mah = 4.40 × 105,
8.81 × 105 and 13.21 × 105, respectively. Here Ac/As is the proportion of surface area occupied by a
convection cell.

plumes) the displaced water generated by these plumes either (i) sweeps near-surface
structures immediately above to the side, resulting in rapidly spreading large convection
cells, similar to the eruptions reported in Köllner et al. (2016) that are completely devoid of
any small-scale Marangoni structures (cf. left most panes in figure 4), or (ii) gets entrained
into the Marangoni cells, thereby (significantly) increasing their size (small eruptions).
Both events result in an overall reduction of the number of cells.

After such reduction events, there is usually a period with no or very minor interactions
between warm buoyant plumes and near-surface structures. During such periods the
number of small cells quite rapidly increases due to a sequence of Marangoni-induced
cell divisions. A possible explanation of the cell division process is provided below. It
starts with pairs of counter-rotating vorticities lying side by side along opposite edges of
the convection cell. Each vortex has a footprint consisting of a narrow strip of negative
surface divergence at the joint edge of neighbouring (often) elongated convection cells,
which are typically sandwiched between narrow areas of high positive surface divergence
(cf. figure 4). If the cell is sufficiently large, these vortices will induce a pair of counter-
rotating mirror vorticities (transporting fluid from the surface into the upper bulk). As
these mirror vorticities become stronger, this process will eventually lead to the break up
of the convection cell into smaller cells.

Below, the aforementioned observations will be further analysed and linked to the
interfacial heat and mass transfer.

3.2. Flow statistics
Figures 6(a) and 6(b) show profiles of the normalised velocity fluctuations (

√〈w′w′〉/Uκ ,√〈u′u′ + v′v′〉/(2Uκ)) as a function of z/h, where 〈·〉 denotes averaging both in time and
the (homogeneous) horizontal directions. The profiles shown are characteristic also for the
other simulations, and illustrate that, irrespective of the Marangoni number, the vertical
fluctuations in the bulk are roughly 1.5 to 2.5 times larger than the horizontal fluctuations.
This indicates that the momentum transport in the bulk is predominantly in the vertical
direction, which is due to the rising and sinking buoyant plumes (see also figure 2). The
typical non-dimensional time scale for the large-scale fluctuations in the bulk – driven
mostly by buoyancy – as estimated by

τ ∗
b = τbUκ/h = κ∫ z

0
√〈w′w′〉dz

(3.1)

was found to be about 0.002093 in all simulations and, therefore, appears to not depend
on Mah .
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Figure 6. Flow statistics: (a) vertical velocity fluctuations and (b) horizontal velocity fluctuations as a function
of z/h extracted from simulations M0, M5, M10, M15, with Mah = 0, 4.40 × 105, 8.81 × 105 and 13.21 × 105,
respectively. (c) Variation of surface divergence β∗

rms and (d) surface kinetic energy Ks as a function of Mah .

Figures 6(a) and 6(b) also show the significant enhancement in both the horizontal
and vertical velocity fluctuations immediately below the surface with increasing Mah .
These enhanced fluctuations are only able to penetrate thin layers adjacent to the surface
(before the profiles intersect with the Mah = 0 profile). The thickness of these layers was
found to be roughly 0.1h and 0.2h for the horizontal and vertical fluctuations, respectively.
Further down, the flow is dominated by buoyancy.

The significant increase in the velocity fluctuations just below the surface is a direct
consequence of the boundary condition (2.9): at the surface, the gradients in the horizontal
fluctuations depend linearly on Mah . Hence, for Marangoni-dominated flows, with
increasing Mah , the surface divergence (β∗ = −∂w∗/∂z∗ = ∂u∗/∂x∗ + ∂v∗/∂y∗) also
increases linearly with Mah , which is evidenced in figure 6(c). As a result, the magnitude
of the downward velocity of the Marangoni plumes at the surface increases, which is in
agreement with (2.14). Note that while β increases with Mah for surface-temperature-
gradient-induced Marangoni forces, it decreases with increasing Marangoni number for
surfactant-induced Marangoni forces. A detailed explanation of the physical mechanisms
involved in the latter can be found in, e.g. Shen, Yue & Triantafyllou (2004), McKenna &
McGillis (2004), Wissink et al. (2017). The effects of these different mechanisms on
interfacial mass transfer will be discussed in § 3.6.

In Wissink & Herlina (2023) it was shown that for the developing purely Marangoni
driven instability, the total surface kinetic energy 〈Ks〉 linearly depends on the Marangoni
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Figure 7. (a) Normalised temperature profiles at various Marangoni numbers. (b) Variation of normalised
surface temperature and bulk temperature as a function of Mah . (c) Non-dimensional mean thermal boundary
layer thickness 〈δT /h〉.

number. When adding buoyancy (RBM instability), this linear dependency only persisted
at sufficiently large Marangoni numbers. Similarly, also for fully developed RBM
instabilities (with constant Rah), a clear linear dependency of 〈Ks〉 on Mah was only found
for larger Mah (cf. figure 6d). For smaller Mah , buoyancy becomes increasingly important
resulting in a gradual loss of linearity.

3.3. Mean temperature profile and heat transfer scaling
Figure 7(a) shows time and horizontally averaged temperature profiles. All profiles are
characterised by relatively thin thermal boundary layers at the surface and bottom, and
have an extended constant (fully mixed) temperature region in the bulk. When increasing
the Marangoni force, the surface temperature 〈T ∗

s 〉 can be seen to become warmer due to
a more intense vertical mixing near the surface. Simultaneously, because of the increased
transfer rate of relatively cold surface water into the bulk, the bulk temperature 〈T ∗

b 〉
becomes colder, and approaches an asymptotic value of about −0.025 (cf. figure 7b). As
can be seen in figure 7(c), this increased vertical mixing at the surface results in a thinning
of the mean surface thermal boundary layer thickness 〈δT 〉 defined in (2.11).

Figure 8(a) shows the corresponding non-dimensional heat transfer velocity (Nusselt
number), defined as

Nu = qh

〈Ts − Tb〉 = h

〈δT 〉 , (3.2)
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Figure 8. (a) Variation of non-dimensional heat transfer velocity Nu − Nuκ as a function of Mah + εRah ,
with ε= 0.0016. (b) Variation of MaδT with Mah .

as a function of (Mah + εRah) rather than Mah to reflect the fact that the Marangoni
and buoyant instabilities reinforce one another (cf. e.g. Nield 1964). At first sight, the
data suggest a linear relation between Nu and (Mah + εRah). However, for q � 0, it is to
be expected that δT → h due to thermal diffusion when Mah, Rah → 0, so that Nu →
Nuκ = 1, where Nuκ is the Nusselt number corresponding to the purely diffusive case. The
latter is not predicted by a linear interpolation so that a power law relation,

(Nu − Nuκ)= aN (Mah + εRah)
r , (3.3)

is more applicable. Note that ε= 0.0016 and aN (cf. figure 8a) were determined
empirically. In fact, the figure suggests the existence of two regimes. For the buoyancy-
dominated regime, Mah can be seen to modulate the Rayleigh number, effectively
replacing (Mah + εRah) by Raeff. The obtained value of r = 0.25 is consistent with
the a priori estimate δR ∝ δT ∝ Ra−0.25

eff for purely buoyancy-driven flows (cf. § 2.2).
Similarly, in the Marangoni-dominated regime, Rah slightly alters Mah , so that an
effective Marangoni number Maeff = (Mah + εRah) is obtained. Here, the value of r = 0.5
was found to provide a very good interpolation of the data and is consistent with the
a priori scaling δσ ∝ δT ∝ Ma−0.5

eff for purely Marangoni driven flows (cf. § 2.2). The
existence of such a Marangoni-dominated regime is further evidenced in figure 8(b), where
for Mah � 4.4 × 105, MaδT = Mah(δT /h)2 becomes approximately constant converging
to a value of about 53. Note that the existence of such a dual regime (Rayleigh-
dominated vs Marangoni-dominated) was also found in the developing RBM instability
case (Wissink & Herlina 2023). Furthermore, to facilitate comparison with experiments
and other simulations, it could be convenient to recast the Mah + εRah into Bo−1

h + ε,
where Boh = Rah/Mah is the Bond number.

3.4. Temperature fluctuations
As observed in figure 9(a), due to the action of Marangoni forces at the surface, significant
differences in the T ∗

rms = √〈T ∗′T ∗′〉 profiles can be seen in the upper bulk. These
differences gradually decrease with distance to the surface, though their presence is still
noticeable near z = 0. The temperature fluctuation at the surface, T ∗

rms,s, and the peak in
T ∗

rms near the surface both become smaller with increasing Mah . This is associated with the
variation of the temperature gradient |〈∂T ∗/∂z∗〉| with z/h shown in figure 9(b), where
the locations of the T ∗

rms peaks are indicated by the red crosses. It can be seen that for
Mah � 1.76 × 105, the location of these peaks is fully embedded in a region of relatively
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Figure 9. Profiles at various Marangoni numbers of (a) normalised temperature fluctuation, (b) normalised
temperature gradient |∂〈T ∗〉/∂z∗|, (c) T ∗

rms/(T
∗

b − T ∗
s ), (d) |∂2〈T ∗〉/∂z∗2|. Variation of (e) surface-temperature

fluctuations and ( f ) boundary layer thickness with Mah .

large |〈∂T ∗/∂z∗〉| and, therefore, associated with a relatively large production of T ∗
rms.

In contrast, for Mah � 8.81 × 105, the peak in T ∗
rms is located in a region of relatively

small |〈∂T ∗/∂z∗〉| leading to a much reduced production of T ∗
rms.

To explain the latter, in figure 9(c), T ∗
rms is scaled by 〈T ∗

b − T ∗
s 〉 to remove any bias

due to the Mah dependency of 〈T ∗
b − T ∗

s 〉. It can be seen that at the surface the scaled
temperature fluctuation θ ′ = T ∗

rms,s/(T
∗

b − T ∗
s ) only slightly reduces with increasing Mah

for Mah � 2.65 × 105. Contrastingly, θ ′ values were found to increase with Mah for larger
Marangoni numbers (cf. also figure 9e). The latter indicates a major change in the surface
flow dynamics as the RBM instability becomes dominated by Marangoni forces.
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Furthermore, it can be observed that below the surface both θ ′ and the relative size of the
peaks θ ′

p − θ ′
s (where the subscripts p, s correspond to the peak and surface, respectively)

tend to increase with Marangoni number (cf. figure 9c). This increase is closely linked
to the decay rate of vertical temperature gradients expressed by |〈∂2T ∗/∂z∗2〉| shown in
figure 9(d). At Mah = 0, this decay is slowest and results in a relatively small peak in θ ′
located very close to the surface. The increase in the decay of the gradient |〈∂T ∗/∂z∗〉|
with increasing Mah results in an enhanced increase in θ ′ with distance to the surface,
leading to an increase in θ ′

p − θ ′
s and an approximately linear increase in the thickness δ∗TT

(which is the distance between the location of θ ′
p – identified by the markers in figure 9d –

and the surface), at least for Mah � 4.4 × 105.
For the larger Marangoni numbers Mah � 8.81 × 105, the very rapid decrease in the

gradient |〈∂T ∗/∂z∗〉| in the near-surface region still leads to a further increase in θ ′
p − θ ′

s .
Simultaneously the location where the gradient becomes too weak to support any further
growth in θ ′ approaches the surface, eventually resulting in a reduction in δ∗TT. Note that the
latter mechanism already affects the results at Mah = 4.4 × 105, which can also be seen in
figure 9( f ), where δ∗TT exhibits linear growth only for the smaller Mah � 2.64 × 105, while
for larger Mah , this trend reverses. For comparison, also included in figure 9( f ) are δ∗T , δ∗wT
(the distance between the peak in the 〈w∗′T ∗′〉 profile and the surface) and finally δ∗T 10,
which is defined as the distance between the surface and the location where |∂〈T ∗〉/∂z∗| =
0.1|∂T ∗/∂z∗|s . It can be seen that for Mah � 2.64 × 105, δ∗TT is significantly smaller than
δ∗T 10, indicating a non-negligible vertical gradient in T for 0 � ζ � δ∗T 10, while for Mah �
8.81 × 105, δ∗TT was found to be slightly larger than δ∗T 10.

The above statistics can be linked to the flow dynamics discussed earlier in § 3.1
(cf. figures 2 to 4). Because of the very few (large) plumes emerging at Mah = 0, the
location of the peak in the horizontal temperature fluctuations is relatively close to the
surface. For the smaller Mah � 4.40 × 105, the number of plumes somewhat increases
with Mah causing the T ∗

rms peak to move further away from the surface. This trend
is reversed for the larger Marangoni numbers, where the average convection cell size
significantly reduces and, hence, the size of the plumes formed at the edges of these cells
becomes very small. Consequently, these small plumes lose buoyancy and tend to linger
immediately under the surface for a significant time until either the larger of these plumes
become sufficiently buoyant and moves into the upper bulk, or a significant buoyant event
from below displaces these small convection cells, dragging them into the bulk. As a result,
the T ∗

rms peak approaches the surface with increasing Mah � 8.81 × 105.

3.5. Concentration profiles and Marangoni layer
As mentioned in § 2.4, after the fully developed flow and temperature fields
were established, mass transfer calculations for four different Schmidt numbers
(Sc = 16, 50, 100, 200) were activated starting with the initial concentration profiles given
in (2.20). In all simulations, a statistically quasi-steady state for the mass concentrations
was achieved within one bulk time unit.

Figure 10(a) shows (passive) scalar concentration profiles at Sc = 200. The shape of the
mean profiles can be seen to significantly change with increasing Marangoni number. As
typical for a buoyancy-dominated flow, at Mah = 0 the profile shows a gradual decrease in
concentration when moving away from the surface. Contrastingly, for Mah � 4.40 × 105,
the profiles are characterised by the appearance of a local minimum in the concentration
very close to the surface. This minimum is followed by a local maximum, indicating the
approximate location of the edge of the relatively thin Marangoni layer.
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Figure 10. Near-surface concentration profiles (a) for various Mah at Sc = 200, (b) for various Sc at
Mah = 13.2 × 105 (case M15).
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Figure 11. Near-surface cross-sectional concentration distribution for Sc = 200 and Mah = 13.21 × 105 in the
plane x/h = 1 at (a) t∗ = 0.00224, (b) t∗ = 0.00295. (c) Detailed view of the Marangoni plume identified by
the box in (b), together with fluctuating velocity vectors.

An explanation of these features can be seen in figure 11, showing cross-sectional
snapshots at x/h = 1 of the concentration at Sc = 200 focusing on the near-surface
region of simulation M15 (Mah = 13.21 × 105). The snapshots shown were extracted at
t∗ = 0.00224 (figure 11a) and t∗ = 0.00295 (figure 11b). The corresponding convection
cell footprints at the surface can be found in figure 4. Both snapshots show a multitude
of plumes of varying sizes. Most of the plumes are small with a limited penetration depth
and are associated with the small convection cells observed in figure 4 that are typical
for Marangoni-dominated flows. Figure 11(c) shows a detailed cross-section through the
Marangoni plume identified by the rectangle in figure 11(b), together with fluctuating
velocity vectors. As illustrated in the figure, because of the specific topology of this
characteristic Marangoni plume, which is connected to the surface by its stalk, a clearly
identifiable minimum in concentration is obtained between the surface and the lobes of the
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Figure 12. Profiles of the normalised concentration fluctuations c∗
rms/(c

∗
s − c∗

b) for Sc = 16 − 200 as obtained
in simulations M0, M1, M5, M10, M15.

plume. The Marangoni plume typically starts its life as a downward moving jet of cold,
saturated flow that induces two counter-rotating surface-parallel vortices on either side of
its symmetry plane (cf. also figure 3). As it approaches its maximum penetration depth, the
two vortices move warm, unsaturated ambient water upwards around the lobes and finally
inwards immediately below the surface. This process is responsible for the appearance of
a local minimum in the mean near-surface concentration profile.

The presence of the Marangoni sublayers in the mean concentration profiles at
Sc = 200 and Mah � 4.40 × 105 are visible owing to the combination of very low
scalar diffusivity and a sufficiently high Marangoni number, which ensures that scalar
diffusivity and buoyancy effects, respectively, do not mask the characteristic features of
the Marangoni-dominated region in the concentration profiles. In contrast, as depicted
in figure 10(b) (showing the mean concentration profiles obtained at Mah = 13.21 × 105

for Sc = 16, 50, 100, 200), the local minima in the profiles that are located very close
to the surface gradually vanish as the diffusivity increases with reducing Schmidt
number. Figures 10(a) and 10(b) also clearly show the (expected) significant reduction
in the concentration boundary layer thickness (steepening of the concentration gradient
(∂c∗/∂z∗) at the surface) both with increasing Mah and Sc. The former due to stronger
fluctuations introduced to the upper bulk by the Marangoni forces and the latter by reduced
scalar diffusivity.

In figure 12 the effect of increasing Mah and Sc on the concentration fluctuation (c∗
rms =√〈c∗′c∗′〉) profile is shown. A significant difference can be observed between the profiles
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Figure 13. Variation of the Marangoni layer thickness 〈δM 〉/h with Mah . For comparison, also shown are
the estimates 〈δM 〉/h ≈ a1

√
Ac/h and 〈δM 〉/h ≈ a2δσ /h ∝ Ma−0.5

h , with a1 = 0.1 and a2 = 1.6. Here 〈Ac〉
denotes the approximate convection cell footprint area and δσ is the a priori estimate of the Marangoni layer
(2.13).

of the two most extreme cases studied here (M0 with Mah = 0, Sc = 16 versus M15 with
Mah = 13.21 × 105, Sc = 200). While in the former case, only one peak near the surface is
observed, two peaks can be clearly identified in the latter case. The distinct characteristics
of these profiles for the different regimes are discussed in more detail below.

For cases M0 and M1 (Mah � 0.88 × 105), the c∗
rms profiles show a well-defined

maximum (identified by ‘x’). The distance between this (local) maximum and the surface
corresponds to the concentration boundary layer thickness 〈δc〉/h, which is found to
gradually decrease with increasing Schmidt number.

For cases M5–M15 (Mah � 4.40 × 105) and Sc � 100, two well-defined c∗
rms peaks

were observed. The surface-nearest peak was found to coincide with the edge of the
concentration boundary layer, of which the thickness

〈δc〉
h

=
∣∣∣∣ c∗

s − c∗
b

∂c∗/∂z∗|s

∣∣∣∣ (3.4)

can be seen to reduce with increasing Sc. The thickness, δM , of the Marangoni layer is
defined by the distance between the surface and the penetration depth of the Marangoni
plumes. It was found that δM approximately corresponds to the distance between the
surface and the location of the lower peak (identified by the dashed grey line). The figure
clearly shows that this location only depends on Mah and is Sc independent. Note that for
the cases M5–M15, the c∗

rms profiles at Sc = 50 already suggest the presence of two peaks
of which the lower one coincides with the dashed grey line.

Figure 13 shows that the thickness of the Marangoni layer 〈δM 〉 decreases with
increasing Mah according to the power law 〈δM 〉 ∝ Ma−0.5

h , which is in agreement with
the a priori determined scaling of the Marangoni length scale δσ (2.13). Also shown is
an estimate of 〈δM 〉 using 〈δM/h〉 ≈ 0.1

√
Ac/h, where Ac is the approximate convection

cell footprint area. For the larger Marangoni numbers, this estimate provides a reasonably
good prediction of the Marangoni layer thickness, confirming the close relation between
the characteristic Marangoni convection cell footprint and the thickness of the Marangoni
layer.

3.6. Scaling of mass transfer velocity
Previously it was shown that due to increased mixing near the surface, the non-dimensional
heat transfer, expressed by the Nusselt number, significantly increases with Marangoni
number. The same is expected for the mass transfer velocity
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Figure 14. (a) Scaling of the normalised transfer velocity KL/Uκ ∝ Sc−n for cases M0, M1, M5, M10, M15,
with Mah = 0, 0.88×105, 4.40×105, 8.81×105 and 13.21×105, respectively. The obtained values for n are based
on the higher Sc � 50 cases, indicated by the solid lines. (b) Variation of the normalised transfer velocity
KL and Sh as a function of (Mah + εRah). The solid line represents KL Scn/Uκ = 0.23(Mah + εRah)

0.5 and
(Sh − ShD)Scn−1 = 0.033(Mah + εRah)

0.5, while the dashed line represents KL Scn/Uκ = 6.12(Mah +
εRah)

0.25 and (Sh − ShD)Scn−1 = 0.88(Mah + εRah)
0.25, where ε= 0.0016 and n can be found in the legend

of (a).

kL = −D∂c/∂z|s
cs − cb

(3.5)

of the passive scalars, representing atmospheric gases. This expected increase in KL =
〈kL〉 is in stark contrast to what was observed at contaminated surfaces, where the
surfactant-concentration-gradient-induced Marangoni forces tend to inhibit mass transfer.
In Wissink et al. (2017) it was shown that n in KL ∝ Sc−n gradually decreases from
n = 0.667 for severely contaminated surfaces to n = 0.5 for surfactant-free surfaces.
In the current simulations, the power n (obtained using the results for Sc � 50) was
found to continuously reduce further with increasing Marangoni number from n ≈ 0.5
at Mah = 0 to n ≈ 0.438 at Mah = 13.2 × 105 (see figure 14a). This reduction in n
confirms the promotion of interfacial mass transfer by surface-temperature-gradient-
induced Marangoni forces to values clearly below n = 0.5. The results presented make
it likely that even lower values of n are possible for Mah > 13.2 × 105. In addition, at each
Mah the unique scaling of KL with Sc (shown in figure 14(a) for Sc � 50) can likely be
extrapolated to Sc> 200, as supported by previous DNS results performed for Sc up to
500 (e.g. Herlina & Wissink 2014; Wissink & Herlina 2016; Herlina & Wissink 2019).

This overall trend can be explained using the eddy diffusivity model of Ledwell (1984)
that reads

KL ≈
(∫ ∞

0
[D + D1]−1dζ

)−1

, (3.6)

and is valid for D sufficiently small. Here, the eddy diffusivity D1 is modelled by the
product of the mixing length L(ζ )≈ ζ (distance to the surface) and the mixing velocity
wrms(ζ ) (the root mean square of the vertical velocity) evaluated near the surface, which
is responsible for the vertical transport of mass. By subsequently approximating the
behaviour of wrms(ζ ) immediately below the surface using wrms(ζ )≈ aζ γ (where a is
a constant), the eddy diffusivity

D1(ζ )≈ aζ 1+γ (3.7)

is obtained. For free-slip and no-slip boundary conditions, γ = 1 and γ = 2, respectively,
can be obtained analytically using a Taylor series expansion of w′ near the surface.
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Employing these values of γ in (3.6) leads to the scaling KL ∝ Dn (equivalent to KL ∝
Sc−n), where n = 1/2 for free-slip and n = 2/3 for no-slip boundary conditions (as shown
in Ledwell (1984)). As mentioned above, Wissink et al. (2017) found a smooth transition
between these two states with increasing surface pollution. Following this approach, this
smooth transition can be retrieved using 1 � γ � 2 in (3.7). Similarly, in the present
simulations, eddy diffusivities D1 obtained for positive γ � 1 can be employed to predict
the observed gradual changes in n (cf. figure 14a). Overall, by combining all results,
the present data suggest that n increases from ≈ 0.438 at Mah = 13.2 × 105 to n = 0.5
at Mah = 0, while a further increase to n = 0.667 is obtained in the study of surfactant-
induced Marangoni forces. Note that in the latter case the transport of surfactant-free (high
surface tension) bulk water to the surface is counteracted by surfactant-gradient-induced
Marangoni forces. This is opposite to what is happening in our present simulations,
where the transport of relatively warm (low surface tension) bulk water is promoted by
surface-temperature-gradient-induced Marangoni forces.

Figure 14(a) also shows that for constant Sc, the transfer velocity increases with Mah .
This increase correlates with the steepening of the corresponding surface concentration
gradients at Sc = 200 (and the thinning of the concentration boundary layer) with
increasing Mah , shown in figure 10(a). This enhancement is also illustrated in figure 14(b),
which shows the equivalent power law relations

KLScn/Uκ = aK (Mah + εRah)
r (3.8)

and

(Sh − ShD)Scn−1 = aS (Mah + εRah)
r , (3.9)

where Sh = KL h/D is the Sherwood number, ShD = 1 is the Sherwood number for
the purely diffusive case, n is displayed in figure 14(a), aK , aS are the coefficients of
proportionality (cf. caption of figure 14b) and, as in (3.3), r = 0.25 in the buoyancy-
dominated regime, r = 0.5 in the Marangoni-dominated regime and ε= 0.0016. Using
this scaled transfer velocity the data points for various Schmidt numbers can be seen to
collapse and evidence is provided of the existence of the two regimes. Note that because
of the extremely expensive computational cost, the (high) Schmidt number mass transfer
statistics were gathered over a time interval of only two bulk time units and only for a
selection of Mah (cf. table 1), while heat transfer statistics were gathered for all Mah over
time intervals exceeding 10 bulk time units. Despite the fewer data points, the evidence for
a buoyancy-dominated regime in the mass transfer case is still quite clear.

3.7. Surface structures and quantities
As can be seen in figure 5, due to the strength of the Marangoni forces at Mah �
4.40 × 105, the vast majority of convection cells is very small compared to the surface
area of the computational domain. Only a few large cells (induced by buoyancy forces)
can be observed at each time instance. A comparison of the number of convection cells
at the surface with the horizontally averaged instantaneous transfer velocity at Sc = 200
is shown in figure 15. As the vast majority of the cells are small, this figure effectively
illustrates that the number of small cells is strongly correlated (ρ(〈kL/Uκ〉x,y, Nc)� 0.79)
with the surface-averaged transfer velocity. Correlations of comparable quality, as shown
in the figure for Sc = 200, were also obtained for Sc � 50. This indicates that, on average,
the contribution of the small cells to the transfer velocity (relative to their surface area)
is significantly larger than that of the large cells. This is in accordance with what
was observed comparing small to larger, uniformly distributed convection cells for the
developing RBM instability (Wissink & Herlina 2023).
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Figure 15. Variation in time of the number of convection cells Nc and the scaled transfer velocity 〈kL/Uκ 〉x,y
at Sc = 200 for cases M5, M10 and M15. Also shown are the corresponding correlation coefficients
ρ(〈kL 〉x,y, Nc).

After discussing temporal correlations, we now focus on the spatial correlations
of surface divergence, temperature and concentrations. Figure 16 shows instantaneous
contours of β∗ at the surface and T ∗, c∗

200 adjacent to the surface for simulations M0
(upper panes) and M15 (lower panes). While at Mah = 0 (case M0) the correlation
between β∗ and T ∗ is quite good, the quality of this correlation gradually reduces with
increasing Mah (see figure 17a), resulting in a rather poor correlation at Mah = 13.2 × 105

(case M15). This deterioration can be explained by the fact that surface tension forces
directly depend on surface-temperature gradients. These forces become negligibly small
in areas with virtually uniform high or low temperature. Horizontal surface-temperature
gradients appear every time warm water moves towards the surface. Subsequently, whilst
the generated Marangoni forces move this warm water towards the convection cell edges,
it is cooled due to evaporation. At the edges, opposing Marangoni-induced currents from
neighbouring convection cells collide and push this now relatively cold surface water
downwards (β∗ < 0). As a result, the locations of negative surface divergence remain well
correlated with areas of relatively cold water. However, the correlation between areas of
warm water and positive surface divergence becomes quite weak. This is because the local
Marangoni forces generate strong longitudinal vortices along the edges of convection cells.
These vortices not only push cold surface water down but also transport water from the
upper bulk upwards. Due to intense mixing and relatively large heat diffusion, this water is
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Figure 16. Snapshots showing contours of the surface divergence (β∗ = βh/Uκ ) at the surface and T ∗, c∗
200,

at distances of ζ/h = 0.001100 and ζ/h = 0.0005487 to the surface of simulations M0 with Mah = 0 (upper
panes) and M15 with Mah = 13.21 × 105 (lower panes), respectively. The contours are extracted at an arbitrary
time t∗ = 0.002286 (t/τb = 1.1).
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1025 A43-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
97

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10971


Journal of Fluid Mechanics

1086420

200

400

600

800

1086420

50

100

150

(a) (b)

β∗
rms β∗

rms×104 ×104

N
u  

−
 N
u κ

Sh
 −

 S
h D

Sc = 50

Sc = 100

Sc = 200
9.85 (β∗

rms)
0.2

0.51 (β∗
rms)

0.5

αβ�β∗
rms
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rms with aβ = 1.14, 1.68, 2.43, for Sc = 50, 100, 200, respectively, and

(b) Nu − Nuκ vs β∗
rms.

relatively cold compared to the surface water in the middle of the convection cells, thereby
adversely affecting |ρ(β∗, T ∗)|.

In contrast to the weak correlation between β∗ and T ∗ for Mah > 0 mentioned above,
the correlation between areas of negative surface divergence (which acts to transport
saturated surface water downwards) and areas of relatively high scalar concentration (c∗

Sc)
is relatively good (cf. figure 16). For the buoyancy-dominated simulations at Mah = 0
and 0.88 × 105, the correlations were found to be independent of Sc. In contrast, the
Marangoni-dominated simulations (Mah � 4.40 × 105) show a clear reduction in the
correlation coefficient with Sc. Initially, starting at Mah = 0 the correlation was found
to worsen with increasing Mah before becoming virtually constant for Mah � 4.40 × 105.

Above, the instantaneous spatial correlation coefficients between −β∗ and c∗
200 as well

as β∗ and T ∗ were shown to be � 0.40 for all Mah � 0. As the near-surface concentration
and temperature are directly related to their respective transfer velocities, it is to be
expected that the Sherwood number Sh = KL h/D and the Nusselt number Nu can both
be linked to β∗

rms = βrmsh/Uκ . Based on McCready, Vassiliadou & Hanratty (1986), it
immediately follows that Sh ∝√

β∗
rms. This is confirmed in figure 18(a), which shows

results obtained from the mass transfer simulations at Sc = 50, 100, 200 as well as their
interpolations

Sh − ShD = aβ
√
β∗

rms, (3.10)

with aβ = 1.14, 1.68, 2.43 for Sc = 50, 100, 200, respectively. It can be seen that, for each
Sc, the results obtained for the larger β∗

rms (corresponding to the higher Mah) are in very
good agreement with the interpolating curve. Contrastingly, for the smaller β∗

rms, the mass
transfer results show a slight deviation, which can be seen to become more pronounced in
the corresponding Nusselt number plot (cf. figure 18b). In this figure, for high β∗

rms (large
Mah), the results closely match the

Nu − Nuκ = 0.51
(
β∗

rms
)0.5 (3.11)

curve, while the small β∗
rms (small Mah) results obey a different scaling law:

Nu − Nuκ = 9.85
(
β∗

rms
)0.2

. (3.12)
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These different scalings can be explained by the fact that the surface divergence
β∗

rms (which represents the surface velocity frequencies) scales with Uσ /δσ∝Mah for
Marangoni-dominated flows and with UR/δR ∝ Ra1.25

h for fully developed buoyancy-
dominated flows (cf. (2.13)–(2.16)). Hence, combined with the results presented in
figure 8(a) and (3.3), it immediately follows that for a fully developed flow, the power
in the scaling (Nu − Nuκ)∝ (β∗

rms)
p yields p = 0.2 in the buoyancy-dominated regime

and p = 0.5 in the Marangoni-dominated regime.

4. Conclusions
A series of DNS was performed to study the fully developed RBM instability in a relatively
deep domain at a fixed Rayleigh number Rah = 4.44 × 107 combined with a number of
Marangoni numbers ranging from Mah = 0 to Mah = 13.21 × 105. The simulations were
performed at a fixed Prandtl number of Pr = 7, corresponding to water at 20◦ C. Transfer
of gases into the water phase for Sc = 16-200 was calculated for a selected number of Mah
cases. The results obtained at the highest Schmidt numbers of Sc = 100, 200 are deemed to
be characteristic also for the transfer of atmospheric gases, of which the Schmidt numbers
are of the same order of magnitude. The RBM instability is driven by evaporative cooling
at the surface (modelled by a constant heat flux) combined with a fixed temperature at
the bottom of the computational domain. The surface of the computational domain was
assumed to be flat, while periodic boundary conditions were employed in the horizontal
directions.

Visualisation of three-dimensional snapshots showing isosurfaces of the temperature
reveal that at all Marangoni numbers there is a quasi-periodic formation of large
buoyant plumes of warm water rising up from the bottom of the computational domain.
Contrastingly, the thermal boundary layer at the surface was found to be significantly
affected by Marangoni forces, especially for Mah � 4.40 × 105. For instance, the typical
area of the convection cell footprints (Ac) at the surface was found to drastically reduce
with increasing Mah according to the scaling Ac ∝ Ma−1

h . The presence of small long-
lived surface-attached plumes was found to be characteristic for the Marangoni-dominated
regime. The penetration depth δM of these plumes was found to scale with Ma−0.5

h . With
increasing Mah the surface temperature was found to increase, while the temperature in the
bulk was found to decrease, resulting in a reduced temperature difference between surface
and bulk, and (owing to the same constant heat flux employed in all simulations) also an
increase in the heat transfer velocity with Mah .

Similar to what was observed for the developing RBM instability in Wissink &
Herlina (2023), two regimes were identified. For the lower Marangoni numbers (Mah �
2.64 × 105), the near-surface flow, heat and mass transfer was dominated by buoyancy
forces, while for the large Marangoni numbers (Mah > 4.40 × 105), it is dominated by
Marangoni forces. The fact that MaδT was found to significantly increase for small Mah to
subsequently becoming constant (MaδT ≈ 53) for large Mah provides conclusive evidence
of the existence of the two regimes. A further example of this is the scaling of the
non-dimensional heat transfer velocity represented by the Nusselt number

(Nu − Nuκ)= aN (Mah + εRah)
r , (4.1)

where ε= 0.0016, while [r; aN ] = [0.25; 3.11] in the buoyancy-dominated regime and
[r; aN ] = [0.5; 0.13] in the Marangoni-dominated regime (cf. figure 8a). Furthermore,
in the latter regime, the instantaneous number of convection cells was found to correlate
quite well with the instantaneous KL , which is in agreement with earlier observations that
smaller convection cell sizes contribute to higher KL values.
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As was observed above for the heat transfer velocity, increases in Marangoni number (for
a fixed Schmidt number Sc) were also found to lead to significant increases in the mass
transfer velocity. Because of lack of data, only weak evidence was found for the existence
of these two regimes (buoyancy vs Marangoni dominated). It was shown previously that
surfactant-induced Marangoni forces significantly inhibit interfacial mass transfer. In the
present context, this would correspond to Mah < 0. Using this notation, the power n in the
scaling KL ∝ Sc−n would change from n = 0.67 for Mah = −∞ to n = 0.50 for Mah = 0.
While in the present simulations, where Mah � 0 (promoting interfacial mass transfer), n
was found to decrease further from 0.50 to 0.438 as Mah was increased from 0 to 13.21 ×
105, respectively. For fixed Rah and Sc � 50, the Schmidt number dependency of KL could
be removed by premultiplying KL by Scn leading to a collapse of the data points obtained
for various Schmidt numbers, such that in the buoyancy-dominated regime

KLScn/Uκ = 6.12(Mah + εRah)
0.25, (4.2)

or equivalently (using the Sherwood number),

(Sh − ShD)Scn−1 = 0.88(Mah + εRah)
0.25, (4.3)

and in the Marangoni-dominated regime

KLScn/Uκ = 0.23(Mah + εRah)
0.5, (4.4)

or equivalently,

(Sh − ShD)Scn−1 = 0.033(Mah + εRah)
0.5, (4.5)

where n is a function of Mah (displayed in figure 14a). Also, in the present fully
developed flow, the scaling of both Sh − ShD and Nu − Nuκ with

√
β∗

rms (cf. ( 3.10)
and (3.11), respectively) as suggested by McCready et al. (1986) was found to hold in
the Marangoni-dominated regime. To facilitate comparisons with experiments and other
numerical simulations, it may be convenient to replace ‘Mah + εRah’ (e.g. in (4.5)) with
‘Bo−1

h + ε’ to obtain an equivalent scaling law.
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Appendix A. Grid resolution requirements
The velocity field was deemed to be fully resolved on the 400 × 400 × 252 base mesh, as
for all grid cells, the ratio between the geometrical mean

�= 3
√
�x ×�y ×�z (A1)

and the Kolmogorov length scale

η= (ν3/ε)0.25 (A2)

was found to be significantly smaller than 1, where

ε = ν
∂u′

i

∂xj

∂u′
i

∂xj
(A3)
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Figure 19. Maximum ratio (obtained during the simulation time) of � over (a) the Kolmogorov scale 〈η〉x,y
and (b) the Batchelor scale 〈ηB〉x,y as obtained for the temperature.

Run Scalar mesh �R

M15-R1 400 × 400 × 252 1.41
M15-R2 800 × 800 × 504 0.73
M15-R3 1200 × 1200 × 756 0.48

Table 2. Temperature mesh refinement study. The size of the base mesh used in the refinement study for the
velocity was 400 × 400 × 252. Here, �R = maxz,t 〈(�/ηB)〉x,y .

is the dissipation rate of turbulent kinetic energy (cf. figure 19a).
Furthermore, the 400 × 400 × 252 mesh was also found to be sufficiently fine to fully

resolve the temperature field in all simulations with Mah < 8.81 × 105 (cf. table 1). For
the more challenging simulations with Mah � 8.81 × 105, a refinement factor of 2 needed
to be employed for the temperature field in order for � to be smaller than the Batchelor
scale

ηB = ηPr−0.5 (A4)

(cf. figure 19b).
Below, the grid resolution requirements for the active scalar (temperature) in simulation

M15 are studied in detail. The meshes used for the temperature are shown in table 2. Each
simulation started using the same, fully developed, flow and temperature field and was run
for 4 s, corresponding to eight surface-eddy-turnaround times.

As can be seen in figure 20, the instantaneous temperature profiles at z/h = 0.986 and
x/h = 2.5 were found to be in good agreement for R2 and R3, and in reasonable agreement
for R1 and R3. Hence, the mesh used in R2 was deemed to be sufficiently fine to accurately
resolve the temperature field.

As already mentioned, a base mesh refinement factor of R = 2 was also the smallest
refinement factor needed to ensure that the ratio

�R = max
z,t

〈
�

ηB

〉
x,y

< 1. (A5)

Note that as the temperature is an active scalar and directly influences the velocity field,
it is important to use the same mesh to resolve both the velocity and the temperature.
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y/h
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Figure 20. Temperature profiles obtained after about eight surface-eddy-turnaround times at x/h = 2.5 and
z/h = 0.986 using different refinements of the base mesh.

Hence, it was decided to use a 800 × 800 × 504 base mesh for all simulations with Mah �
8.81 × 105, without any further refinement for the temperature (R = 1).

Subsequently, the resolution requirements for a scalar with Schmidt number Sc was
determined by choosing a refinement factor R such that �R is less than one, where ηB
was estimated using

ηB = ηSc−0.5. (A6)

The various refinement factors employed for the scalars can be seen in table 1).
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