

ACCEPTED MANUSCRIPT • OPEN ACCESS

Towards improved accounting and mitigation of greenhouse gas emissions from ditches and canals

To cite this article before publication: Teresa Silverthorn *et al* 2025 *Environ. Res. Lett.* in press <https://doi.org/10.1088/1748-9326/ae31f9>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2026 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/4.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

Towards improved accounting and mitigation of greenhouse gas emissions from ditches and canals

4 Teresa Silverthorn^{1*}, John Connolly², Wahaj Habib², Sarian Kosten³, Tuula Larmola⁴, José R.
5 Paranaíba³, Jackie Webb^{5,6,7}, Sivakiruthika Balathandayuthabani⁸, Stewart J. Clarke⁹,
6 Corianne Tatariw¹⁰, Sarah Cook¹¹, Jennifer L. Williamson¹², Laurie E. Friday^{13,14}, Alan
7 Law¹⁵, Luke O. Andrews¹⁶, Judith van der Knaap³, Chris D. Evans¹², Jeremy A.
8 Fonvielle^{13,14}, David Bryan¹⁵, Zhifeng Yan¹⁷, Magdalena Bieroza¹⁸, Merit van den Berg¹⁹,
9 Matthew J. Hill²⁰, Laura Baugh¹, Stephanie Evers¹⁶, Ricky M. Mwanake²¹, Sofia Baliña³,
10 Hamidreza Rahimi¹⁴, Emily Simpson¹⁵, Quinten Struik³, Antti J. Rissanen^{4,22}, Mike
11 Peacock^{1,18*}

1. Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
2. Discipline of Geography, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
3. Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
4. Natural Resources Institute Finland (Luke), Helsinki, Finland
5. School of Agriculture & Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
6. Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, Queensland, Australia
7. Centre for Sustainable Agricultural Science, University of Southern Queensland, Toowoomba, Queensland, Australia

1
2
3 26 8. Tamil Nadu Agricultural University, Coimbatore, India
4
5 27 9. National Trust, Heelis, Swindon, UK
6
7 28 10. Department of Environmental Science, Rowan University, Glassboro, NJ, USA
8
9
10 29 11. School of Life Sciences, University of Warwick, Coventry, UK
11
12 30 12. UK Centre for Ecology & Hydrology, Deiniol Road, Bangor, LL57 2UW, UK
13
14 31 13. Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
15
16 32 14. Centre for Landscape Regeneration, University of Cambridge, Cambridge, CB2 3QZ,
17
18 33 UK
19
20
21 34 15. Biological and Environmental Sciences, Faculty of Natural Sciences, University of
22
23
24 35 Stirling, Stirling, Scotland
25
26 36 16. School of Biological and Environmental Sciences, Liverpool John Moores University,
27
28 37 James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
29
30
31 38 17. School of Earth System Science, Institute of Surface-Earth System Science, Tianjin
32
33 39 University, Tianjin, China
34
35 40 18. Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
36
37
38 41 19. UK Centre for Ecology & Hydrology, Benson Ln, Wallingford, OX10 8BB, UK
39
40 42 20. Department of Agriculture and Environment, Harper Adams University, Newport,
41
42 43 Shropshire, TF10 8NB, UK
43
44
45 44 21. Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research,
46
47
48 45 Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19,
49
50 46 Garmisch-Partenkirchen 82467, Germany
51
52 47 22. Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu
53
54 48 8, 33720 Tampere, Finland
55
56 49 *Corresponding authors: Teresa Silverthorn (teresa.silverthorn@gmail.com) and Mike
57
58 50 Peacock (m.peacock@liverpool.ac.uk)

51 1. Introduction

52 Ditches and canals are important but largely unaccounted for components of global
53 greenhouse gas (GHG) budgets. These human-made, linear waterways have a vast range of
54 typologies and conditions (see Clifford et al., 2025 for a detailed review). In general, ditches
55 tend to be narrower, variably inundated, and primarily used for drainage of wet soils for
56 agriculture or forestry, while canals tend to be wider, used for transportation or irrigation,
57 more likely to be made of impermeable substrate and perennially inundated (but these two
58 terms are sometimes used interchangeably) (**Table 1**). The cumulative extent of ditches and
59 canals is large; often rivalling stream and river length at regional scales (Brown et al., 2006),
60 but remains poorly quantified at the global scale. Recent global syntheses have shown that
61 ditches and canals emit notable amounts of methane (CH_4) (Gan et al., 2024; Peacock et al.,
62 2021) as well as carbon dioxide (CO_2) and nitrous oxide (N_2O); often more per unit area than
63 other inland waters (Silverthorn et al., 2025), and in some landscapes, even exceeding
64 emissions from adjacent terrestrial areas (van der Knaap et al., 2025). These elevated
65 emissions largely result from high nutrient and carbon inputs from the intensively managed
66 agricultural and urban landscapes where these waterways are typically found (Peacock et al.,
67 2021). Although local-scale studies about GHG emissions from ditches and canals have
68 increased (**Figure 1A**), these water bodies remain overlooked in global inland water GHG
69 budgets and national inventory reporting, despite Intergovernmental Panel on Climate
70 Change (IPCC) recommendations to include emission from ditches draining organic soils
71 (IPCC, 2014) and subsequently from all ditches and canals (IPCC, 2019). Improved reporting
72 would enable mitigation measures leading to reduced ditch and canal emissions to be
73 recognised in Nationally Determined Contributions to the UN Framework Convention on
74 Climate Change (UNFCCC). Moreover, reducing ditch and canal emissions should be
75 recognized as an important measure for achieving net-zero emission targets set by many

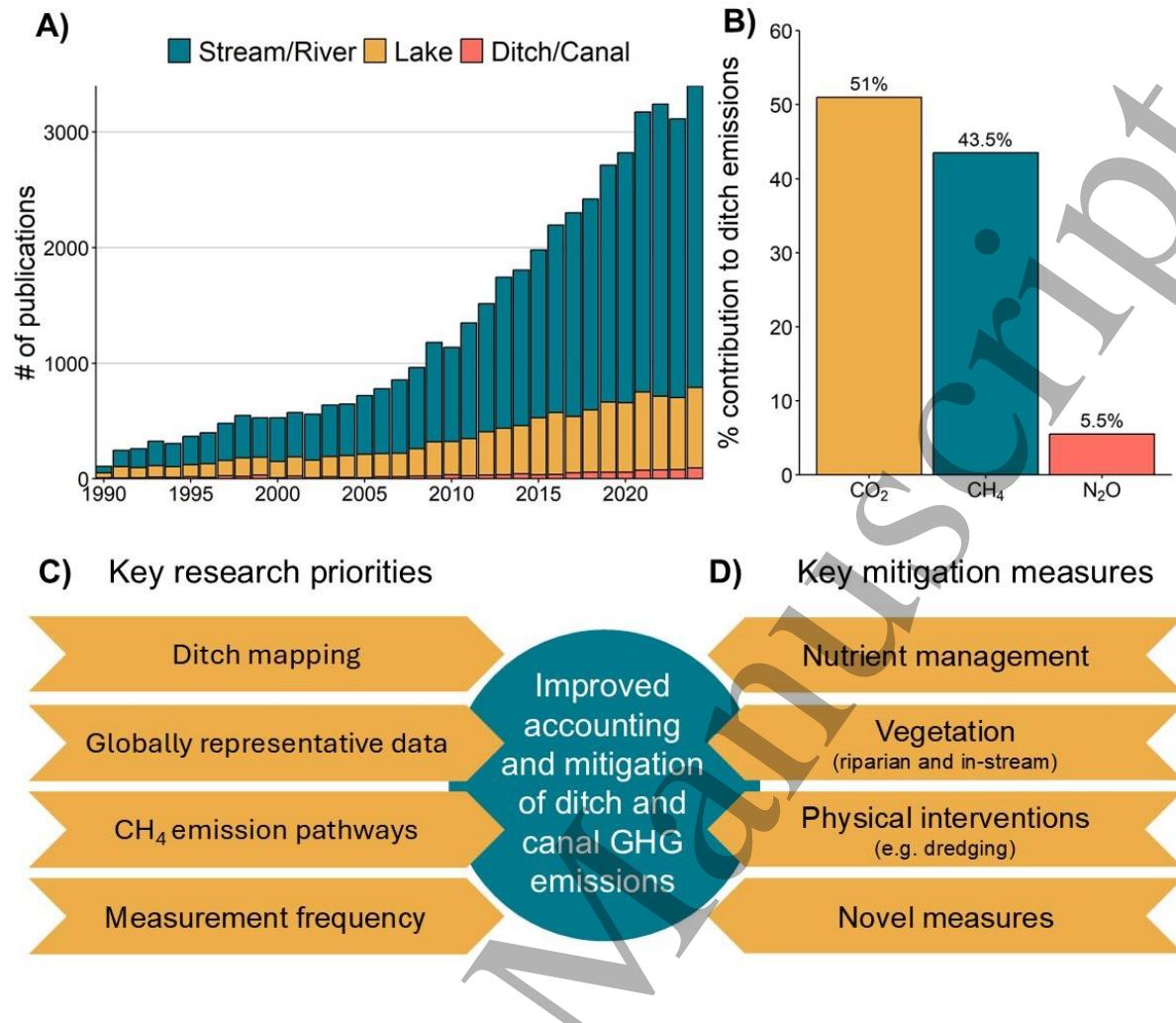
1
2
3 76 nations. Given the importance of ditch and canal GHG emissions, we (1) identify key
4
5 77 knowledge and data gaps that must be addressed to better constrain global estimates of GHG
6
7 78 emissions from ditches and canals, and (2) explore potential strategies for mitigating these
8
9 79 emissions.

10
11
12
13 **Table 1.** Functional and physical descriptions of five common ditch and canal types. These
14 types may be referred to by other names (e.g. agricultural ditch or agricultural canal;
15 roadside ditch or swale). This list is not exhaustive as other ditch types exist (see Clifford et
16 al., 2025), such as residential canals, transportation canals, sewage ditches, peat extraction
17 ditches, moats, and hydropower channels.

Ditch type	Description and representative study	Photo
Forest ditch	Ditches used for draining wet soils for commercial tree growth. Typically narrow (~1m wide) and found in the northern hemisphere (Rissanen et al., 2023).	
Agricultural ditch	Ditches used for draining wet soils for agricultural use. Variable widths, typically <10m, found around the world (Wu et al., 2023).	
Roadside ditch	Ditches used for collecting and transporting excess water from roads and to prevent their flooding. Variable widths, intermittently flooded, often vegetated, typically <2m, found around the world (McPhillips et al., 2016).	
Urban canal	Canals used for providing transportation, aesthetic, flood control, and other functions in urban settings. Substrate is often impermeable, variable widths (Pelsma et al., 2023).	

1
2
3
4
5
6
7
8
9
10
11
Irrigation
canal

Canals used to transport water for agricultural production. Substrate can be impermeable, variable widths, found around the world (Palmia et al., 2021).



12 Photos: forest ditch in Sweden (M. Peacock); agricultural ditch in Hebei province, China
13 (Z. Yan); Roadside ditch in Ontario, Canada (K. Kolman); Urban canal in Rio de Janeiro,
14 Brazil (S. Kosten); Irrigation canal in India (S. Balathandayuthabani).

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

80

81

Figure 1. Conceptual synthesis of current knowledge and priorities for improved accounting and mitigation of greenhouse gas (GHG) emissions from ditches and canals. **A)** Annual number of peer-reviewed articles related to GHG emissions from ditches compared to other inland waters; **B)** Relative contribution of each gas to ditch GHG emissions in terms of CO₂-equivalents from *n* = 22 studies (Silverthorn et al., 2025); Summary of **C)** key knowledge gaps; and **D)** mitigation measures. Figure details in Supplementary Materials.

2. Knowledge gaps

The key gaps in data and in our understanding of ditch and canal GHG emissions are

associated with (1) lack of accurate and representative estimates of GHG emissions, with

particular focus on CO₂ and CH₄, which contribute the most to climatic warming (**Figure 1B**); and (2) the mapping of the global extent of ditches and canals (**Figure 1C**). Addressing

these gaps is critical for improving global estimates of ditch and canal emissions and for

1
2
3 96 accurate reporting in national inventories. For inventory reporting, key challenges include
4
5 97 both completeness (reporting all emissions) and avoiding double-counting ditch and canal
6
7 98 emissions with agricultural, wetland, or urban wastewater emissions.
8
9

10
11 99 **2.1. Knowledge and data gaps in GHG emissions**
12
13

14 100 The growing, but still limited, dataset of ditch and canal emissions that has
15
16 101 accumulated since the 1990s has allowed global upscaling of all three main GHGs (Peacock
17
18 102 et al., 2021; Silverthorn et al., 2025). However, current estimates rely on a single global
19
20 103 average (“emission factor”) for each GHG, which could be refined and disaggregated
21
22 104 through consideration of climate zones, trophic state, temporal variability, etc. To improve
23
24 105 global estimates, we suggest three critical gaps must be addressed: (1) the global bias of data,
25
26 106 (2) the underrepresentation of ebullitive and plant-mediated CH₄ emissions, and (3)
27
28 107 insufficient measurement frequency.
29
30
31

32
33 108 Half of the data points from the global syntheses of Peacock et al. (2021) and
34
35 109 Silverthorn et al. (2025) are from Europe. Although Australia, North America, and Asia are
36
37 110 moderately well-covered, to date, there is just one study from South America and none from
38
39 111 Africa. Missing national- or continental-scale data leads to fundamental uncertainty in global
40
41 112 upscaling. Moreover, measurements from these under-represented regions are needed to
42
43 113 refine global estimates according to geographic and/or climate regions, as has been done for
44
45 114 other inland waters (IPCC, 2019; Lauerwald et al., 2023).
46
47
48

49
50 115 Although some early studies measured ditch CH₄ ebullition (Minkkinen et al., 1996),
51
52 116 it remains largely neglected. Those that have measured ebullition have often found it to be the
53
54 117 dominant emission pathway, making up 80% of total CH₄ emissions (Silverthorn et al.,
55
56 118 2025), although some cases of negligible ebullition contributions also have been reported
57
58 119 (Köhn et al., 2021). The magnitude of ebullitive relative to diffusive fluxes will likely depend
59
60

1
2
3 120 on sediment properties, trophic state, water velocity, and water depth (which can influence
4 sediment temperature). In addition, few studies have measured plant-mediated transport of
5
6 121 CH₄, presumably due to logistical difficulties of measuring emissions from tall emergent
7 vegetation such as *Phragmites* and *Typha*. However, the presence of plants with
8 aerenchymatous tissue can enhance CH₄ emissions (Bastviken et al., 2023). More
9 measurements of these two pathways will allow for better estimates of CH₄ emissions to be
10 incorporated into future global estimates.
11
12
13
14
15
16
17
18
19

20 127 Most ditch and canal GHG studies rely on non-continuous measurements (although
21 see Harrison et al., 2005; Paranaíba et al., 2025) which are then extrapolated to annual
22 estimates, despite their poor ability to capture diel cycles and episodic events (e.g. droughts,
23 storms, and management interventions) that can significantly influence GHG emissions. For
24 example, peaks in ditch CO₂ and CH₄ emissions have been observed post-flood (Webb et al.,
25 2016), while continuously inundated ditches have higher N₂O emissions compared to ditches
26 that periodically dry out (Silverthorn et al., 2025). In addition, higher ditch CO₂ and CH₄
27 emissions have been observed at night than during the day (Paranaíba et al., 2025),
28 suggesting that relying solely on daytime measurements (when photosynthetic uptake by
29 ditch vegetation is occurring) may lead to an underestimation of total emissions. These
30 dynamics highlight the need for continuous, sensor-based GHG monitoring to more
31 accurately capture temporal variability.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

139 2.2. Knowledge and data gaps in mapping and mapping methods

140 We have yet to map the global extent of ditches and canals due to knowledge and data
141 gaps pertaining to (1) the limited availability of drainage maps, (2) a lack of harmonised
142 labelled training data (e.g., ground truthed features) and (3) limitations to scale current
143 mapping efforts. Existing regional and national maps remain outdated, inconsistent, or

1
2
3 144 incomplete, especially where waterways are small and/or obscured with vegetation canopy
4
5 145 (Lidberg et al., 2023). To address this, remote sensing and image analysis techniques have
6
7 146 been explored, although methodological and data gaps persist.
8
9

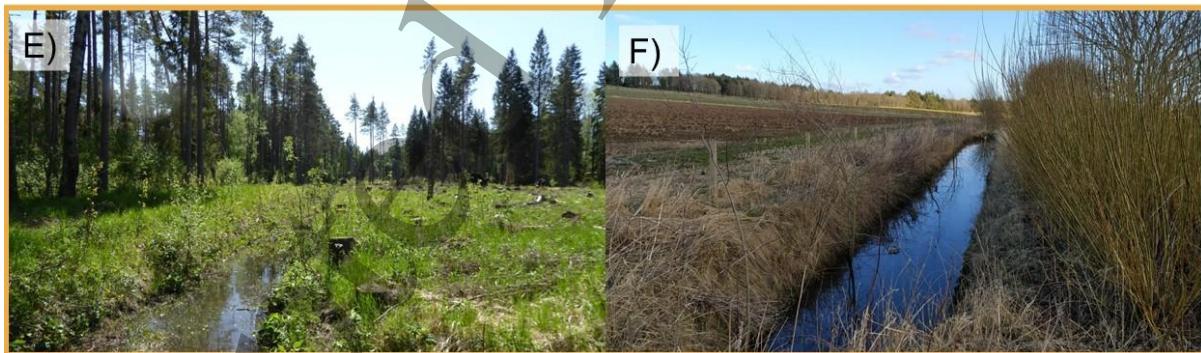
10
11 147 Optical aerial or high resolution satellite imagery can be used for ditch and canal
12
13 148 mapping, but vegetation, canopy cover, and persistent cloud cover can limit its effectiveness,
14
15 149 particularly in dense forested, agricultural or peatland areas (Connolly & Holden, 2017;
16
17 150 Habib et al., 2024). Airborne LiDAR can overcome these issues and detect subtle
18
19 151 geomorphological features like ditches and canals (Lidberg et al., 2023). However, its limited
20
21 152 spatial coverage and high cost hinder broader application. Similarly, Synthetic Aperture
22
23 153 Radar (e.g., Sentinel-1) provides all-weather capabilities and has been used for mapping
24
25 154 water level in ditches (Al-Khudhairy et al., 2001), but it lacks the spatial resolution to resolve
26
27 155 narrow waterways.
28
29
30

31
32 156 For image analysis, traditional pixel-based classification methods are often inadequate
33
34 157 due to the small size and complex morphology of many ditches and canals. Object-Based
35
36 158 Image Analysis improves detection by incorporating spatial and geometric contexts
37
38 159 (Connolly & Holden, 2017). More recently, Deep Learning methods such as Convolutional
39
40 160 Neural Networks have shown considerable promise for the automated identification of
41
42 161 ditches (Habib et al., 2024). However, Deep Learning approaches require extensive training
43
44 162 data, lack transferability across geographic areas, and are computationally intensive, limiting
45
46 163 scalability. Overcoming these challenges will require harmonised multi-sensor frameworks,
47
48 164 transferable Machine Learning models, and collaborative data generation.
49
50
51

52 165 **3. Mitigation**
53
54

55
56 166 Mitigation of ditch and canal GHG emissions can be achieved through a diverse
57
58 167 range of strategies (**Figure 1D, Figure 2**). Advancing their implementation will require both
59
60

1
2
3 168 further research into their effectiveness as well as supportive government policies and
4
5 169 incentives.
6
7
8
9
10


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
168 (i) Physical interventions

169 (ii) In-stream vegetation

170 (iii) Riparian vegetation

171 **Figure 2.** Photographs of ditches and canals with various greenhouse gas (GHG) emission
172 mitigation measures related to physical interventions, in-stream vegetation, and riparian
173 vegetation: (A) Recently dredged agricultural lowland peat ditch in England; (B) Recently
174 dredged irrigation canal in Tamil Nadu, India; (C) Urban canal with submerged macrophytes
175 and floating algae in the Netherlands; (D) *Sphagnum* moss-covered forest ditch in Finland;
176 (E) Continuous cover forestry (selective cutting) around a forest ditch in Sweden; (F)
177 Agricultural ditch in Scotland with *Salix* riparian vegetation periodically harvested for
178 biomass. Photos: M. Peacock (A, E), S. Balathandayuthabani (B), J.R. Paranaíba (C), M.
179 Kurki (Luke) (D), and D. Bryan (F).

181 **3.1. Nutrient management**

182 Measures that reduce the inputs of nutrients and organic matter into ditches and canals
183 can help lower GHG emissions. Excessive nitrogen and phosphorus loading, often from
184 agricultural runoff or urban stormwater, can increase organic matter production (e.g., algal
185 growth) and accelerate its decomposition. This decomposition, in turn, fuels microbial
186 processes such as methanogenesis, nitrification, and denitrification, all of which release
187 GHGs (Wu et al., 2023). High nutrient inputs can therefore drive emissions both by
188 enhancing organic matter accumulation and by directly stimulating microbial activity (Zhou
189 et al., 2025). Thus, mitigating point-source pollution from sources such as wastewater
190 treatment plants and infrastructure like boat docks can reduce GHG emissions from canals
191 (Martinez-Cruz et al., 2017; Mwanake et al., 2024). While reducing fertiliser application rates
192 and other nutrient amendments at the catchment scale, together with improving crop nutrient
193 use efficiency and excluding livestock from riparian areas, can mitigate GHG emissions from
194 agricultural ditches.

195 **3.2. Riparian vegetation**

196 Riparian vegetation can help mitigate inputs of nutrients and sediments by
197 intercepting them before reaching the waterway, thereby reducing aquatic GHG production
198 (Fisher et al., 2014). However, impervious substrate and banks may limit the effectiveness of
199 this strategy for many canals. Although organic matter inputs from vegetated riparian zones
200 can fuel respiration, increasing CO₂ and CH₄ emissions, these can be reduced through
201 vegetation harvesting (Bai et al., 2022). Additionally, riparian shading may reduce water
202 temperature (Roth et al., 2010), reducing microbial activity rates and therefore GHG
203 emissions (Yvon-Durocher et al., 2010). For forest ditches, maintaining a continuous riparian
204 forest canopy by using selective cutting instead of clear-cutting can attenuate post-harvest

1
2
3 205 water table rise and thus reduce nutrient leaching from peat soils into ditches (Nieminen et
4
5 206 al., 2018).
6
7
8
9
10 207 **3.3. In-stream vegetation**
11
12 208 Within ditches and canals, vegetation can play a critical role in regulating GHG
13
14 209 dynamics (Bodmer et al., 2024; Theus & Holgerson, 2025). Submerged plants can facilitate
15
16 210 CH₄ oxidation by transporting atmospheric oxygen to the rhizosphere through their
17
18 211 aerenchyma tissues, creating micro-oxic zones in anoxic sediments which support
19
20 212 methanotrophic bacteria that consume CH₄ (Lemoine et al., 2012). Floating plants can
21
22 213 decrease the diffusive flux of GHGs to the atmosphere, resulting in a large proportion of CH₄
23
24 214 oxidized below the plants, but they may increase CH₄ ebullition thereby potentially leading to
25
26 215 an overall increase in emissions (Theus & Holgerson, 2025). In forest ditches, CH₄ emissions
27
28 216 can be significantly lower in *Sphagnum* moss-covered ditches compared to “cleaned”, moss-
29
30 217 free ditches (Rissanen et al., 2023). Therefore, measures that protect or restore submerged
31
32 218 macrophytes and *Sphagnum* moss can play a critical role in reducing ditch CH₄ emissions.
33
34
35 219 However, aquatic vegetation can augment emissions by providing a carbon source during
36
37 220 seasonal plant senescence (Theus & Holgerson, 2025) and emergent rooted plants can be
38
39 221 direct conduits of CH₄ from sediments to the atmosphere (Bodmer et al., 2024). The effects
40
41 222 of aquatic vegetation on GHG fluxes are therefore challenging to disentangle, and vary by
42
43 223 plant type (e.g. submerged, floating, emergent, non-vascular) and time of year, with more
44
45 224 ditch and canal-specific research needed. This strategy is mostly unsuitable for navigation
46
47 225 canals as in-stream vegetation can obstruct vessel movement, but separated, shallow margins
48
49 226 have been trialled as a way to increase aquatic plant abundance without obstructing boat
50
51 227 traffic (Boedeltje et al., 2001).
52
53
54
55
56
57
58
59
60

1
2
3 228 **3.4. Dredging**
4

5 Dredging, routine in many agricultural ditches, may help reduce GHG emissions by
6
7 230 removing accumulated sediments rich in organic matter and nutrients, along with the
8
9 231 microbial communities that drive carbon and nitrogen cycling (Paranaíba et al., 2025). While
10
11 232 dredging can trigger short-term emission spikes, it has been associated with a longer-term
12
13 233 reduction in agricultural ditch GHG emissions: ~35% less CO₂-equivalent emissions within
14
15 234 one year following dredging (Paranaíba et al., 2025). However, emissions from the displaced
16
17 235 ditch sediments must be accounted for (Paranaíba et al., 2023), and dredging disturbs aquatic
18
19 236 habitats, including benthic communities. The effects of dredging frequency, timing, and
20
21 237 methods on GHG mitigation remain poorly understood and require further attention. In
22
23 238 addition to dredging, we argue that other physical considerations such as channel design,
24
25 239 water depth, and flow rates should be explored for their potential to reduce ditch GHG
26
27 240 emissions.

32
33
34 241 **3.5. Novel mitigation measures**
35

36 Novel measures, such as biochemical manipulation and enhanced rock weathering,
37
38 242 are gaining recognition as a promising frontier in ecosystem management. Although still in
39
40 243 its early stages and largely limited to experimental settings, microbial inoculations in
41
42 244 sediments, such as with nitrite/nitrate-dependent anaerobic methane-oxidizing
43
44 245 microorganisms (Legierse et al., 2023) and stimulation of iron-dependent anaerobic methane-
45
46 246 oxidizing bacteria through iron chloride additions (Struik et al., 2024), show promise in
47
48 247 agricultural ditches as innovative strategies to mitigate CH₄ emissions. These specialized
49
50 248 microbial communities can oxidize CH₄ using nitrite, nitrate, or iron as electron acceptors,
51
52 249 playing a key role in reducing CH₄ emissions under anoxic conditions commonly found in
53
54 250 ditch sediments. Chemical weathering of rocks is a natural process that absorbs CO₂, and this
55
56 251 process can be enhanced by applying crushed rocks to the land surface or aquatic systems. As
57
58 252

1
2
3 253 the minerals dissolve in water, the dissolution products are transported to the ocean where the
4
5 254 carbon is stored (Strefler et al., 2018). Other novel measures include nutrient-binding
6
7 255 amendments, and using salinization, oxygenation, and sulphate additions to reduce anaerobic
8
9 256 CH₄ production (Paranaíba & Kosten, 2024; Varjo et al., 2003). However, uncertainties
10
11 257 remain about large-scale implementation of these novel measures, including long-term
12
13 258 efficiency, transferability across ecosystems, unintended ecological impacts, and economic
14
15 259 viability.
16
17
18
19
20

21 **260 4. Conclusions and implications**

22
23 261 Ditches and canals are important but overlooked sources of GHG emissions. Moving
24
25 262 forward, policymakers and land managers should integrate ditch and canal GHG mitigation
26
27 263 into broader climate and land-use planning. Ditch and canal emissions should also be
28
29 264 incorporated into global inland water GHG models, particularly predictive models assessing
30
31 265 the impacts of global change, such as warming and eutrophication, which are expected to
32
33 266 increase emissions from these waterbodies. The riparian zones of ditches (located at the
34
35 267 terrestrial-aquatic interface) can also be emission hotspots (van der Knaap et al., 2025). Thus,
36
37 268 to obtain the full picture, these areas should be included in landscape scale upscaling.
38
39
40 269 Additionally, legislative frameworks should be updated to recognize ditches and canals as
41
42 270 fundamental and functional ecosystems that influence landscape carbon and nitrogen cycles.
43
44 271 Much of the current knowledge on mitigation remains in the experimental phase, therefore
45
46 272 accelerating research in collaboration with stakeholders and policymakers is crucial.
47
48 273 Addressing key research priorities in mapping, geography, emission pathways, and
49
50 274 measurement frequency will improve understanding of ditch and canal GHG production and
51
52 275 emissions to refine global upscaling. Through improved accounting and emission reductions,
53
54 276 ditches and canals can be important actors in climate change mitigation.
55
56
57
58
59
60

277 Author contributions

278 **Funding acquisition:** TS and MP received funding for the symposium where this manuscript
279 was planned. **Conceptualization:** this manuscript was conceptualized through discussions
280 with all co-authors. **Writing - Original Draft:** TS wrote the introduction and conclusions;
281 JC, WH, and MP wrote the section on knowledge gaps; SK, TL, and JRP wrote the section on
282 mitigation. **Visualization:** TS prepared the figures. **Writing - Review & Editing:** All authors
283 reviewed and contributed to the manuscript drafts. Author order was assigned alphabetically
284 by last name for the core authors (excluding the first and last authors), and the order of the
285 remaining authors was assigned using a random number generator.

286 Data Availability

287 The data and code used to make Figure 1 can be found on Github at
288 <https://github.com/TeresaSilverthorn/Ditch-symposium> and on Zenodo at
289 <https://doi.org/10.5281/zenodo.17069240>

290 Acknowledgements

291 MP and TS acknowledge the University of Liverpool's EPSRC Impact Acceleration Account
292 (Network and Impact Cultivation Funding) award, which funded the symposium where this
293 manuscript was conceptualized. We acknowledge the contributions of others who attended
294 the symposium but did not contribute to this paper. TL was funded by the European Union
295 projects H2020 Holisoils (grant number 101000289) and HE Alfawetlands (grant number
296 101056844). RMM was funded by the Helmholtz Association through the joint program
297 Changing Earth – Sustaining Our Future (ATMO - PoF IV) program at Karlsruhe Institute of
298 Technology. SK and JRP were supported by the NWO-TTW project (grant number 18661);
299 SK also by NWO-VIDI (grant number 203.098). SB was funded by the Ramanujan
300 Fellowship by the Anusandhan National Research Foundation of the Government of India

1
2
3 301 (grant number RJF/2020/000015). JF and LEF were funded by NERC's Changing the
4
5 302 Environment programme (grant number NE/W00495X/1).
6
7 303
8
9
10 304
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

305 **References**

306 Al-Khudhairy, D. H. A., Leemhuis, C., Hoffmann, V., Calaon, R., Shepherd, I. M.,
307 Thompson, J. R., Gavin, H., & Gasca-Tucker, D. L. (2001). Monitoring wetland ditch
308 water levels in the North Kent Marshes, UK, using Landsat TM imagery and ground-
309 based measurements. *Hydrological Sciences Journal*, 46(4), 585–597.
310 <https://doi.org/10.1080/02626660109492852>

311 Bai, X., Cheng, C., Xu, Q., Tang, B., He, Q., & Li, H. (2022). Regulating autogenic
312 vegetation in the riparian zone reduces carbon emissions: Evidence from a microcosm
313 study. *Science of The Total Environment*, 840, 156715.
314 <https://doi.org/10.1016/j.scitotenv.2022.156715>

315 Bastviken, D., Treat, C. C., Pangala, S. R., Gauci, V., Enrich-Prast, A., Karlson, M., Gålfalk,
316 M., Romano, M. B., & Sawakuchi, H. O. (2023). The importance of plants for
317 methane emission at the ecosystem scale. *Aquatic Botany*, 184, 103596.
318 <https://doi.org/10.1016/j.aquabot.2022.103596>

319 Bodmer, P., Vroom, R. J. E., Stepina, T., del Giorgio, P. A., & Kosten, S. (2024). Methane
320 dynamics in vegetated habitats in inland waters: Quantification, regulation, and global
321 significance. *Frontiers in Water*, 5. <https://doi.org/10.3389/frwa.2023.1332968>

322 Boedeltje, G., Smolders, A. J. P., Roelofs, J. G. M., & Van Groenendael, J. M. (2001).
323 Constructed shallow zones along navigation canals: Vegetation establishment and
324 change in relation to environmental characteristics. *Aquatic Conservation: Marine
325 and Freshwater Ecosystems*, 11(6), 453–471. <https://doi.org/10.1002/aqc.487>

326 Brown, C. D., Turner, N., Hollis, J., Bellamy, P., Biggs, J., Williams, P., Arnold, D., Pepper,
327 T., & Maund, S. (2006). Morphological and physico-chemical properties of British
328 aquatic habitats potentially exposed to pesticides. *Agriculture, Ecosystems &
329 Environment*, 113(1–4), 307–319. <https://doi.org/10.1016/j.agee.2005.10.015>

1
2
3 330 Clifford, C., Bieroza, M., Clarke, S. J., Pickard, A., Stratigos, M. J., Hill, M. J., Raheem, N.,
4
5 331 Tatariw, C., Wood, P. J., Arismendi, I., Audet, J., Aviles, D., Bergman, J. N., Brown,
6
7 332 A. G., Burns, R. E., Connolly, J., Cook, S., Crabot, J., Cross, W. F., ... Peacock, M.
8
9 333 (2025). Lines in the landscape. *Communications Earth & Environment*, 6(1), 693.
10
11 334 <https://doi.org/10.1038/s43247-025-02699-y>
12
13
14 335 Connolly, J., & Holden, N. M. (2017). Detecting peatland drains with Object Based Image
15
16 Analysis and Geoeye-1 imagery. *Carbon Balance and Management*, 12(1).
17
18 336 <https://doi.org/10.1186/s13021-017-0075-z>
19
20
21 337 Fisher, K., Jacinthe, P. A., Vidon, P., Liu, X., & Baker, M. E. (2014). Nitrous Oxide
22
23 Emission from Cropland and Adjacent Riparian Buffers in Contrasting
24
25 340 Hydrogeomorphic Settings. *Journal of Environmental Quality*, 43(1), 338–348.
26
27 341 <https://doi.org/10.2134/jeq2013.06.0223>
28
29
30 342 Gan, D., Zhang, Z., Li, H., Yu, D., Li, Z., Long, R., Niu, S., Zuo, H., Meng, X., Wang, J., &
31
32 343 Ma, L. (2024). Ditch emissions partially offset global reductions in methane
33
34 emissions from peatland drainage. *Communications Earth & Environment*, 5(1), 640.
35
36 344 <https://doi.org/10.1038/s43247-024-01818-5>
37
38
39 345 Habib, W., Cresson, R., McGuinness, K., & Connolly, J. (2024). Mapping artificial drains in
40
41 peatlands—A national-scale assessment of Irish raised bogs using sub-meter aerial
42
43 348 imagery and deep learning methods. *Remote Sensing in Ecology and Conservation*,
44
45 349 10(4), 551–562. <https://doi.org/10.1002/rse2.387>
46
47
48 350 Harrison, J. A., Matson, P. A., & Fendorf, S. E. (2005). Effects of a diel oxygen cycle on
49
50 nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical
51
52 351 stream. *Aquatic Sciences*, 67(3), 308–315. <https://doi.org/10.1007/s00027-005-0776-3>
53
54
55
56
57
58
59
60

1
2
3 353 IPCC. (2014). *2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas*
4
5 354 *Inventories: Wetlands*, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N.,
6
7 355 Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.
8
9
10 356 IPCC. (2019). *Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas*
11
12 357 *Inventories. Volume 4: Agriculture, forestry and other land use (AFOLU). Chapter 7:*
13
14 358 *Wetlands*. Lovelock, C.E., Evans, C., Barros, N., Prairie, Y., Alm, J., Bastviken, D.,
15
16 359 Beaulieu, J.J., Garneau, M., Harby, A., Harrison, J., Pare, D., Raadal, H.L.,
17
18 360 Sherman, B., Zhang, C., Ogle, S.M., Grinham, A., Deemer, B., Aurelio dos Santos, M.,
19
20 361 Kosten, S., Peacock, M., Li, Z. and Stepanenko, V. IPCC, Switzerland.
21
22
23 362 Köhn, D., Welpelo, C., Günther, A., & Jurasinski, G. (2021). Drainage ditches contribute
24
25 considerably to the CH₄ budget of a drained and a rewetted temperate fen. *Wetlands*,
26
27 363 41(6), 1–15. <https://doi.org/10.1007/s13157-021-01465-y>
28
29
30 365 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L.,
31
32 366 Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P.,
33
34 367 Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., & Regnier, P. (2023). Inland
35
36 368 Water Greenhouse Gas Budgets for RECCAP2: 2. Regionalization and
37
38 369 Homogenization of Estimates. *Global Biogeochemical Cycles*, 37(5).
39
40
41 370 <https://doi.org/10.1029/2022gb007658>
42
43
44 371 Legierse, A., Struik, Q., Smith, G., Echeveste Medrano, M. J., Weideveld, S., van Dijk, G.,
45
46 372 Smolders, A. J., Jetten, M., Veraart, A. J., & Welte, C. U. (2023). Nitrate-dependent
47
48 373 anaerobic methane oxidation (N-DAMO) as a bioremediation strategy for waters
49
50 374 affected by agricultural runoff. *FEMS Microbiology Letters*, 370, fnad041.
51
52
53 375 <https://doi.org/10.1093/femsle/fnad041>
54
55
56 376 Lemoine, D. G., Mermillod-Blondin, F., Barrat-Segretain, M.-H., Massé, C., & Malet, E.
57
58 377 (2012). The ability of aquatic macrophytes to increase root porosity and radial oxygen
59
60

1
2
3 378 loss determines their resistance to sediment anoxia. *Aquatic Ecology*, 46(2), 191–200.
4
5 379 <https://doi.org/10.1007/s10452-012-9391-2>
6
7 380 Lidberg, W., Paul, S. S., Westphal, F., Richter, K. F., Lavesson, N., Melniks, R., Ivanovs, J.,
8
9
10 381 Ciesielski, M., Leinonen, A., & Ågren, A. M. (2023). Mapping Drainage Ditches in
11
12 382 Forested Landscapes Using Deep Learning and Aerial Laser Scanning. *Journal of*
13
14 383 *Irrigation and Drainage Engineering*, 149(3), 04022051.
15
16 384 <https://doi.org/10.1061/JIDEDH.IRENG-9796>
17
18
19 385 Martinez-Cruz, K., Gonzalez-Valencia, R., Sepulveda-Jauregui, A., Plascencia-Hernandez,
20
21 386 F., Belmonte-Izquierdo, Y., & Thalasso, F. (2017). Methane emission from aquatic
22
23 387 ecosystems of Mexico City. *Aquatic Sciences*, 79(1), 159–169.
24
25
26 388 <https://doi.org/10.1007/s00027-016-0487-y>
27
28
29 389 McPhillips, L. E., Groffman, P. M., Schneider, R. L., & Walter, M. T. (2016). Nutrient
30
31 390 Cycling in Grassed Roadside Ditches and Lawns in a Suburban Watershed. *Journal of*
32
33 391 *Environmental Quality*, 45(6), 1901–1909. <https://doi.org/10.2134/jeq2016.05.0178>
34
35 392 Minkkinen, K., Laine, J., Nykänen, H., & Martikainen, P. (1996). Role of drainage ditches in
36
37 393 emissions of methane from mires drained for forestry. IN *GLOBAL CLIMATIC*
38
39 394 *CHANGE*, 1, 110.
40
41
42 395 Mwanake, R. M., Imhof, H. K., & Kiese, R. (2024). Divergent drivers of the spatial variation
43
44 396 in greenhouse gas concentrations and fluxes along the Rhine River and the Mittelland
45
46 397 Canal in Germany. *Environmental Science and Pollution Research*.
47
48
49 398 <https://doi.org/10.1007/s11356-024-33394-8>
50
51
52 399 Nieminen, M., Palviainen, M., Sarkkola, S., Laurén, A., Marttila, H., & Finér, L. (2018). A
53
54 400 synthesis of the impacts of ditch network maintenance on the quantity and quality of
55
56 401 runoff from drained boreal peatland forests. *Ambio*, 47(5), 523–534.
57
58
59 402 <https://doi.org/10.1007/s13280-017-0966-y>
60

1
2
3 403 Palmia, B., Leonardi, S., Viaroli, P., & Bartoli, M. (2021). Regulation of CO₂ fluxes along
4 gradients of water saturation in irrigation canal sediments. *Aquatic Sciences*, 83(1),
5 404 18. <https://doi.org/10.1007/s00027-020-00773-5>
6
7 405
8
9 406 Paranaíba, J. R., & Kosten, S. (2024). Mitigating inland waters' greenhouse gas emissions:
10 407 Current insights and prospects: Kilham Memorial Lecture on occasion of the 37th SIL
11 408 Congress, Iguazu Falls, Brazil, 2024. *Inland Waters*, 1–14.
12 409 <https://doi.org/10.1080/20442041.2024.2372229>
13
14 410 Paranaíba, J. R., Struik, Q., Erdociain, M., van Dijk, G., Smolders, A. J., van der Knaap, J.,
15 411 Veraart, A. J., & Kosten, S. (2023). CO₂, CH₄, and N₂O emissions from dredged
16 412 material exposed to drying and zeolite addition under field and laboratory conditions.
17 413 *Environmental Pollution*, 337, 122627.
18
19 414 Paranaíba, J. R., Struik, Q., Shendurnikar, S., Ma, Y., Quadra, G. R., & Kosten, S. (2025).
20 415 Summer CH₄ ebullition strongly determines year-round greenhouse gas emissions
21 416 from agricultural ditches despite frequent dredging. *Journal of Environmental
22 417 Management*, 373, 123813. <https://doi.org/10.1016/j.jenvman.2024.123813>
23
24 418 Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham, A., Harrison, J. A.,
25 419 Kent, M. S., Kosten, S., & Lovelock, C. E. (2021). Global importance of methane
26 420 emissions from drainage ditches and canals. *Environmental Research Letters*, 16(4),
27 421 044010. <https://doi.org/10.1088/1748-9326/abeb36>
28
29 422 Pelsma, K. A. J., Verhagen, D. A. M., Dean, J. F., Jetten, M. S. M., & Welte, C. U. (2023).
30 423 Methanotrophic potential of Dutch canal wall biofilms is driven by
31 424 Methylomonadaceae. *FEMS Microbiology Ecology*, 99(10), fiad110.
32 425 <https://doi.org/10.1093/femsec/fiad110>
33
34 426 Rissanen, A. J., Ojanen, P., Stenberg, L., Larmola, T., Anttila, J., Tuominen, S., Minkkinen,
35 427 K., Koskinen, M., & Mäkipää, R. (2023). Vegetation impacts ditch methane

1
2
3 428 emissions from boreal forestry-drained peatlands—Moss-free ditches have an order-
4 429 of-magnitude higher emissions than moss-covered ditches. *Frontiers in*
5 430 *Environmental Science*, 11, 1121969. <https://doi.org/10.3389/fenvs.2023.1121969>
6
7
8
9
10 431 Roth, T. R., Westhoff, M. C., Huwald, H., Huff, J. A., Rubin, J. F., Barrenetxea, G., Vetterli,
11 432 M., Parriaux, A., Selker, J. S., & Parlange, M. B. (2010). Stream Temperature
12 433 Response to Three Riparian Vegetation Scenarios by Use of a Distributed
13 434 Temperature Validated Model. *Environmental Science & Technology*, 44(6), 2072–
14 435 2078. <https://doi.org/10.1021/es902654f>
15
16
17
18
19 436 Silverthorn, T., Audet, J., Evans, C. D., Van Der Knaap, J., Kosten, S., Paranaíba, J., Struik,
20 437 Q., Webb, J., Wu, W., Yan, Z., & Peacock, M. (2025). The Importance of Ditches and
21 438 Canals in Global Inland Water CO₂ and N₂O Budgets. *Global Change Biology*, 31(3),
22 439 e70079. <https://doi.org/10.1111/gcb.70079>
23
24
25
26
27
28
29
30 440 Strefler, J., Amann, T., Bauer, N., Kriegler, E., & Hartmann, J. (2018). Potential and costs of
31 441 carbon dioxide removal by enhanced weathering of rocks. *Environmental Research*
32 442 *Letters*, 13(3), 034010. <https://doi.org/10.1088/1748-9326/aaa9c4>
33
34
35
36
37 443 Struik, Q., Paranaíba, J. R., Glodowska, M., Kosten, S., Meulepas, B. M., Rios-Miguel, A.
38 444 B., Jetten, M. S., Lürling, M., Waajen, G., & Nijman, T. P. (2024). Fe (II) Cl₂
39 445 amendment suppresses pond methane emissions by stimulating iron-dependent
40 446 anaerobic oxidation of methane. *FEMS Microbiology Ecology*, 100(5), fiae061.
41
42
43
44
45
46
47 447 <https://doi.org/10.1093/femsec/fiae061>
48
49
50 448 Theus, M. E., & Holgerson, M. A. (2025). Freshwater plant communities influence water
51 449 column greenhouse gases. *Aquatic Botany*, 201, 103927.
52
53
54 450 <https://doi.org/10.1016/j.aquabot.2025.103927>
55
56
57 451 van der Knaap, J., Harpenslager, S. F., Aben, R. C. H., Weideveld, S. T. J., van Giersbergen,
58 452 Q., van Dijk, G., Wintjen, P., Buzacott, A. J. V., Fritz, C., Kruijt, B., & Kosten, S.
59
60

1
2
3 453 (2025). Disproportionately High Contribution of Ditches to Landscape Greenhouse
4 454 Gas Emissions in Drained Peatlands. *Ecosystems*, 28(5), 58.
5 455 <https://doi.org/10.1007/s10021-025-01005-3>
6
7
8
9
10 456 Varjo, E., Liikanen, A., Salonen, V.-P., & Martikainen, P. J. (2003). A new gypsum-based
11
12 457 technique to reduce methane and phosphorus release from sediments of eutrophied
13
14 458 lakes: (Gypsum treatment to reduce internal loading). *Water Research*, 37(1), 1–10.
15
16 459 [https://doi.org/10.1016/S0043-1354\(02\)00264-6](https://doi.org/10.1016/S0043-1354(02)00264-6)
17
18
19 460 Webb, J. R., Santos, I. R., Tait, D. R., Sippo, J. Z., Macdonald, B. C. T., Robson, B., &
20
21 461 Maher, D. T. (2016). Divergent drivers of carbon dioxide and methane dynamics in an
22
23 462 agricultural coastal floodplain: Post-flood hydrological and biological drivers.
24
25
26 463 *Chemical Geology*, 440, 313–325. <https://doi.org/10.1016/j.chemgeo.2016.07.025>
27
28
29 464 Wu, W., Niu, X., Yan, Z., Li, S., Comer-Warner, S. A., Tian, H., Li, S.-L., Zou, J., Yu, G., &
30
31 465 Liu, C.-Q. (2023). Agricultural ditches are hotspots of greenhouse gas emissions
32
33 466 controlled by nutrient input. *Water Research*, 242, 120271.
34
35 467 <https://doi.org/10.1016/j.watres.2023.120271>
36
37
38 468 Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., & Montoya, J. M. (2010).
39
40 469 Warming alters the metabolic balance of ecosystems. *Philosophical Transactions of
41
42 the Royal Society B: Biological Sciences*, 365(1549), 2117–2126.
43
44
45 471 <https://doi.org/10.1098/rstb.2010.0038>
46
47
48 472 Zhou, L., Zhou, Y., Paranaíba, J. R., Peacock, M., Jeppesen, E., & Hamilton, D. P. (2025).
49
50 473 Agricultural ditches and stream networks are overlooked hotspots of carbon
51
52 474 emissions. *National Science Review*, 12(5), nwaf111.
53
54 475 <https://doi.org/10.1093/nsr/nwaf111>
55
56
57
58
59
60