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Abstract
An inverse problem (IP) approach is proposed to simultaneously determine the three-dimensional
position and size of bubbles or droplets in a two phase flow from a single camera image. The
method is based on interferometric particle imaging (IPI) and defocusing particle tracking veloci-
metry. A forward model (FM) is introduced that integrates a scattering model based on geo-
metrical optics and the Lorentz–Mie theory, along with a wave propagation model based on the
Huygens–Fresnel principle to simulate particle images. Using bounding boxes from object detec-
tion methods as initialization, the InvP approach approximates the position and diameter of each
particle in the image. The performance of the presented approach is evaluated on the grounds of
the data achieved by Sax et al (2025 Phys. Rev. Appl. 24 044083): As key aspects it achieves sub-
pixel accuracy in position determination, exceeds the diameter accuracy of current FFT-based
benchmarks on real data and furthermore achieves sub-micrometre precision in diameter resol-
ution, even for three-dimensionally distributed particles. The InvP approach achieves a decoup-
ling of the diameter estimation from the out-of-plane position estimation, thus avoiding error
propagation from one to the other, which significantly increases the sizing accuracy. The incorpor-
ated FM accounts for aliasing effects in the interference pattern, effectively increasing the meas-
urable volume both closer to and further from the focal plane. This improvement qualifies the
approach to measure closer to the focal plane, which in turn allows to obtain images with higher
signal-to-noise ratio (SNR). The InvP approach is capable of handling significantly lower SNRs
compared to commonly applied algorithms and noise levels at which detection algorithms typic-
ally fail, presenting significant potential for single optical access IPI in side- and backscatter regions
where low SNR usually necessitates sophisticated data processing methods. Notably, the InvP
approach is largely unaffected by particle image overlaps, addressing another major challenge in
single-camera particle tracking and sizing at high source densities in a given field of view.

1. Introduction

Dispersed two-phase flows, including bubble flows, mist flows and sprays, are central to many scientific
and engineering problems. The three-dimensional tracking and sizing of small dispersed particles, such
as droplets and bubbles, provide essential information and are therefore at the centre of experimental
investigations [1–4]. Many applications require single camera techniques to determine the three dimen-
sional position and size of particles due to limited optical access or other constraints. Single camera
techniques for the three dimensional position reconstruction include astigmatism particle tracking veloci-
metry (APTV) [5], defocusing PTV (DPTV) [6, 7] and holographic PTV [8]. The first two techniques
use the amount of defocusing of the particle images (PI), i.e. the size (DPTV) or aspect ratio (APTV)
of the PI, to determine the out-of-plane position (z-position). Digital in-line holography uses numerical
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refocusing in different z-planes to find the matching z-position. However, for all these techniques, the
out-of-plane uncertainty is typically an order of magnitude larger than the in-plane accuracy (for the x,y
position)[9]. For DPTV and APTV, PI overlaps add an additional challenge to determine the z-position,
as the edges of the PI are less clearly identifiable, and therefore, the size or aspect ratio is more diffi-
cult to determine. Recent advances in particle detection using convolutional neural networks (CNN) [10,
11] have improved the detection of PIs in the presence of PI overlap in APTV [12, 13] and in DPTV
[14–16]. Another issue in DPTV is the intensity loss with increased defocusing, which renders PIs far
away from the focal plane difficult to detect and evaluate. This issue presents an effective limit to the
depth of the measurement volume in DPTV.

While the position of particles is essential for tracking, their size is often of additional interest.
Prominent single camera techniques for particle sizing in comparatively large fields of view are shad-
owgraphy, digital in-line holography and interferometric particle imaging (IPI) [1, 2, 17]. In shadow-
graphy and holography, the size of the particles is determined directly from the size of the (refocused)
PIs and the magnification. Interpolation techniques can be used in in-focus techniques to achieve sub-
pixel accuracy; however, this process is limited by the resolution of the focused PI. In IPI, on the other
hand, the particle size is reconstructed based on the interference pattern that appears when the particle
is imaged out-of-focus. The particle size then can be retrieved from either the number of fringes in the
pattern or from the fringe frequency, with the latter method having turned out to be the more accurate
one [2, 18, 19]. IPI offers the advantage of low uncertainty in size determination compared to in-focus
techniques due to the higher accuracy of the frequency measurement compared to the sizing of in-focus
PIs.

The interpretation of the interference pattern in IPI requires the distance of the particle to the cam-
era to be known. As a consequence, IPI is predominantly used with light sheets as the z-position is
then known, which, however, limits IPI to two dimensionally distributed particles, rather than three
3D volumes, This limitation presents a major drawback of IPI to holography, that allows for the siz-
ing of particles in 3D volumes. More recently, some approaches have extended IPI to the sizing of
three-dimensionally distributed particles using an APTV approach [20, 21]. The expansion of IPI to 3D
volumes presents a major challenge as an error in the z-position propagates into the diameter estim-
ation, effectively diminishing the accuracy advantage of IPI over in-focus techniques. An additional
problem is again PI overlap, as it causes irregular and super-positioned interference patterns, which
in turn make the determination of the particle size more difficult and often lead to erroneous particle
sizes. PI overlaps in IPI are usually avoided by optical compression [22]. However, this only works if the
particles are at a certain distance from the focal plane, and is therefore not feasible for volume measure-
ments. A further challenge is the measurement of particles that are very large compared to their amount
of defocusing. The fringe distance becomes so small for such large particles, that aliasing occurs. This
effect cannot be captured with frequency and fringe counting methods, so that either method cannot be
employed for such particles. Aliasing of the fringes presents an upper limit to the particle sizes that can
be measured with IPI [23].

For digital in-line holography, the accuracy of both size and z-position determination have been
improved by more than an order of magnitude by an inverse problem (IP) approach [24–26]. In this
type of approach, a forward model (FM) simulates the PIs according to certain particle parameters and
the resulting synthetic image is being compared to the observed image. The match between simulated
and observed image is quantified by a mismatch functional, which is minimized in the process of finding
the unknown particle parameters.

In continuation of efforts for InvP approaches for holography and the development of FMs for IPI
[27], the present work explores an InvP approach to IPI and DPTV. The DPTV approach is chosen to
enable the measurement of three-dimensionally distributed particles. The IPI approach is chosen due to
its higher theoretical limits on accuracy, compared to in-focus techniques for particle sizing. The InvP
approach to DPTV and IPI addresses the following main issues: First, the lower out-of-plane accuracy
of DPTV is addressed. Decoupling of the size and z-position estimation prevent error propagation and
allows for IPI to be expanded to 3D volumes without loss of sizing accuracy. The issue of PI overlap
common to DPTV and IPI is addressed, as the FM can account for superpositions of interference pat-
terns and PIs. Lastly, the aliasing issue is addressed, as the FM can also account for aliasing, in contrast
to conventional evaluation methods in IPI.
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Figure 1. Scattering of monochromatic light at a bubble (m= 1/1.333) as modelled by the GO approach. The different colours of
the light rays represent the different scattering orders p= 0 (•), p= 1 (•), p= 2 (•). The GPs are visualized on the sphere and the
corresponding PI is shown. The black particles show the actual distribution of light intensity over the particle as computed from
the Lorentz–Mie theory [28]. The frequency of the pattern in the PI increases with the size of the particle.

2. Theory and fundamentals

2.1. IPI
IPI was originally introduced as interferometric laser imaging for droplet sizing [1, 17] and later exten-
ded to bubbles [2, 18] where it was renamed as IPI. The method is used to size transparent spherical
particles with a refractive index n1 that differs from the refractive index n2 of its surrounding medium.
The relative refractive index m= n1/n2 is used to describe the relationship between these refractive
indices. In IPI a particle is illuminated with coherent, monochromatic and polarized light, i.e. a laser.
The light scattered by the particle can be seen as glare points (GP) [28, 29] on the particle surface when
viewed from the scattering angle θ. This process is best visualized using the geometric optics (GO)
model, viewing parallel rays of light being either reflected (scattering order p= 0) or refracted (order
p> 0) at the particle surface. The scattering order p refers to the number of cords the light has travelled
inside the particle. While light is scattered in all directions, when interacting with a particle, only light
that is scattered in direction (approx.) parallel to the optical axis of the camera, eventually reaches the
camera chip. The angle between the laser illuminating the particle and the optical axis of the camera
angle is the scattering angle θ.

As these are the only rays observed by the camera, all other rays are discarded in this model. This
process depends on the relative refractive index m and the scattering angle θ [29]. The light scattered
by the particle forms an interference pattern on the camera chip. Since most of the light intensity emit-
ted from the particle is contained in the GPs, the model can be simplified to the light emitted from the
GPs only, as can be seen by the bright spots on the spheres in figure 1. The frequency of the interfer-

ence pattern is a function of the distance between the GPs ∆phys
GP and therefore of the particle size, since

the relative position of the GPs on the particle depends on m and θ but not on the particle size. In IPI,
two types of particles are distinguished: droplets (m> 1) and bubbles (m< 1), as the scattering process
differs due to the different refraction at the particle surface as described by Snell’s law. For most scatter-
ing angles, the interference pattern is the result of two GPs, but third GPs can also cause patterns with
superimposed frequencies [23, 30].

Different formulations exist to describe the relationship between the particle diameter dP and the
frequency F of the interference pattern, but the most general description was provided by Shen et al [27]
as

1

F
=

|λBtot|
∆

phys
GP

, (1)

which is valid for any paraxial optical system and scattering angle. The wavelength of light in vacuum

is described by λ and the distance between the GPs is ∆phys
GP . A scattering model is required to make the

connection between the GP spacing ∆
phys
GP(θ) and the particle diameter for different scattering angles [23].

The GO model can be used as the simplest model to describe the GP position [29] and is sufficiently
accurate for particle sizes relevant to IPI. The GO model provides the relative position wi ∈ [−1,1] of a
GP of order p= i on the particle surface, so that

∆
phys
GP(θ) =

dP
2
|wi −wj|=

dP
2
∆GP(θ) . (2)
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Figure 2.Working Principle of DPTV visualized. As the particle moves away from the focal plane the particle image visible on the
image plane becomes defocused and the diameter of the PI increases.

The GP distance ∆phys
GP(θ) can be derived from its dimensionless form ∆GP(θ) = |wi −wj|. The term Btot

describes the amount of defocus and is derived from the ray transfer matrix (RTM), which characterizes
the paraxial optical system [31, 32]. The RTM describes the change of the distance to the optical axis
xray and angle ϕray of an arbitrary ray relative to the optical axis as it travels along the z direction. It has
the form (

xray,z1
ϕray,z1

)
=

[
Atot Btot

Ctot Dtot

]
︸ ︷︷ ︸

:=Mtot

(
xray,z0
ϕray,z0

)
(3)

Equation (1) requires the amount of defocus Btot of the PI to be known, which in turn requires the pos-
ition of the particle along the optical axis (i.e. the z-position) to be known. While the z-position is usu-
ally known when IPI is performed with a light sheet, three-dimensionally distributed particles require a
priori determination of the z-position. For most optical systems, i.e. optically homogeneous surround-
ing medium n2, Btot changes linearly with the z-position of the particle, so an error in the z-position
propagates linearly into the diameter determination.

2.2. Defocusing particle tracking velocimetry (DPTV)
DPTV is a popular single camera technique that is used to determine the three dimensional position
of particles. Since IPI and DPTV require the same setup, the techniques can be combined [33] and the
defocusing approach can be used to determine the z-position of the particle from the diameter of the PI.

In DPTV the z-position is determined from the amount of defocusing of the PI i.e. the PI diameter
dPI [34]. The relationship of the PI diameter and the distance of the particle to the focal plane becomes
linear with sufficient distance to the focal plane [7]. Therefore, at sufficient distance from the focal
plane, the relationship between dPI and zP can be described by a GO model [27] via

dPI = Da
|zfocI2P − zdefocI2P |

zfocI2P

(4)

where zfocI2P is the distance from the image plane to the principal plane (I2P), see figure 2. The distance
between the principal plane and the focal plane (P2F) is accordingly labelled as zP2F. In the present con-
text, the image plane is the position of the camera chip. While the position of the principal plane (loca-
tion of the imaging lens) and the focal plane are usually unknown, they can be calculated from the mag-
nification and the thin lens equation

1

zfocI2P

+
1

zP2F
=

1

flens
(5)

using a calibration target [23], with flens being the focal length of the imaging lens. The focal plane
(object side) is defined, in the present context, as the plane at which an object forms a focused image
on the camera chip. If a particle is at the distance zP from the focal plane, then the image side plane,
at which a focused image is formed, moves away from the camera chip. Instead, a new image plane is
located at zdefocI2P , see the second image plane in figure 2. The position of the new image plane zdefocI2P can
again be calculated from the thin lens equation with zP2F replaced by zP2F + zP. Note that if the sur-
rounding medium has a refractive index other than n2 = 1, all lengths must be divided by the refractive
index of their respective medium. By rearranging equation (4), the distance between the new focal plane
and the camera chip can be determined via (zfocI2P − zdefocI2P ). With the knowledge of the distance zfocI2P from
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the calibration zdefocI2P can be determined and inserted into the thin lens equation to obtain the distance
between the particle and the lens (zP2F + zP), which in turn can be used to determine zP.

Note that when combining IPI with the defocusing approach, the z-position of the particle zP is
related to the PI diameter dPI and the size of the particle dP is related to the frequency F of the PI
pattern.

3. The FM—direct problem

To perform IPI with an InvP approach, the first step is to build a FM that is sufficiently accurate to
the extent that the model error is significantly less than the measurement error. A spherical particle
producing a PI has four parameters of interest described by the vector ψP = (xP,yP,zP,dP)T, which are
the three-dimensional coordinates of the position and diameter of the particle. The FM should pro-
duce a simulated PI based on the particle parameters ψP and additional hyperparameters H unrelated
to the particle (i.e. wavelength of light λ, focal length of the imaging lens f, parameters describing the
optical system Mtot, etc). In the following, the FM consists of two cascaded sub-models: A first model
for the light scattering at the particle, and a second subsequent model for the wave propagation from
the particle to the camera chip through the optical system. To guide the reader through the approach, a
schematic flow chart of the algorithmic implementation of the FM is provided in figure 3.

3.1. Scattering model
The scattering process at the particle is influenced by the particle diameter dP and the two hyperpara-
meters θ and m. For a large field of view, the scattering angle can furthermore become a function of the
particle position. Assuming that the scattering plane is in the x–z plane, the scattering angle becomes
θ(xP,zP) = θ0 + tan(xP/(zP2F + zP)), which is a function of the particle position with θ0 being the scatter-
ing angle of a particle on the optical axis (xP = 0). For the propagation model, three important details
about the GPs must be provided by the scattering model: The position of the GPs in the object plane,
the intensity of the light at each GP and the phase difference between the two GPs. The scattering pro-
cess is best described by the Lorenz-Mie theory (LMT), a solution of the Maxwell equations for a homo-
geneous sphere [28]. However, as determining the GP position with the LMT is computationally expens-
ive, the GP positions and their phase differences is determined using the GO model. The LMT will then
just be used to identify the intensity I= |SGP| of the light at these GPs, with SGP being the complex
amplitude of the light wave emitted from the GP. An equation describing the GO model for a sphere
of arbitrary refractive index has been provided by Van de Hulst [29] i.e.(

β
(p)
i − parccos

(
1

m
cos
(
β
(p)
i

)))
= 2π k+ qθ (6)

where β(p)
i is the angles of the incidence light beam at the particle surface with respect to the surface

tangent. The corresponding transmitted angle β(p)
t of the refracted ray is already substituted by β(p)

i

and Snell’s law. The constants k ∈ [0,1,2, . . .] and q ∈ {−1,1} have to be determined depending on the
scattering order and the relative refractive index. The GP position w(p) is then obtained from w(p) =

qcos
(
β
(p)
i

)
. A fast algorithm for this calculation has been proposed by Sax et al [23]. This algorithm

is used in the present work to compute the positions of the GPs wj of each order p= j with respect to
the centre of the particle projection, see figure 4.

The second quantity to be provided by the scattering model is the phase difference of the wave
between the GPs. For the propagation model, the GPs of a particle are assumed to be in the same x–y
plane. Therefore, to obtain the phase difference, the different paths of the light rays from the incoming
plane to the object plane can be used, taking into account the refractive index of the respective medium.
Knowing the angles βi and βt, the travelled distance of the light can be calculated again from optical
considerations for p= 0 via

l0 = dP

√
1−w2

0

n2
(7)

and the refracted orders p> 0 via

lp = dP


√
1−w2

p

n2
+ p

√
2(1− cos(2βt))

2n1

 . (8)
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Figure 3. Schematic flow chart of the algorithmic implementation of the FM. To simulate the image of a GP on the camera chip,
first the scattering model computes the parameters of the GP in the source plane (intensity, position and phase). This informa-
tion is then passed to the scattering model to compute the GP image based on the GP as a point emitter in the source plane.

z z

object/source

plane

point emitter
scattering model in 

propagation model

scattering angle

incoming light

w

w

lout
(0)

lout
(0)

lout
(2)

lcoord

G (x,y)

G (x,y)

(2)

lcoord

dP

(2)

(2)
lout

Figure 4. Scattering model (left) and its integration into the propagation model (right) visualized. Incident light is scattered at
the particle. The scattering orders p= 0 and p= 2 and the position of the GPs w0 and w2 are shown. The distance travelled from
the incident plane to the object plane is in the surrounding medium lout or inside the particle lcoord. The GPs are then modelled as
point emitters in the source plane. The length lout allows both GPs to be modelled in the same plane.

In addition, the 180◦ phase shift of a reflection on a medium of higher optical density must be con-
sidered. For a reflection on the outside of the sphere, as in the case of p= 0, the phase kick-back func-
tion ∆φexternal is

∆φexternal =

{
π, m > 1

0, otherwise.
(9)

In case of an internal reflection as for scattering orders p> 0 the function is

∆φinternal =

{
π, m < 1

0, otherwise.
(10)

The total phase difference is then computed from

∆φ0 = 2π
l0
λ
+∆φexternal forp= 0, (11)

∆φ1 = 2π
l1
λ

forp= 1and (12)

∆φp = 2π
lp
λ
+(p− 1)∆φinternal forp> 1. (13)

This model provides the phase difference between the GPs. However, it should be noted that this GO
model neglects the effect of surface waves and the resulting effect on the phase of the GPs. Therefore,
the GO-based phase model is a slight oversimplification and the FM will accordingly have some minor
deviations from reality. The phase of the wave affects the position of the stripes of the interference pat-
tern in the PI. However, the frequency of the interference pattern, in contrast, is not affected by the

6
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Figure 5. Propagation model and the incorporation of the scattering model visualized. Two particles (double emitters) are shown
in a simple optical system consisting of a single lens with an aperture. The GPs of each particle are located in their respective
source plane, which has a distance of zP from the focal plane of the optical system. The field in the source plane is G0. The lens
and aperture are located in the principal plane. The field G1 in the principal plane is clipped by the aperture function T. The
cropped field G1T then propagates to the image plane to form the field G2 which is the final image seen by the camera Gimage =
|G2|. Also shown are the coordinates of a particle in the source plane (xP,yP) and its counterpart (xPI,yPI) of the particle image in
the image plane.

phase. Therefore, in the following, only this frequency is considered as the main feature to determine
the particle diameter dP. For a more accurate phase model, the position of the stripes could also be used
to fine tune dP.

Finally, the intensity of each GP depends on the size of the particle, the scattering angle and the
refractive index. The GP intensity must be known, because it influences the magnitude of the construct-
ive interference maxima and the destructive interference minima in the PI. The intensity of each GP SGP
is calculated from the Debye series expansion (DSE) of the LMT [35, 36]. This can be done efficiently
by expressing the derivatives of the Bessel function through recurrence formulae. To compute the GP
intensity a custom MATLAB implementation is used for the computation of the Mie coefficients that
follows the stable downward recurrence method of Shen et al [37] in combination with Lentz’s contin-
ued fraction method [38], and the Mie angular functions are computed using the functions proposed by
Maetzler [39]. The implementation has been validated against MiePlot [40] on bubbles (m= 1/1.333)
and droplets (m= 1.333) in the range of dP = [10300]µm and λ= 532 nm.

3.2. Wave propagationmodel
The wave propagation model uses the position (xGP,yGP,zP), intensity SGP and phase φ of each GP to
model the propagation of light waves through the optical system to the camera chip. Since interference
and diffraction must be taken into account, a wave model is used. The model chosen for wave propaga-
tion is the Huygens–Fresnel integral, which is an approximation of the Rayleigh-Sommerfeld diffrac-
tion theory assuming that the source (object) plane and image plane are much further apart than their
respective sizes. The Huygens–Fresnel integral calculates the field G2(x ′,y ′,z) in a plane (x ′,y ′) (here
the camera chip) at a distance z from the source plane (i.e. the position of the particle) based on the
field G0(x,y,z= 0) in the source plane at z= 0, see G2 and G0 in figure 5. The propagation model calcu-
lates the waves based on the position of the source plane zP, i.e. the positions of the GPs. Therefore, the
particle diameter is added to zP to obtain the true position of the particles centre (zP + dP/2), compare
the right side of figure 4. While the Huygens–Fresnel integral only describes the propagation of spher-
ical waves in free space, the introduction of a RTM allows the integral to be generalized to arbitrary
optical systems [41]. For optical systems that differ in the x–z plane and the y–z plane, the generalized
Huygens–Fresnel integral can be written as [41, 42].

G2 (x
′,y ′,z= zeff) =−i

k

2π
√

Bx
totB

y
tot

exp(ikzeff)

¨
G0 (x,y,z= 0)exp

(
− ik

2Bx
tot

[
Dx
totx

2 − 2x ′x+Ax
totx

′2])
× exp

(
− ik

2By
tot

[
Dy
toty

2 − 2y ′y+Ay
toty

′2]) dxdy, (14)

where zeff =
∑
ℓ zℓ/nℓ is the effective distance from the source plane to the image plane, and zℓ are the

individual distances travelled in the media of refractive index ni. The in-plane coordinates are (x, y) in

7
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the source plane (referring to xP and yP) and (x ′,y ′) in the image plane (referring to xPI and yPI). The
components Ax

tot,B
x
tot,D

x
tot describe the optical system in the x–z plane and the components Ay

tot,B
y
tot,D

y
tot

describe the optical system in the y–z-plane. Equation (14) allows the field G2 to be obtained even when
optical elements such as lenses and glass walls are placed between the source and the image plane. For
most optical systems, however, a limiting aperture must be taken into account. A solution to this prob-
lem was presented by Wen et al [43, 44], where the problem is solved in two steps: Propagation from the
source plane to the principal plane (location of the aperture) and propagation from the principal plane
to the image plane, see the notations G0,G1,G1T,G2 in figure 5. Starting with the field in the source
plane G0(x,y,z=0), the field at the aperture G1(ξ,η,z= zaperture) is calculated according to equation (14).
The field G1 is then cropped by the aperture, which is modelled by multiplying G1 with a transmission
function T(ξ,η) in the aperture plane. This transmission function is close to one within the aperture
radius and zero elsewhere. A model for such an aperture function as a superposition of Gaussian func-
tions was proposed by Wen et al [43, 44] as

T(ξ,η) =
N∑
ℓ=1

Pℓ exp

(
− Qℓ

(Da/2)
2

(
ξ2 + η2

))
(15)

with the complex coefficients Pℓ and Qℓ which can be found in [43, 44] and the aperture diameter
Da. The field at the image plane G2(x ′,y ′,z=zeff) is then calculated again with equation (14) based on the

cropped field G1(ξ,η,z=zaperture)T(ξ,η). For this, the RTM M(x,y)
tot is split into two subsystems describing the

optical system from the source plane to the principal plane M(x,y)
1 and from the principal plane to the

image plane M(x,y)
2 .

The majority of the light on the particle surface (seen from the scattering angle θ) is caused by the
GPs. Following Shen et al [27] a GP can be approximated as a point source of light at a known position,
intensity and phase (i.e. the output of the scattering model). The source field for a single GP is then
G0(x,y,z=0) = SGPδ(x−xGP,y−yGP) with the complex amplitude of the emitted wave SGP, which includes the
intensity and phase of the GP, and the Dirac function δ. The peak of the Dirac function is placed at the
coordinates (

xGP
yGP

)
=

(
xP +wxdP
yP +wydP

)
(16)

based on the relative position of the GP on the particle surface wx,y provided by the scattering model,
see the particle close up in figure 5. For most IPI applications, a scattering plane in either the x–z or x–y
plane is chosen so that the wx,y component outside the plane is zero. The Dirac function greatly simpli-
fies the solution of the integral, and an analytical solution for G2 can be given directly from the source
field G0 for a single GP [27]:

G2 (x
′,y ′,zeff) =

exp
(
i 2πλ zeff

)
exp
(
iπλ

(
Dx
2x

′2

Bx
2

+
Dy
2y

′2

By
2

))
(iλ)2

√
Bx
1B

y
1B

x
2B

y
2

Nℓ∑
ℓ

Pℓπ√
γx,(ℓ)γy,(ℓ)

SGP exp
(
β(ℓ) + iφ

)
(17)

with the following abbreviations

βℓ := i
π

λ

Ax
1

Bx
1

x2GP + i
π

λ

Ay
1

By
1

y2GP −
ϕ2x′

4γx,(ℓ)
−

ϕ2y′

4γy,(ℓ)
(18)

γx,ℓ :=
4Qℓ
D2
a

− i
π

λ

(
Dx
1

Bx
1

+
Ax
2

Bx
2

)
(19)

γy,ℓ :=
4Qℓ
D2
a

− i
π

λ

(
Dy
1

By
1

+
Ay
2

By
2

)
(20)

ϕx′ :=
2π

λ

(
xGP
Bx
1

+
x ′

Bx
2

)
(21)

ϕy′ :=
2π

λ

(
yGP
By
1

+
y ′

By
2

)
. (22)
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Figure 6. The superposition principle for the construction of a PI from the individual GPIs is visualized (top). The construction
of a full camera image with multiple PIs is shown in the lower half (bottom).

Equation (17) gives the field in the image plane for a single GP. Particles such as opaque tracer
particles in DPTV can be modelled as single emitters and equation (17) adequately models such a single
emitter particle. For particles such as bubbles and droplets in IPI, the particle is modelled as a double
(or triple) emitter from its GPs (xj,GP,yj,GP) with j = 1,2, ...,NGP, where NGP is the number of GPs of a
particle (usually NGP = 2). The final field of a particle image G2,P is then modelled as a superposition of
the complex fields (GPIs) produced by its individual GPs G2,GP,j

G2,P (x
′,y ′,z= zeff) =

NGP∑
j=1

G2,GP,j (x
′,y ′z= zeff) ; (23)

see the upper part of figure 6. To obtain the full image G2,image of multiple particles, the complex fields
G2,P,ℓ of individual particles ℓ are superimposed and the absolute value of the result gives

Gimage (x
′,y ′) =

∣∣∣∣∣
NP∑
ℓ=1

G2,P,ℓ (x
′,y ′,z= zℓ,eff)

∣∣∣∣∣ (24)

with NP number of particles, compare the lower part of figure 6.
If IPI is to be performed in a volume, each particle ℓ might be located at a different z-position.

Therefore, does this model contain a separate source plane for each particle ℓ, but only one common
image plane (i.e. the location of the camera chip). Accordingly, also the RTM M1,ℓ (i.e. source plane to
principal plane) might be different for each particle ℓ as it is a function of the z-position of the particle
zP,ℓ. The RTM M2 (describing the propagation from the principal plane to the image plane) is the same
for all particles.

3.3. Validation of the FM
The sub-models used for the scattering model have already been validated in the literature [27, 29] and
the GO model is commonly used to model the scattering process in IPI [1, 18]. Therefore, only the full
FM needs to be validated for the accuracy of the PI diameter as a function of the particle’s z-position
and for the correct representation of the PI’s interference pattern for a given particle size.

To validate the PI diameter dPI of the model, a simple single lens system is modelled, similar to the
one shown in figure 2. The system consists of a single lens of focal length flens = 105mm and finite
aperture (aperture number 4 corresponding to the aperture diameter Da = flens/4) and an image plane
located at zI2F = 200mm. The corresponding focal plane is at zP2F = 221.1mm. The values for flens,Da

where chosen from the validation experiment in order to have realistic parameters. A single emitter
particle is simulated at different distances from the focal plane. The resulting grey value intensities across
the PI are plotted in figure 7. The FM shows a good agreement of the PI diameter with the Olsen-
Adrian model [34] and with the GO model [27]. It can also be seen in figure 7 that the loss of intensity
with increasing defocus is captured by the model. This means that the intensity of the PI can be used as
an additional feature for the IP.
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Figure 7. Grey value intensity distribution of the imaged PI field for different distances zP from the focal plane as computed with
the forward model. For comparison, the theoretical PI diameter according to the Olsen-Adrian model [34] (•) and the GO model
from equation (4) (•) are converted to pixels and added to the diagram.

Figure 8. Optical system of the experiment used to obtain the experimental PIs of the bubbles. The bubbles are located at a dis-
tance zP from the focal plane. The focal plane is located in a water tank behind a glass wall. The imaging system is a single lens
with an aperture in the principal plane. The camera chip is located in the image plane. The refractive indices of each part of the
optical system are given.

Equation (17) has been validated to accurately represent the interference pattern for droplets [27].
Therefore, the FM is validated here on an experiment with bubbles (m= 1/1.333). The images used to
validate the model are images from the experiment described by [23].

The optical setup is shown in figure 8. The bubbles are located at a distance zP from the focal plane,
in a water tank with n2 = nwater = 1.333. The focal plane is located in the water with a distance of
zwater = 208.3mm from the glass wall (thickness zglass = 4mm). The glass wall is located at a distance of
zair = 117.1mm from the principal plane. At the principal plane an imaging lens with a limiting aperture
is located (Nikon Micro-Nikkor flens = 105mm, Da = flens/4). Finally the image plane (camera chip) has
a distance of zimage = 211.8mm from the principal plane. The camera used in the experiment was a PCO
Pixelfly (pixel size 6.45µm) and the bubbles were illuminated with a Quantel Evergreen Nd:YAG laser
(λ= 532 nm) at a scattering angle of θ = 99◦. The scattering angle of 99◦, was chosen as the measure-
ment uncertainty is the lowest at this scattering angle for the given particle sizes [23]. Further informa-
tion on the experiment can be found in [23].

The imaging lens is modelled as a thin lens in the principal plane. The effective optical path length
of the system is zeff = (zimage + za)/na + zg/ng +(zw + zP)/nw, where z are distances and n refractive
indices. The corresponding RTM from lens to camera chip is

Mx,y
2 =

[
1 zimage

0 1

]
(25)

and the RTM from particle to lens is

Mx,y
1 =MlensMp,aMI,g→aMp,gMI,w→gMp,wMp,P(zP), (26)

where Mp,j represents propagation through free space, MI,n1→n2 represents a flat interface from medium
n1 to medium n2 and Mlens describes a thin lens. The indices a,w,g represent air, water and glass
respectively.
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Figure 9. Experimental (left) and simulated (right) particle images for three different bubble sizes (top). In the bottom row the
signal from averaging the PI along the stripes of the pattern is shown. Below each graph the used z-position and size of each
bubble is displayed. The uncertainty of the size estimation with the FFT approach is also displayed. The size of the particle was
only varied within a tenth of the uncertainty of the FFT approach to obtain the simulated image.

In the validation experiment, the z-position of the bubbles was measured by fitting the PI dia-
meter with a circular Hough transform. The determination of the PI diameter by this method is at least
pixel accurate [15]. For the given optical system an error of ∆dPI = 1 px results in an uncertainty of
∆zP = 81.4µm according to equations equations (4) and (5). A widely spread method to interpret the
interference pattern in IPI is the extraction of the fringe frequency by applying a Fourier transforma-
tion to the fringe pattern and fitting the frequency peak in frequency space [30, 45, 46]. This method
is, therefore, used as the benchmark in the present work. To determine the size of the bubble, the PI
was averaged along the stripes of the interference pattern and the resulting signal, as plotted in figure 9,
was processed by an FFT. The signal was zero-padded by a factor of 10. Analogous to [23], the PI was
split up into four different segments perpendicular to the stripes (upper-kernel, middle-kernel, lower-
kernel and full-kernel). The four image kernels where then processed individually to obtain the experi-
mental variance of the FFT processing. The particle size was determined using equation (1). To obtain
the diameter uncertainty of the method, the kernel with the largest frequency was paired with zP +∆zP
and the kernel with the smallest frequency was paired with zP −∆zP. This gives the maximum spread
of possible diameters. The determined z-position and diameter were then used in the FM to simulate
the PIs, which are shown in figure 9. Since the FFT approach has an estimation uncertainty, the bubble
diameter for the FM was varied, starting from the mean diameter of the FFT approach, to best fit the
experimental PI. The bubble size was varied only within a tenth of the uncertainty interval of the FFT
approach. It can be seen that for different bubble sizes a great agreement between the simulated PIs and
the real experimental PIs was achieved within the measurement uncertainty of the FFT approach. In the
experiment a heptagonal aperture was used which the model fails to capture as the aperture function
T assumes a circular aperture. However, the match of PI diameter and the intensity distribution of the
fringes match closely as can be seen in figure 9. Due to the heptagonal shape of the aperture, the outer
most stripes of the averaged signal differ slightly. This is, however, an artefact of averaging along the
stripes, where the shape of the aperture affects the height of the averaged maxima. Another discrepancy
between the FM and the experiment is the location of the Newton-rings (i.e. diffraction at the aperture)
within the PI. As the FM model uses the paraxial approximation, the Newton-rings are always centred in
the PIs, unlike in reality where the centre of the Newton-rings depends on the in-plane position of the
PI. Over all, the FM represents reality sufficiently and can be used for the InvP approach.

4. IP for a single particle

In this section the InvP for a single double-emitter particle is considered. The simulation of multiple
particles follows in section 5. A single double emitter (bubble or droplet) is characterized by the para-
meter vector ψP = (xP,yP,zP,dP)T. To optimize this vector, an interior-point algorithm [47] with numer-
ical gradients by means of central differences is applied. This work uses MATLAB’s implementation of
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Figure 10. Particle images for different particle diameters and distances from the focal plane. Larger particles require greater dis-
tances from the focal plane to be sufficiently defocused (i.e. the PI resembles a single circle). PIs without interference, as created
with equation (27), are shown, to visualize the double circle nature of double emitter PIs (cp. also the blue circles). The images
without interference are used to calculate PP,pos. The influence of the particle diameter in combination with the z-position on
the PI shape becomes obvious, when omitting the interference. Also the effect of aliasing as a function of diameter and z-position
can be observed as marked by the red circle. Recall that aliasing can occur in two ways, where either the particle becomes larger
with accordingly increasing number of fringes or the PI becomes smaller, such that the remaining PI-intersection for the fringes
diminishes.

the fmincon, which uses a trust-region interior point algorithm [48], to minimize a mismatch func-
tional P(ψP) that assesses the similarity between the simulated and the real (observed) image Gobs. Note
that the same methodology can also be applied to a DPTV only approach locating tracer particles. In
this case, a particle is modelled as a single emitter and the optimization vector is shortened to ψTracer

P =
(xP,yP,zP)T.

4.1. Mismatch functionals for the optimization
the InvP approach requires suitable mismatch functionals for the optimization. For the position of the
particle (xP,yP,zP)T the Structure Similarity Index SSIM [49] was identified to be a robust choice. The
particle is modelled as a double emitter, which leads to the optimization vector ψP,pos = (xP,yP,zP,dP)T.
An IPI particle is modelled as a double emitter due to the double-circular nature of the PIs and the
influence of the particles diameter on the PI shape, see figure 10. While the global minimum of the
SSIM mismatch functional is in the correct position, it appears to be non-smooth and has many local
minima. This is due to the stripes of the interference pattern in the PI. To mitigate this problem, the
particle image is simulated without stripes. In order to avoid the stripes due to interference, the two
glare point images (GPI) G2,GPj are not superimposed until after the absolute value of the field has been
taken, i.e.

GP,pos = |G2,GP1|+ |G2,GP2|. (27)

In this way, the complex amplitude is omitted and no interference appears. The resulting PI obtains only
the shape of the PI but not the interference pattern, as indicated in figure 10. The mismatch functional
for the particle position therefore goes as

PP,pos

(
ψP,pos

)
=−SSIM

(
GP,pos

(
ψP,pos

)
,Gobs

)
(28)

with a negative sign as the SSIM approaches a positive maximum (PP,pos = 1) for a perfect match.
To formulate a mismatch functional for the diameter PP,dia, the fringe frequency should be con-

sidered as the main feature. Simply comparing both Gimage with the observed (i.e. recorded) image Gobs

for different particle diameters dP leads to the same problem of a non-smooth objective functional with
many local minima, due to the stripes in the PI. Varying the particle diameter changes the fringe fre-
quency, and whenever stripes of the simulated and observed images overlap, there is a local minimum,
even if the fringe frequency of the pattern is not the same. In addition, the phase difference between the
GPs causes the stripes to move perpendicular to the stripe orientation as the particle diameter increases,
creating even more local minima between the fringe frequency multiples. Both of these effects render
a simple comparison of the simulated image with the observed image infeasible for a local search and
would require an expensive global search. Therefore, the Fourier-transformed images are compared
instead. This eliminates the phase-induced shift of the stripes and multiples of the fringe frequency are
clearly distinguishable. Since noise in the observed image introduces additional frequencies, the normal-
ized cross-correlation of the two Fourier transformed images is chosen as the mismatch functional. The
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mismatch functional for the diameter is

PP,dia =−
(
F2

{
Gimage

}
⋆F2 {Gobs}

)
, (29)

where F2 denotes a two-dimensional FFT and the ⋆ symbol denotes a normalized cross-correlation. For
better accuracy, the simulated and observed images can be zero-padded similar to the FFT approach.
However, this increases the size of the processed image in pixel space, so a factor of two zero padding
was used in this work to limit the computational cost. This mismatch functional has a global minimum
for a matching diameter, but is only monotone and smooth near the global minimum. Other local min-
ima exist further away from the minimum, making the diameter determination the most challenging
part.

Since both mismatch functionals are in the same range, PP,pos ∈ [−1,0] and PP,dia ∈ [−1,0] they can
be combined to formulate the combined mismatch function PP = PP,pos +PP,dia. In this way, the char-
acteristic of the PI shape changing with particle size can be taken into account in addition to the fringe
frequency.

4.2. Optimization strategy for a single particle
Optimizing over all four particle parameters by means of a local search likely means a termination in a
local minimum rather than the global one, due to the non-convex nature of the optimization function.
However, for a reliable parameter estimation, a minimum as close as possible to the global minimum
must be found. As discussed in the last section, the mismatch function for particle size is only quasi-
smooth near the global minimum. Therefore, initialization close to the global minimum is required
to ensure reliable convergence of the algorithm. Recent advances in PI detection [12–15] for DPTV
approaches allow for at least pixel accurate placement of bounding boxes (BB) around the PI. The place-
ment of a BB provides values on the PI (xPI,yPI,dPI). Initial values for the in-plane position of the
particle (xP,yP) can be derived directly from the PI position (xPI,yPI) considering the magnification of
the system, similar to conventional PTV approaches. An initial guess for the z-position of the particle
can be derived from the PI diameter dPI, e.g. via equations equations (4) and (5).

The BB values can then be used to initialize the optimization close to the global minimum. The
local search is then constrained to an interval based on the uncertainty of the detection method used.
In this work, two BB accuracies are considered: ±1 px and a more conservative version of ±5 px. The
optimization is constrained to the BB uncertainty to ensure an actual refinement of the initial detection.
However, a BB around the PI does not provide information about the particle diameter. Therefore, to
obtain an initial estimate of the particle diameter, a global search is performed over the specified dia-
meter interval with a resolution of 50 steps, while keeping the position parameters fixed. In this work
the interval of possible diameters dP = [20,300]µm is used, where the lower end corresponds to the
lower limit of particle diameters measurable with for the given setup (i.e. the minimum diameter for
which a full wavelength of the stripe pattern is still in the PI [23]). A global search over the expected
range of diameters provides a starting value for the diameter.

As the optimization in high dimensions is difficult, the problem is separated into two sub-problems
to reduce the dimensionality of the search: first, only the position (xP,yP,zP) is optimized with dP as a
free parameter, so that the shape of the simulated PI is closer to the observed PI, compare the double
circle nature of the PI shown in figure 10. In this step, only PP,pos is used, so that changes in dP only
affect the double circular shape of the PI and stripes are omitted. This bears the advantage of smoothing
the mismatch functional, consequently increasing the chances to find a better local minimum.

In the second step, the particle diameter based on the global search is used to initialize dP as well,
using PP,dia. The optimization then runs over (zP,dP) with PP,pos +PP,dia to refine the z-position and
diameter by changing the size, shape and interference pattern of the PI. The in-plane position is kept
fixed as it only affects the position of the PI, not the shape and pattern. The particle parameters (zP,dP)
are optimized together as the double circular shape and interference pattern of the PI depend on both
the z-position (size of the circular GPIs and fringe spacing) and on the diameter (distance of the cir-
cular GPIs and the fringe spacing). The combined optimization further reduces the dependence of the
diameter determination on the out-of-plane determination, as the two effects that zP and dP have on the
PIs are not easily separable. While in standard IPI approach, an error in the z-position directly propag-
ates into the diameter estimation without the chance of correction, the combined optimization allows to
correct zP errors while estimating dP, thus avoiding this issue.

An overview over the full method—from the recording of the raw images to the reconstructed
particle field—is shown in figure 11. First, images are recorded and processed, e.g. by a CNN to obtain
BBs of the PIs, compare the work of [13–15]. The BBs are then used to initialize the parameter vector.
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Figure 11. Scheme of the InvP approach in the context of a measurement. First images are recorded and a detection algorithm
(e.g. a CNN) is used to generate BBs. The BBs are used to initialize ψP and the IP. In the InvP ψP is fed into the FM to produce
a simulated image. The simulated image is then compared to the observed image by the mismatch functional, which quantifies
the mismatch by a single value. This value is then minimized (e.g. by a trust-region interior-point algorithm) until a convergence
criterion is reached. The particle field is then reconstructed from the final iteration of ψP. the InvP is analogue for a single or for
multiple particles.

The parameter vector ψP is then fed into the FM and the resulting image into the mismatch functional.
The parameter vector is then optimized to minimize the mismatch functional, e.g. with a trust-region
interior-point [48] algorithm. Once the optimization terminates, ψP can be used to obtain the particle
field. The process works analogue for single or multiple particles.

4.3. Test on a single synthetic particle image
To test the InvP approach first synthetic PIs, as generated by the FM, are considered (added Gaussian
noise—mean 0.1 and variance 0.1), as the ground truth particle parameters ψ̂P are known without
uncertainty for synthetic PIs. This also allows for particle parameters to be deliberately modified. For
all synthetic tests, the optical system to mimic the bubble sizing experiment is used for the FM.

First, only one particle parameter is optimized, while the other three are kept fix (at ground truth) to
investigate the potential limit of the InvP approach. To investigate the diameter accuracy, the diameter is
initiated with the global search and then fitted with the local search. An FFT algorithm, as used to size
the particles in figure 9 is also applied on the images to act as a bench mark (also with ground truth
z-position). Since the InvP approach uses the same FM as used for the generation of the (synthetic)
observed image, the InvP approach has a natural advantage over the FFT approach on synthetic images,
that will not appear on images from real experiments. However, the effect of different PIs on the InvP
and FFT approaches can be assessed independent from this effect. The results are shown in figure 12(a).

Since the particle diameter and its z-position are connected, two cases are tested: First, the particle
diameter is kept constant (dP = 100µm) and the PIs are generated at different z-positions. This way the
effect of insufficient defocusing can be investigated (i.e. when the GPIs are not sufficiently overlapping,
see figure 10 thus leading to the aforementioned aliasing effect). The aliasing effect in the interference
pattern appears when the distance between the stripes becomes to small to be resolved by the pixel size
(i.e. the Nyquist frequency is reached). As indicated in figure 10, aliasing can occur through two differ-
ent ways: (i) the particle becomes too large and too many fringes are squeezed into the PI or (ii) the
distance to the focal plane decreases and the PI shrinks to that the same amount of fringes becomes
squeezed together in a smaller area.

Both the FFT and the InvP approach achieve sub-micrometre accuracy. It can be seen that the InvP
approach determines the diameter at least to the same level of accuracy as the FFT approach. The main
difference between the FFT and the InvP approach, is that the InvP approach fits the whole spectrum
of frequencies in Fourier space, whereas the FFT approach only fits one dominant peak. This renders
the InvP approach potentially more robust to overlaps and other imperfections of the PI. While the
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Figure 12. IP approach and FFT for the diameter measurement with known particle position (xP,yP,zP). Both approaches were
given the ground truth particle position and only the particle diameter was determined. For the simulated observed image, in (a)
the particle z-position was varied with a fixed diameter, and in (b) the particle diameter at fixed z-position was varied. The red
dashed line (- - -) represents the micro-meter accuracy for the present optical system. The red dot (•) shows where the two test
series intersect in parameter space.

optimization on synthetic images reaches errors as low as sub-nanometer levels, this degree of accur-
acy is unrealistic as the FM is unlikely to represent reality to this degree. Errors smaller than a tenth of a
micrometre can be accredited to the InvP approach using the same FM model as the observed images.

A major advantage of the InvP approach over the FFT becoming visible in figure 12(a) (red mark-
ing), which is the robustness against aliasing in the interference pattern. It can be seen that the FFT
approach fails to function properly when the particle is to close to the focal plane and aliasing occurs,
as seen by the sudden increase of error for small z-positions. This sharp increase does not occur for the
InvP approach, since the FM can correctly account for the aliasing (due to the known pixel size in the
FM and the according discretization of the field G2). As the FM accounts for aliasing, the InvP can deal
with this effect accordingly. This has an important implication: Since aliasing occurs for insufficiently
defocused particles (i.e. particles to close to the focal plane for their size), this allows the InvP approach
for the measurement of particles closer to the focal plane.

Next, the effect of the particle size on the diameter estimation was tested, see figure 12(b). In this
test series the z-position of the particle was kept constant and the diameter was varied. The z-position
zP = 7mm was chosen to ensure sufficient defocusing for all particle diameters. It can be seen that the
FFT approach performs better for larger particles (i.e. more fringes in the PI), while the particle size
seems to have no visible effect on the InvP approach.

The same two tests (with the same PIs) were conducted with the in-plane position (xP,yP) and the
diameter dP kept fixed at known ground truth values and only the z-position was optimized. For this
test a BB placement uncertainty of xPI,yPI,zPI =±1 px was assumed. Most machine learning meth-
ods used for particle detection in DPTV achieve pixel accurate results [13–16]. However, the higher
uncertainty was chosen for conservative testing and to account for any placement errors of detection
algorithms. The results are shown in figure 13. Overall, it can be seen that the InvP approach achieves
sub-pixel accuracy for the z-position in the case of good initialization. The diameter of the particle, and
therefore, the shape of the PI, compare figure 10, does not seem to have an observable influence on the
z-position uncertainty.

Next the InvP approach is considered for a search over the full optimization vector ψP, without any
ground truth information. The position initialized from the BB placement with a ±1 px and a ±5 px
error in a random direction to simulate the BB placement uncertainty of a detection approach. For this
test, 200 PIs were generated with random particle parameters ψP in xP,yP ∈ [−1,1]mm, zP ∈ [1,8]mm
and dP ∈ [20,300]µm. The distribution of the resulting estimation errors are shown in figure 14 and
the median errors are shown in table 1. The in-plane accuracy of the InvP approach is sub-pixel accur-
ate and poses a clear improvement from the pixel accurate BB placement. For single PIs the accuracy
of the x and y positions differs, which is a result of the directionality of the fringes in the PI. The dir-
ectionality causes the objective functional to have a different topology in the x and y dimensions. This
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Figure 13. Optimization of the particle z-position with the ground truth of the other particle parameters (xP,yP,dP) for a varying
z-position and fixed diameter (a) and for a varying diameter with fixed z-position (b). The black dashed line (- - -) represents the
pixel accuracy. The red dot (•) shows where the two test series intersect in parameter space.

Figure 14. Probability density function (PDF) of the errors of the InvP approach (1 px initialization error) for 200 single particle
images with randomly distributed positions and sizes. The particles have diameters in the range of dP = [20,300]µm and a ran-
dom distance from the focal plane in the range of zP = [1,8]mm. The in-plane position was randomly generated for the PI to be
still fully within the image. The pixel accuracy is shown as the black dashed line, and the micro-meter accuracy (for the present
optical system) as a red dashed line.

Table 1.Median Error for 200 synthetic PIs with random particle parameters ψP. The particles have diameters in the range of
dP = [20,300]µm and a random distance from the focal plane in the range of zP = [1,8]mm. For the FFT approach a random error
within an uncertainty of∆xPI,∆yPI,∆dPI = 1 px was added to the ground truth parameters ψP. The FFT was then performed on the
initialized value. For the InvP approach a random placement error for the BB∆xPI,∆yPI,∆dPI = 1 px and 5 px was used to initialize
the starting values of the optimization. The factor of improvement for the InvP based on the chosen FFT+BB (with 1 px error)
approach is given in the last two lines of the table. The improvement factor of the InvP with 5 px initialization error relates to an
improvement over the FFT+BB with 1 px error.

median error in µm median Error in pixel

Method (xP,yP) (µm) zP (µm) dP (µm) (xP,yP) [px] zP [px]

FFT+ BB (1 px) (6.45, 6.45) 81.4 47.2 (1,1) 1
InvP (1 px) (2.43, 0.38) 3.13 0.16 (0.38,0.06) 0.04
InvP (5 px) (3.65, 0.47) 42.4 0.85 (0.57,0.07) 0.52

improvement factor InvP (1 px) (2.6, 17.0) 26.0 295 − −
improvement factor InvP (5 px) (1.8, 13.7) 1.9 55.5 − −

effect was, however, not observed when optimizing over multiple particles, see section 5.2 and is seems
to become irrelevant in case of higher dimensional spaces. The in-plane accuracy of the InvP approach
is comparable to current bench marks in DPTV such as the cross correlation approach [50] and the
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Figure 15. Real PIs from the bubble experiment [23] (left), the PI from the InvP result (middle) and the image overlay (right)

(observed—blue channel; InvP—red channel). Given are the ground truth values ẑP, d̂P (i.e. measurement with conventional
approach) with the measurement uncertainty (left), the values obtained from the InvP approach zP,dP (middle) and the discrep-
ancy of the two methods (right). The same images as in figure 9 for the validation of the FM were used. Similar to figure 9, the
blue line on the right represents the experiment and the orange line, the reconstruction by the IP.

circular Hough transform [51]. A poor initialization has only little effect on the in-plane position estim-
ation, due to the smoothness of the mismatch functional for a single PI in x and y direction. For the z-
position accuracy, a significant improvement over pixel accuracy is achieved, with the error being in the
same-order of magnitude as the in-plane error. The effect is less pronounced for a poor initialization but
still significantly better than pixel accuracy. However, this effect might not hold for the application on
real images due to differences in the aperture shape between simulation and real experiment. The biggest
improvement of the InvP approach is in the estimation of particle diameter dP. As the FFT approach
is reliant on a known z-position, even small errors in the z position cause large deviations in the dia-
meter estimation as the error propagates linearly onto the diameter estimation, compare equation (1).
This is not the case for the InvP approach and even for a poor initialization (±5 px) sub-micrometre
accuracy is achieved. The correlation between the z-position and diameter errors is 0.06. Even for a less
accurate z position (42.4µm), as is the case for the poor initialization, remains the diameter estimation
largely unaffected (0.86µm). The uncorrelated diameter estimation poses an improvement of the dia-
meter estimation of more than two orders of magnitude for single PIs.

4.4. Transferability to real particle images and robustness of InvP approach
For synthetic PIs the InvP approach shows some improvement of accuracy over the FFT approach.
However, the InvP approach takes advantage from using the same FM as the synthetic observed images.
Therefore, the transferability of these results to real images needs to be investigated.

To test this the same PIs used for the validation of the FM, see figure 9, are used. The InvP
approach is applied to the real images, using an initialization from BBs with a placement accuracy of
∆xPI,∆yPI,∆dPI =±1 px.

The result of the optimization can be seen in figure 15. For all three particles the InvP approach
returns a result within the measurement uncertainty of the FFT + BB (1 px uncertainty) approach.
The amount of improvement of estimation accuracy, can however not be quantified, since the ground
truth bubble position and diameter is subject of the uncertainty of the conventional measurement
method (FFT + BB) and therefore not known with higher accuracy. With the InvP approach, a dis-
tinct minimum for ψP is found within the uncertainty of the FFT + BB approach. This means that
the InvP approach is at least as accurate on real data as the FFT + BB approach. The higher accuracy
on synthetic data (see section 4.3) and the distinction of the minimum within the uncertainty of the
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Figure 16. Consistency of the InvP approach for images with increased noise levels. Images from the bubble experiment were
used and Gaussian noise was added to decrease the SNR (top). The change of the optimization result of the InvP approach for

different noise levels is shown for the x-position (left), the z-position (middle) and the diameter (right). The values (x̂P, ẑP, d̂P)
refer to the results of the InvP approach without added noise, see figure 15. The error is the deviation from the ’noise free’ results.
The same images as in figure 9 for the validation of the FM were used.

FFT + BB approach suggest, that the InvP approach is considerably more accurate than the FFT + BB
approach. Due to the unknown ground truth, however, this improvement is difficult to quantify. The
InvP approach also achieves sub-micrometre accuracy (for the given optical system) for the diameter
even in the case of an unknown z-position, and sub-pixel accuracy of the z-position despite the mis-
match of the heptagonal aperture with the assumed circular one in the FM. It is likely that a heptagonal
aperture function would further increase the z-position accuracy of the InvP approach, but would render
the approach less flexible to optical systems with other apertures.

A common issue in IPI is low signal-to-noise ratio (SNR) as occurs for large defocus distances,
compare figure 7, small particles and measurement at certain scattering angles [23]. To test the InvP
approach for the robustness against low SNR, the same images as used in figures 9 and 15 are used, with
white Gaussian noise added to decrease the SNR post-measurement. The original images all had an SNR
larger than 30 and noise was systematically added until the SNR was lowered to 2.6, compare figure 16.
The SNR was defined as the average intensity of the peaks in the fringe pattern (i.e. stripes) compared
to the variance of the background. Variance is commonly used to quantify noise power independently of
shifts in background intensity, particularly under the assumption of Gaussian-distributed noise, which is
a standard model for image noise. Since the ground truth of the bubbles in the real experimental images
is only known with the uncertainty of the FFT + BB approach, the error with increasing noise is quan-
tified by the consistency of the InvP approach returning the same result for ψP despite the added pres-
ence of noise. The accuracy reference (x̂P, ŷP, ẑP, d̂P) is therefore the result returned by the InvP approach
for the original image (without added noise, SNR>30). The error stemming from added noise is then
defined as the difference of the returned values of the InvP on images with noise (xP,yP,zP,dP) from the
values of the InvP on the original images.

The results are shown in figure 16, which outlines that all dimensions of optimization behave very
similar in the presence of noise. For higher SNR levels almost no influence of noise is observed for the
3D localization, while for extremely low SNR levels of close to 2.6, the returned result starts to vary
more significantly. A closer look at the topology of the mismatch-functional reveals that the smooth-
ness of the optimization landscape is barely affected by the noise, but the global minimum experiences a
small shift due to the noise. This reveals that the influence of noise on the InvP is an issue affecting the
mismatch functional and is, therefore, not an FM or solver-related issue. The increased variance of ψP

in the presence of noise can therefore, be explained by noise introduced shifts of the global minimum.
However, despite very low SNR, the returned result stays sub-pixel accurate for the position and sub-
micrometre accurate for the particle diameter determination.

5. IP for multiple particles

The last section demonstrated the feasibility of the InvP approach for single particles and sug-
gests improvements in measurement accuracy and noise resistance compared to current benchmark
approaches. Almost all measurement scenarios, however, involve multiple particles. In such multi-particle
systems, the PIs must be considered together, as the PI overlap in turn leads to superimposed patterns.
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These overlap regions of the PIs, affected by the superposition, can become complex as multiple fringe
frequencies and orientation of the fringes can occur. To accurately fit a PI onto another PI, the other
PI’s parameter must be known beforehand. Therefore, the InvP approach for multiple particles optimizes
all particles in the same image at once. Similar to the single particle approach, machine learning tech-
niques for object detection can again be used to place BBs around every PI to provide starting points for
the x,y,z positions of each particle.

5.1. Mismatch functionals and optimization
To fit all particles in the image at once, the particle parameter vector is extended to

ψI = (xP,1,yP,1,zP,1,dP,1︸ ︷︷ ︸
particle1

,xP,2,yP,2,zP,2,dP,2︸ ︷︷ ︸
particle2

, . . .,xP,N,yP,N,zP,N,dP,N︸ ︷︷ ︸
particleN

)T (30)

with the length 4N for N particles in the image (ψI = (ψT
P,1,ψ

T
P,2, . . .,ψ

T
P,ℓ, . . .,ψ

T
P,N)

T). The image Gimage

is then computed from the complex fields G2,ℓ of the individual particles ℓ using equation (24). The
number N of particles in the image is assumed to be known and can be retrieved from a particle detec-
tion algorithm (i.e. number of BBs in the image), compare the initialization scheme in figure 11. While,
there is a lot of research (e.g. [12, 13, 16]) published on the position accuracy of neural networks, only
few papers discuss the detection rate [14, 15, 52, 53]. However, recent approaches for particle detec-
tion algorithms have shown to have sufficiently low miss rates to initialize an InvP approach. To deal
with the many local minima in this high dimensional space, again the initialization based on the BBs
(xPI,ℓ,yPI,ℓ,dPI,ℓ) of each PIℓ is used to obtain good starting values for the optimization.

The optimization routine remains identical to the single particle optimization: first the positions are
optimized and in the second step the z-positions and the diameters are refined. In the first step the full
vector ψI is fitted in order to identify the individual particle positions and the diameter is again kept
as a free parameter in order to adapt the PI shapes. To suppress interference in this step the image is
computed from

Gimage,pos =

NP∑
ℓ=1

GP,pos,ℓ =

NP∑
ℓ=1

|G2,ℓ,GP1|+ |G2,ℓ,GP2| (31)

for NP particles. The mismatch functional PI,pos is then computed identical to the single particle
approach (PP,pos), compare equation (28). To compute the mismatch functional for the diameter, the
PIs are Fourier-transformed individually. For this, an image snippet of each particle ℓ is used for the
mismatch functional. The image snippet is computed from a BB, of which the centre is derived from
xP,ℓ,yP,ℓ and the BB diameter is derived from zP,ℓ and equation (4). The mismatch functional PI,dia is
then computed from the individual Fourier-transformed image snippets and takes the form of

PI,dia =− 1

N

N∑
ℓ=1

(F2 {GPI,ℓ} ⋆F2 {GPI,ref,ℓ}) , (32)

which is an expansion of equation (29). To initialize the diameters, again a global search is run over
the individual PIs using equation (29). In the second step the local search again only optimizes the z-
positions and diameters so that the optimization vector in the second step takes the form of

ψI,zd =

zP,1,dP,1︸ ︷︷ ︸
particle1

,zP,2,dP,2︸ ︷︷ ︸
particle2

, . . .,zP,N,dP,N︸ ︷︷ ︸
particleN


T

(33)

and has the size of 2N. Since the z-positions and diameters of the particles are optimized together,
the objective functional of the second step takes again the form of PI = PI,dia +PI,pos, similar to the
single particle approach. The approach for multiple particles is essentially identical to the single particle
approach, but the generated images contain multiple PIs.

The multi-particle InvP approach has the following advantages: The shape of overlapping PIs and the
super-positioned fringe pattern can be accurately represented by the FM. The LMT-DSE model in the
FM intrinsically models changes in intensity with varying particle size and scattering angle (i.e. x,y pos-
ition of particle). Also the intensity change with the z-position is accounted for, which is indicated by
the intensity loss in figure 7. The increased intensity and varied interference pattern in overlapped parts
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Figure 17. Probability density functions for the in plane x and y errors (a), the out-of-plane errors (b) and the diameter estim-
ation error (c). For the diameter error also the FFT approach is plotted as comparison. Similarly to the FFT, the InvP approach
was initialized with 1 px uncertainty. Ten images with 20 particles each where generated with random particle parameters in
dP ∈ [20300]µm and zP ∈ [1,8]mm. The pixel accuracy is shown as the black dashed line, and the micro-meter accuracy as a red
dashed line. The yellow dashed line in (c) marks the threshold beyond which outliers are defined.

between PIs is also accounted for by the FM as the complex fields of the PIs are superimposed. These
characteristics let the approach use the relative intensity between PIs as an additional feature, which
other approaches do not take advantage of.

5.2. Tests on synthetic data
To test the multi-particle InvP approach, again synthetic images are generated with the FM to have a
ground truth for the analysis. Similar to the single particle tests, noise is added to the observed images
and the optimization is initialized from BBs with ±1 px and ±5 px placement uncertainty (random
derivations for each BB ∆xPI,∆xPI,∆xPI ∈ [−5,5] or [−1,1]). For comparison, also the FFT + BB
(±1 px uncertainty) approach is applied to the images. The random initialization for the FFT + BB
approach and for the InvP approach where exactly the same (for the InvP approach multiplied by 5 in
case of the ±5 px initialization) to cancel out the influence of ‘lucky’ placements of BBs. Ten different
images containing 20 particles each were generated for testing.

The results of the test are shown in figure 17. It can be seen that the multi-particle InvP approach
remains sub-pixel accurate in the in-plane position for a good initialization, but not for a poor initial-
ization (±5 px), see the improvement factors in table 2. This is due to the non-smooth landscape of the
optimization function, where the optimization gets stuck in a local minimum, if not initialized prop-
erly. In the case of a poor initialization (±5 px) the in-plane error is still reduced from the BB error
of 32.25µm to 10.5µm, which poses an improvement by the factor of 3. The z-position error remains
almost identical for the multi-particle approach (3.13 vs 3.15µm error for the good initialization and
42.4 vs. 61.8µm for the poor initialization). The landscape of the mismatch-functional is mostly con-
vex in the z dimension for single particles and is also smoother than in the x,y dimensions for multi-
particle systems. The InvP approach improves the particle parameter compared to its initialization sig-
nificantly even for a poor initialization. For the diameter estimation also similar results to the single
particle approach are achieved. The InvP approach achieves significantly better results in the diameter
estimation due to the uncorrelated diameter and z position determination. The investigation of the dia-
meter error shows that the error probability density function (pdf) is split into two parts. An arbitrary
threshold of a diameter error of the order of magnitude of 10µm and above is defined to mark outliers
in the estimation, based on the separation of the two pdfs, compare figure 17(c). The number of out-
liers is significantly reduced with the InvP approach compared to the FFT+BB approach (25 to 5). It
should be noted that, without the significant number of outliers, the diameter uncertainty of the unaf-
fected particles (left peak in the PDF) in the case of a sequential approach (i.e. ignoring the right peak)
is comparable between the FFT and InvP approaches. This again highlights the effect of error propaga-
tion from the z-position into the diameter estimation.

5.3. Particle image overlap
As the InvP approach achieves very similar results for multiple particles compared to single particles, the
effect of PI overlaps on the result is investigated in more detail. To investigate the influence of PI over-
laps in images with multiple particles, the cumulated intersection over area (IoA) of each PI is defined.
The IoA describes the amount of overlap between two objects in relation to the area of the considered
PI. It therefore shows the fraction of an individual PIs area that is covered by another particle. The IoA
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Table 2.Median errors of the FFT+ BB (1 px uncertainty) and the InvP approach (initialization with 1 px and 5 px uncertainty). The
factor of improvement of the result using the InvP approach is given below. The number of outlier is stated, with an outlier, arbitrarily
being defined as an error in diameter of more than 10 µm. The outlier threshold of 10 µm was chosen based on the PDFs in
figure 17(c), where two ranges of high probability are separated: one in the order of magnitude of 1 µm and the other in the order of
magnitude of 100 µm. The improvement factor of the InvP with 5 px initialization error relates to an improvement over the FFT+BB
with 1 px error. Note that the values for xP,yP,zP for the BB approach represent pixel accuracy and are imposed errors. The error of dP
is the resulting error from a measurement with an FFT+ a 1px uncertainty in the z-position.

median error number of outliers

Method (xP,yP) (µm) zP (µm) dP (µm) (|d̂P − dP|> 10µm)

FFT+ BB (±1 px) (6.45, 6.45) 81.4 34.4 25
InvP (±1 px) (1.68, 1.77) 3.15 0.72 5
InvP (±5 px) (10.5, 14,4) 61.8 2.81 10

improvement factor InvP
(initialization±1 px) (3.8, 3.6) 25.8 47.7 5
(initialization±5 px) (0.61, 0.44) 1.3 12.2 2.5

is introduced as

IoAℓ,j =
API,ℓ ∩API,j

API,ℓ
. (34)

with API,ℓ being the area of the PI. The cumulated IoA for a particle ℓ sums up the IoA of the PI ℓ with
every other PI j in the image

cumulatedIoAℓ =
∑
j

IoAℓ,j (35)

and, therefore, provides a measure for the total amount of area in the PI that is covered up by overlap.
Figure 18(a) shows the z-error for each PI in relation to the cumulated IoA. From figure 18(a), it can
directly be seen that the z-error is unaffected by the overlap. The same goes for the diameter error as
can be seen in figure 18(b). The comparison between the FFT and the InvP approach, both for ±1 px
BB placement accuracy, reveals that the InvP approach produces significantly less outliers and achieves
consistently lower errors in the presence of strong overlaps. To visualize the performance of the FFT+BB
approach compared to the InvP approach, figure 19 shows two of the test images with the respective
error category (< 1, [1,10] and > 10µm error). It can be seen that the FFT approach (fitting a single
peak in frequency space) works well for non-overlapping PIs but creates a significant amount of out-
liers in the presence of even small PI overlaps. The FFT approach results in large errors even for small
amounts of overlap. This is due to the presence of other significant peaks in the Fourier space due to the
superposition of frequencies. Consequently, any of the frequencies might be detected and it is difficult to
identify the correct one. For the InvP approach on the other side, most particles could be reconstructed
despite larger PI overlaps. The number of outliers in the presence of overlaps is reduced from 25 (FFT)
to 5 with the InvP approach. However, the InvP approach still produces some outliers. These outlier PIs
were all significantly less bright than the other PIs surrounding them, indicating that the intensity of PIs
does have an important role on the reconstruction. This is likely due to brighter PIs influencing the mis-
match functional more than dimmer ones. PIs less bright than their surrounding PIs stem either from
smaller particles or more defocused particles. This means that these two types of particles are most likely
to be wrongly reconstructed. Considering the many outliers caused by PI overlaps when using the FFT
approach, the InvP approach yields a promising alternative for the improvement of median and mean
accuracy in diameter estimation. However, the InvP approach also returns larger errors on PIs, which are
isolated from other PIs without any overlap. This stems from the challenging topology of the mismatch-
functional.

5.4. Particle reconstruction from the InvP approach
Finally, the InvP approach is used to reconstruct a full three dimensional particle field, from the
(synthetic) observed image. For the visualization of the application, one of the ten test images from
section 5.2 is chosen. Figure 20 shows the ground truth particle field with the three dimensional pos-
itions and diameters, that was used to generate the observed image with the FM. The reconstructed
particle field is shown next to the ground truth. It can be seen that all but one particle were reconstruc-
ted with sufficient accuracy. The position of this one particle was still reconstructed correctly and only
the diameter was estimated wrongly. Finally, figure 21 shows the application of the InvP approach on a
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Figure 18. The z-position (a) and diameter (b) errors over the cumulated Intersection over area (IoA) of the PIs. The IoA is the
intersection area of a PI divided by its area. The accumulated IoA is the summed IoA of a PI with all other PI overlaps and shows
the amount of the PI area that is overlapped. In (a) the dashed black line represents the pixel accuracy. In (b) the thresholds of a
1µm diameter error (red line) and for the outlier definition of an error of 10µm (yellow line) are visualized. The errors are shown
for the InvP approach and for the FFT approach both with a 1 px BB accuracy for initialization. The FFT approach and the InvP
approach are initialized from a±1 px BB placement accuracy.

Figure 19. The estimation results of two of the 10 synthetic test images visualized for the FFT+ BB (1 px placement uncertainty)
and the InvP approach. A coloured dot is added on each PI to show the error of the diameter determination: For an error< 1µm
a green dot is placed (•), for an error in [1,10]µm a blue dot (•) and for outlier particles (error> 10µm) a red dot is placed (•).
The seeding density in the images is given by S =

∑
i
π
4
d2PI,i/Aimage = 0.27, following the definition by Barnkob & Rossi [54],

which relates the defocused PI area to the image area Aimage.

real image from the bubble experiment [23], which was also used to validate the FM in figure 9, with
multiple particles. The InvP approach finds the particle parameters ψI that result in a good agreement
of the observed image with the reconstructed image according the mismatch functional P . For a qual-
itative check of the reconstruction, the reconstructed image, based on the determined ψI, can be gener-
ated using the FM. A visual comparison shows great agreement between the experimental image and the
reconstructed image. The particle field is then directly obtained from the particle parameter vector ψI.

6. Discussion and conclusions

There are several challenges in DPTV and IPI that the proposed InvP approach aims to address. The
first is the out-of-plane accuracy in DPTV, which is usually an order of magnitude lower than the estim-
ation of the in-plane position. PI overlaps furthermore present a limit to the number of particles that
can be evaluated, the maximum defocus length and defocus sensitivity, as well as the spatial resolution
of fringes in IPI. Moreover, the coupling of the z-position with the diameter estimation present an issue
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Figure 20. Synthetic observed image and the reconstruction by the InvP approach visualized. The reconstructed particles
are compared to the ground truth used to generate the observed image. In the present example, one particle was reconstruc-
ted with a false diameter but correct position, and is marked by the red circle. The seeding density in the images is given by
S =

∑
i
π
4
d2PI,i/Aimage = 0.27, following the definition by Barnkob & Rossi [54], which relates the defocused PI area to the image

area Aimage.

Figure 21. Example of the use of the InvP approach on real experimental data. The observed image is from the bubble exper-
iment. The observed image is fitted by minimizing the mismatch functional P . The FM is used to generate an image with the
optimal particle parameter set ψI. This image can be used as a reference to qualitatively check the result of the InvP approach.
The particle positions and diameters are then directly obtained from ψI.

in IPI for the sizing of 3D distributed particles. Lastly, aliasing presents a lower limit on defocusing and
upper limit on the particle size in IPI.

The inclusion of an FM in the IPI measurement offers several advantages: It allows an approach to
use the relative intensity of PIs as an additional feature to extract information. Effects such as changing
intensity due to particle size, z-position and scattering angle (x,y-position) [23] are taken into account
by the FM, which would otherwise have to be considered manually. This is particularly important for
IPI in side- and backscatter where large intensity variations can occur. Note that the present manuscript
used images from the experiment described by Sax et al [23] for performance evaluation. Accordingly,
the absolute errors discussed in this manuscript are subject to the underlying optical system used in
the experiment and may change for other setups. However, while the overall accuracy of the particle
parameter estimation scales with the optical transfer function, the relative improvements between the
approaches are expected to persist across different experimental setups.

The InvP approach showed to have a z-position accuracy in the same order of magnitude as the in-
plane position on synthetic data. A similar trend was observed on real data, however the exacted uncer-
tainty on real data is difficult to quantify. The InvP approach, therefore poses a promising counteraction
to large out-of-plane uncertainties in the 3D position determination with a single camera by means of
defocusing.

Aliasing effects of the fringe pattern can also be taken into account. There are two ways aliasing
can occur, by either large particles or by particles close to the focal plane, see figure 10. According to
equation (1) and Btot being linearly depended on zP, is the Pareto front of occurring aliasing linear.
Therefore, an increase in dP must be compensated by a linear increase in zP to avoid aliasing. While
conventional FFT based approaches are limited by aliasing, the InvP approach can operate beyond the
point of aliasing (decreased zP for a given particle size dP). As a result, the focal plane can be moved
closer to the particles in the measurement, resulting in less overlap and higher intensities (i.e. higher
SNR). This is a significant advantage over non-FM approaches as the quality of the raw data can be
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improved by imaging closer to the focal plane. This is particularly important for measurements in the
side- and backscatter regions, which generally suffer from low SNR [23]. The approach presented, there-
fore, addresses one of the most important issues in backscatter IPI. In addition, the InvP approach
shows great resilience to the presence of noise, to the point where most particle detection methods fail.
The ability of the InvP approach to deal with low SNR levels (e.g. from particles further away from the
focal plane) and aliasing (e.g. from particles closer to the focal plane) allows the measurement volume
in the z dimension to be extended in both directions. Consequently, potentially deeper volumes can be
measured with the InvP approach compared to other methods. Alternatively, this characteristic of the
InvP approach can also be used to allow for the use of optical systems with higher defocusing sensitivity
(larger change in dPI with zP) to further increase the z-position accuracy.

Comparisons with the FFT+BB approach show that the InvP approach is at least as accurate as the
current benchmark on real data with sub-micron accuracy in diameter measurement for the optical
setup in this work. The InvP approach has another significant advantage over the FFT approach in that
the z position and the diameter estimation are decoupled. This results in significantly higher diameter
accuracy for three dimensionally distributed particles, as the error in the z-position estimation does
not propagate into the diameter estimation. This feature makes the InvP approach more accurate than
sequential approaches that first determine the z-position of a particle and then use this estimate to cal-
culate the diameter. The InvP approach presented in this work introduces a competitive approach for the
simultaneous position and size determination of three-dimensionally distributed particles, alongside cur-
rently existing approaches such as IPI+APTV approaches [20, 21, 55] and InvP in holography [24, 25].
The presented InvP approach can be applied to systems with optical elements such as lenses, apertures
and glass walls, which are challenging for holographic approaches. The approach can also be used to size
both droplets and bubbles, as the scattering model takes into account the different scattering process for
any real-valued relative refractive index.

The InvP approach can be extended to measure multiple particles simultaneously. The main problem
in multi-particle systems is PI overlap, which causes approaches that rely solely on frequency extraction
(either by FFT or counting fringes) to produce erroneous estimations due to the presence of other fre-
quencies caused by the superposition of PIs. The InvP approach, however, is largely unaffected by PI
overlap. The approach, therefore, addresses the PI overlap problem in both DPTV and three-dimensional
IPI. The InvP approach, therefore, relaxes the trade-off between the need for larger PIs to improve fringe
resolution (and avoid aliasing) and the need for smaller PIs to reduce PI overlap [22]. Another factor
affecting this trade-off is the need for high SNR, which again makes small PIs advantageous. With a high
noise resistance and intensity as an additional feature in the FM, can the InvP approach also deal with
larger defocused PI with lower SNR, and, therefore, partially mitigates this part of the trade-off as well.

While the InvP approach offers advances in many of the key challenges in DPTV and IPI, the accur-
acy of the approach is mainly limited by the accuracy of the used FM and the used optimization scheme.
As the mismatch-functional is non-convex and the dimensionality of the problem is too high for a
global optimization, a local search faces the challenge of terminating in a local minimum. These min-
ima are often sufficiently close to the global minimum, so that the particle parameters are approximated
with great accuracy, as shown in the present work. With an increased number of particles in the meas-
urement volume, the higher dimensionality introduces more local minima. This is a crucial insight, as
the accuracy at which a PI is reconstructed does not depend of the PI overlap, but is rather subject to
which local minimum the solver terminates in. This also shows the importance of good initialization.
For a different initialization, therefore, a slightly different result is expected. This can be used to run an
ensemble method (multiple optimization runs with random perturbations in initialization) on the same
image to provide a measure of uncertainty for real experimental approaches.

The presented InvP approach poses a promising method to refine detections from machine learn-
ing methods as conceptualized in the hybrid approaches [15]. While the InvP approach results in lar-
ger computational cost compared to FFT approaches for sizing or a Hough transform for the position
determination, the method may be used for off-line measurements to improve accuracy, where the time
to results is not of the essence.

In comparison to other methods—such as sequential approaches utilizing APTV or DPTV for pos-
ition determination and FFT, sine fit, or stripe counting for diameter estimation—the InvP approach
offers several key advantages: it decouples the z-position and diameter estimation, is robust to PI over-
lap, and can effectively handle aliasing. These characteristics enable a level of measurement accuracy that
is difficult to achieve with conventional methods. On the other hand, the InvP approach comes with
drawbacks, including increased computational time and sensitivity to initialization. The computational
cost of the FM scales as O(n), with n being the number of particles in the image. However, the optim-
ization required to minimize P typically scales polynomially, and runtime may increase super-linearly
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depending on the chosen optimizer. For n particles, a 4n-dimensional minimization problem with box
constraints must be solved. As the scaling also depends on the sparsity of the Hessian, it can be expected
that the block corresponding to each individual particle is dense, while the overall Hessian—composed
of mostly diagonal particle blocks—remains sparse, assuming particles are independent. However, with
increasing PI overlap, inter-particle dependencies grow, making the Hessian more dense and potentially
degrading runtime behaviour. Additionally, non-convexity can further increase runtime and contrib-
utes to sensitivity to initialization accuracy. Beyond initialization, undetected particles in the detection
step can cause a mismatch between the observed and simulated image, potentially leading the optimizer
to terminate in a suboptimal solution. A possible workaround is particle detection via optimization, as
demonstrated by Soulez et al [25], though this would further increase computational complexity.

The next development step for the InvP approach would be to use the approach for two-phase flows,
as different kinds of particles such as single emitters (e.g. tracers) and double emitters (bubbles/droplets)
can easily be represented within the present approach (i.e. by omitting the diameter parameter for
tracers). The capability of the InvP approach to deal with low SNRs and tolerate aliasing when imaging
particles closer to the focal plane to obtain better SNR, can improve the evaluation of data with poor
quality. In consequence, this presents a promising step towards IPI in backscatter, which is suffering
from poor data quality. Future steps could also include more complex particles such as multi-emitters
like those arising from rough particles [56] or non-circular bubbles and droplets [57, 58].
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