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Lakes worldwide are experiencing intensifying extreme heat, with escalating ecological impacts. Despite lakes’
role as thermal buffers to modulate air temperature is well-documented, the spatial propagation dynamics of lake
effects remain poorly understood due to complex interactions of lake-atmosphere. This study proposes a syn-
ergistic WRF modeling and directional buffer analysis framework to investigate the spatial propagation dynamics
and underlying physical mechanisms of lake-induced thermal regulation during extreme heat, focusing on
Poyang Lake, China’s largest freshwater lake. The results demonstrate a pronounced diurnal asymmetry in lake-
induced thermal effects, with distinct spatial propagation characteristics between daytime and nighttime periods.
Daytime cooling exhibits an intensity of —1.16 °C, with its influence confined within a 40 km radius, showing a
relatively rapid attenuation rate of 0.28 °C per 10 km. In contrast, nighttime warming (+0.97 °C) propagates
1.75 times farther than its daytime counterpart, extending up to 70 km downwind while maintaining a slower
attenuation rate of 0.13 °C per 10 km. Directional analysis reveals north-oriented propagation of lake thermal
effects, influenced by prevailing southerly winds and lake-land breeze. Vertical profile analysis reveals distinct
altitudinal penetration of lake-induced thermal effects, with daytime influences confined below 900 hPa while
nighttime impacts extend up to 700 hPa. Daytime cooling extent is limited by turbulent mixing, whereas
nighttime warming is enhanced by stable air conditioning and advective transport. The study underscores the
role of lake-atmosphere interactions in mitigating regional climate extremes, providing critical insights for
nature-based heat adaptation strategies in lake-rich regions. These findings advance the understanding of inland
water bodies as active climate regulators under anthropogenic warming.

1. Introduction cascading impacts across ecosystems and societies (Huntingford et al.,
2024). The 2022 European event alone resulted in >61,000 heat-related
deaths and $20 billion agricultural losses (Cremona et al., 2023), while

concurrent record-breaking heat in Southeast China affected 4.08

Anthropogenic climate change has markedly amplified heatwaves
globally, which are defined as prolonged periods of abnormally high air

temperatures. (Kong et al., 2024; Luo et al., 2024). Recent studies
document a threefold increase in heatwave frequency since
pre-industrial times, with particularly pronounced intensification dur-
ing the 2020s (Wei et al., 2020). Terrestrial heatwaves have intensified
by 1-3 °C while lasting 45-60 % longer over the past century, creating
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million ha of cropland and 4.3 million residents (Zhang et al., 2023). In
this context, inland water bodies, particularly large lakes, have emerged
as critical natural regulators that can mitigate the intensity and spatial
extent of extreme heat events through unique lake-atmosphere
feedback.
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Lakes play a pivotal role in modulating regional climate through
their distinct thermodynamic and physical properties, which govern
land-atmosphere interactions (Adrian et al., 2009; Woolway et al.,
2020). Their ability to alter local weather stems from differences in
heating between land and water, while their thermal behavior is pri-
marily driven by the atmosphere above (Von Schuckmann et al., 2022).
As integral components of the climate system, lakes have characteristics
of transparency to solar radiation, low albedo, small momentum
roughness length, high thermal conductivity, and large heat capacity
relative to the land surface, which enable them to reshape boundary
layer dynamics, influence mesoscale circulation, and modify regional
heat and moisture budgets (Dai et al., 2020; Sun et al., 2014). While
existing research has largely treated lakes as passive indicators (lakes’
thermal regimes are driven by climatic forcing) of climate extremes
(Wang et al., 2024a,b; Zhou et al., 2023), their active role (modifying
regional climate through physical processes) in regulating thermal re-
gimes via lake-atmosphere feedbacks remains underexplored.

Evidence from holistic approaches, such as in situ monitoring,
remote sensing, and numerical modeling, has revealed the lake’s effect
on regional heat budgets and local climate. Regarding observational
evidence, a comparative analysis of meteorological records near Lake
Sayama (Japan) revealed a 0.46 °C reduction in the August diurnal
temperature range between the reservoir’s empty and full stages (Ueno
and Ohta, 2020). Similarly, by integrating in situ station data with
MODIS remote sensing, Li et al. (2019) quantified Qinghai Lake’s ca-
pacity to delay seasonal temperature maxima by 1.9-10.5 °C. Building
on this observational foundation, numerical modeling studies have been
instrumental in advancing a process-based understanding of
lake-climate interactions across diverse scales. At the regional scale, Zhu
et al. (2018) conducted regional climate model experiments for the Ti-
betan Plateau, demonstrating that lakes exert year-round cooling effects
on near-surface air temperature through combined reductions in sensi-
ble heat flux (=15 W m’z) and enhanced summer evaporation (+1.2
mm day_l). At the global scale, Vanderkelen et al. (2021) utilized the
Community Earth System Model to indicate that reservoirs significantly
reduce diurnal temperature variability (—0.8 °C) and moderate extreme
temperatures. Critically, the integration of lake models into atmospheric
dynamic frameworks has emerged as an essential approach for investi-
gating the full spectrum (zero to three-dimensional) physical processes
through which lakes regulate extreme heat events (F. Wang et al., 2019;
Wang et al., 2022). Despite these advances, fundamental uncertainties
persist regarding the three-dimensional trajectories, directional attenu-
ation rates, and dominant physical mechanisms governing the spatial
propagation of lake effects under extreme heat.

Although the role of lakes in modulating local and regional climate is
well established, the spatial propagation of these regulatory effects ex-
hibits heightened complexity under compounded monsoon and extreme
heat forcing. Monsoonal circulation alters thermal advection patterns by
disrupting canonical lake-land breeze systems (Tsujimoto and Koike,
2013). For instance, a daytime cooling signal over lakes could stem from
either local evaporative processes or the advection of monsoon-cooled
air masses (Sun et al., 1997). Concurrently, extreme heat imposes
nonlinear thermodynamic constraints (Collazo et al., 2024; Wang et al.,
2019). These interacting forcings fundamentally restructure the mech-
anism of lake-atmosphere exchanges, with monsoons modifying spatial
propagation pathways and heatwaves amplifying diurnal asymmetry.
This ambiguity highlights the critical need for process-based modeling
frameworks to isolate and quantify lake-mediated feedback within these
complex, multiscale climate interactions (Bennington et al., 2014).

Studies in this direction have demonstrated that lakes significantly
modulate local and downwind climates under monsoon influence
through distinct diurnal processes. Evidence demonstrates that lake
thermal effects propagate considerable distances (Mishra et al., 2011;
Zhang et al., 2021). For example, Taihu Lake’s cooling extends 10-20
km during summer (Gu et al., 2016), while Alqueva reservoir’s breeze
fronts mitigate heat intensity 6 km (lakunin et al., 2018). Lake Seling
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Co’s cooling effects propagate over 50 km during the South Asian
summer monsoon season, sufficient to modify downwind precipitation
patterns (Qiu et al., 2023). These findings collectively confirm that lake
thermal regulation follows distance-decay dynamics shaped by
monsoonal circulation patterns. However, current quantification of the
spatial propagation mechanisms remains incomplete, with fundamental
uncertainties persisting regarding (1) the three-dimensional trajectories
of lake-effect propagation, (2) directional variations in attenuation
rates, and (3) the dominant physical mechanisms controlling propaga-
tion dynamics. Our study therefore addresses the overarching research
question: What are the spatial propagation patterns and underlying
physical mechanisms of lake-induced near-surface temperature modifi-
cation during extreme heat events?

This study regarding lake-atmosphere interaction focuses on Poyang
Lake, China’s largest freshwater lake, located in the middle reaches of
the Yangtze River, within the East Asian monsoon climate zone (Li et al.,
2021). Our study area selection is strategically based on three key
considerations: (1) As a unique hydro-ecological system, Poyang Lake
and its surrounding wetlands provide an ideal natural laboratory for
studying lake-atmosphere feedbacks during climatic extremes; (2) The
increasing frequency of extreme events, particularly the unprecedented
2022 heatwave, has generated compound ecological impacts including
thermal stratification, hypoxia, and ecosystem degradation (Ma and
Yuan, 2023); (3) The lake’s geomorphology - located in a topographi-
cally uniform basin with minimal terrain-induced airflow disturbance -
creates an exceptional natural experiment for studying spatial propa-
gation of lake effects (Wei et al., 2020). These conditions collectively
present a rare opportunity to investigate lake-mediated climate feedback
when both hydrological and atmospheric systems exceed their historical
variability ranges.

Thus, the objectives of this study are to: (1) quantify the spatio-
temporal patterns of daytime lake cooling and nighttime warming under
extreme heat, (2) characterize the propagation dynamics of lake thermal
regulation (including horizontal/vertical extent, directional preference,
and attenuation processes), and (3) elucidate the underlying physical
mechanisms governing these spatial propagation patterns. To achieve
these objectives, this study proposes a synergistic WRF modeling and
directional buffer analysis framework. The quantified propagation
scales provide essential parameters for improving climate model rep-
resentations of lakes. The findings here advance understanding of how
inland waters modulate regional climate extremes, with critical impli-
cations for nature-based heat mitigation strategies in lake-rich
watersheds.

2. Materials and methods
2.1. Study area

This study examines Poyang Lake (29.2°N, 116.3°E) and its sur-
rounding region (25-31.2°N, 112-120°E), China’s largest freshwater
lake located in the Yangtze River’s middle reaches (Xing et al., 2024). As
a floodplain lake, it exhibits pronounced hydrological variability, with
an average surface area of 3 500 km? and a mean depth of 8.4 m under
normal conditions (Li et al., 2020). The lake shows substantial thermal
variation (6-30 °C; mean ~ 18 °C). According to 2022 land use data
from the ESA CCI-LC dataset, land cover comprises open water (41.8 %),
forest (35.3 %), cropland (17 %), urban areas (2.3 %), grassland (3.2 %),
and shrubland (0.2 %). The humid subtropical monsoon climate features
distinct seasons: hot-humid summers and cool-dry winters, with mean
annual precipitation of 1 680 mm (75 % occurring April-September),
evaporation of 900 mm, and air temperature of 17.5 °C (Wei et al.,
2024).
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2.2. Regional climate model

2.2.1. Model configuration

The Weather Research and Forecast model (WRF) version 4.3.3 is
employed for our study on modeling lake-induced local climate effects.
WRF is a limited-area mesoscale model that simulates a coupled,
nonlinear system of the land surface and the atmosphere (Skamarock
et al., 2008). A nested two-domain setup (Fig. 1a) is used in this study.
The outermost domain (D1) has a horizontal resolution of 30 km with
140 x 140 grid points. The innermost domain (D2) has a horizontal
resolution of 5 km with 246 x 246 grid points. An uneven vertical dis-
cretization of 38 levels up to 50 hPa for the atmosphere is used for both
D1 and D2.

For the selection of the physical schemes of WRF, we closely follow
our previous studies of Wei et al. (2024) and Wagner et al. (2016).
Specifically, the WRF Single-Moment 5-class scheme (WSM5) is used as
a microphysics scheme (Hong et al., 2004), the Yonsei University
scheme (YSU) as a planetary boundary layer scheme (Hong et al., 2006),
the Noah Land Surface Model as a surface scheme (Chen and Dudhia,
2001), and the revised MM5 Monin-Obukhov scheme as a surface layer
(Jiménez et al, 2012). For cumulus parameterization, the
Betts-Miller—Janjic (BMJ) scheme (Betts, 1986; Betts and Miller, 1986)
is turned on for the D1 and D2 simulations. For the radiation scheme, the
Rapid Radiative Transfer Model (RRTM) is used here for longwave ra-
diation (Mlawer et al., 1997) and the Dudhia scheme for shortwave
radiation (Dudhia, 1989). On the parameterization of lake thermody-
namic processes, the lake model originates from the Community Land
Model version 4.5 (Oleson et al., 2013) with modifications by Gu et al.
(2015) and is employed in this study. This one-dimensional mass and
energy balance model is built upon the Hostetler lake model framework
(Hostetler et al., 1993, 1994; Hostetler and Bartlein, 1990).

To minimize the potential bias introduced by lake temperature
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initialization in the model simulations, we implement a satellite-based
correction approach using MODIS Land Surface Temperature (LST)
products. The daily MODIS LST data (MOD11A1, Collection 6) at 1 km
resolution are spatially averaged over Poyang Lake’s water surface area
(Wan et al., 2015). These satellite-derived lake surface temperatures are
assimilated into the WRF-lake modeling system through a two-step
procedure: (1) The initial lake temperature field in WRF is adjusted to
match the MODIS LST climatology for the corresponding simulation
period; (2) A spin-up period of 30 days is implemented to allow the lake
model to reach dynamic equilibrium with the atmospheric forcing while
maintaining the satellite-constrained thermal baseline. The assimilation
particularly improves the representation of diurnal temperature cycles
and spatial thermal gradients across the lake’s sub-basins.

2.2.2. Experimental design

In this study, a set of regional dynamic downscaling experiments
using WRF are designed to quantify the lake-induced modulation on air
temperature. The evaluation simulation (i.e., control simulation, CTRL)
for historical periods is conducted adopting 2022 land cover data as its
baseline input (Fig. 1c). In contrast, the sensitivity test simulation (i.e.,
lake-remove simulation, NOLA) modifies the land cover by converting
Poyang Lake grid cells into cropland, the predominant land use type in
the surrounding region (Fig. 1d). In this experiment, the lake surface
area is treated as a static parameter, meaning seasonal variations in lake
extent, water storage, and depth are not considered in the simulations.
The static lake-removal approach is a well-established and standard
sensitivity technique in regional climate modeling designed to isolate
the maximum potential climatic impact of the lake by creating a stark
contrast. These simplifications allow to clearly attribute any differences
in simulation results directly to the presence of the lake surface itself,
without the confounding effects of complex land-cover transitions.

The CTRL and NOLA simulations begin at 0 000 UTC on 1 June 2022

(b) Poyang Lake region
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Fig. 1. (a) WRF model domain: the 30-km outer (D1) and 5-km inner (D2) simulation domain. The terrain heights (m) are shown in color. (b) Terrain height of the
Poyang Lake region. The blue-shaded area represents Poyang Lake, and the black frame delineates the 16 sectors. 10-km concentric buffer zones are used to quantify
the directional characteristics of lake-induced climate effects. (c, d) Land use type in WRF configuration for the CTRL and NOLA scenarios.
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and span the period from June to September 2022, capturing the en-
tirety of the unprecedented 2022 Yangtze River Basin heatwave. This
event, characterized by temperatures exceeding 40 °C for multiple
consecutive days across the region, represents one of the most severe
heatwaves in at least six decades, with its intensity quantitatively esti-
mated as approximately a 1-in-64-year event relative to the 1979-2014
climate (Ma and Yuan, 2023). The forcing data is taken from the
state-of-the-art global reanalysis provided by the European Center for
Medium-Range Weather Forecasts, ECMWF, namely ERAS5 (Hersbach
et al, 2020). ERAS5 provides hourly atmospheric, oceanic, and
land-surface variables at a horizontal resolution of 0.25° x 0.25° for the
globe from 1940 until the present.

The WRF model incorporates the Noah-modified 21-category IGBP-
MODIS land cover classification scheme to characterize land cover
types and associated surface parameters such as albedo, leaf area index,
and vegetation fraction. However, research has shown that the model’s
default surface data may not accurately reflect real-time land cover
conditions (Jach et al., 2020; Wang et al., 2023). To address this limi-
tation, this study replace the default land wuse data with
higher-resolution (300 m) satellite-derived land cover information from
the European Space Agency’s Climate Change Initiative (CCI-LC) dataset
(Defourny et al., 2017). For the NOLA simulation, key surface parame-
ters (albedo, leaf area index, and vegetation fraction) are uniformly
adjusted to match the average values of adjacent cropland areas, effec-
tively simulating the hypothetical disappearance of the lake.

2.2.3. Reference data and validation strategy

For the performance assessment of the historical simulations, the
ERA5-Land reference data set of historically 2-m air temperature (T,) is
used. ERA5-Land (Munoz Sabater, 2019; Munoz-Sabater et al., 2021) is
an enhanced global gridded dataset (with horizontal resolution of 10
km) for the land component of ERA5 produced by ECMWF, spanning
1950 to the present day with hourly resolution. The ERA5-Land dataset
incorporates the FLake model (Rooney and Bornemann, 2013), explic-
itly accounting for lake effects in its land-surface and meteorological
variables. To facilitate the comparison of the simulations to the refer-
ence data, the bilinear interpolation method is employed to resample the
WRF-simulated T, to the reference data grids.

In addition, daily mean T, observations from three meteorological
stations (Lushan, Jingdezhen, and Changbei) around Poyang Lake are
collected for independent model validation. These observations are
collected by the China Meteorological Administration. The geographical
locations and metadata of these stations are provided in Supplementary
Table S1 and Fig. S1. These in-situ measurements serve as fully inde-
pendent ground-truth data to robustly assess the model’s performance.

Four statistical metrics, namely, spatial correlation coefficient (SCC),
Pearson’s correlation coefficient (PCC), Mean relative bias (MRB), and
Root mean square error (RMSE) with a calculated p value (the signifi-
cance level of 99 %), are used to quantify the performance of the WRF
Model in terms of reproducing spatial patterns and temporal variation of
T, of the reference.

2.3. Detection of lake-induced thermal regulation

To systematically evaluate the spatial propagation of lake-induced
thermal effects, we analyze air temperature modifications (AT,) dur-
ing typical daytime hour (15:00 local time) and typical nighttime hour
(06:00 local time). These specific hours are selected as they represent the
daily maximum (15:00) and minimum (06:00) air temperature in this
region, when lake thermal effects are most pronounced. The lake-
affected area (% of study area) is quantified as the percentage of the
study domain exhibiting statistically significant cooling (AT, > 0, p <
0.05) during daytime or warming (AT, < 0, p < 0.05) during nighttime
relative to NOLA reference conditions. The significance level of AT, at
each grid cell is calculated using a two-sided Student’s t-test based on
daily time series. Correspondingly, the magnitude of lake thermal
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regulation is calculated as the mean AT, across all significantly modified
grid cells within the affected area.

A directional buffer analysis framework is implemented to quantify
the anisotropic propagation of lake-induced thermal effects by estab-
lishing 10-km concentric zones radiating from Poyang Lake’s shoreline
(Fig. 1b), divided into 16 azimuthal sectors with 22.5° resolution. Mean
AT, values are calculated for each buffer ring through radial averaging,
generating directional AT,-distance curves that reveal the spatial decay
patterns of lake influence. Statistically significant turning points in these
curves are identified using piecewise regression analysis, with turning
points objectively marking the transition from lake-dominated to
background thermal regimes based on criteria of p < 0.01 for slope
changes. Three key metrics are derived to characterize the lake’s ther-
mal regulation: the mean AT, within the directional zone represents the
thermal intensity, the distance between the turning point and the lake
boundary quantifies the maximum propagation range, and the AT,
gradient between the lake boundary and the turning point measures the
attenuation efficiency. This comprehensive approach enables systematic
evaluation of how lake thermal effects vary across directions and pro-
vides standardized metrics for comparing thermal propagation charac-
teristics under different meteorological conditions.

3. Results
3.1. Model evaluation

This section evaluates the WRF model’s performance in reproducing
T, pattern across the study area relative to reference data. Fig. 2 presents
the spatial distribution of T, for the entire simulation period, typical
daytime hour, and typical nighttime, comparing CTRL simulation results
(left) with ERA5-Land data (middle) and their differences (right) for the
Poyang Lake region. The results indicate that the WRF model demon-
strates good skill in reproducing the observed northwest-to-southeast T,
gradient (SCC = 0.73, Table 1). However, a systematic cold bias is
evident (MRB = —2.98 %), with consistent error patterns across all
periods. Negative biases predominantly occur in the eastern moun-
tainous areas, while positive biases appear over the central and south-
western plains. The topographic correspondence suggests that terrain
complexity contributes to the cold bias, particularly in southern
highlands.

Notably, the model shows better nighttime performance (MRB =
—2.29 %, RMSE = 1.42 °C) than daytime simulations (MRB = —3.51 %,
RMSE = 2.30 °C), with daytime errors primarily stemming from
underestimated temperatures in the southwestern mountains. The
simulation accurately reproduces both the daytime cooling and night-
time warming effects around Poyang Lake, with spatial patterns and
magnitudes closely matching reference data. These results confirm the
model configuration’s suitability for investigating lake-atmosphere
interactions.

To further evaluate the model’s performance against independent
observations and address potential biases from using reanalysis data, we
validate the simulated daily mean T, against measurements from three
meteorological stations (Lushan, Jingdezhen, and Changbei; Supple-
mentary Fig. S1). The results demonstrate that the WRF model suc-
cessfully captures the observed daily variations and amplitude of T,
during the 2022 extreme heat event. This is evidenced by a strong
agreement with station observations, yielding a mean PCC of 0.78 (p <
0.01), a mean MRB of —3.54 %, and a mean RMSE of 2.30 °C. This in-
dependent verification strengthens confidence in the model’s reliability
for reproducing temporal dynamics of T,.

3.2. Spatial propagation of lake thermal effect
This section investigates the spatiotemporal characteristics of lake-

induced air temperature alteration (AT,). The examination begins
with a detailed assessment of horizontal distribution patterns across the
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Fig. 2. Spatial distributions of average T, during (a—c) the entire simulation period, (d-f) typical daytime hour (15:00 local time), and (g-i) typical nighttime hour
(06:00 local time) from the CTRL simulations (left column: a, d, and g) and ERA5-Land dataset (center column: b, e, and h). (right column: c, f, and i) The cor-
responding differences of T, between the CTRL simulation and the ERA5-Land dataset. The black frame represents the boundary of Poyang Lake.

Table 1
Performance metrics evaluating the WRF-simulated T, against reference data.

Metrics Daily mean Daytime Nighttime

scc 0.73** 0.64** 0.75%*

PCC 0.83** 0.78** 0.87**

MRB —2.98 % -3.51 % -2.29 %

RMSE 1.73°C 2.30 °C 1.42°C
**p < 0.01.

study domain, revealing distinct thermal anomalies centered over
Poyang Lake and its immediate surroundings. Fig. 3 reveals pronounced
daytime cooling (—2.6 °C) and nighttime warming (+2.8 °C) effects,
with maximum thermal changes occurring directly over Poyang Lake.
Significance tests indicate the nighttime warming area substantially
exceeds the daytime cooling extent. The cooling effect is primarily
confined to airspaces above the lake and adjacent Yangtze River flood-
plains to the west and northeast. The Lushan Mountains divide the
eastern and central cooling zones into two distinct regions. In contrast,
the nighttime warming pattern shows continuous spatial coherence.
From a latitudinal-longitudinal perspective, the AT, distributions
exhibit single-peak patterns centered over Poyang Lake in the zonal
direction, while exhibiting multimodal structures with multiple varia-
tion points along the meridional transect that extend beyond the im-

mediate lake vicinity. Both the cooling and warming effects exhibit a
clear spatial decay pattern with increasing distance from the lake, as
evident from the longitudinal and latitudinal mean profiles.

Fig. 4 displays the west-east vertical cross-section of lake-induced
AT, along 29°N, demonstrating Poyang Lake’s significant influence on
the three-dimensional structure of lake-atmosphere interactions. The
lake’s thermal modulation weakens progressively with height. During
daytime, substantial cooling penetrates up to 900 hPa, primarily
confined vertically above the lake surface. Notably, an additional cool-
ing layer emerges above 600 hPa, though isolated from the surface-
driven cooling by an intervening warm layer. Nighttime conditions
exhibit contrasting patterns, with warming extending beyond 800 hPa
across broad regions east and west of the lake, while a distinct cold layer
forms above 700 hPa. Comparative analysis reveals a persistent memory
effect in the 900-400 hPa layer, characterized by consistent lower-level
warming and upper-level cooling. This elevated warming layer notably
constrains the vertical extent of daytime cooling below 900 hPa.

Further investigation of temporal variations in lake-affected area and
intensity (Fig. 5) reveals consistent diurnal patterns between the spatial
extent and magnitude of lake effects, indicating strong coupling between
these parameters. The 15-day moving average effectively filters high-
frequency variability and reveals underlying temporal trends. The day-
time cooling effect intensifies progressively from June to August,
peaking in mid-July and late August (—0.94 °C, 73 % coverage), before
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weakening in September. In contrast, nighttime warming of the lake
follows a distinct temporal progression, with gradual intensification
through June-August and maximum values occurring in September
(1.02 °C, 79 % coverage).

Using the directional buffer analysis framework, lake-induced AT,
across varying distances and directions is quantified. The distance-AT,
relationship curves averaged on all directions exhibit distinct significant
turning points for both daytime and nighttime (Fig. 6). On the inner side
of these turning points, AT, demonstrates monotonic decay as distance
from the lake increases, with the thermal influence gradually

diminishing at a rate of approximately 0.2 °C per 10 km. This decay
pattern reflects the progressive dissipation of lake-induced thermal ef-
fects through atmospheric mixing and energy exchange with the sur-
rounding land surface. In contrast, the outer side of the turning points
shows statistically stable AT, that remain nearly constant with further
distance increases, indicating the transition to background atmospheric
conditions where lake influence becomes negligible. The turning points
mark critical thresholds in the spatial propagation of lake effects, rep-
resenting the maximum extent where lake-induced thermal modifica-
tions remain detectable above natural variability.

This characteristic two-phase relationship remains robust across all
16 directional sectors (Supplementary Figs. S3-S4), consistently
demonstrating the distinct spatial decay pattern of lake thermal influ-
ence. However, two notable exceptions emerge in the NNE and NW
sectors, where secondary inflection points are detected in addition to the
primary transition points that are annotated in the analysis.Fig. 6 also
presents compelling evidence of directional variability in the spatial
attenuation of lake-induced thermal effects through boxplot analysis.
This directional dependence is most pronounced within the first 20 km
from the shoreline. Beyond the identified turning points, the analysis
demonstrates a consistent convergence of AT, values toward spatial
uniformity across all directions, indicating the gradual dissipation of
directional influences with increasing distance from the lake.

The distance-decay characteristics of lake-induced thermal effects
exhibit marked diurnal asymmetry, with turning points identified at 40
km (daytime) and 70 km (nighttime). This spatial pattern indicates
significantly faster attenuation of daytime cooling effects compared to
nighttime warming. The rapid daytime attenuation within 40 km pri-
marily results from strong thermal forcing by the warmer surrounding
land surface, where the lake’s limited cooling capacity is quickly over-
whelmed by ambient heat conditions. At the turning point, the daytime
AT, shows an increase of 1.16 °C relative to the lake center. In contrast,
nighttime AT, shows a reduction of 0.97 °C. The observed decay rates
also show diurnal asymmetry, with steeper gradients during daytime
(0.28 °C/10 km) compared to nighttime (0.13 °C/10 km).

Sensitivity analyses (Supplementary Fig. S2, Fig. S5-S10) are con-
ducted to test the robustness of the identified turning points (40 km for
daytime, 70 km for nighttime) against methodological choices. Varia-
tions in buffer width (5, 10, and 15 km) resulted in deviations within &5
km for both daytime and nighttime distances. Similarly, altering the
sector numbers (8, 16, and 32) has a negligible impact on the mean
AT,-distance curves. A higher sector number (e.g., 32) provided a more
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detailed representation of the AT, distribution within 0-30 km. The 10- To systematically quantify the directional dependence of lake-
km buffer combined with the 16-sector setup is ultimately selected as it induced thermal attenuation, three parameters are analyzed across 16
offers an optimal balance between capturing spatial detail and main- directions for both daytime and nighttime: mean AT, magnitude,
taining statistical stability. turning point distance derived from AT,-distance curves, and AT,
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change from lake boundary to turning point. Distinct diurnal patterns
emerge in the directional distributions (Fig. 7). Daytime cooling exhibits
a cross-shaped spatial pattern in mean AT, magnitude, without clear
directional dominance (Fig. 7a-b). However, the turning point distances
reveal obvious north-south propagation of cooling effects, with
maximum extension along the NNW direction (60 km, Fig. 7c). Night-
time warming shows analogous directional preference, also following
the north-south orientation (max distance is 80 km, Fig. 7d).
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The daytime AT, increase and nighttime AT, decrease from lake
center to turning point demonstrates stronger directional variability
(Fig. 7e—f). The change of AT, is primarily distributed in the southwest
direction, with notable extensions along the WSW, SE, and E directions,
a pattern consistent for both daytime and nighttime. The directional
distribution of AT, change does not align with the turning point dis-
tances, indicating that the intensity and spatial extent of lake effects vary
independently across different directions. In summary, the spatial
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Fig. 7. Radar plots showing the directional distribution (16 sectors) of lake-induced cooling or warming effects at typical daytime hour (left) and typical nighttime
hour (right): (a, b) mean AT, of different directions; (c, d) inflection point distance derived from AT,-distance curves; (e, f) AT, decrease (or increase) from inflection
point to lake center. Since values in (f) are negative, their absolute values are plotted for clearer visualization.
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propagation of lake-induced thermal regulation exhibits significant
directional heterogeneity.

The spatial dissociation between the maximum intensity and the
maximum propagation distance of lake-induced AT, reveals the distinct
roles of local thermodynamics versus regional dynamics. The strongest
cooling/warming anomalies in the southwest, southeast, and east sec-
tors likely arise from localized enhancements, such as the convergence
of lake breezes with the background southwesterly flow and interactions
with heterogeneous land surfaces, which amplify the thermal signal. In
contrast, the farthest propagation along the north-south axis is primarily
governed by the persistent advection of lake-modified air masses by the
dominant background wind. This demonstrates that while local pro-
cesses determine the intensity of the lake effect, the background circu-
lation ultimately controls its spatial extent.

3.3. Mechanism of lake effect propagation

To explain the mechanisms governing the spatial propagation of lake
thermal effects, we analyze both the background atmospheric circula-
tion (Fig. 8) and lake-induced modifications of atmospheric circulation
(Figs. 9-12). The composite surface wind and pressure fields reveal
persistent southwesterly flow dominance over Poyang Lake under both
daytime and nighttime conditions, with enhanced wind speeds during
nighttime (particularly over the lake surface). A pronounced high-
pressure anomaly develops over the lake and adjacent Yangtze River
floodplains, exhibiting notable diurnal variation in spatial extent. The
nighttime high-pressure system expands significantly compared to its
daytime counterpart. The consistent southwesterly flow orientation
across all observed levels facilitates advection of lake-modified air
masses toward north region, while topographic channeling along the
Yangtze valley appears to enhance this transport. These circulation
patterns collectively account for several observed thermal features: (1)
persistent southwesterlies drive downwind advection of lake effects,
generating the asymmetric thermal distributions shown in Fig. 7; (2)
nighttime wind acceleration enhances vertical mixing, directly enabling

Mean

(b)

Daytime
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the broader spatial propagation of warming evident in Fig. 3b. The co-
ordinated action of horizontal advection governs both the directional
preference and spatial scale of lake-atmosphere interactions.

Analysis of wind fields across multiple pressure levels
(Supplementary Fig. S11) demonstrates systematic clockwise rotation
with height, indicating strong coupling between surface and upper-level
atmospheric processes. The lower troposphere (850 hPa) is predomi-
nantly influenced by southwesterly flows, while the mid-troposphere
(500 hPa) exhibits transitional characteristics with combined south-
westerly and westerly components. A notable directional shift occurs in
the upper troposphere (200 hPa), where northeasterlies emerge as the
dominant flow pattern, surpassing the prevalence of westerly winds.
This vertical wind structure aligns with observed lake-induced thermal
patterns (Figs. 3 and 4), revealing coordinated surface-upper atmo-
sphere interactions that govern the spatial propagation of lake effects.

The investigation of atmospheric circulation responses to lake
regulation reveals significant modifications in both horizontal and ver-
tical pressure and wind fields that either amplify or suppress the prop-
agation of lake effects. Horizontally, the lake induces a distinct surface
low-pressure trough northwest of its location, markedly enhancing
southerly wind anomalies over the water body, with this phenomenon
being particularly pronounced during daytime hours (Fig. 9).

The spatial propagation of lake effects is governed by an interplay
between background wind fields and diurnally varying circulations
across multiple atmospheric levels (Fig. 10). During daytime, the 850
hPa circulation pattern exhibits a pronounced geopotential height
depression over the lake contrasting with surrounding highs, generating
strong northwesterly wind anomalies. Nighttime conditions reverse this
pattern, with the lake developing elevated geopotential heights similar
to adjacent land areas, thereby weakening northwesterly flows. While
these lake-land contrasts disappear at 500 hPa and 200 hPa levels,
replaced by a persistent low-pressure center north of the lake, the
characteristic northwesterly anomalies maintain their presence
throughout the vertical column.

The observed attenuation scales quantitatively manifest the
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equilibrium between wind-driven advection (controlling directionality)
and thermodynamic dissipation (regulating spatial extent). This balance
is further modulated by topographic channeling effects that enhance
downstream transport along the Yangtze floodplain. The persistent
northwesterly anomalies across all levels, coupled with diurnally alter-
nating pressure systems near the surface, create a vertically coherent
mechanism that sustains lake-effect propagation while maintaining its
directional preference. The vertical decoupling of pressure systems
(surface variability vs. upper-level consistency) suggests that while lake-
forced circulations dominate boundary layer processes, their climatic
impacts are ultimately constrained by synoptic-scale patterns aloft.

From a vertical perspective, the horizontal pressure gradients
induced by lake thermal regulation drive notable advective changes
(Figs. 11 and 12). An anomalous low-pressure system develops below
500 hPa over the lake during daytime, confined by surrounding thermal
highs and vertically connected to upper-level low-pressure layers
(Fig. 11a). This daytime pressure anomaly stems from substantial lake-
induced cooling effects that stabilize the lower atmosphere and
generate anomalous subsidence. Conversely, nighttime lake warming
establishes an anomalous high-pressure system that extends beyond the
lake area rather than remaining confined above it (Fig. 11b). This high-
pressure system exhibits northward expansion under the influence of
prevailing southerly background flows.

Vertical circulation reveals distinct diurnal patterns in lake-
atmospheric interactions (Fig. 12). During daytime, rapid land surface
heating establishes a thermal low-pressure system, while the relatively
cooler lake maintains higher pressure, driving cold air flow from the
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water body toward surrounding land areas (Fig. 12a). Intense surface
warming creates an unstable boundary layer characterized by strong
turbulent mixing, which rapidly dilutes the lake-cooled air mass and
limits its spatial extent. The shallow lake-induced cold air layer interacts
with deeper terrestrial convective mixing, where ascending warm air
currents disrupt and dissipate the cooling influence, preventing sus-
tained propagation of temperature modifications.

Nighttime conditions exhibit contrasting dynamics, as the lake
continuously releases longwave radiation to warm near-surface air
while the land rapidly cools, forming a cold high-pressure system that
generates a land breeze (Fig. 12b). This circulation achieves consider-
able spatial influence (>50 km) due to stable boundary layer conditions.
The nighttime temperature inversion effectively suppresses turbulent
mixing, allowing horizontal diffusion of lake-generated heat to produce
more persistent and extensive warming effects compared to daytime
conditions.

The diagnostic analysis of surface energy components provides
quantitative evidence for the proposed mechanisms governing the
diurnal asymmetry in lake effect propagation (Supplementary Fig. S12).
For the daytime period, the significantly negative lake-induced differ-
ence in planetary boundary layer height (PBLH) coupled with strongly
negative latent heat flux (LHF) and sensible heat flux (SHF). While this
creates a near-surface cool pool, the suppressed PBLH acts to confine this
cooling effect by inhibiting vertical mixing, thereby preventing its
extensive horizontal spread. In contrast, during the nighttime, the pos-
itive differences in both SHF and LHF confirm that the lake continuously
releases stored energy to warm the overlying air. The relatively small
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Fig. 12. West-East cross section at 29°N of lake-induced vertical velocity (W, shaded, m/s) and zonal circulation (vector, m/s) differences at (a) typical daytime hour
(15:00 local time) and (b) typical nighttime hour (06:00 local time). All values represent the average differences during the simulation. The gray shaded area
represents the terrain height, and the blue bold line denotes the location of Poyang Lake. The vertical velocity is amplified 50 times for better illustration.

magnitude of the PBLH difference indicates a persistently stable atmo-
spheric stratification near the surface, which effectively suppresses
turbulent dissipation. This stable environment, combined with the sus-
tained energy supply from the lake surface (evidenced by the strong
positive upward longwave radiation difference), favors the horizontal
advection of the warm air masses. Consequently, the lake-induced
warming influence can propagate over a much greater distance down-
wind than its daytime cooling counterpart.

In summary, the spatial propagation of lake effects is primarily
governed by background wind fields that determine their directional
characteristics, while lake-induced modifications of local thermal en-
vironments create distinct diurnal circulation patterns. These thermally
driven processes lead to significant differences in the spatial extent and
attenuation rates between daytime cooling and nighttime warming ef-
fects. The key mechanisms include: (1) enhanced turbulent mixing
during daytime that weakens and confines lake cooling effects, and (2)
stable nighttime atmospheric stratification and enhanced advection that
extends lake warming influences. This fundamental diurnal asymmetry
arises from differential energy partitioning between shortwave radiation
driven evaporative cooling (daytime) and longwave radiation release
(nighttime), modulated by the contrasting boundary layer stability
conditions characteristic of each period. The combined action of these
mechanisms produces the observed spatial variability in lake-
atmosphere interactions.

4. Discussion

The pronounced spatial attenuation of lake-effect thermal propaga-
tion under extreme heat, as quantified in this study, reveals fundamental
characteristics of inland lakes in modulating regional climate extremes.
Our findings demonstrate a distinct distance-decay pattern, with day-
time cooling effects attenuating within 40 km and nighttime warming
persisting up to 70 km from Poyang Lake’s shoreline. This spatial
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gradient aligns with but extends previous studies from other lakes. For
example, propagation distances of 10-20 km for the Taihu Lake (Gu
etal., 2016) and Miyun Reservoir (Qin et al., 2023) during heatwaves. In
contrast, larger water bodies exhibit substantially greater reach: Qinghai
Lake’s cooling can influence areas 30-100 km downwind (Li et al.,
2019), while the impact of Lake Victoria extends approximately 60 km
along the prevailing wind direction (Thiery et al., 2015). Most illustra-
tive is the gradient observed across 11 boreal lakes in western Canada,
where the temperature buffer potential scales directly with lake surface
area, ranging from 10 km to 100 km (Hillman and Nielsen, 2025). Our
results provide the first comprehensive quantification for a large lake
under unprecedented heat stress. The enhanced nighttime warming
range results from the extreme thermal contrast between the persistent
warm lake surface and rapidly cooling surrounding lands during the
2022 record heatwave, creating stronger pressure gradients that drive
more extensive atmospheric mixing. The identification of characteristic
attenuation scales (40 km daytime, 70 km nighttime) provides critical
parameters for improving lake representation in regional climate
models, which have traditionally underestimated these propagation
distances due to coarse resolutions and simplified lake-atmosphere
coupling schemes (Zhu et al., 2020).

The directional preference of north-oriented propagation aligns with
the prevailing southerly wind patterns in the region, reinforcing the role
of background atmospheric circulation in shaping lake-effect distribu-
tions. Similar directional biases have been observed in other lake sys-
tems, such as Lake Taihu (Sijia et al., 2019) and Lake Victoria
(Vanderkelen et al., 2018), though the specific attenuation rates
(0.28 °C/10 km daytime, 0.13 °C/10 km nighttime) provide new
quantitative insights for the Poyang Lake basin. The vertical penetration
of lake effects to 700-900 hPa further demonstrates that lakes influence
not only surface conditions but also atmospheric processes, further
affecting cloud formation and precipitation patterns downwind (Qiu
et al., 2025).
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The mechanisms driving these spatial patterns involve complex in-
teractions between lake surface fluxes, atmospheric stability, and lake-
induced atmospheric circulation (Rouse et al., 2008). Daytime cooling
is limited by turbulent mixing and rapid dissipation of cold air advec-
tion, while nighttime warming benefits from stable boundary-layer
conditions that suppress vertical mixing and allow horizontal heat
diffusion (Gu et al., 2015). These findings are consistent with recent
modeling studies (Huang et al., 2017; Wei et al., 2025) but extend their
applicability to extreme heat scenarios, where lake effects may be
amplified by heightened thermal contrasts between water and land
surfaces (Shi et al., 2022).

These findings significantly advance our understanding of inland
water bodies as thermal buffers under climate change, where both
heatwave intensity and lake surface temperatures are projected to in-
crease (Wang et al., 2024a,b; Woolway et al., 2021). The identification
of characteristic propagation scales and attenuation thresholds provides
not only fundamental parameters for improving lake representation in
regional climate models but also a quantitative framework for guiding
future research. Specifically, future studies should investigate how these
spatial metrics are influenced by dynamic lake morphometry, hydro-
logical extremes, and broader climatic regimes to build a more gener-
alizable theory of lake-mediated climate feedback.

On a practical level, the quantified propagation gradients offer
actionable insights for regional climate adaptation policy. The demon-
strated efficacy of large lakes like Poyang Lake as natural thermal buffers
underscores the necessity of integrating blue infrastructure into long-
term planning in densely populated regions (Cheng et al., 2023).
Urban planning strategies, particularly in heat-vulnerable areas, can
utilize the 40-km and 70-km influence zones to delineate priority areas
for preserving natural water bodies, designing cooling corridors, and
mitigating urban heat island effects (Le Phuc et al., 2022). This study
underscores the growing importance of integrating inland water bodies
into climate resilience policy as their thermal regulatory role becomes
increasingly critical under global warming.

This modeling study is subject to several limitations. First, our
experimental design involves simplifications that may affect the results.
The WRF model, in its standard configuration, cannot represent
dynamically changing surface conditions. Therefore, we treat Poyang
Lake as a static water body in our simulations. Moreover, in the NOLA
experiment, the lake is uniformly replaced with cropland, the dominant
land use type in the surrounding region. In reality, the 2022 extreme
drought caused significant lake shrinkage, which likely alters lake-
atmosphere interaction processes. Furthermore, the actual land cover
surrounding the lake is a complex mosaic including forests, wetlands,
and urban areas (Yang et al., 2025). Using cropland as the sole substitute
may therefore exaggerate the lake-land contrast. Second, the sparse
distribution of meteorological stations around Poyang Lake limits the
observational validation of the fine-scale spatial gradients. This obser-
vational gap reduces our ability to fully capture localized microclimatic
variations that may influence the lake’s thermal regulation capacity.
Additionally, the lack of long-term, high-resolution measurements over
the lake surface hinders precise validation of the model’s representation
of critical lake-atmosphere exchange processes during extreme heat.
These limitations highlight the need for enhanced monitoring networks
to better constrain lake-atmosphere interactions in future studies. In
addition, future simulation research should explore how lake
morphology (e.g., depth, shape) and hydrological changes (e.g., sea-
sonal water area changes) modulate thermal propagation dynamics. The
potential feedback between lake effects and larger-scale atmospheric
processes, such as monsoon circulation, warrants further investigation.

It is important to note that our findings characterize lake thermal
propagation specifically during an extreme heat event. The identified
attenuation scales and intensities may differ under moderate climatic
conditions due to variations in background wind speed, atmospheric
stability, and land-lake thermal contrast. Future research should include
comparative simulations of both extreme and non-extreme years to
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quantify how these dynamics shift across a gradient of climatic forcing.
5. Conclusions

Lakes are well-established thermal regulators that mitigate extreme
heat. However, the spatial extent and propagation mechanisms of lake
thermal regulation remain unresolved due to complex lake-atmosphere
couplings. This study provides a comprehensive analysis of the spatial
propagation and physical mechanisms governing lake-induced thermal
regulation during extreme heat based on WRF simulations, as exempli-
fied by the largest freshwater Poyang Lake (China). The results
demonstrate pronounced diurnal asymmetry in the lake’s climatic in-
fluence, characterized by strong daytime cooling constrained within 40
km of the boundary and more extensive nighttime warming reaching up
to 70 km. The attenuation rates of 0.28 °C/10 km (daytime) and 0.13 °C/
10 km (nighttime) are correspondingly detected. In terms of vertical
profile, lake effects penetrate to approximately 700-900 hPa, with
daytime effects concentrated near the surface and nighttime impacts
showing greater horizontal extent under stable boundary-layer condi-
tions. The spatial propagation of lake effects exhibits clear directional
preference, with north-oriented attenuation shaped by prevailing
southerly winds and modified by local thermal circulations.

These contrasting patterns arise from fundamental differences in
energy exchange processes. Daytime cooling is primarily driven by
evaporative heat loss and limited by turbulent mixing with warmer
surrounding air, while nighttime warming benefits from stable atmo-
spheric conditions that enhance the horizontal diffusion of heat released
through longwave radiation.

This work establishes lakes as active participants in regional climate
systems and contributes a framework for assessing their role in modu-
lating temperature extremes under global warming. This study high-
lights the growing importance of integrating inland water bodies into
climate resilience planning, as their thermal regulatory role becomes
increasingly critical under continued warming. Future studies should
investigate how the identified spatial metrics are influenced by dynamic
lake morphometry, hydrological extremes, and broader climatic regimes
to build a more generalizable theory of lake-mediated climate feedback.
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